МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Савченков Антон Владимирович

СИНТЕЗ И СТРОЕНИЕ НОВЫХ КРОТОНАТ-, БУТИРАТ-И ВАЛЕРАТСОДЕРЖАЩИХ КОМПЛЕКСОВ УРАНИЛА

02.00.01 - неорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель:

д.х.н., проф. Сережкин В.Н.

Нижний Новгород – 2014

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ОБЗОР ЛИТЕРАТУРЫ	8
1.1. Характеристика иона уранила как комплексообразователя	8
1.2. Кристаллохимические формулы комплексов	14
1.3. Кристаллохимическая роль кротонат-, бутират- и валерат-ионов в структурах кристаллов	17
1.4. Колебательные спектры кротонат-, бутират- и валерат-ионов	21
1.5. Анализ невалентных взаимодействий в рамках стереоатомной модели строения кристаллических веществ	25
1.6. Фотохимические и оптические свойства соединений уранила с анионами монокарбоновых кислот	29
1.7. Строение соединений уранила с кротонат- и бутират-ионами	33
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	37
2.1. Исходные вещества, методы синтеза и анализа	37
2.2. Кротонатсодержащие комплексы уранила	41
2.2.1. Синтез и физико-химическое исследование кротонатоуранилатов	41
2.2.2. Кристаллические структуры KUO ₂ (C ₃ H ₅ COO) ₃ и RbUO ₂ (C ₃ H ₅ COO) ₃	47
2.2.3. Кристаллические структуры α- и β-NH ₄ UO ₂ (C ₃ H ₅ COO) ₃	50
2.3. Бутиратсодержащие комплексы уранила	55
2.3.1. Синтез и физико-химическое исследование бутиратоуранилатов	55
2.3.2. Кристаллическая структура UO ₂ (<i>n</i> -C ₃ H ₇ COO) ₂ (H ₂ O) ₂	63
2.3.3. Кристаллические структуры NaUO ₂ (<i>n</i> -C ₃ H ₇ COO) ₃ ·0.25H ₂ O и KUO ₂ (<i>n</i> -C ₃ H ₇ COO) ₃	66
2.3.4. Кристаллическая структура Mg(H ₂ O) ₆ (UO ₂ (<i>n</i> -C ₃ H ₇ COO) ₃) ₂	69

2.4. Валератсодержащие комплексы уранила	71
2.4.1. Синтез и физико-химическое исследование валератоуранилатов	71
2.4.2. Кристаллическая структура UO ₂ (<i>n</i> -C ₄ H ₉ COO) ₂ (H ₂ O) ₂	₂ 79
2.4.3. Кристаллические структуры KUO ₂ (<i>n</i> -C ₄ H ₉ COO) ₃ и RbUO ₂ (<i>n</i> -C ₄ H ₉ COO) ₃	
2.4.4. Кристаллическая структура Na ₄ (UO ₂) ₄ (<i>i</i> -C ₄ H ₉ COO) ₁₁ (NO ₃)·3H ₂ O	
2.5. Нелинейные оптические свойства кротонат-, бутират- и валератсодержащих комплексов уранила	
3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	
3.1. Комплексы уранила с анионами монокарбоновых кислот	
3.2. Натрийсодержащие соединения уранила с анионами монокарбоновых кислот	94
3.3. Калийсодержащие соединения уранила с анионами монокарбоновых кислот	
3.3.1. Растворимость в воде и фотохимические превращен	ия108
3.4. Влияние природы карбоксилатного лиганда на некоторые характеристики соединений уранила состава <i>A</i> [UO ₂ L ₃].	e <i>n</i> H ₂ O112
ВЫВОДЫ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
ПРИЛОЖЕНИЕ	

ВВЕДЕНИЕ

Актуальность работы. Структура и свойства карбоксилатных комплексов уранила, в частности, ацетатных, давно являются предметом экспериментальных и теоретических исследований, так как, с одной стороны, уксусная кислота и ее используются В некоторых технологиях переработки производные урансодержащих веществ и материалов, а, с другой стороны – карбоксилатные функциональные группы в гуматах и сидерофорах координируются ураном в природных условиях [1–4]. На основе соединений U(VI) синтезированы уранилорганические каркасы (UOF), в которых металлические центры связаны полифункциональными [5]. органическими лигандами Структурные особенности этих материалов, такие, как наличие внутренних центров связывания, гибкость и большие пустоты в сочетании с разнообразными электрофизическими свойствами, привлекательными лелают их лля использования во многих областях, например, катализ, разделение и хранение газов. Установлено, что для создания UOF могут быть использованы и более простые алифатические кислоты. Например, получен нанотрубчатый материал, представляющий собой уранил-органическую сетку с формиат-ионами [6], а используя уранил-, оксалат- и пероксид-ионы из водных растворов были получены наносферы, обладающие топологией фуллерена [7].

На сегодняшний день изучено строение около ста ацетатсодержащих соединений U(VI), в то время как комплексы уранила с ионами других монокарбоновых алифатических кислот изучены в такой малой степени, что результаты этих исследований невозможно использовать для обобщений и сравнительного анализа [8]. Так, в литературе описано строение только одного кротонатного [9] и одного *изо*-бутиратного [10] комплексов уранила, при этом ни один *н*-бутиратный, *н*-валератный или *изо*-валератный комплекс уранила до сих пор не был структурно изучен.

<u>Цель работы</u> – комплексное изучение новых координационных соединений уранила, содержащих кротонат-, бутират- или валерат-ионы в

качестве лигандов, в соответствии с чем было запланировано решение следующих задач:

- разработка методик синтеза кротонат-, бутират- и валератсодержащих комплексов уранила;
- определение строения полученных соединений уранила методом рентгеноструктурного анализа (РСА) монокристаллов;
- изучение ИК спектров полученных комплексов и их поведения при нагревании;
- проведение кристаллохимического анализа стехиометрически однотипных соединений уранила, содержащих формиат-, ацетат-, пропионат-, кротонат-, бутират- или валерат-ионы, для выявления влияния природы карбоксилатного лиганда на особенности реализующихся структур кристаллов.

<u>Научная новизна.</u> Впервые проведен синтез 12 новых соединений уранила, содержащих кротонат-, бутират-, валерат- или *изо*-валерат-ионы, методом РСА монокристаллов определена их кристаллическая структура. Для полученных соединений установлены ИК спектроскопические и термографические характеристики.

Методом генерации второй оптической гармоники подтверждена нецентросимметричность кристаллов некоторых кротонат-, бутират- и валератсодержащих соединений уранила. Впервые определена растворимость в воде ряда К-содержащих соединений уранила с анионами монокарбоновых кислот. С помощью метода газовой хроматографии установлен состав углеводородов, образующихся в результате протекания фотохимических перевращений в водных растворах некоторых комплексов.

С позиций стереоатомной модели строения кристаллов [11] проведен кристаллохимический анализ соединений уранила, содержащих формиат-, ацетат-, пропионат-, кротонат-, бутират- и валерат-ионы, охарактеризовано влияние природы карбоксилатного лиганда на строение стехиометрически однотипных комплексных соединений.

Практическая значимость. Сведения о структуре кристаллов всех соединений В синтезированных депонированы Кембриджском банке структурных данных (КБСД) [12] и могут использоваться при анализе взаимосвязей между составом, строением и свойствами координационных соединений U(VI). Полученные результаты предоставляют возможность количественной оценки влияния состава и строения карбоксилатного лиганда на физико-химические свойства стехиометрически однотипных координационных соединений уранила с анионами гомологического ряда одноосновных карбоновых кислот.

Изученные комплексы могут быть использованы как прекурсоры для синтеза уранил-органических каркасов и других урансодержащих материалов. Учитывая, что соединения уранила с органическими кислотами применяются в качестве активаторов при полимеризации олефинов [13–18], не исключено, что некоторые полученные соединения могут оказаться перспективными компонентами эффективных активаторов.

На защиту выносятся:

- сведения о методиках синтеза 12 новых соединений уранила;

- данные о структуре кристаллов, ИК спектроскопические и термографические характеристики синтезированных соединений;
- результаты кристаллохимического анализа соединений уранила, содержащих формиат-, ацетат-, пропионат-, кротонат-, бутират- и валератионы.

Апробация работы и публикации. Результаты диссертационного исследования докладывались на VI и VII Национальных кристаллохимических конференциях (Суздаль, 2011 и 2013 гг.), XXII Конгрессе международного союза кристаллографии (Мадрид, 2011 г.), VII Российской конференции по радиохимии «Радиохимия – 2012» (Димитровград, 2012 г.), а также на ежегодных научных конференциях Самарского государственного университета. По теме диссертации опубликовано 8 работ, среди них 4 статьи в ведущих российских и иностранных рецензируемых научных журналах, рекомендованных ВАК РФ

(«Журнал неорганической химии», «Кристаллография», «Радиохимия», «Acta Crystallographica Section C») и 4 тезиса докладов на международных и национальных конференциях.

<u>Личный вклад соискателя</u> заключается в разработке методик синтеза и получении монокристаллов всех изученных соединений, проведении ИК спектроскопического и термического анализов, участии в интерпретации результатов РСА, изучении кристаллохимических особенностей соединений, участии в подготовке публикаций.

<u>Структура и объем работы.</u> Диссертационная работа включает введение, обзор литературы, экспериментальную часть, обсуждение результатов, выводы, список использованных источников (130 наименований) и приложение. Содержание диссертации изложено на 143 страницах машинописного текста (включая приложение), содержит 47 рисунков и 35 таблиц (в том числе 5 таблиц в приложении).

Благодарности. Автор благодарит сотрудников ИНЭОС им. А.Н. Несмеянова РАН (г. Москва) к.х.н. Вологжанину А.В. и д.х.н. Корлюкова А.А. и сотрудников ИНХ им. А.В. Николаева СО РАН (г. Новосибирск) к.х.н. Пересыпкину Е.В. и к.х.н. Вировца А.В. за помощь в проведении рентгеноструктурного эксперимента, а также сотрудника МГУ им. М.В. Ломоносова (г. Москва) д.ф.-м.н. Стефановича С.Ю. за измерение нелинейной оптической активности соединений и сотрудника СамГУ (г. Самара) к.т.н. Арутюнова Ю.И. за газохроматографическое исследование. Работа выполнялась при финансовой поддержке Министерства образования и науки РФ (проект 02.740.11.0275), а также отмечена стипендией Президента Российской Федерации и премией конкурса Министерства образования и науки Самарской области «Молодой ученый».

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Характеристика иона уранила как комплексообразователя

Уран – химический элемент под номером 92 актинидной серии периодической системы Д.И. Менделеева. Электронная структура атома U: [Rn] $5f^{3}6d^{1}7s^{2}$, шесть электронов являются валентными. Уран является радиоактивным нестабильны. Наиболее элементом, все его изотопы распространены изотопы U^{238} и U^{235} с периодами полураспада $4.47 \cdot 10^9$ и $7.04 \cdot 10^8$ лет соответственно [19]. В природе U встречается в очень низких концентрациях в грунте, камнях и воде; наиболее распространенным минералом является уранинит (настуран), состоящий из смеси оксидов U, Th и некоторых редкоземельных элементов [20].

Уран проявляет степени окисления +3, +4, +5 и +6, наиболее стабильна из которых +6 [21]. Устойчивой формой существования U(VI) является ион уранила $UO_2^{2^+}$, придающий соединениям желтую окраску. Характеристической особенностью иона уранила является способность флуоресцировать под действием ультрафиолетового света [22, 23]. В большинстве кристаллических структур трехатомный ион $UO_2^{2^+}$ является линейным с отклонением угла $\angle OUO$ от 180° не более 5°. Однако известны случаи, когда ион уранила изгибается сильнее [24], и даже более чем на 10°, как, например, в соединении [NEt₄]₂[UO₂(C₅Me₅)(CN)₃] {PEXDOM} [25] (здесь и далее в фигурных скобках приводятся коды соединений в Кембриджском банке структурных данных [12]).

Связи U=O в ионе UO₂²⁺ являются характерно короткими и сильными (1.7– 1.9 Å), ни один другой атом не может так близко подойти к урану [26]. Много работ с использованием квантово-механических расчетов было посвящено определению кратности связи между атомами в ионе уранила [27–31]. Более полное понимание природы связывания атомов в UO₂²⁺ стало возможно после тщательных и подробных исследований [32, 33], основанных на экспериментах с применением оптической и рентгеновской спектроскопии. Согласно этим данным, в ионе уранила образуются трехкратные связи U–O за счет перекрывания 7s, 5f и 6d орбиталей атома U и 2p орбиталей атомов O. Тем не менее в рамках классической модели межатомного взаимодействия связи U=O в ионе уранила являются двойными, а повышаться до трех кратность связи может за счет дополнительного донорно-акцепторного взаимодействия между атомами U и O. Из-за образования кратных ковалентных связей частица UO_2^{2+} является очень стабильной и химически стойкой.

Валентные возможности U(VI) не исчерпываются связыванием с двумя атомами кислорода в ионе уранила. Согласно правилу 18 электронов [11, 34] атом урана должен реализовать вокруг себя оболочку из 18 электронов, а атомы О иона уранила вносят вклад, равный примерно 8 электронам (по 4 электрона каждый, что согласуется с классическими представлениями о двухцентровых четырехэлектронных связях U=O). Поэтому U(VI) стремится дополнить свою оболочку еще десятью электронами за счет координации дополнительных атомов, которые из-за отталкивания от уранильных атомов кислорода располагаются в перпендикулярной главной оси UO₂²⁺ плоскости, называемой экваториальной. Электронодонорные способности экваториальных лигандов могут быть оценены при помощи ряда Черняева–Щелокова [35, 36], построенного на основании сравнения констант образования комплексов уранила в водных растворах:

$$\begin{split} O_2^{2-} &\geq CO_3^{2-} \geq OH^- \geq F^- \geq C_2O_4^{2-} \geq CH_3COO^- \geq \\ &\geq SO_4^{2-} \geq NCS^- \geq NO_3^- \geq Cl^- \geq Br^- \geq l^- \end{split}$$

Согласно этому ряду лиганды, расположенные левее, образуют более прочные связи с ионом уранила и, следовательно, могут вытеснять из экваториальной плоскости лиганды, расположенные правее.

В образующихся комплексных соединениях координационные полиэдры (КП) атомов U имеют вид бипирамид (рис. 1), самой распространенной из которых является пентагональная [37]. Такие бипирамиды сжаты вдоль главной оси за счет того, что атомы в экваториальной плоскости связаны с центральным

слабее, чем аксиальные атомы О иона уранила, и являются достаточно лабильными.

Рис. 1. Координационные полиэдры атомов U(VI) при координационных числах, равных 5–8.

Между атомами, расположенными в экваториальной плоскости, и ионом уранила осуществляется электростатическое И донорно-акцепторное взаимолействие. Наиболее часто В качестве доноров электронов В экваториальной плоскости выступают атомы О, также эту роль могут выполнять атомы F, Cl, Br, S, N, реже I. В последнее десятилетие удалось получить комплексы, в которых UO₂²⁺ связан с углеродом [38, 39], в частности, циклопентадиенильный комплекс [25] (рис. 2а), цианидный комплекс $[UO_2(CN)_5]^{3-}$ [40] (рис. 2б) и даже соединение с двойными связями U=C [41], что совместно с другими открытиями меняет устоявшиеся представления о координационной химии и стабильности иона уранила [42].

Рис. 2. Анионные комплексы $[UO_2(C_5Me_5)(CN)_3]^{2-}$ (а) в структуре {PEXDOM} и $[UO_2(CN)_5]^-$ (б) в {REWNEN}.

Отклонение координированных ионом уранила атомов от экваториальной плоскости обычно незначительно, но может усиливаться при координации

объемных хелатных лигандов. Было предположено, что расположение вне экваториальной плоскости наиболее вероятно для лигандов с донорными атомами N. Так, в [43] описана структура нескольких соединений, в которых отклонение атомов N от теоретической экваториальной плоскости достигает 0.74 Å, а примеры комплексов с аномально большими отклонениями до 1.5 Å приведены в [25, 44].

Координационное число (**КЧ**) атома U(VI) в большинстве синтезированных комплексов равно 6, 7 или 8 [45, 46]. Известны также несколько соединений с КЧ атомов U, равным 5 [47–49]. А недавно были впервые изучены структуры, в которых U координирует 9 атомов, из которых 7 являются экваториальными, но значительно отклоняются от теоретической плоскости изза сильных стерических взаимодействий [50, 51]. Авторы этих работ обнаружили два типа КП атомов U с KЧ = 9: искаженная гексагональная бипирамида с одной расщепленной экваториальной вершиной и искаженная шапочная квадратная антипризма (рис. 3а, 3б).

Рис. 3. Координационные полиэдры атомов U с координационным числом, равным 9 (а,б), и атом U с ромбоэдрической координацией (в) [51].

Кроме того, в [51] описывается соединение с нестандартной для атома U(VI) при KЧ = 8 ромбоздрической координацией (рис. 3в). Очевидно, что уникальный координации характерен U тип И атома для В [25], циклопентадиенильном комплексе КΠ которого авторы назвали полигональной бипирамидой. Формально этот U(VI) образует связи с десятью атомами: двумя уранильными атомами О, тремя атомами С цианид-ионов и пятью атомами С циклопентадиенильного кольца (рис. 2а).

Достаточно давно известно, что уранильные атомы О могут выступать в роли акцепторов при образовании водородных связей [52]. Тем не менее, атомы иона уранила долгое время считались инертными, кислорода трудно заместимыми и неспособными образовывать дополнительные связи. Однако в литературе появляется все больше данных о существовании взаимодействий уранильных О с другими атомами. Такие примеры оксо-функционализации обобщены в недавнем обзоре [53]. Например, при координации атомом U в экваториальной плоскости сильных о-донорных лигандов связи с уранильными атомами кислорода ослабевают, что подтверждается уменьшением частоты валентных колебаний иона уранила. Ослабление связей уранильных атомов О увеличивает их основность и приводит к возможности возникновения уранилкатионных взаимодействий с кислотами Льюиса, например, как показано на рис. 4a [48].

Рис. 4. Примеры структур с уранил-катионными взаимодействиями (а) и с замещенными на атомы азота оксо-лигандами (б). Взято из [48] (а) и [54] (б).

Авторы [51], обсуждая электронные эффекты лигандов в комплексных соединениях уранила, отметили, что «было бы интересно в будущем заменить трифлатные ($CF_3SO_3^-$) и нитратные группы менее электроно-акцепторными, но настолько объемными лигандами, как бидентатные карбоксилаты RCO_2^- , для изучения электронного вклада и влияния R заместителя на структуру продуктов». Кроме того в последние десятилетия получены первые структурные данные об аналогах иона уранила, в которых оксо-лиганды замещены атомами азота [55–57, 54], что сказывается на уменьшении положительного заряда на атоме U и свойствах всей частицы как комплексообразователя (рис. 4б).

Атомы, координируемые ураном в экваториальной плоскости, наоборот, чаще всего образуют связи с другими атомами и входят в состав различных неорганических и органических ионов или молекул, а могут и служить мостиками к другим атомам U так, что их КП соприкасаются вершинами или ребрами.

1.2. Кристаллохимические формулы комплексов

При увеличении количества структурно изученных соединений уранила возникает необходимость их систематизации для облегчения выполнения таких задач, как поиск аналогичных по определенным параметрам структур, их сравнение, выявление общих особенностей координационной химии U(VI). Одним из наиболее универсальных методов описания и систематизации любых комплексных соединений, обладающим такими преимуществами над другими, как краткость, лаконичность и возможность использования в автоматическом режиме посредством вычислительной техники, является использование кристаллохимических формул (**КХФ**) [58]. С помощью КХФ можно описать любые моно- и полиядерные, а также гомо- и гетеролигандные комплексы [59].

Важными характеристиками комплексных частиц, которые должны отражаться в записи КХФ, являются КЧ и КП центрального атома, типы координации лигандов (их дентатность, выступление в роли концевых, мостиковых или хелатных групп), размерность образующихся структурных группировок (островные, цепочечные, слоистые, каркасные). КХФ комплексных соединений записываются по определенным правилам [58, 59], описанным далее.

В общем случае состав комплексного соединения можно записать в виде $R_c[A_d\Sigma_iL_i]\cdot nL_j$, где R – противоион; A – центральный атомкомплексообразователь; L_i – лиганды, координированные атомом A; L_j – противоионы или нейтральные молекулы во внешней сфере; c, n и d – стехиометрические коэффициенты. Основной интерес представляет описание строения самих комплексных частиц $[A_d\Sigma_iL_i]^{Z\pm}$, где $Z\pm$ – заряд частицы.

Согласно [58], общая дентатность лиганда обозначается символами M при моно-, B при би-, T при три-, K при тетра-, P при пента-, G при гекса-, H при гепта-, O при окто-, N при нона- и D при декадентатности. Тип связывания центральных атомов A с лигандом обозначается при помощи цифровых надстрочных индексов *mbtkpghond*, показывающих парциальную дентатность лиганда по отношению к каждому атому A (m – моно-, b – би-, t – три-, ..., d –

декадентатность). На месте каждого символа в надстрочном индексе ставится число атомов A, связанных с лигандом, обладающим по отношению к нему данным типом дентатности. Таким образом, тип координации любого *i*-ого лиганда можно записать в виде $D_i^{mbtkpghond}$. Из кристаллохимического символа лиганда можно легко определить общее количество атомов комплексообразователей, связанных с лигандом (Z), и общее количество связей, образованных одним лигандом (N_B). В общем случае Z и N_B рассчитываются по формулам:

$$Z = m + b + t + k + p + g + h + o + n + d$$
(1)

$$N_B = 1m + 2b + 3t + 4k + 5p + 6g + 7h + 8o + 9n + 10d$$
(2)

После определения типов координации всех лигандов записывается КХФ комплекса в виде $A_d D_i^{mbtkpghond}$. Подстрочные индексы показывают стехиометрические соотношения центрального атома и лигандов. Надстрочный индекс после символа A отражает количество связей металл-металл в комплексной частице. При наличии двух химически неэквивалентных комплексообразующих атомов или лигандов используются символы A и A^{2} , M^{1} и M^{1} и т.д. Если в состав соединения входят несколько комплексных частиц, их КХФ следует разделять знаками «+», например, $AM_{16}^{1} + A^{2}B_{13}^{01}$.

Совместное использование химической и кристаллохимической формул позволяет определить КЧ центрального атома (CN(A)) и количество лигандов в первой координационной сфере (N_A) без использования рисунков или словесного описания [58]. CN(A) и N_A в общем случае рассчитываются по формулам:

$$CN(A) = a + \sum_{i} v_i (m + 2b + 3t + 4k + 5p + 6g + 7h + 8o + 9n + 10d)_i$$
(3)

$$N_A = a + \sum_i v_i (m + b + t + k + p + g + h + o + n + d)_i,$$
(4)

где *а* – количество связей металл-металл; v_i – стехиометрический коэффициент, показывающий количество лигандов данного типа в КХФ.

Кроме того, в случае наличия в комплексе мостиковых лигандов можно оценить теоретически максимальное количество атомов A, окружающих центральный во второй координационной сфере и связанных с ним мостиковыми лигандами (C_T):

$$C_{T} = a + \sum_{i} v_{i}(m+b+t+k+p+g+h+o+n+d)_{i} \times (m+b+t+k+p+g+h+o+n+d-1)_{i}.$$
(5)

Действительное количество атомов A, связанных с центральным мостиковыми лигандами (C_P), меньше либо равно C_T , т.к. некоторые мостиковые лиганды могут связывать центральный атом A с одним и тем же атомом A^{\sim} . Поэтому значение C_P не может быть рассчитано из КХФ и является отдельным параметром, характеризующим топологию комплекса. Как показано в [58], кроме КХФ и параметра C_P для полного описания строения комплексной частицы необходимо указывать ее размерность.

1.3. Кристаллохимическая роль кротонат-, бутират- и валерат-ионов в

структурах кристаллов

Кротонат-ион (C₃H₅COO⁻) является остатком кротоновой кислоты и относится к непредельным соединениям с одной двойной связью С=С (рис. 5). Бутират- (C₃H₇COO⁻) и валерат- (C₄H₉COO⁻) ионы являются остатками масляной валериановой соответственно И кислот, относящихся К гомологическому ряду насыщенных монокарбоновых кислот. Их строение можно представить в виде карбоксилат-ионов –СОО⁻ и углеводородных цепочек -C_nH_{2n+1}, которые могут иметь разветвленное или неразветвленное строение (рис. 5). Отметим, что кротоновая кислота, используемая в данной работе, является *транс*-изомером 2-бутеновой кислоты. Цис-2-бутеновая кислота (или изо-кротоновая) менее устойчива и при нагревании переходит в *транс*-изомер.

Рис. 5. Схематическое строение углеродных цепочек некоторых карбоксилатионов. Для упрощения атомы водорода не указаны.

При образовании координационных соединений с кротонат-, бутират- и валерат-ионами в качестве лигандов в роли электронодонорных атомов могут выступать только два атома О карбоксилатных групп, имеющие неподеленные электронные пары и несущие отрицательный заряд. Следовательно, кротонат-, бутират- и валерат-ионы в структурах кристаллов теоретически могут иметь либо монодентатный, либо бидентатный типы координации.

Для определения кристаллохимической роли кротонат-, бутират- и валерат-ионов и установления наиболее часто встречающихся типов их координации из КБСД [12] (версия 2012 года) были отобраны соединения,

содержащие в своем составе указанные ионы, структуры которых были установлены с *R*-фактором не более 10%. В частности, в [12] было обнаружено 47 соединений, содержащих 147 кротонат-ионов. В 96% случаев кротонат-ионы координированы бидентатно, при этом самым распространенным является тип координации B^2 (45%). Также часто встречаются типы координации B^{11} и B^{01} (25 и 18%). Единичные примеры обнаружены для типов координации B^3 , B^4 и B^{21} , на которые суммарно приходится 8%. Из монодентатных типов координации обнаружен только M^1 , который реализуют 4% кротонат-ионов.

Также в [12] содержатся сведения о структурах 50 соединений со 188 координированными бутират-ионами. Подавляющее число бутират-ионов из них являются бидентатными (93%). Наиболее распространенным, как и в случае с кротонат-ионами, оказался тип координации B^2 (62%), а на втором месте – тип координации B^3 (14%). Из бидентатных типов координации также реализуются B^{01} и B^{11} , на которые суммарно приходится 15% бутират-ионов, и B^4 и B^{21} , найденные для единственного соединения $Ba(C_3H_7COO)_2$ {SOXTII} [60], содержащего 4 сорта бутират-ионов (в сумме 2%). Оставшиеся 7% приходятся на монодентатные бутират-ионы с типами координации M^1 и M^2 . Отметим, что некоординированный атом кислорода может участвовать в образовании $[Cu_{3}(\mu_{3}-OH)(\mu_{3}$ водородных связей. как. например, В соединении $C_{3}H_{3}N_{2}_{3}(CH_{3}(CH_{2})_{2}COO)_{2}(MeOH)(H_{2}O)] \{JAVGIX\} [61].$

Достоверных структурных сведений о валератсодержащих комплексах в [12] значительно меньше: найдено 5 соединений с 13 сортами валерат-ионов. Во всех случаях в координации валерат-иона задействованы оба атома О карбоксилатной группы и наиболее частым типом является B^2 (77%). Для двух ионов (15%) реализуется тип координации B^3 , а для одного (8%) – B^{01} .

Таким образом, в 102 соединениях с изученной к настоящему времени структурой кристаллов для кротонат-, бутират- и валерат-ионов обнаружены 8 типов координации: B^2 , B^3 , B^4 , B^{01} , B^{11} , B^{21} , M^1 и M^2 (рис. 6), относительная распространенность которых показана на рис. 7.

Рис. 6. Схематическое изображение типов координации кротонат-, бутират- и валерат-ионов, реализующихся в кристаллических структурах.

Рис. 7. Относительная распространенность типов координации кротонат-, бутират- и валерат-ионов, реализующихся в кристаллических структурах.

Следует отметить, что в общую выборку попали как изо-, так и н-изомеры бутират и валерат-ионов, при этом не во всех случаях определены координаты атомов водорода. В качестве центральных атомов в изученных соединениях выступают в основном d- и f-металлы, но также встречаются p-металлы (Sn, Tl, Pb), щелочноземельные (Mg, Ca, Sr, Ba) и щелочные металлы (Li, K). Среди 102 рассмотренных соединений содержатся ранее упоминавшиеся $UO_2(C_3H_5COO)_2(H_2O)_2$ [9] и $UO_2(i-C_3H_7COO)_2(H_2O)_2$ [10], до начала настоящего исследования являвшиеся единственными примерами кротонатных И бутиратных комплексов уранила, в которых карбоксилат-ионы проявляют тип координации B^{01} . Подчеркнем, что кротонат-, бутират- и валерат-ионы в кристаллических структурах чаще всего являются бидентатными (95%), при этом бидентатно-циклический тип координации B⁰¹ реализуют только 11% из 348 карбоксилат-ионов в изученных соединениях. В роли центральных атомов при типе координации B^{01} выступают большие по размеру атомы d- (Co, Cu, Zn, Y, Zr, Ag, Cd, La, Os) и f- (Nd, Gd, Ho, Er, U) элементов, а также Tl и Pb.

В дополнение к этому, для облегчения последующего сравнения соединений, содержащих карбоксилат-ионы одного гомологического ряда, при помощи метода молекулярных полиэдров Вороного–Дирихле (ММПВД) [62] нами были определены средние объемы формиат-, ацетат-, пропионат-, бутират-и валерат-ионов, а также непредельных кротонат-ионов во всех структурно изученных на сегодняшний день соединениях, содержащихся в КБСД [12]. Согласно полученным данным, объемы лигандов увеличиваются при переходе от формиат- к ацетат-, пропионат-, бутират- и валерат-ионам приблизительно от 48(7) до 77(11), 103(9), 132(16) и 151(7) Å³ соответственно. То есть увеличение объема лиганда при его удлинении на одну –CH₂– группу составляет ≈ 26 Å³, что хорошо согласуется с данными [63]. Полученное значение среднего объема кротонат-ионов составляет приблизительно 117(7) Å³, занимая по этому показателю, как и по количеству атомов в формульной единице, промежуточное положение между пропионат- и бутират-ионами.

1.4. Колебательные спектры кротонат-, бутират- и валерат-ионов

Исходя из строения бутират- и валерат-ионов, в их колебательных спектрах можно ожидать проявление полос, вызванных колебаниями карбоксилатных (-СОО-), метиленовых (-СН₂-), метильных (-СН₃) групп и связей С-С, а также, в случае кротонат-ионов, колебаниями групп атомов, находящихся при двойной связи. Это означает, что их спектры должны обладать определенным сходством как друг с другом, так и с анионами других монокарбоновых кислот, ИЗ которых наиболее изучены спектры ацетатсодержащих соединений [64-66]. Колебательная спектроскопия широко применяется для идентификации бутират- и валерат-ионов в различных целях [67-70]. Подробное исследование инфракрасных спектров карбоксилатов проведено авторами [71], которые основное внимание уделили пропионату и бутирату Cu(II), но также обсуждают тенденции изменения частот колебаний при удлинении углеводородной цепочки от ацетата до стеарата меди (табл. 1).

Согласно данным [71], в области выше 1700 см⁻¹ наблюдаются только валентные колебания v(CH) метильных и метиленовых групп. Интересной особенностью карбоксилатов с длинной углеводородной цепочкой является появление дублета за счет резонанса Ферми для обертона $2\delta_{as}$ (CH₃), который не наблюдается в случае ацетата меди. При удлинении углеводородной цепочки два антисимметричных колебания v_{as} (CH₃) понижают частоту и сливаются в одну полосу.

В области 1700–1350 см⁻¹ проявляются валентные v(СОО) и деформационные δ (СН) колебания. Симметричным и антисимметричным колебаниям v(СОО) соответствуют две наиболее интенсивные полосы, проявляющиеся в случае бутирата Cu(II) при 1588 и 1423 см⁻¹. При этом v_{as}(СОО) часто сопутствуют сателлитные пики меньшей интенсивности, появляющиеся за счет обертонов или комбинаций [71].

	Ацетат	Пропионат	Бутират	Стеарат
Отнессние	меди	меди	меди	меди
$v_{as}(CH_3)$	3027	2985	2964	2956
$v_{as}(CH_3)$	2989	2976		
$v_s(CH_3)$	2942	2943	2933	2930
		$2880 \int^{P\Phi}$	$2875 \int^{P\Phi}$	$2872^{P\Phi}$
$v_{as}(CH_2)$		2920	2904	2915, 2941
$v_s(CH_2)$		2869	2866	2849
$v_{as}(COO)$	1605	1590	1588	1586
$\delta_{as}(CH_3)$	1453	1474	1464	1468
		1462		
$\delta_{as}(CH_3)$	1445	1445	1446	1446
$v_s(COO)$	1425	1426	1423	1422
$\delta(C_{\alpha}H_2)$		1407	1410	1406
$\delta(C_{\beta}H_2)$			1430	1441
$\delta_s(CH_3)$	1356	1382	1381	1380
		1372		
$\omega(C_{\alpha}H_2)$		1300	1348	1347
$\omega(C_{\beta}H_2)$			1318	1315
			1298	1302
$tw(C_{\alpha}H_2)$		1244	1266	1266
$tw(C_{\beta}H_2)$			1255	1248, 1228
			1214	1210, 1179
$\nu(C_{\beta}-C_{\alpha})$		1088	1105	1118
$\gamma(CH_3)$	1053	1081	1079	1067
• \ /		1074		
γ(CH ₃)`	1032	1014	1051	1041
		999	1039	1027
$\nu(C_{\gamma}-C_{\beta})$			957	963
			934	943
$\nu(C_{\alpha}-C)$	945	893	899	899
			874	872
$\gamma(C_{\alpha}H_2)$		811	802	807
$\gamma(C_{\beta}H_2)$			754	782, 761
			732	734, 721
δ(COO)	690	699	677	682
		667	655	
γ(COO)	625	598	590	627, 598
ω(COO)	460	566	528	515
		530	518	483
$\delta(C_{\gamma}CC)$			427	440, 430, 415

Таблица 1. Обнаруженные инфракрасные частоты (см⁻¹) и отнесение колебаний для ацетата, пропионата, бутирата и стеарата меди (II) в кристаллической фазе по данным [71] *

* v – валентное; δ – деформационное; ω – веерное; *tw* – крутильное; γ – маятниковое; *as* – антисимметричное; *s* – симметричное; РФ – резонанс Ферми.

Больше всего полос в случае длинноцепочечных карбоксилатных лигандов наблюдается в области 1350–700 см⁻¹, тогда как для ацетата меди здесь проявляются только 3 полосы [71]. Полосы в этом диапазоне соответствуют маятниковым γ (CH₃) и валентным ν (C–C) колебаниям, а также крутильным tw(CH₂) и веерным ω (CH₂) колебаниям метиленовых групп (рис. 8).

В области ниже 700 см⁻¹ наблюдаются наименее интенсивные полосы, отвечающие ножничным δ(СОО), маятниковым γ(СОО) и веерным ω(СОО) колебаниям.

Рис. 8. Формы колебаний метиленовой группы –СН₂– [72]. Знаки «+» и «–» обозначают движение атомов перпендикулярно плоскости страницы.

Авторы [71] отмечают, что в связи с возможностью транс- или гошконформации относительно С–С связей могут наблюдаться сдвиги и расщепления некоторых полос. Общей особенностью спектров, приведенных в [71], является понижение частоты аналогичных колебаний при увеличении длины карбоксилатных лигандов.

Известно, что тип координации карбоксилатного лиганда отражается на значениях частот антисимметричных $v_{as}(COO)$ и симметричных $v_s(COO)$

колебаний, а также на разности между ними Δv_{as-s} [73–75]. Так, по данным [75] в водных растворах ацетатных соединений диапазоны значений 1538–1527 см⁻¹ для v_{as} (СОО), 1467–1466 см⁻¹ для v_s (СОО) и 60–72 см⁻¹ для Δv_{as-s} свидетельствуют о бидентатной координации лиганда. Для монодентатного ацетат-иона характерны значения 1603–1595 см⁻¹ для v_{as} (СОО), 1390–1389 см⁻¹ для v_s (СОО) и 205–214 см⁻¹ для Δv_{as-s} . Такое варьирование частот колебаний связано с изменением длин связей между атомами О и комплексообразователя, а также углов \angle ОСО при изменении типа координации. Отметим, что частоты должны быть чувствительны также и по отношению к хелатным и мостиковым бидентатным лигандам.

Различия карбоксилатных колебательных спектров ионов С неразветвленным и разветвленным строением углеводородных цепочек в колебаний основном заключаются в изменении валентных скелета И деформационных колебаний метильных групп [72]. При конфигурации, в которой две метильные группы связаны с одним атомом углерода, наблюдается дублет пиков деформационных колебаний $\delta(CH_3)$ с приблизительно одинаковой интенсивностью, который в случае изопропила проявляется при 1385-1380 и 1370-1365 см⁻¹.

Особенностью спектров соединений, поглощения содержащих непредельные углеводородные лиганды, является появление валентных и деформационных колебаний групп атомов, находящихся при двойной связи. Так, в спектрах алкенов появляются полосы, отвечающие деформационным внеплоскостным колебаниям =CH, валентным колебаниям связей C=C и валентным колебаниям =СН [72]. Отдельные особенности инфракрасных данной работе соединений рассмотрены спектров изученных В В соответствующих разделах.

1.5. Анализ невалентных взаимодействий в рамках стереоатомной модели строения кристаллических веществ

Одной из задач кристаллохимии является определение валентных и невалентных взаимодействий между атомами в структуре кристаллов. Как известно, в рамках классических представлений атомы рассматриваются в виде жестких сфер определенного радиуса, и два атома считаются химически связанными, если расстояние между ними в структуре кристалла совпадает с суммой их радиусов. Однако такому подходу присущ ряд недостатков. В частности, определение радиусов атомов является комплексной задачей, т.к. они зависят от многих параметров, о чем свидетельствует существование нескольких систем кристаллохимических радиусов: ионные, металлические, ван-дерваальсовы и др. [76].

Другой подход заключается в определении размера атома как некоторой области его действия в структуре кристалла. Например, Р. Бейдер использовал для определения объема такой области распределение электронной плотности [77]. Альтернативным способом определения области действия атома является построение полиэдров Вороного–Дирихле (**ПВД**), использовать которые для кристаллохимического анализа впервые предложил П. Нигтли [78]. Такая модель строения кристаллических веществ получила название стереоатомной [11].

Полиэдр Вороного–Дирихле атома А – выпуклый многогранник, ограниченный плоскостями, которые проведены через середины отрезков, связывающих этот атом с его соседями, перпендикулярно этим отрезкам. Каждая грань ПВД отвечает одному соседнему атому. Структуру кристалла в таком контексте как совокупность ПВД, можно рассматривать полностью заполняющих все пространство кристалла. Использование ПВД позволяет ввести целый ряд количественных геометрических характеристик атома в структуре кристалла: $V_{\Pi B I}$ – объем ПВД; $R_{C I}$ – радиус сферы, объем которой равен объему ПВД; N_f – число граней ПВД; D_A – смещение ядра атома из геометрического центра тяжести его ПВД; G₃ – безразмерный второй момент инерции ПВД, показывающий отклонение его формы от сферической (G₃ для

сферы равно 0.077). Таким образом, в рамках стереоатомной модели строения кристаллических веществ любое взаимодействие между парой атомов A и X помимо расстояния между ними описывается еще тремя параметрами: размером площади общей грани S ПВД атомов A и X; значением телесного угла Ω , под которым общая грань ПВД атомов видна из ядра любого из них; объемом бипирамиды V, в основании которой лежит общая грань ПВД атомов A и X, а ядра атомов находятся в апикальных позициях.

В рамках стереоатомной модели строения кристаллических веществ КЧ атомов определяются при помощи метода пересекающихся сфер [79], который пригоден для соединений любого состава и строения и не требует априорных суждений, субъективных оценок или допущений. Метод пересекающихся сфер позволяет обнаруживать на основании только структурных данных валентные и невалентные взаимодействия, как внутри-, так и межмолекулярные. Для определения типа взаимодействия каждому атому присваиваются два радиуса: r_s и $R_{CД}$, из которых r_S – радиус Слейтера, показывающий размер изолированного, т.е. химически не связанного атома, а $R_{\rm CД}$ – упоминавшийся выше радиус сферического домена, характеризующий размер химически связанного атома в структуре данного вещества. Отметим, что оба радиуса определяются строго и однозначно, исходя из справочных таблиц (r_s) или кристаллоструктурных данных ($R_{CД}$). Кроме того, $R_{CД}$ данного атома, находящегося в окружении атомов определенных химических элементов, не зависит от его КЧ, что можно рассматривать следствие образования однотипной электронной как конфигурации валентной оболочки за счет химического взаимодействия с атомами окружения. Так, например, среднее значение объема ПВД атомов U(VI) в кислородном окружении при K'(U) = 6, 7 или 8 составляет 9.2(3) Å³ [80].

При сближении несвязанных атомов, соответствующих типу пересечения Π_0 на рис. 9, их сферы начинают поочередно пересекаться. Первыми пересекаются внешние сферы атомов (Π_1). Далее в зависимости от соотношений между r_s и R_{CZ} для каждого атома внешняя сфера одного из атомов пересечется со внутренней сферой другого атома (Π_2). После этого внешняя сфера второго

атома пересечет внутреннюю сферу первого (П₃). И, наконец, последними пересекутся внутренние сферы двух атомов (П₄).

Рис. 9. Схематическое представление пяти возможных типов пересечения атомов в рамках метода пересекающихся сфер [79].

Согласно [79], в случае Π_0 между атомами возникают только слабые вандер-ваальсовы взаимодействия. Пересечения Π_1 соответствуют специфическим (или вторичным) взаимодействиям [81]. Сильным химическим связям соответствуют пересечения типов Π_2 , Π_3 и Π_4 . Количество атомов, связанных с центральным за счет пересечений этих трех типов, соответствует КЧ центрального атома. Таким образом, метод пересекающихся сфер позволяет с единых позиций определить типы как валентных, так и невалентных взаимодействий.

Стереоатомная модель строения кристаллических веществ позволяет разделять валентные, также В автоматическом режиме невалентные внутримолекулярные и межмолекулярные контакты. Для этого дополнительно используется такая характеристика как ранг грани (РГ) ПВД, который определяется минимальным количеством химических связей, разделяющих рассматриваемую пару атомов [63]. Отсюда, грани с РГ = 1 соответствуют химическим связям, а все грани с РГ > 1 – внутримолекулярным невалентным контактам. Если два атома не соединены системой химических связей (т.е. они принадлежат разным молекулам), грани между ними присваивается $P\Gamma = 0$, Следовательно. соответствующий межмолекулярным взаимодействиям. В

молекулярных кристаллических структурах все молекулы находятся внутри полиэдров, каждая из наружных граней которых имеет РГ = 0. Такие полиэдры называются молекулярными ПВД и состоят из ПВД всех атомов, входящих в состав данной молекулы. Поэтому метод анализа межмолекулярных взаимодействий в структуре кристаллов получил название метода молекулярных полиэдров Вороного–Дирихле (ММПВД) [62].

Построение ПВД и проведение всех расчетов в рамках стереоатомной модели строения кристаллических веществ осуществляется при помощи комплекса программ TOPOS [82]. Анализ межмолекулярных взаимодействий проводится с помощью программы Intermol [83]. В процессе расчета с помощью Intermol устанавливается общая площадь всех граней с заданным значением РГ. Например, при РГ = 0 общая площадь граней молекулярного ПВД равна ⁰*S*, где цифра слева вверху указывает значение РГ. При этом для каждого типа межмолекулярных контактов *A*/*Z* одновременно устанавливается парциальный вклад $\Delta_{A/Z}$ (выражается в процентах), который рассчитывается по соотношению $\Delta_{A/Z} = 100 \cdot S_{A/Z} / {}^0S$.

1.6. Фотохимические и оптические свойства соединений уранила с анионами монокарбоновых кислот

Ион уранила является удобным объектом для изучения фотохимических процессов, так как, во-первых, многие его комплексы обладают высокой чувствительностью к воздействию света [84-87], и, во-вторых, возбужденные ионы уранила люминесцируют, что позволяет использовать дополнительные методы изучения процессов, связанных с переходом в возбужденное состояние. В частности, фотохимические превращения были обнаружены различными исследователями для соединений уранила c ионами насыщенных монокарбоновых кислот, и такие данные обобщены в работе [84]. Согласно [84], возможны два варианта реакций: прямое фотохимическое окисление органического вещества ионом уранила, сопровождающееся восстановлением U(VI) до U(IV), и декарбоксилирование кислоты, при котором U(VI) остается неизменным. Декарбоксилирование можно интерпретировать как реакцию внутримолекулярного окисления-восстановления, при которой одна часть кислоты восстанавливается, а другая окисляется до диоксида углерода. Предположительно [84], ионы уранила при возбуждении светом окисляют одну часть органической молекулы, а потом окисляются обратно до U(VI) другой частью молекулы, служа тем самым активирующимися светом катализаторами разложения. Обе реакции могут проходить в отсутствии кислорода.

Данные различных исследователей, обобщенные в работе [84], показывают, что в растворе, содержащем муравьиную кислоту и ионы уранила, под действием света происходит следующее превращение:

$$UO_2^{2+} + 3H^+ + HCOO^- \rightarrow U^{4+} + CO_2 + 2H_2O.$$

Данная реакция является необратимой и сопровождается изменением электродного потенциала. При этом в [84] отмечается, что она проходит очень медленно при использовании лампы Нернста, но становится более быстрой при использовании ртутной лампы.

Исследования других авторов [84] также подтверждают неустойчивость под действием света как твердого, так и растворенного формиата уранила. В разбавленных растворах $UO_2(HCOO)_2 \cdot 2H_2O$ на свету быстро происходит образование фиолетового гидрата $U_3O_8 \cdot 2H_2O$ и основного формиата уранила.

Фотохимические превращения ацетата уранила также неоднократно подвергались исследованиям, которые обобщены в [84]. Основной реакцией под действием света является:

$$UO_2^{2+} + 2H^+ + 2CH_3COOH \rightarrow U^{4+} + C_2H_6 + 2CO_2 + 2H_2O_7$$

в результате которой по разным данным происходит образование либо этана, либо метана, либо их смеси.

Фотохимические свойства соединений уранила с более длинноцепочечными монокарбоновыми кислотами исследовались в значительно меньшей степени. Существуют данные [84], что раствор валерата уранила в закрытой емкости под действием света разлагается на фиолетовый оксид урана или валерат урана(IV). При реакциях разложения в растворе масляной кислоты и нитрата уранила было обнаружено выделение газов C_3H_8 и CO_2 . Аналогичные эксперименты с пропионовой кислотой приводили к выделению этана и углекислого газа. В работе [84] также отмечено, что скорость фотохимического разложения увеличивается при увеличении концентрации ионов уранила и молекулярной массы кислоты.

Интерес исследователей представляло также изучение фотохимических превращений комплексов уранила с ненасыщенными органическими лигандами. Как отмечают авторы [9], кротонат уранила был получен в рамках исследования по изучению фотохимии соединений уранила, содержащих либо ненасыщенные, либо карбоксилатные лиганды. Фотохимическое поведение кротоната уранила оказалось сложным, в растворе образуется как минимум четыре продукта, которые не удалось полностью охарактеризовать [9]. В твердой фазе фотохимических превращений авторами [9] обнаружено не было.

Особенностью соединений, содержащих двойные связи С=С, является возможность не только фотохимического окисления лигандов ионами уранила или декарбоксилирования лигандов, но и димеризации с участием двух двойных связей С=С [88–90]. Реакции подобного фотохимического циклоприсоединения в различных соединениях тщательно исследовались авторами [91–94], которые сходятся во мнении, что такие реакции являются принципиально возможными, если расстояние между центрами ближайших двойных связей составляет 3.5-4.2 Å и если они ориентированы параллельно по отношению друг к другу. В работе [91], однако, отмечено, что предел в 4.2 Å установлен в связи с отсутствием экспериментальных данных для диапазона расстояний 4.2–4.7 Å и не должен рассматриваться качестве строгого верхнего предела возможности В димеризации. При этом в [91] отмечено, что при расстояниях выше 4.7 Å реакции фотохимического циклоприсоединения не происходят. Схожие данные приводятся авторами [89] для координационных соединений уранила. Так, в с дибензилиденацетоном сольватном комплексе UO₂Cl₂((PhCH=CH)₂CO)₂·2CH₃COOH две пары двойных связей находятся на расстояниях 3.50(1) и 3.51(1) Å друг от друга и образуют параллелограммы с углами 97.7(4) и 104.4(5)°. Указанный сольват подвергается димеризации и является очень чувствительным по отношению к свету в отличие от его несольватного аналога $UO_2Cl_2((PhCH=CH)_2CO)_2$, в котором только одна из двух пар двойных связей располагается на расстоянии 4.09 Å, а угол ∠C=C…C составляет 123.3(4)° [89].

Для соединений уранила с анионами монокарбоновых кислот также проводились работы по исследованию оптических свойств [95–97]. В частности, определены хироптические характеристики кубических кристаллов ацетатоуранилата натрия и пропионатоуранилатов цезия, рубидия, таллия и аммония. Основной причиной проявления хироптических свойств является гофрировка экваториальной плоскости ионов уранила. Так, в структуре ацетатоуранилата натрия линейный ион уранила в экваториальной плоскости координирует шесть атомов кислорода трех ацетат-ионов. При этом один атом каждой ацетатной группы отклонен от экваториальной плоскости на 0.04 Å, а другой на –0.04 Å. Для всех изученных в работе [96] пропионатоуранилатных комплексов также имеет место гофрировка атомов кислорода в экваториальной плоскости иона уранила.

1.7. Строение соединений уранила с кротонат- и бутират-ионами

В Кембриджском банке структурных данных [12] за 2012 год содержатся сведения только о двух соединениях уранила с анионами монокарбоновых кислот, число атомов углерода в которых больше 3: кротонат уранила {BAWRIA} [9] и *изо*-бутират уранила {LUHGOK} [10].

Изученный на четырехкружном дифрактометре (структура уточнена до *R*фактора 0.026) кротонат уранила [9] имеет состав $[UO_2(C_3H_5COO)_2(H_2O)_2]$ и относится к моноклинной сингонии (пространственная группа *P*2₁/с). Параметры ячейки составляют: *a* = 7.994(1), *b* = 7.658(1), *c* = 10.585(2) Å, β = 95.09(1)°, *Z* = 2. Соединение $[UO_2(C_3H_5COO)_2(H_2O)_2]$ получали смешением 1 ммоль гексагидрата нитрата уранила, растворенного в 10 мл воды, и 2 ммоль кротоновой кислоты, растворенной в 20 мл воды. К этой смеси далее добавляли разбавленный водный раствор гидроксида натрия до появления желтого осадка. После этого раствор нагревали примерно до 353 К, фильтровали и оставляли охлаждаться. Через несколько часов образовывались желтые призматические кристаллы, пригодные для рентгеноструктурного исследования.

Ион уранила в структуре $[UO_2(C_3H_5COO)_2(H_2O)_2]$ [9] координирует две бидентатно-циклические карбоксилатные группы и две молекулы воды (рис. 10).

Рис. 10. Вид комплекса $[UO_2(C_3H_5COO)_2(H_2O)_2]$ в тепловых эллипсоидах, приведенный в работе [9].

Расстояние U=O в [UO₂(C₃H₅COO)₂(H₂O)₂] составляет 1.759(7) Å. Самые короткие контакты между двумя связями C=C составляют 3.84 Å с одного края двойной связи и 4.46 Å с другого, что, по мнению авторов [9], объясняет отсутствие димеризации в твердом состоянии.

В качестве самой необычной особенности строения кротоната уранила авторы [9] описывают наличие взаимодействия между координированной молекулой воды и атомом кислорода иона уранила. Расстояния между двумя атомами кислорода O4 и O1 составляют 3.06 Å, а ∠O4–H7…O1 = 161°. При этом атом водорода H7 находится очень близко к атому урана (1.97 Å), и авторы [9] отмечают неблагоприятное расположение. Несмотря на то, что координаты всех атомов водорода, включая Н7, были установлены из разностных синтезов электронной плотности, на наш взгляд, положение атома Н7 может быть установлено ошибочно. Водородная связь с атомом кислорода О2 соседней молекулы, находящимся на расстоянии 2.77 Å от атома кислорода молекулы воды, была бы более прочной и логичной. По такому типу как раз образуется водородная связь между вторым атомом водорода Н6 молекулы воды с атомом кислорода O3 соседней молекулы, и авторы [9] называют эту водородную связь «нормальной». Однако, при изменении координат атома H7, также может H6. чтобы потребоваться корректировка координат атома сохранить стандартную геометрию молекулы воды. Отметим также, что при координатах атомов водорода, приведенных авторами [9], угол ∠НОН в молекуле воды составляет 85.9°, что существенно меньше ожидаемого значения.

Кристаллы изо-бутирата уранила были получены авторами [10] испарением раствора вещества в водной изомасляной кислоте. По данным рентгеноструктурного исследования изо-бутират уранила [10] имеет формулу $[UO_2(i-C_3H_7COO)_2(H_2O)_2]$ И относится к моноклинной сингонии (пространственная группа C2/c). Параметры ячейки составляют: a = 16.531(2), b= 7.676(1), c = 10.822(2) Å, $\beta = 90.49(2)^\circ$, Z = 4. Структура уточнена в анизотропном приближении до *R*-фактора 0.041, при этом координаты атомов водорода не были установлены.

Координационное число атома урана в [UO₂(*i*-C₃H₇COO)₂(H₂O)₂] [10] равно 8. В экваториальной плоскости равноплечного и симметричного иона уранила находятся 4 атома кислорода двух бидентатно-циклически координированных карбоксилатных лигандов и 2 атома кислорода двух молекул воды (рис. 11).

Рис. 11. Изображение строения структурного фрагмента $[UO_2(i-C_3H_7COO)_2(H_2O)_2]$, приведенное в работе [10].

В качестве основного отличия изо-бутирата уранила от формиата и ацетата уранила авторы [10] отмечают то, что его основу составляют моноядерные комплексы (в то время, как формиат и ацетат уранила имеют полимерное строение). Упаковка структурных единиц осуществляется посредством межмолекулярных водородных связей с расстояниями О···O 2.74 и 2.84 Å [10]. В работе [10] также отмечается, что при увеличении объема углеводородного радикала в монокарбоксилатных комплексах уранила из-за стерических затруднений становится более выгодным циклический тип координации карбоксилатной группы (а не мостиковый, как в формиате и ацетате уранила). Такие изменения в структуре изо-бутирата уранила по сравнению с ацетатом проявляются увеличении растворимости уранила В В органических растворителях и появлении способности сублимироваться при нагревании в вакууме [10].

Авторы [10], сравнивая строение формиата, ацетата, кротоната и *изо*бутирата уранила, отметили, что этим «... ряд структурно-исследованных гидратов монокарбоксилатов уранила исчерпывается. Поэтому представляет несомненный интерес изучение строения карбоксилатов уранила с закономерно

усложняющимся радикалом аниона, в частности, путем замены в метильном радикале ацетат-иона атомов водорода на –СН₃ группы». Поэтому одной из основных задач предпринятого нами исследования как раз и явилось расширение этого гомологического ряда и увеличение количества структурно-изученных координационных соединений уранила с кротонат- и бутират-ионами, а также изучение первых примеров валерат-содержащих комплексов U(VI).
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Исходные вещества, методы синтеза и анализа

В качестве исходных веществ для синтеза комплексов уранила, изученных в данной работе, использовали гексагидрат нитрата уранила, масляную, кротоновую и валериановую кислоты, гидроксиды аммония, натрия и калия в виде продажных реактивов квалификации «ч.д.а.», а также оксид урана(VI) и кротонат уранила. Оксид урана(VI) получали прокаливанием при 350°C пероксида UO₄·2H₂O. Кротонат уранила получали по методике, описанной в [9]. В качестве растворителей использовали дистиллированную воду и ацетон квалификации «ч.д.а.».

Синтез проводили методом изотермического испарения водных или водноацетоновых растворов при комнатной температуре. Мольные соотношения реагентов и состав 12 полученных соединений приведены в табл. 2.

ИК спектры записывали на ИК-Фурье спектрометре ФТ-801 в области 500– 4000 см⁻¹. Образцы готовили методом прессования таблеток с KBr.

Дифференциальный термический и термогравиметрический анализ проводили на дериватографе OD-103 (МОМ, Венгрия). Скорость нагрева составляла 2.5 или 5 град/мин. Массы навесок составляли от 0.06 до 0.12 г. Прокаливание вели до 850°С в платиновых тиглях с использованием Pt-Pt/Rh термопары и эталона из прокаленного оксида алюминия.

Съемку порошкограмм для рентгенофазового анализа проводили на дифрактометрах Bruker D8 Advance и ДРОН-3. Во всех случаях использовали $\lambda Cu K_{\alpha}$ излучение.

Исследование нелинейной оптической активности проводили методом генерации второй оптической гармоники [98, 99]. Использовался импульсный Nd:YAG лазер ($\lambda_{\omega} = 1.064$ мкм), работавший в режиме модулированной добротности с частотой повторения импульсов 12.5 имп/с. Длительность импульсов составляла 10–12 нс. Измерения проведены по схеме «на отражение» на порошкообразных образцах путем сравнения интенсивности возбуждаемого в

37

порошке излучения на частоте второй гармоники ($I_{2\omega}$) с излучением от эталонного порошкового препарата α -кварца дисперсностью 3 мкм ($I_{2\omega}SiO_2$). Из исследуемых координационных соединений уранила были приготовлены столь же мелкодисперсные препараты, чтобы при сопоставлении с эталоном исключить влияние на интенсивность второй гармоники размера кристаллического зерна и длины когерентного взаимодействия [100]. Согласно такому подходу, нелинейная оптическая активность порошка определяется по формуле:

$$Q = I_{2\omega} / I_{2\omega} \text{SiO}_2$$

Строение соединений I-XII устанавливали методом рентгеноструктурного анализа монокристаллов. Экспериментальные наборы отражений получены на дифрактометрах Bruker APEX II DUO [101] (для I, II, V-XII) и Agilent Technologies SuperNova (для III и IV) при температуре от 100 до 150 К. При съемке кристаллов II, V–X и XII использовалось λ Mo K_{α} излучение, а для I, III, IV и XI – λ Си K_{α} излучение. Для III и IV учтено поглощение по огранке кристалла при помощи пакета программ CrysAlisPro [102]. При обработке исходного массива экспериментальных интенсивностей использовали программу SADABS [103]. Структуры решены прямым методом. Все неводородные атомы локализованы в разностных синтезах электронной плотности и уточнены по F^{2}_{hkl} анизотропном приближении за некоторыми исключениями (см. В соответствующие разделы). Атомы водорода молекул воды в V и VIII выявлены в разностных синтезах, в случае H(O) в XII с помощью программы HSite комплекса программ TOPOS [82], а в остальных соединениях найдены геометрически. Все атомы водорода уточнены в изотропном приближении в модели жесткого тела с $U_{iso}(H) = 1.5 U_{eq}(X_i)$ для метильных групп и молекул воды и $U_{iso}(H) = 1.2 U_{eq}(X_{ii})$ для остальных атомов углерода, где $U_{eq}(X)$ – эквивалентные тепловые параметры атомов, с которыми связан атом водорода. Все структуры уточнены при помощи комплекса программ SHELXTL ver. 5.10 [104]. Координаты атомов и величины тепловых параметров для соединений V–X и XII

депонированы в КБСД [12] под номерами 902949, 816646, 816645, 902948, 956984, 956985 и 912479 соответственно. Поэтому в приложении (табл. П1–П5) приведены координаты и тепловые параметры атомов только для комплексов I– IV и XI соответственно, сведения о которых еще не попали в КБСД [12].

Кристаллохимический анализ проводили в рамках стереоатомной модели строения кристаллических веществ [11]. Все расчеты, включая анализ невалентных контактов с помощью программы Intermol [83], проводили на основе характеристик атомных и молекулярных полиэдров Вороного–Дирихле с использованием комплекса программ TOPOS [82]. Определение КЧ всех атомов в структурах изученных соединений проводили с помощью метода пересекающихся сфер [79].

Таблица 2. Состав полученных соединений и условия их синтеза

№	Состав соединения	Реагенты и мольные соотношения	Растворитель
Ι	KUO ₂ (C ₃ H ₅ COO) ₃	$UO_2(NO_3)_2 \cdot 6H_2O + 5C_3H_5COOH + KOH$	вода + ацетон (50 : 50)
II	RbUO ₂ (C ₃ H ₅ COO) ₃	$UO_2(NO_3)_2 \cdot 6H_2O + 5C_3H_5COOH + RbOH$	вода + ацетон (50 : 50)
III	α -NH ₄ UO ₂ (C ₃ H ₅ COO) ₃	$UO_2(C_3H_5COO)_2 \cdot 2H_2O + 2C_3H_5COOH + 2NH_4OH$	вода
IV	β -NH ₄ UO ₂ (C ₃ H ₅ COO) ₃	$UO_2(C_3H_5COO)_2 \cdot 2H_2O + 2C_3H_5COOH + 2NH_4OH$	вода
V	$UO_2(n-C_3H_7COO)_2(H_2O)_2$	$UO_3 \cdot 2H_2O + 2C_3H_7COOH$	вода
VI	NaUO ₂ (n -C ₃ H ₇ COO) ₃ ·0.25H ₂ O	$UO_2(NO_3)_2 \cdot 6H_2O + 3C_3H_7COOH + 3NaOH$	вода
VII	$KUO_2(n-C_3H_7COO)_3$	$UO_2(NO_3)_2 \cdot 6H_2O + 3C_3H_7COOH + 3KOH$	вода
VIII	$Mg(H_2O)_6(UO_2(n-C_3H_7COO)_3)_2$	$Mg(n-C_{3}H_{7}COO)_{2} + 2UO_{2}(n-C_{3}H_{7}COO)_{2}(H_{2}O)_{2}$	вода
IX	$UO_2(n-C_4H_9COO)_2(H_2O)_2$	$UO_2(NO_3)_2 \cdot 6H_2O + 3C_4H_9COOH + 3NaOH$	вода
Х	$KUO_2(n-C_4H_9COO)_3$	$UO_2(NO_3)_2 \cdot 6H_2O + 3C_4H_9COOH + 3KOH$	вода
XI	RbUO ₂ (n -C ₄ H ₉ COO) ₃	$UO_2(NO_3)_2 \cdot 6H_2O + 3C_4H_9COOH + 3RbOH$	вода
XII	$Na_4(UO_2)_4(i-C_4H_9COO)_{11}(NO_3)\cdot 3H_2O$	$UO_2(NO_3)_2 \cdot 6H_2O + 4i - C_4H_9COOH + 3NaOH$	вода

2.2. Кротонатсодержащие комплексы уранила

2.2.1. Синтез и физико-химическое исследование кротонатоуранилатов

Соединения $KUO_2(C_3H_5COO)_3$ (I) и $RbUO_2(C_3H_5COO)_3$ (II) получали при изотермическом испарении (при 25°С) водно-ацетоновых (50 : 50) растворов, содержащих $UO_2(NO_3)_2$ 6H₂O, кротоновую кислоту и KOH (I) или RbOH (II) в мольных соотношениях 1 : 5 : 1. При кристаллизации растворов образовывались (I) желтые кубические Соединение оранжевые ИЛИ (II) кристаллы. NH₄UO₂(C₃H₅COO)₃ получили при изотермическом испарении (при 25°C) водного раствора, содержащего $UO_2(C_3H_5COO)_2 \cdot 2H_2O$, кротоновую кислоту и гидроксид аммония в соотношении 1 : 2 : 2. В растворе образовывались желтые призматические и пластинчатые кристаллы, которые по полученным нами данным РСА имели разное строение. Кристаллы призматической формы относятся к кубической сингонии (названы α-модификацией, III). а пластинчатые кристаллы – к триклинной (названы β модификацией, **IV**).

Параметры рентгеноструктурных экспериментов и окончательные значения факторов недостоверности для I–IV приведены в табл. 3. Три атома углерода кротонат-аниона в I равновероятно разупорядочены по двум положениям и уточнены в изотропном приближении с фиксированными расстояниями С–С и С=С 1.50(1) и 1.33(1) Å соответственно. Метильная группа кротонат-аниона в II разупорядочена по двум положениям с заселенностями 0.7 и 0.3 и уточнена с фиксированными расстояниями С–С 1.50(1) Å.

Таблица 3. Кристаллографические данные, параметры эксперимента и уточнения структур $KUO_2(C_3H_5COO)_3$ (I), $RbUO_2(C_3H_5COO)_3$ (II), α -NH₄UO₂(C₃H₅COO)₃ (III) и β -NH₄UO₂(C₃H₅COO)₃ (IV)

	Ι	II	III	IV
Сингония, пр. гр., Z	Кубическая, Р213, 4	Кубическая, <i>P</i> 2 ₁ 3, 4	Кубическая, <i>P</i> 2 ₁ 3, 4	Триклинная, <i>Р</i> 1, 4
<i>a</i> , Å	12.1529(4)	12.471(3)	12.4521(10)	9.3667(4)
b, Å				12.4940(3)
c, Å				14.9835(4)
α, град.				102.159(2)
β, град.				90.847(3)
<u> </u>				91.100(3)
<u>V,</u> Å ³	1794.9(1)	1939.4(7)	1930.76(3)	1713.51(10)
D_x , г/см ³	2.088	2.092	1.869	2.106
Излучение; λ, Å	Cu <i>K</i> _α , 1.54178	Μο <i>K</i> _α , 0.71073	Cu <i>K</i> _α , 1.54178	Cu <i>K</i> _α , 1.54178
μ, мм ⁻¹	27.839	10.891	23.969	27.008
Т, К	100(2)	150(2)	123(2)	123(2)
Размер образца, мм	0.08×0.08×0.08	0.16×0.16×0.16	0.08×0.10×0.13	0.02×0.11×0.25
Тип сканирования	f, ω	ω	ω	ω
Учет поглощения, <i>T_{min}</i> , <i>T_{max}</i>	Multi-scan, 0.104, 0.170	Multi-scan, 0.796, 0.913	Аналитически, 0.173, 0.290	Аналитически, 0.070, 0.631
<i>θ_{max}</i> , град	68.12	27.92	67.50	67.50
	$-14 \le h \le 14,$	$-16 \le h \le 1$,	$-7 \le h \le 15,$	$-11 \le h \le 11,$
Пределы <i>h, k, l</i>	$-12 \le k \le 14,$	$-4 \le k \le 15,$	$-4 \le k \le 10,$	$-15 \le k \le 15,$
	$-10 \le l \le 14$	$-7 \le l \le 14$	$-12 \le l \le 15$	$-18 \le l \le 18$
Число отражений:	8973/1085	3274/1504	2566/1284	44258/7046
измеренных/независимых (N_1) ,	0.0560/1044	0.0331/1308	0.0312/1124	0.0917/5788
$\frac{R_{int}/c I > 2\sigma(I) (N_2)}{2\sigma(I) (N_2)}$				
Число параметров	62	78	68	403
Факторы недостоверности:				
wR_2 по N_1	0.0981	0.0648	0.0843	0.1502
<i>R</i> ₁ по <i>N</i> ₂	0.0361	0.0276	0.0326	0.0505
S	1.000	1.023	1.052	1.121
$\Delta \rho_{max} / \Delta \rho_{min}$, \Im / \mathring{A}^3	0.826/-0.707	0.927/-0.470	0.603/-1.132	4.000/-2.929

ИК спектры соединений I–IV содержат характеристические полосы поглощения ионов UO₂²⁺ и C₃H₅COO⁻, а также NH₄⁺ в случае III и IV (рис. 12– 14). Отнесение полос поглощения (табл. 4) проведено в соответствии с данными работ [71, 72]. Особенностью спектров поглощения соединений, содержащих непредельные углеводородные лиганды, является появление валентных и деформационных колебаний групп атомов, находящихся при двойной связи. Так, наиболее сильным полосам в спектрах алкенов отвечают деформационные внеплоскостные колебания =CH [72], которые проявляются в диапазоне 1000– 650 см⁻¹. Валентные колебания связей C=C проявляются при \approx 1660 см⁻¹. При этом наличие сопряжения двойной связи с карбонильной группой в кротонатанионе приводит к появлению дополнительного плеча от колебания v(C=C) при волновом числе меньшем приблизительно на 30 см⁻¹ (\approx 1630 см⁻¹), а также к увеличению интенсивности основной полосы. Валентным колебания =CH отвечают полосы низкой интенсивности при \approx 3040 см⁻¹.

Рис. 12. ИК спектр соединения $KUO_2(C_3H_5COO)_3$ (I).

Рис. 13. ИК спектр соединения $RbUO_2(C_3H_5COO)_3$ (II).

Рис. 14. ИК спектр соединения α-NH₄UO₂(C₃H₅COO)₃ (III). ИК спектр βмодификации (IV) имеет идентичный вид.

Bo	0		
Ι	II	III и IV	Отнесение
_	_	3193 ср., ш.	$\nu(NH_4)$
3046 сл.	3042 сл.	3041 сл.	v(=CH)
2980 сл.	2980 сл.	2983 сл.	$v_{as}(CH_3)$
2947 сл.	2946 сл.	2947 сл.	$v_s(CH_3)$
2916 сл.	2917 сл.	2916 сл.	$v_{as}(CH_2)$
2847 сл.	2848 сл.	2847 сл.	$v_s(CH_3)$
1661 c.	1661 c.	1659 c.	$v(C-C) \delta(NH)$
1634 плечо	1634 плечо	1633 сл.	V(C-C), O(1114)
1530 плечо	1531 плечо	1535 плечо	11. (COO)
1512 o.c.	1512 o.c.	1510 o.c.	V _{as} (COO)
1452 o.c.	1453 o.c.	1453 o.c.	$\delta_{as}(CH_3)$
1403 плечо	1400 плечо	1402 плечо	$v_s(COO)$
1375 cp.	1375 cp.	1376 плечо	$\delta_s(CH_3)$
1297 cp.	1294 cp.	1295 cp.	ω(CH)
1257 cp.	1256 cp.	1255 cp.	tw(CH)
1105 cp.	1106 сл.	1105 сл.	v(C–C)
1043 сл.	1043 сл.	1044 сл.	$\gamma(CH_3)$
967 c.	966 c.	966 c.	ω (=CH), <i>tw</i> (=CH)
935 o.c.	933 o.c.	934 o.c.	(IIO)
917 c.	916 c.	917 c.	$v_{as}(UU_2)$
852 cp.	851 cp.	851 cp.	γ(CH)
746 c.	745 c.	746 c.	$\omega(=CH), tw(=CH)$
699 cp.	698 сл.	698 сл.	δ(COO)
529 cp.	528 cp.	528 cp.	ω(COO)

Таблица 4. Отнесение полос поглощения в ИК спектрах соединений KUO₂(C₃H₅COO)₃ (I), RbUO₂(C₃H₅COO)₃ (II) и α- и β-модификаций NH₄UO₂(C₃H₅COO)₃ (III и IV) *

* о.с. – очень сильная, с. – сильная, ср. – средняя, сл. – слабая, ш – широкая.

Термическое исследование было проведено для соединения NH₄UO₂(C₃H₅COO)₃ (III и IV). Согласно полученным данным, обе модификации разлагаются идентично (рис. 15) по схеме:

$$NH_4UO_2(C_3H_5COO)_3 \rightarrow UO_2(C_3H_5COO)_2 \rightarrow UO_3 \rightarrow 1/_3U_3O_8$$

Рис. 15. Дериватограмма соединения α-NH₄UO₂(C₃H₅COO)₃ (III). Для βмодификации дериватограмма имеет идентичный вид.

На первом этапе при 170–220°С от $NH_4UO_2(C_3H_5COO)_3$ отделяется одна молекула кротоната аммония с образованием безводного кротоната уранила. Такой процесс сопровождается эндотермическим эффектом и потерей 19.3% массы исходной навески (выч. 19.0%). Далее при 240–280°С разлагается кротонат уранила с экзоэффектом и образованием оксида урана(VI), который при температуре более 600°С превращается в U_3O_8 (потеря массы эксп. 48.9%, выч. 48.3%).

2.2.2. Кристаллические структуры KUO₂(C₃H₅COO)₃ и RbUO₂(C₃H₅COO)₃

Соединения KUO₂(C₃H₅COO)₃ (I) и RbUO₂(C₃H₅COO)₃ (II) являются изоструктурными. В I и II содержится по одному сорту атомов U и K или Rb, имеющих сайт-симметрию C_3 . Атомы кислорода ионов уранила также располагаются на оси третьего порядка, в связи с чем ион UO₂²⁺ в обеих структурах имеет линейное строение, являясь одновременно практически равноплечным (d_1 (U=O) = 1.79(2) и 1.745(10) Å, d_2 (U=O) = 1.787(14) и 1.758(9) Å для I и II соответственно). В экваториальной плоскости ионы уранила координируют по шесть атомов кислорода, принадлежащих трем кротонатионам, имеющим бидентатно-циклический тип координации B^{01} (рис. 16). Координационным полиэдром атомов U являются гексагональные бипирамиды, геометрические параметры которых приведены в табл. 5. Структуры имеют каркасное строение за счет электростатических взаимодействий комплексов [UO₂(C₃H₅COO)₃]⁻ с внешнесферными катионами K⁺ или Rb⁺.

Рис. 16. Вид анионов в структурах KUO₂(C₃H₅COO)₃ (I) (а) и RbUO₂(C₃H₅COO)₃ (II) (б) в тепловых эллипсоидах (приведены с вероятностями 30% (а) и 50% (б)).
(а): кротонат-анион равновероятно разупорядочен по двум положениям (одно из которых изображено пунктиром). (б): метильный фрагмент кротонат-аниона разупорядочен по двум положениям (C4A и C4B) с заселенностями 0.7 и 0.3 (минорное положение изображено пунктиром). Симметрично эквивалентные атомы получены операциями симметрии: #1 z,x,y; #2 y,z,x.

Связь	Связь <i>d</i> , Å		Угол	ω, град.			
$KUO_2(C_3H_5COO)_3$ (I)							
	Гексаго	нальная бипира	амида UO ₈				
U01	1.79(2)	21.20	O1–U–O2	180			
U–O2	U–O2 1.787(14)		O3–U–O4 (x3)	67.4(3)			
U–O3 (x3)	U–O3 (x3) 2.444(10)		O4–U–O3 (x3)	52.6(3)			
U–O4 (x3) 2.450(9)		9.48					
	Rb	$UO_2(C_3H_5COO)$) ₃ (II)				
	Гексаго	нальная бипира	амида UO ₈				
U01	1.745(10)	22.52	O1–U–O2	180			
U–O2 1.758(9)		21.62	O3–U–O4 (x3)	67.66(15)			
U–O3 (x3) 2.477(5)		9.31	O4–U–O3 (x3)	52.29(15)			
U-O4 (x3)	2.477(5)	9.31					

Таблица 5. Геометрические параметры координационных полиэдров атомов урана в структурах KUO₂(C₃H₅COO)₃ (I) и RbUO₂(C₃H₅COO)₃ (II)

Координационные числа атомов К и Rb определяли с помощью метода пересекающихся сфер [79], а формы координационных полиэдров – при анализе комбинаторно-топологического типа ПВД, дуальных координационным полиэдрам. В качестве примера для атома калия в структуре соединения KUO₂(C₃H₅COO)₃ (I) приведена таблица расчета координационного числа по методу пересекающихся сфер (табл. 6). В дальнейшем подобные таблицы для сокращения объема работы приводиться не будут.

Согласно полученным данным в I и II атомы K и Rb имеют KЧ 6 и октаэдрическую координацию. Полиэдры KO₆ и RbO₆ содержат атомы кислорода шести разных кротонат-ионов, при этом длина связей K–O лежит в диапазоне 2.67–2.71 Å, а связей Rb–O – в диапазоне 2.82–2.86 Å. Объемы ПВД атомов K и Rb равны соответственно 19.3 и 21.7 Å³ и незначительно занижены по сравнению с известными средними значениями 20.8 Å³ для атомов калия в координационных полиэдрах KO_n c n = 6-16 [105] и 23.4 Å³ для атомов рубидия в координационных полиэдрах RbO_n c n = 6-16 [106].

Монофазность образца II доказана методом порошковой рентгеновской дифракции при комнатной температуре (a = 12.515 Å) (рис. 17).

Полиэдр Вороного– Дирихле атома К *			Объем перекрывания (Å ³) двух сфер атомов К и <i>X</i> с радиусами **				Тип пере-
Атом Х	<i>d</i> (K− <i>X</i>), Å	Ω(K–X), %	<i>r</i> _S - <i>r</i> _S	<i>rs</i> - <i>R</i> _{СД}	$R_{\rm CZ}$ - r_S	<i>R</i> _{СД} - <i>R</i> _{СД}	крывания К–Х **
vO4	2.667	14.07	0.025	2.575	0	0.543	Π_3
vO4	2.667	14.07	0.025	2.575	0	0.543	Π_3
vO4	2.667	14.07	0.025	2.575	0	0.543	Π_3
vO3	2.705	11.67	0.013	2.142	0	0.368	Π_3
vO3	2.705	11.67	0.013	2.142	0	0.368	Π_3
vO3	2.705	11.67	0.013	2.142	0	0.368	Π_3
wH7	3.301	4.24	0	0.029	0	0	Π_1
wH7	3.301	4.24	0	0.029	0	0	Π_1
wH7	3.301	4.24	0	0.029	0	0	Π_1

Таблица 6. Характеристики окружения атома калия в структуре KUO₂(C₃H₅COO)₃ (I) по методу пересекающихся сфер [79]

* Для атома К указаны: тип и число атомов X, полиэдры Вороного–Дирихле которых имеют общие грани с ПВД атома K; межатомные расстояния d(K-X) и телесные углы $\Omega(K-X)$. Символами «v» обозначены атомы X, с которыми атомы K образуют валентные связи, а символами «w» – атомы X, с которыми атомы K образуют слабые химические взаимодействия.

** Атомы К (или X) характеризуются сферами двух радиусов – r_S и R_{CQ} – с общим центром в ядре атома (см. раздел 1.5). В столбцах указан объем пространства, одновременно принадлежащего соответствующим сферам атома К (их радиус указан первым) и атомов X. В качестве химических связей, которые учитываются при определении координационного числа атомов К, рассматриваются только пересечения типа Π_4 , Π_3 и Π_2 . Для простоты пересечения типа Π_0 опущены.

Рис. 17. Экспериментальная и рассчитанная дифрактограммы соединения RbUO₂(C₃H₅COO)₃ (II).

2.2.3. Кристаллические структуры α- и β-NH₄UO₂(C₃H₅COO)₃

Соединение α -NH₄UO₂(C₃H₅COO)₃ (III) изоструктурно I и II, описанным в предыдущем разделе, если принять, что позицию катиона щелочного металла в случае III занимает ион аммония. Модификация β -NH₄UO₂(C₃H₅COO)₃ (IV) обладает триклинной симметрией и другим строением. Структуры обеих модификаций NH₄UO₂(C₃H₅COO)₃ отличаются от других впервые изученных кротонатоуранилатов отсутствием разупорядоченных атомов.

В III содержится по одному сорту атомов U и N, имеющих позиционную симметрию C_3 (рис. 18а). Через ион уранила проходит ось третьего порядка, он является линейным и практически равноплечным (табл. 7). В IV содержится по два кристаллографических сорта атомов U и N, занимающих асимметричные позиции (рис. 18б). Ионы уранила практически равноплечны и отклоняются от линейного строения примерно на 2° (табл. 7).

Рис. 18. Независимая часть в структурах α-NH₄UO₂(C₃H₅COO)₃ (III, а) и β-NH₄UO₂(C₃H₅COO)₃ (IV, б) (эллипсоиды 50% вероятности).

В экваториальной плоскости каждый ион уранила в III и IV координирует по бидентатно-циклическому типу B^{01} шесть атомов кислорода трех кротонатионов, формируя координационные полиэдры в виде гексагональных бипирамид. Следовательно, в III и IV комплексы [UO₂(C₃H₅COO)₃]⁻ имеют кристаллохимическую формулу AB^{01}_{3} , где $A = UO_2^{2+}$ и $B^{01} = C_3H_5COO^-$. Объемы ПВД, имеющих форму гексагональных призм, для атомов U в III, U1 и U2 в IV равны соответственно 9.16, 9.31 и 9.34 Å³ и хорошо согласуются с известным средним значением 9.2(3) Å³ для атомов U(VI) в комплексах UO_n [80].

Связь	<i>d</i> , Å	Ω, %	Угол	ω, град.		
	a-NH	$H_4UO_2(C_3H_5COC)$	O_{3} (III)			
	Гексаго	нальная бипира	амида UO ₈			
U01	1.724(14)	22.63	O1–U–O2	180		
U–O2	1.744(15)	21.69	O3–U–O4 (x3)	67.8(2)		
U–O3 (x3)	2.470(8)	9.16	O4–U–O3 (x3)	52.2(2)		
U–O4 (x3)	2.454(8)	9.40				
β -NH ₄ UO ₂ (C ₃ H ₅ COO) ₃ (IV)						
	Гексагон	нальная бипира	мида U1O ₈			
U1–O1	1.765(7)	21.98	O1–U1–O2	178.0(3)		
U1–O2	2 1.767(7) 21.53 O3–U1–O		O3–U1–O4	52.4(2)		
U1–O3	2.450(7)	9.35 O4–U1–O5		69.4(2)		
U1–O4	2.495(7)	9.07	O5–U1–O6	52.6(2)		
U1–O5	2.845(10)	9.62	O6-U1-O7	66.4(2)		
U1–O6	2.442(7)	9.59	O7–U1–O8	52.5(2)		
U1–O7	2.453(7)	9.39	O8–U1–O3	67.2(2)		
U1–O8	2.444(7)	9.47				
	Гексагон	нальная бипира	мида U2O ₈			
U2–O9	1.777(7)	21.69	O9–U2–O10	177.9(3)		
U2–O10	1.770(7)	21.65 011–U2–012		52.6(2)		
U2–O11	2.448(6)	9.55	O12–U2–O13	68.0(2)		
U2–O12	2.462(7)	9.41	O13–U2–O14	52.8(2)		
U2–O13	2.458(7)	9.40	O14–U2–O15	68.3(2)		
U2–O14	2.482(7)	9.17	O15–U2–O16	52.7(2)		
U2–O15	2.453(7)	9.57	O16-U2-O11	66.4(2)		
U2016	2.443(7)	9.56				

Таблица 7. Геометрические параметры координационных полиэдров атомов урана в структурах α- и β-NH₄UO₂(C₃H₅COO)₃ (III и IV)

Основное различие двух модификаций $NH_4UO_2(C_3H_5COO)_3$ заключается в разном способе связывания анионных комплексов $[UO_2(C_3H_5COO)_3]^-$ с ионами аммония за счет электростатических взаимодействий и водородных связей. Так как координаты атомов водорода ионов аммония в кристаллах III и IV установить не удалось, предполагаемые водородные связи (табл. 8) были рассчитаны нами

по ранее описанной методике [107, 108] на основе характеристик ПВД атомов азота. При этом использовались следующие параметры поиска водородных связей: расстояния N…O не превышают 3.2 Å и телесные углы $\Omega(N…O)$ составляют не менее 10% полного телесного угла 4π стерадиан. Согласно полученным результатам (табл. 8), в кристаллах III ион аммония находится в окружении шести атомов кислорода, принадлежащих шести разным кротонатионам (рис. 19), которые попарно входят в состав трех соседних с ионом NH₄⁺ комплексов [UO₂(C₃H₅COO)₃]⁻, т.е. аналогично тому, как атомы K и Rb в соединениях I и II образуют координационные полиэдры KO₆ и RbO₆ (см. раздел 2.2.2). За счет водородных связей N–H…O в структуре кристаллов III комплексы [UO₂(C₃H₅COO)₃]⁻ и ионы аммония связаны в трехмерный каркас, подобно соединениям I и II.

Таблица 8. Предполагаемые водородные связи в структурах α- и β-NH₄UO₂(C₃H₅COO)₃ (III и IV), рассчитанные в отсутствии атомов водорода *

	Расстояние	$\Omega(N \cdots O),$
N-H…O	N…O, Å	%
α-NI	$H_4UO_2(C_3H_5COO)$) ₃ (III)
N1–H···O3 (x3)	2.91	10.0
N1–H···O4 (x3)	2.83	12.9
β-NI	$H_4UO_2(C_3H_5COO)$) ₃ (IV)
N1–H…O1	3.05	11.3
N1–H…O4	2.89	12.5
N1–H…O5	2.76	13.6
N1–H…O9	2.96	11.6
N1-H…O14	2.99	10.8
N1-H…O15	2.76	13.6
N2–H…O2	3.16	10.7
N2–H…O3	3.05	10.1
N2–H…O8	2.77	13.3
N2-H…O10	3.06	11.8
N2-H…O12	2.79	13.6
N2-H…O13	3.01	10.3

* Учтены контакты с расстояниями N…O ≤ 3.2 Å и Ω (N…O) ≥ 10%.

Рис. 19. Окружение атома азота иона аммония (сайт-симметрия позиции – С₃) в структуре α-NH₄UO₂(C₃H₅COO)₃ (III). Указаны номера соседних атомов кислорода, принадлежащих шести кротонат-ионам.

В структуре β-модификации (IV) атомы N1 и N2 также окружены шестью атомами кислорода (табл. 8). Однако, в отличие от α-модификации (III), четыре из них принадлежат разным кротонат-ионам, а два – разным ионам уранила. При этом каждый ион аммония связывает за счет образования водородных связей четыре соседних комплекса $[UO_2(C_3H_5COO)_3]^-$, т.е. на один комплекс больше, чем в случае α-модификации (III). Тем не менее образование водородных связей между комплексными частицами [UO₂(C₃H₅COO)₃]⁻ и ионами аммония в IV происходит только в пределах слоя, распространяющегося параллельно (001), поэтому структура β-модификации соединения NH₄UO₂(C₃H₅COO)₃ является слоистой, в отличие от его каркасной α-модификации. Интересно, что комплексы $[UO_2(C_3H_5COO)_3]^-$ в пределах указанных слоев формируют каналы в обоих направлениях ([100] и [010]), в которых и располагаются ионы аммония (рис. 20). Отметим, что заданные критерии поиска, согласно [107], отвечают только средним и сильным водородным связям и не учитывают возможное существование слабых внутрислоевых водородных связей, например, таких, как контакты N2–H···O3 в структуре кристаллов IV, для которых расстояние N2···O3 равно 3.2 Å и телесный угол $\Omega(N2...O3)$ составляет 9.2%.

Рис. 20. Слои в структуре β-NH₄UO₂(C₃H₅COO)₃ (IV) в проекции на плоскости (100) (а) и (010) (б). Атомы азота располагаются в каналах [100] (а) и [010] (б), образованных комплексами [UO₂(C₃H₅COO)₃]⁻. Для упрощения атомы водорода не показаны.

2.3. Бутиратсодержащие комплексы уранила

2.3.1. Синтез и физико-химическое исследование бутиратоуранилатов

Желтые призматические кристаллы UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (**V**) [109] получили изотермическим испарением при 25°C раствора, содержащего 3.5 ммоль UO₃·2H₂O и 7 ммоль масляной кислоты в 20 мл воды.

Выдерживание при комнатной температуре на воздухе в течение 3–4 дней смеси из водного раствора нитрата уранила (0.5 ммоль $UO_2(NO_3)_2 \cdot 6H_2O$ в 5 мл воды), масляной кислоты (1.5 ммоль) и водного раствора гидроксида натрия (1.5 ммоль в 2 мл воды) привело к образованию призматических ярко-желтых кристаллов NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (**VI**) [110]. По аналогичной методике при замене гидроксида натрия на гидроксид калия были получены призматические ярко-желтые кристаллы KUO₂(*n*-C₃H₇COO)₃ (**VII**) [110].

Желтые кристаллы $Mg(H_2O)_6(UO_2(n-C_3H_7COO)_3)_2$ (VIII) [109] получили изотермическим испарением раствора, содержащего 0.1 ммоль бутирата магния и 0.2 ммоль бутирата уранила (I) в 5 мл воды.

Параметры рентгеноструктурных экспериментов и окончательные значения факторов недостоверности для V–VIII приведены в табл. 9. Пять в структуре VI и девять из двенадцати бутират-анионов в VII разупорядочены по двум положениям. Атомы углерода разупорядоченных фрагментов уточнены в изотропном приближении, длины связей С–С при этом фиксировались на расстоянии 1.50(1) Å.

Таблица 9. Кристаллографические данные, параметры экспериментов и уточнения структур UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V), NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (VI), KUO₂(*n*-C₃H₇COO)₃ (VII) и Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂ (VIII)

	V	VI	VII	VIII
Сингония, пр. гр., Z	Моноклинная, $P2_1/c$, 6	Моноклинная, Р21, 8	Ромбическая, <i>P</i> 2 ₁ 2 ₁ 2 ₁ , 16	Кубическая, <i>Ра</i> 3, 4
<i>a</i> , Å	9.8124(7)	13.5671(15)	17.1325(9)	15.6935(6)
b, Å	19.2394(14)	20.070(2)	19.6966(11)	
<i>c</i> , Å	12.9251(11)	13.6139(15)	21.9686(11)	
β, град.	122.423(1)	106.839(2)		
$V, Å^3$	2059.7(3)	3548.1(7)	7413.3(7)	3865.1(3)
D_x , Γ/cm^3	2.323	2.092	2.044	2.054
Излучение; λ, Å	Μο <i>K</i> _α , 0.71073	Μο <i>K</i> _α , 0.71073	Μο <i>K</i> _α , 0.71073	Μο <i>K</i> _α , 0.71073
μ, мм ⁻¹	11.845	9.207	9.013	8.464
<i>Т</i> , К	100(2)	100(2)	100(2)	100(2)
Размер образца, мм	0.12×0.16×0.21	0.08×0.18×0.26	0.12×0.19×0.21	0.17×0.22×0.25
Тип сканирования	ω	ω	ω	ω
Учет поглощения, T_{\min} , T_{\max}	Multi-scan, 0.116, 0.239	Multi-scan, 0.150, 0.481	Multi-scan, 0.165, 0.340	Multi-scan, 0.226, 0.327
θ _{max} , град	29.99	27.50	26.00	29.95
	$-13 \le h \le 13,$	$-17 \le h \le 17,$	$-21 \le h \le 21,$	$-22 \le h \le 22,$
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-26 \le k \le 27,$	$-26 \le k \le 26,$	$-24 \le k \le 24,$	$-22 \le k \le 22,$
	$-18 \le l \le 18$	$-17 \le l \le 17$	$-25 \le l \le 27$	$-22 \le l \le 22$
Число отражений:	25735/5997	37299/16282	60818/14549	46811/1871
измеренных/независимых (N_1) ,	0.0438/4590	0.0730/14741	0.0891/10924	0.0551/1523
$R_{\text{int}}/c I > 2\sigma(I) (N_2)$			0.0007170721	0.0001,1020
Число параметров	235	798	737	76
Факторы недостоверности:				
<i>wR</i> ₂ по <i>N</i> ₁	0.0644	0.1164	0.1499	0.0406
<i>R</i> ₁ по <i>N</i> ₂	0.0268	0.0493	0.0563	0.0173
S	1.008	1.013	1.009	1.019
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$, \Im / \mathring{A}^3	3.268/-2.840	3.250/-1.476	3.701/-1.429	0.524/-1.854

ИК спектры соединений V–VIII содержат характеристические полосы поглощения ионов UO₂²⁺, C₃H₇COO⁻ и молекул H₂O (в случае V, VI и VIII) (рис. 21–24). Отнесение полос поглощения проведено в соответствии с [71] (табл. 10, 11). С учетом данных [71], дублет при 2935, 2876 см⁻¹ и 2936, 2876 см⁻¹ соответственно в спектрах VI и VII возникает вследствие резонанса Ферми для обертона $2\delta_{as}$ (CH₃).

Рис. 21. ИК спектр соединения UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V).

Рис. 22. ИК спектр соединения Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂ (VIII).

Рис. 23. ИК спектр соединения NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (VI).

Рис. 24. ИК спектр соединения $KUO_2(n-C_3H_7COO)_3$ (VII).

Ропиория		
Болновые	числа, см	Отнесение
V	VIII	
3380 ср., ш.	3417 ос ш	$v_{a}(H_{2}O)$ $v_{aa}(H_{2}O)$
3321 ср., ш.	5 П 7 О.С., Ш.	v _s (1120), v _{as} (1120)
2968 ср.	2970 o.c.	$v_{as}(CH_3)$
2937 сл.	2939 ср.	$v_s(CH_3)$
2907 плечо	2915 плечо	$v_{as}(CH_2)$
2877 сл.	2877 ср.	$v_s(CH_3)$
1633 сл	1681 c.	S(ILO)
1055 CJI.	1632 cp.	0(H ₂ U)
1535 o.c.	1534 o.c.	$v_{as}(COO)$
1502 c.	1460	S (CII)
1468 o.c.	1468 O.C.	$O_{as}(CH_3)$
1427 cp.	1425 o.c.	$v_s(COO)$
1414 плечо	1415 плечо	$\delta(C_{\alpha}H_2)$
1380 сл.	1383 cp.	$\delta_s(CH_3)$
1334 сл.	1333 cp.	$\omega(C_{\alpha}H_2)$
1316 сл.	1015	
1305 плечо	1315 C.	$\omega(C_{\beta}H_2)$
1264 сл.	1261 cp.	$tw(C_{\alpha}H_2)$
1212 сл.	1209 cp.	$tw(C_{\beta}H_2)$
1098 сл.	1098 cp.	$\nu(C_{\beta}C_{\alpha})$
1083 плечо	1079 сл.	
1045 сл.	1054 сл.	$\gamma(CH_3)$
950 c.	_	$\nu(C_{\gamma}C_{\beta})$
940 c.	021	
929 o.c.	931 o.c.	$v_{as}(UO_2)$
901 сл.	901 cp.	
876 сл.	877 сл.	$\nu(C_{\alpha}C)$
809 сл.	814 cp.	
798 плечо	800 c.	$\gamma(C_{\alpha}H_2)$
756 сл.	754 плечо	
728 сл.	724 c.	$\gamma(C_{\beta}H_2)$
673 сл.	672 плечо	S(COO)
643 сл.	650 o.c.	ð(COO)
526 сл.	531 o.c.	
505 сл.	517 o.c.	ω(COO)

Таблица 10. Отнесение полос поглощения в ИК спектрах соединений $UO_2(C_3H_7COO)_2(H_2O)_2$ (V) и $Mg(H_2O)_6(UO_2(C_3H_7COO)_3)_2$ (VIII) *

* о.с. – очень сильная, с. – сильная, ср. – средняя, сл. – слабая, ш – широкая.

Волновые	0	
VI	VII	Отнесение
3442 ср.ш.	_	$v_s(H_2O), v_{as}(H_2O)$
2966 c.	2965 o.c.	$v_{as}(CH_3)$
2935 ср.	2936 c.	$v_s(CH_3)$
2915 cp.	2915 плечо	$v_{as}(CH_2)$
2876 cp.	2876 c.	$v_s(CH_3)$
1629 cp.	—	$\delta(H_2O)$
1531 o.c.	1531 o.c.	$v_{as}(COO)$
1468 o.c.	1466 o.c.	$\delta_{as}(CH_3)$
1426 c.	1427 c.	$v_s(COO)$
1413 c.	1412 c.	$\delta(C_{\alpha}H_2)$
1384 cp.	1382 cp.	$\delta_s(CH_3)$
1350 сл.	1348 cp.	$\omega(C_{\alpha}H_2)$
1316 cp.	1316 c.	$\omega(\mathbf{C},\mathbf{H})$
1297 о.сл.	1296 о.сл.	ω(CβΠ2)
1263 cp.	1263 cp.	$tw(C_{\alpha}H_2)$
1212 cp.	1213 cp.	$tw(C_{\beta}H_2)$
1098 cp.	1097 cp.	$\nu(C_{\beta}C_{\alpha})$
1079 о.сл.	1080 о.сл.	$\alpha(\mathbf{CH}_{1})$
1049 о.сл.	1049 о.сл.	γ(CΠ3)
947 плечо	953 сл.	$\nu(C_{\gamma}C_{\beta})$
928 o.c.	927 o.c.	$v_{as}(UO_2)$
901 cp.	900 cp.	$\nu(\mathbf{C},\mathbf{C})$
876 сл.	875 сл.	$V(C_{\alpha}C)$
808 cp.	806 cp.	$\gamma(C_{\alpha}H_2)$
756 сл.	760 cp.	$\gamma(C_{0}H_{0})$
727 cp.	726 cp.	$\gamma(C_{\beta} 1_{2})$
665 плечо	664 плечо	δ(COO)
644 cp.	646 cp.	0(000)
527 о.сл.	528 о.сл.	
510 о.сл.	511 о.сл.	

Таблица 11. Отнесение полос поглощения в ИК спектрах соединений $NaUO_2(C_3H_7COO)_3 \cdot 0.25H_2O$ (VI) и $KUO_2(C_3H_7COO)_3$ (VII) *

* о.с. – очень сильная, с. – сильная, ср. – средняя, сл. – слабая, о.сл. – очень слабая, ш – широкая.

Для соединений NaUO₂(C₃H₇COO)₃ \cdot 0.25H₂O (VI) и KUO₂(C₃H₇COO)₃ (VII) был проведен термический анализ (рис. 25).

Рис. 25. Дериватограммы соединений NaUO₂(C₃H₇COO)₃·0.25H₂O (VI) (a) и KUO₂(C₃H₇COO)₃ (VII) (б).

Исходя из полученных данных, была предложена следующая схема разложения соединения NaUO₂(C₃H₇COO)₃·0.25H₂O (VI) при нагревании (над стрелками указаны температурные интервалы термоэффектов, под стрелками – значения (%) эксп. и выч. потери массы):

$$NaUO_{2}(C_{3}H_{7}COO)_{3} \cdot 0.25H_{2}O \xrightarrow{120-140^{\circ}C} NaUO_{2}(C_{3}H_{7}COO)_{3} \rightarrow$$

$$\xrightarrow{200-240^{\circ}C} UO_{3} \cdot NaC_{3}H_{7}COO \xrightarrow{280-300^{\circ}C} \frac{1}{43.2;43.2} \frac{1}{2}Na_{2}U_{2}O_{7}$$

Соединение KUO₂(C₃H₇COO)₃ (VII) разлагается при 280–310°С в одну стадию, сопровождаемую сначала небольшим эндоэффектом, переходящим в

сильный экзоэффект. Конечным продуктом разложения является диуранат калия (потеря массы эксп. 41.8%, выч. 41.6%).

Термическое поведение $Mg(H_2O)_6(UO_2(C_3H_7COO)_3)_2$ (VIII) было изучено ранее авторами [111]. Согласно их данным, сначала при нагревании до 160°C отщепляются шесть молекул кристаллизационной воды, что сопровождается эндотермическим эффектом. Далее безводное соединение плавится при 250°C и в интервале температур 300–400°C разлагается с экзотермическим эффектом. Согласно результатам рентгенофазового анализа при 850°C остаток от разложения $Mg(H_2O)_6(UO_2(C_3H_7COO)_3)_2$ представляет из себя смесь $MgUO_4$ и MgU_3O_{10} [111].

2.3.2. Кристаллическая структура UO₂(*n*-C₃H₇COO)₂(H₂O)₂

В структуре UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V) [109] содержится два кристаллографических сорта атомов урана. Атом U1 находится в центре инверсии, что обусловливает линейность и равноплечность иона уранила U1O₂²⁺ (d(U=O) = 1.761 Å (x2)). Атом U2 имеет сайт-симметрию C_1 , однако расстояния и угол в ионе уранила U2O₂²⁺ отличаются незначительно (d_1 (U=O) = 1.756, d_2 (U=O) = 1.760 Å, \angle OUO = 179.51°). Каждый ион уранила координирует в экваториальной плоскости по 6 атомов кислорода, четыре из которых принадлежат двум бутират-ионам, а два – молекулам воды, находящимся в транс-положении по отношению друг к другу (рис. 26).

Рис. 26. Вид комплексов в тепловых эллипсоидах (приведены с вероятностью 50%) в UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V). Структура состоит из двух независимых молекул, в одной из которых независимая часть состоит из половины молекул, а атом урана находится в центре инверсии.

Бутират-ионы имеют тип координации B^{01} (бидентатный хелатный), а молекулы воды – M^1 . Координационными полиэдрами обоих атомов урана являются гексагональные бипирамиды, геометрические параметры которых приведены в табл. 12.

Связь	Связь $d, Å$ $\Omega, \%$		Угол	ω, град.			
Гексагональная бипирамида U1O ₈							
U1–O1 (x2)	1.761(3)	22.00	01–U1–O1	180			
U1–O2 (x2)	2.487(3)	9.03	O2–U1–O3	51.10(11)			
U1–O3 (x2)	2.552(3)	8.27	O3–U1–O4	64.63(11)			
U1–O4 (x2)	U1–O4 (x2) 2.417(3)		O2–U1–O4	64.28(11)			
	Гексагональная бипирамида U2O ₈						
U2–O5	1.756(3)	22.35	O5–U2–O6	179.51(16)			
U2–O6	1.760(3)	21.64	O7–U2–O8	65.57(10)			
U2–O7	2.454(3)	10.24	O8–U2–O9	51.59(10)			
U2–O8	U2–O8 2.509(3)		O9–U2–O10	65.44(11)			
U2–O9	U2–O9 2.500(3)		O10-U2-O11	64.31(11)			
U2–O10	2.429(3)	10.50	O11–U2–O12	51.08(10)			
U2011	2.515(3)	8.58	O12–U2–O7	62.92(10)			
U2–O12	2.489(3)	8.85					

Таблица 12. Геометрические параметры координационных полиэдров атомов U в структуре UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V)

Структура V является островной и состоит из нейтральных комплексных группировок $[UO_2(C_3H_7COO)_2(H_2O)_2]$ (кристаллохимическая группа $AB^{01}_2M^1_2$, где $A = UO_2^{2^+}$, $B^{01} = C_3H_7COO^-$, $M^1 = H_2O$), связанных между собой посредством межмолекулярных взаимодействий. Молекулы воды образуют по две водородные связи с атомами кислорода бутират-ионов. Так как кристаллы V содержат 3 кристаллографических сорта молекул воды, то в структуре реализуются шесть водородных связей (табл. 13), которые по классификации [112] можно отнести к средним по силе.

	Расстояния, Å			Угол		
О–Н…О	0…0	O–H	Н…О	О–Н…О, грал	%	%
O4–H22…O9	2.694	0.850	1.880	159.88	31.59	21.48
O4–H23…O12	2.698	0.851	1.863	167.07	31.41	21.52
O7–H24…O11	2.713	0.850	1.870	171.26	32.16	21.98
O7–H25…O3	2.799	0.849	1.983	161.01	31.99	20.07
O10-H26…O2	2.663	0.850	1.815	175.16	31.93	22.27
O10–H27…O8	2.717	0.850	1.945	150.42	32.31	19.44

Таблица 13. Водородные связи в структуре UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V) *

* Учтены контакты с расстояниями H…O ≤ 2.5 Å, углом $\angle O$ -H…O $\geq 120^{\circ}$ и $\Omega(H…O) \geq 12\%$.

2.3.3. Кристаллические структуры NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O и KUO₂(*n*-C₃H₇COO)₃

В структурах NaUO₂(n-C₃H₇COO)₃·0.25H₂O (VI) [110] и KUO₂(n-C₃H₇COO)₃ (VII) [110] содержится по четыре кристаллографических сорта атомов урана и *A* (*A* = Na или K). Координационным полиэдром каждого атома урана является гексагональная бипирамида UO₈, на главной оси которой находятся атомы кислорода иона уранила (табл. 14).

Таблица 14. Геометрические параметры координационных полиэдров некоторых атомов урана в структурах NaUO₂(C₃H₇COO)₃·0.25H₂O (VI) и KUO₂(C₃H₇COO)₃ (VII)

Связь	d, Å	Ω, %	Угол	ω, град.	
$NaUO_2(C_3H_7COO)_3 \cdot 0.25H_2O$ (VI)					
	Гексагона	льная бипирами	1да U2O ₈		
U2–O9	1.785(8)	21.64	O9–U2–O10 179.0(4)		
U2–O10	1.772(8)	21.74	O11–U2–O12	52.7(3)	
U2011	2.475(8)	9.32	O12–U2–O13	68.2(3)	
U2012	2.441(8)	9.65	O13–U2–O14	52.5(3)	
U2013	2.472(8)	9.21	O14–U2–O15	66.3(3)	
U2–O14	2.431(8)	9.84	O15–U2–O16	52.2(2)	
U2–O15	2.507(7)	8.93	O16-U2-O11	68.9(3)	
U2–O16	2.472(8)	9.66			
KUO ₂ (C ₃ H ₇ COO) ₃ (VII)					
Гексагональная бипирамида U4O ₈					
U4–O25	1.721(16)	22.49	O25–U4–O26	176.3(8)	
U4–O26	1.778(15)	21.54	O27–U4–O28	51.5(4)	
U4–O27	2.454(13)	9.07	O28–U4–O29	68.0(5)	
U4–O28	2.466(13)	9.00	O29–U4–O30	52.6(5)	
U4–O29	2.452(14)	9.70	O30–U4–O31	68.2(5)	
U4–O30	2.489(16)	9.49	O31–U4–O32	52.7(5)	
U4-031	2.495(12)	9.28	O32–U4–O27	67.9(5)	
U4–O32	2.452(13)	9.43			

Расположенные в экваториальной плоскости шесть атомов кислорода принадлежат трем бутират-ионам, которые играют роль хелатных бидентатных лигандов (тип координации B^{01}). Углы $\angle OUO$, образованные атомами кислорода одного бутират-иона, в VI и VII лежат в диапазоне 51.4–53.2°. Объем ПВД

атомов урана в структурах VI (9.25, 9.43, 9.31 и 9.34 Å³) и VII (9.09, 9.30, 9.19 и 9.31 Å³) хорошо согласуется с известным средним значением 9.2(3) Å³ для U(VI) в комплексах UO_n [80]. Согласно полученным данным, соединениям VI и VII отвечают координационные формулы Na[UO₂(C₃H₇COO)₃]·0.25H₂O и K[UO₂(C₃H₇COO)₃], а основу структур кристаллов представляют одноядерные группировки [UO₂(C₃H₇COO)₃]⁻ (рис. 27), относящиеся к кристаллохимической группе AB^{01}_3 ($A = UO_2^{2+}$, $B^{01} = C_3H_7COO^{-}$) комплексов уранила.

Рис. 27. Вид одного из четырех независимых анионов $[UO_2(C_3H_7COO)_3]^-$ в структуре NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (VI) в тепловых эллипсоидах (приведены с вероятностью 50%).

Трибутиратоуранилатные комплексы в структурах связаны посредством электростатических взаимодействий с внешнесферными катионами натрия или калия, а в структуре VI также за счет водородных связей с участием единственной молекулы воды. Так, атомы Н молекулы воды образуют водородные связи ОЗЗ–Н1…О1 и ОЗЗ–Н2…О32 соответственно с d(H...O) = 2.58 и 1.92 Å и углами $\angle O$ –H…O 119 и 172°, первая из которых по классификации [112] является слабой, а вторая – средней по силе.

Особенности изученных структур связаны с разной кристаллохимической ролью атомов одновалентных катионов *A*, определение КЧ которых проводили с помощью метода пересекающихся сфер, а формы КП – при анализе комбинаторно-топологического типа ПВД, дуальных координационным

полиэдрам AO_n . Согласно полученным данным в VI три сорта атомов натрия с KU 6 имеют октаэдрическую, а один (Na3 c KU 5) – квадратно-пирамидальную координацию. В структуре VII все атомы калия имеют KU 6, однако в трех случаях координационный полиэдр KO₆ имеет форму октаэдра, а в одном (K4) – тригональной призмы. В VI и VII все полиэдры AO_6 содержат атомы кислорода шести разных бутират-ионов, тогда как полиэдр Na3O₅ включает четыре атома кислорода четырех бутират-ионов и атом кислорода молекулы воды. В полиэдрах AO_n длина связей A–O лежит соответственно в области 2.28–2.82 Å (A = Na) и 2.61–2.73 Å (A = K). Объемы ПВД атомов Na1–Na4 равны соответственно 13.7, 13.9, 14.3 и 15.9 Å³ и приемлемо согласуются с известным средним значением (15.2 Å³) для атомов натрия в координационных полиэдрах NaO_n с n = 4–12 [113]. Объемы ПВД атомов K1–K4 (соответственно 19.0, 18.3, 18.5 и 20.0 Å³) незначительно понижены по сравнению со средним значением (20.8 Å³) для атомов калия в координационных полиэдрах KO_n с n = 6–16 [105].

2.3.4. Кристаллическая структура Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂

В Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂ (VIII) [109] содержится один сорт атомов урана, а через линейный ион уранила проходит ось C_3 (d_1 (U=O) = 1.768, d_2 (U=O) = 1.757 Å). Все 6 атомов кислорода экваториальной плоскости в VIII попарно принадлежат трем бутират-ионам. Бутират-ионы имеют тип координации B^{01} (бидентатные хелатные). Координационными полиэдрами атомов урана являются гексагональные бипирамиды (рис. 28, табл. 15).

Рис. 28. Вид аниона в структуре $Mg(H_2O)_6(UO_2(n-C_3H_7COO)_3)_2$ (VIII) в тепловых эллипсоидах (приведены с вероятностью 50%).

Таблица 15. Геометрические параметры координационного полиэдра атома урана в структуре Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂ (VIII)

Связь	d, Å	Ω, %	Угол	ω, град.
U01	1.768(3)	21.78	O1–U–O2	180
U–O2	1.757(3)	22.23	O3–U–O4 (x3)	51.84(5)
U–O3 (x3)	2.4876(17)	11.07	O4–U–O3 (x3)	68.31(5)
U–O4 (x3)	2.4788(16)	11.16		

В VIII ионы Mg²⁺ занимают позицию с сайт-симметрией C_{3i} и окружены шестью кристаллографически эквивалентными молекулами воды, атомы кислорода которых образуют октаэдры MgO₆. Таким образом, структура VIII состоит из анионных комплексов [UO₂(C₃H₇COO)₃]⁻ (кристаллохимическая группа AB^{01}_{3} , где $A = UO_2^{2+}$, $B^{01} = C_3H_7COO^{-}$) и катионов [Mg(H₂O)₆]²⁺ (кристаллохимическая группа $A M_{6}^{1}$, где $A = Mg^{2+}$, $M^{1} = H_{2}O$), которые связаны в каркас за счет электростатических взаимодействий. Кроме того каждая молекула воды образует по две водородные связи с атомами кислорода бутиратионов. Так как кристаллы VIII содержат один кристаллографический сорт молекул воды, то в их структуре содержится две разных водородных связи (табл. 16), которые по классификации [112] можно отнести к средним по силе.

Таблица 16. Водородные связи в структуре Mg(H₂O)₆(UO₂(*n*-C₃H₇COO)₃)₂ (VIII) *

	Расстояния, Å		Угол		O(II O)	
О–Н…О	00	O–H	Н…О	О–Н…О, град.	<u>92(О</u> –п), %	Ω(H…O), %
O5–H1…O4	2.719	0.850	2.020	138.91	32.23	18.54
O5–H2…O3	2.756	0.850	1.970	153.40	32.15	19.13

* Учтены контакты с расстояниями H···O ≤ 2.5 Å, углом $\angle O$ -H···O $\geq 120^{\circ}$ и $\Omega(H \cdots O) \geq 12\%$.

2.4. Валератсодержащие комплексы уранила

2.4.1. Синтез и физико-химическое исследование валератоуранилатов

При изотермическом испарении раствора, содержащего 0.2 ммоль $UO_2(NO_3)_2 \cdot 6H_2O$, 0.6 ммоль валериановой кислоты и 0.6 ммоль NaOH в 6 мл воды, формировались желтые призматические кристаллы состава $UO_2(n-C_4H_9COO)_2(H_2O)_2$ (**IX**) [114]. Замена NaOH на KOH или RbOH привела к образованию желтых $KUO_2(n-C_4H_9COO)_3$ (**X**) [114] или бледно-желтых RbUO₂($n-C_4H_9COO$)₃ (**X**) [114] или бледно-желтых RbUO₂($n-C_4H_9COO$)₃ (**X**) [114] или бледно-желтых RbUO₂($n-C_4H_9COO$)₃ (**XI**) пластинчатых кристаллов. Отметим, что при указанных условиях синтеза натрий, в отличие от калия и рубидия, не вошел в состав соединения.

Желтые прозрачные кристаллы состава $Na_4(UO_2)_4(i-C_4H_9COO)_{11}(NO_3)\cdot 3H_2O$ (**XII**) [115] образовались в процессе изотермического испарения раствора при комнатной температуре, полученного смешиванием 0.2 ммоль $UO_2(NO_3)_2\cdot 6H_2O$ с водным раствором *изо*-валериановой кислоты (0.8 ммоль *i*-C_4H_9COOH в 7 мл H_2O) и добавлением концентрированного водного раствора NaOH (около 0.6 ммоль) до значения pH = 5.

Параметры рентгеноструктурных экспериментов И окончательные значения факторов недостоверности для IX-XII приведены в табл. 17. В X четыре из семи независимых карбоксилат-анионов разупорядочены по двум положениям с равной заселенностью, один из них уточнен в изотропном приближении. В XI шесть из семи анионов равновероятно разупорядочены по двум положениям и уточнены с фиксированными расстояниями С-С 1.50(1) Å. При уточнении структуры Х длины некоторых связей С-С фиксировались. В случае XII интенсивность отражений резко понижалась с ростом 20, в результате чего даже при максимальной экспозиции (60 сек/фрейм) число полученных отражений составляло всего 42.5% от независимых, что отразилось на качестве массива. В результате при уточнении XII две связи U=O и ряд связей C-C были фиксированы на расстояниях, соответственно, 1.70 и 1.50 Å.

Таблица 17. Кристаллографические данные, параметры эксперимента и уточнения структур UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX), KUO₂(*n*-C₄H₉COO)₃ (X), RbUO₂(*n*-C₄H₉COO)₃ (XI) и Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII)

	IX	X	XI	XII	
Сингония, пр. гр., Z	Моноклинная, С2/т, 2	Ромбическая, С2221, 16	Ромбическая, С2221, 16	Моноклинная, <i>P</i> 2 ₁ , 2	
<i>a</i> , Å	7.782(4)	17.294(3)	17.3433(4)	13.697(2)	
b, Å	10.802(5)	23.405(4)	23.5652(5)	20.285(3)	
<i>c</i> , Å	9.512(5)	20.862(3)	21.2386(6)	15.991(3)	
β, град.	104.885(9)			103.760(3)	
$V, Å^3$	772.7(7)	8444(2)	8680.2(4)	4315.4(13)	
D_x , Γ/cm^3	2.185	1.927	2.017	1.847	
Излучение; λ, Å	Μο <i>K</i> _α , 0.71073	Μο <i>K</i> _α , 0.71073	Cu <i>K</i> _α , 1.54178	Μο <i>K</i> _α , 0.71073	
µ , мм ⁻¹	10.531	7.920	24.073	7.580	
<i>Т</i> , К	100(2)	100(2)	100(2)	100(2)	
Размер образца, мм	0.08×0.11×0.21	0.3×0.15×0.24	0.16×0.15×0.04	0.15×0.20×0.23	
Тип сканирования	ω	ω	f, ω	ω	
Учет поглощения, <i>T_{min}</i> , <i>T_{max}</i>	Multi-scan, 0.261, 0.430	Multi-scan, 0.2523, 0.7971	Multi-scan, 0.715, 0.849	Multi-scan, 0.190, 0.326	
θ _{<i>max</i>} , град	29.99	28.00	67.48	26.00	
	$-10 \le h \le 10,$	$-18 \le h \le 22,$	$-20 \le h \le 20,$	$-16 \le h \le 16,$	
Пределы <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le k \le 15,$	$-30 \le k \le 30,$	$-28 \le k \le 26,$	$-25 \le k \le 25,$	
	$-13 \le l \le 13$	$-27 \le l \le 27$	$-25 \le l \le 23$	$-19 \le l \le 19$	
Число отражений:	4876/1187	37788/10209	28293/7556	40731/16848	
измеренных/независимых (N_1) ,	0.0678/1187	0.0715/8322	0.0624/6246	0 1247/7161	
$R_{int}/c I > 2\sigma(I) (N_2)$		0.0715/0522	0.002 1102 10	0.12 1///101	
Число параметров	85	366	395	817	
Факторы недостоверности:					
<i>wR</i> ₂ по <i>N</i> ₁	0.0588	0.1933	0.2106	0.1398	
<i>R</i> ₁ по <i>N</i> ₂	0.0251	0.0655	0.0761	0.0650	
S	0.998	1.252	1.082	1.058	
$\Delta \rho_{max} / \Delta \rho_{min}, \Im / \mathring{A}^3$	2.057/-2.054	2.765/-1.852	1.260/-1.349	2.176/-1.123	
В ИК спектрах IX–XII присутствуют характеристические полосы поглощения групп UO₂²⁺ и C₄H₉COO⁻, а также H₂O в IX и XII (рис. 29–32). Валентные антисимметричные колебания иона уранила проявляются при 942, 951 (IX), 927 (X), 926 (XI) и 928 см⁻¹ (XII) (табл. 18, 19). Согласно [71], в IX–XII дублет при \approx 2934 и \approx 2873 см⁻¹ появляется за счет резонанса Ферми с первым обертоном δ_{as} (CH₃). Отличительной особенностью разветвленной углеводородной цепи *изо*-валерат-иона является появление в спектре соединения XII дублета пиков деформационных колебаний δ_s (CH₃) при 1370 и 1386 см⁻¹ с приблизительно одинаковой интенсивностью [72]. Отнесение полос в спектре XII при 1170 и 1123 см⁻¹ к γ (CH₃) колебаниям является предположительным.

Рис. 29. ИК спектр соединения UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX).

Рис. 30. ИК спектр соединения $KUO_2(n-C_4H_9COO)_3$ (X).

Рис. 31. ИК спектр соединения $RbUO_2(n-C_4H_9COO)_3$ (XI).

Рис. 32. ИК спектр соединения Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII).

Bo	олновые числа, си	M^{-1}	0
IX	Х	XI	Отнесение
3374 с.ш.	_	_	$v_s(H_2O), v_{as}(H_2O)$
2960 c.	2960 c.	2960 ср.	$v_{as}(CH_3)$
2933 c.	2935 c.	2934 ср.	$v_s(CH_3)$
2873 ср.	2873 ср.	2873 ср.	$v_s(CH_3)$
1634 cp.	—	—	$\delta(H_2O)$
1530 o.c.	1534 o.c.	1535 o.c.	v _{as} (COO)
1501 o.c.	1464 0.0	1463 0.0	δ (CH.)
1468 o.c.	1404 0.0.	1403 0.0.	
1426 плечо	1429 c.	1430 плечо	$v_s(COO)$
1412 плечо	1413 c.	1413 cp.	$\delta(C_{\alpha}H_2)$
1381 сл.	1379 сл.	1379 сл.	$\delta_s(CH_3)$
1364 сл.	1361 сл.	1361 сл.	$\omega(C_{\alpha}H_2)$
1323 cp.	1319 cp.	1319 сл.	$\omega(\mathbf{C},\mathbf{H})$
1300 сл.	1297 сл.	1297 сл.	$\omega(C_{\beta}\Pi_2)$
1246 сл.	1241 сл.	1241 сл.	$tw(C_{\alpha}H_2)$
1204 сл.	1199 сл.	1200 сл.	$tw(C_{\beta}H_2)$
1106 on	1000 ал	1107 сл.	$\nu(C,C)$
1100 cp.	1099 CJI.	1098 сл.	$V(C_{\beta}C_{\alpha})$
951 o.c.	027 0 0	026.0.0	
942 o.c.	927 0.0.	920 0.0.	$V_{as}(UU_2)$
868 сл.	867 сл.	866 сл.	$\nu(C_{\alpha}C)$
761 сл.	762 сл.	762 сл.	$N(\mathbf{C}_{\mathbf{z}}\mathbf{U}_{\mathbf{z}})$
731 сл.	720 сл.	719 сл.	γ(CβΠ2)
685 сл.	669 сл.	665 сл.	δ(COO)
648 сл.	649 сл.	649 сл.	0(000)

Таблица 18. Отнесение полос поглощения в ИК спектрах соединений UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX), KUO₂(*n*-C₄H₉COO)₃ (X) и RbUO₂(*n*-C₄H₉COO)₃ (XI) *

* о.с. – очень сильная, с. – сильная, ср. – средняя, сл. – слабая, ш. – широкая.

Волновые числа, см ⁻¹	Отнесение
3472 ср. ш.	$v_s(H_2O), v_{as}(H_2O)$
2962 c.	$v_{as}(CH_3)$
2934 ср.	$\nu_{s}(CH_{3})$
2900 плечо	$v_{as}(CH_2)$
2874 ср.	$v_s(CH_3)$
1633 cp.	δ(H ₂ O)
1530 o.c.	v _{as} (COO)
1462 o.c.	$\delta_{as}(CH_3)$
1424 c.	$\nu_s(COO)$
1410 плечо	$\delta(C_{\alpha}H_2)$
1386 cp.	$\delta_s(CH_3), v_{as}(NO_3)$
1370 ср.	$\delta_s(CH_3)$
1338 плечо	$\omega(C_{\alpha}H_2)$
1332 сл.	
1314 сл.	ω(ϹϧΠ)
1268 сл.	$tw(C_{\alpha}H_2)$
1255 плечо	
1218 сл.	$lW(C_{\beta}\Pi)$
1170 сл.	$\alpha(CH_{\star})$
1123 сл.	γ(C113)
1104 сл.	$\nu(C_{\beta}C_{\alpha})$
970 сл.	$\nu(C_{\gamma}C_{\beta})$
928 o.c.	$v_{as}(UO_2)$
894 плечо	$\nu(C_{\alpha}C)$
841 сл.	$v_s(UO_2)$
809 сл.	$\gamma(C_{\alpha}H_2)$
752 cp.	$\gamma(C_{2}\mathbf{H})$
737 ср.	γ(€βΠ)
658 cp.	δ(COO)
648 плечо	0(000)
538 сл.	$\omega(COO)$
520 сл.	

Таблица 19. Отнесение полос поглощения в ИК спектре Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII) *

* о.с. – очень сильная, с. – сильная, ср. – средняя, сл. – слабая, ш. – широкая.

Для двух валератных комплексов уранила были записаны дериватограммы (рис. 33). Валерат уранила (IX) при нагревании до 60–100°С сначала переходит в безводную форму, что сопровождается эндоэффектом и потерей 7.2% массы исходной навески (выч. 7.1%). При повышении температуры до 240–280°С происходит дальнейшее экзотермическое разложение безводных комплексов до оксида урана(VI), который при температуре более 600°С превращается в U₃O₈ (потеря массы эксп. 44.9%, выч. 44.8%):

$$UO_2(C_4H_9COO)_2(H_2O)_2 \rightarrow UO_2(C_4H_9COO)_2 \rightarrow UO_3 \rightarrow \frac{1}{3}U_3O_8$$

Рис. 33. Дериватограммы соединений $UO_2(n-C_4H_9COO)_2(H_2O)_2$ (IX, a) и RbUO₂($n-C_4H_9COO$)₃ (XI, б).

Соединение RbUO₂(*n*-C₄H₉COO)₃ (XI) разлагается при 250–310°С в одну стадию, сопровождающуюся эндоэффектом, переходящим в сильный экзоэффект. Конечным продуктом разложения является диуранат рубидия Rb₂U₂O₇ (потеря массы эксп. 42.6%, выч 42.4%).

2.4.2. Кристаллическая структура UO₂(*n*-C₄H₉COO)₂(H₂O)₂

В структуре кристаллов UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX) [114] содержится один сорт атомов урана. КП атома урана имеет форму гексагональной бипирамиды с атомами кислорода иона уранила в аксиальных позициях. Группа $UO_2^{2^+}$ разупорядочена по двум равновероятным позициям. При этом атом урана находится в позиции с симметрией C_{2h} , вследствие чего ион уранила в обоих вариантах является равноплечным и линейным (рис. 34, табл. 20). В бипирамидах UO₈ четыре атома кислорода экваториальной плоскости попарно принадлежат двум хелатным бидентатным валерат-ионам (тип координации B^{01}). Еще два атома кислорода принадлежат двум молекулам воды (тип координации M^1), которые находятся в транс-положении. ПВД атома урана, дуальный КП, имеет форму гексагональной призмы, объем которой (9.25 Å³) хорошо согласуется с известным средним значением 9.2(3) Å³ для атомов U(VI) в комплексах UO_n [80].

Рис. 34. Вид комплекса UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX) в тепловых эллипсоидах (приведены с вероятностью 50%). Показано одно из двух равновероятных положений.

Связь	<i>d</i> , Å	Ω, %	Угол	ω, град.								
Гексагональная бипирамида UO ₈												
U–O2 (x2)	1.752(9)	21.95	O2–U–O2	180								
U–O1 (x2)	2.428(5)	10.37	O1–U–O4 (x4)	64.24(14)								
U-O4 (x4)	2.485(6)	8.84	O4–U–O4 (x2)	51.54(15)								

Таблица 20. Геометрические параметры координационного полиэдра атома урана в структуре UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX) *

* Указаны параметры для одного из двух равновероятных положений.

Структура IX является островной и состоит из нейтральных комплексных группировок [UO₂(C₄H₉COO)₂(H₂O)₂] (кристаллохимическая группа $AB^{01}_2M^{1}_2$, где $A = UO_2^{2+}$, $B^{01} = C_4H_9COO^-$, $M^1 = H_2O$), которые соединены между собой системой водородных связей. Так, при каждом из двух равновероятных положений молекула воды реализует по две односортных водородных связи O1–H1···O4 или O1–H1···O5 соответственно с $d(H \cdot \cdot O) = 1.93$ и 2.20 Å и углами $\angle O$ –H···O 179.8 и 128.5°, которые в соответствии с классификацией [112] можно отнести к водородным связям средней прочности.

2.4.3. Кристаллические структуры KUO₂(*n*-C₄H₉COO)₃ и RbUO₂(*n*-C₄H₉COO)₃

Соединения KUO₂(*n*-C₄H₉COO)₃ (X) [114] и RbUO₂(*n*-C₄H₉COO)₃ (XI) являются изоструктурными. В структуре кристаллов X и XI содержится по 3 сорта атомов U и K или Rb. Во всех случаях КП атомов урана является гексагональная бипирамида с атомами кислорода иона уранила в аксиальных позициях (табл. 21). Ионы U1O₂²⁺ и U2O₂²⁺ в X и XI равноплечны (через атомы урана проходят оси C_2) с углами ∠OUO, равными, соответственно, 179.1(10) и 180.0(8)° в X и 175.6(6) и 175.1(5)° в XI. Сайт-симметрия ионов U3O₂²⁺ понижена до $C_1 (d_1(U=O) = 1.719(12), d_2(U=O) = 1.757(12)$ Å, ∠OUO = 179.2(6)° в X; $d_1(U=O)$ = 1.701(9), $d_2(U=O) = 1.718(10)$ Å, ∠OUO = 177.2(4)° в XI).

Таблица 21. Геометрические параметры координационных полиэдров некоторых атомов урана в структурах KUO₂(*n*-C₄H₉COO)₃ (X) и RbUO₂(*n*-C₄H₉COO)₃ (XI)

Связь	d, Å	Ω, %	Угол	ω, град.							
$\overline{\text{KUO}_2(n\text{-}C_4\text{H}_9\text{COO})_3(\text{X})}$											
Гексагональная бипирамида U2O8											
U2–O5 (x2)	1.716(11)	22.38	O5–U2–O5	180.0(8)							
U2–O6 (x2)	2.451(10)	9.33	O6–U2–O7 (x2)	52.5(4)							
U2–O7 (x2)	2.476(10)	9.11	O7–U2–O8 (x2)	68.0(4)							
U2–O8 (x2)	2.470(10)	9.17	O8–U2–O8	51.6(5)							
			O6–U2–O6	67.7(5)							
	RbUC	$D_2(n-C_4H_9COO)_3$	(XI)								
	Гексагона	льная бипирамі	ида U2O ₈								
U2–O5 (x2)	1.681(8)	22.51	O5–U2–O5	175.1(5)							
U2–O6 (x2)	2.412(7)	8.92	O6–U2–O7 (x2)	51.7(2)							
U2–O7 (x2)	2.417(6)	9.25	O7–U2–O8 (x2)	67.2(2)							
U2–O8 (x2)	2.473(7)	9.33	O8–U2–O8	54.4(3)							
			O6–U2–O6	68.9(3)							

В бипирамидах UO₈ шесть атомов кислорода экваториальной плоскости попарно принадлежат трем хелатным бидентатным валерат-ионам (тип координации B^{01}). ПВД атомов урана имеют форму гексагональных призм, объем которых в случае X (9.41, 9.10 и 9.34 Å³) хорошо согласуется с известным средним значением 9.2(3) Å³ для атомов U(VI) в комплексах UO_n [80]. В

соединении XI объемы ПВД атомов U незначительно занижены (8.70, 8.70 и 8.89 Å³).

Основной структурной единицей X и XI являются одноядерные анионные комплексы $[UO_2(C_4H_9COO)_3]^-$ (кристаллохимическая группа AB^{01}_3 , где $A = UO_2^{2+}$, $B^{01} = C_4H_9COO^-$), связанные в каркас за счет электростатических взаимодействий с внешнесферными катионами K⁺ или Rb⁺ (рис. 35).

Рис. 35. Вид анионов в структуре KUO₂(*n*-C₄H₉COO)₃ (X) в тепловых эллипсоидах (приведены с вероятностью 30%). Разупорядоченные карбоксилатанионы в структуре комплексных анионов U1 и U2 изображены пунктиром.

КЧ атомов калия и рубидия в структурах X и XI определяли с помощью метода пересекающихся сфер, а форму КП – при анализе комбинаторнотопологического типа ПВД, рассчитанных без учета невалентных контактов К…Z, где Z = H или O. Все сорта атомов K и Rb в X и XI имеют KЧ 6 и их КП, образованные атомами кислорода шести анионов C₄H₉COO⁻, являются искаженными октаэдрами KO₆ с d(K-O) в области 2.66–2.82 Å или RbO₆ с d(Rb-O) в области 2.75–2.91 Å. Наиболее сильно искажены КП атомов K2 и Rb2, о чем свидетельствуют повышенные значения второго момента инерции G₃ их ПВД (соответственно 0.0814, 0.0843 и 0.0816 для K1, K2 и K3 и 0.0810, 0.0841 и 0.0821 для Rb1, Rb2 и Rb3). Объемы ПВД атомов K и Rb (18.5, 19.7 и 19.4 Å³ для K1–K3 и 20.4, 20.8 и 20.5 Å³ для Rb1–Rb3 соответственно) несколько занижены по сравнению с известными средними значениями 20.8 Å³ для атомов калия в координационных полиэдрах KO_n с n = 6-16 [105] и 23.4 Å³ для атомов рубидия

2.4.4. Кристаллическая структура Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O

В структуре Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII) [115] содержится по 4 сорта атомов U и Na. Все атомы U находятся в общих позициях и их KЧ равны 8. КП атомов U во всех случаях имеют вид гексагональных бипирамид, а дуальные им ПВД – гексагональных призм. Расстояния U=O в группах UO₂²⁺ лежат в диапазоне 1.62–1.79 Å, отклонение от линейности для каждого из четырех ионов уранила не превышает 4° (табл. 22). Три из четырех ионов уранила координированы тремя хелатными бидентатными *изо*-валерат-ионами по типу *B*⁰¹. В случае четвертого атома U один из *изо*-валерат-ионов замещен нитрат-ионом, который также реализует тип координации *B*⁰¹.

Атомы Na1 имеют октаэдрическую координацию и окружены шестью атомами кислорода, принадлежащими шести *изо*-валерат ионам. Остальные атомы Na peaлизуют KЧ = 5, а их КП имеют форму квадратных пирамид. При этом в случае атомов Na2 и Na3 три атома кислорода принадлежат трем *изо*-валерат ионам, один – нитрат иону и еще один – молекуле воды. В полиэдрах Na4O₅ четыре атома О принадлежат четырем *изо*-валерат ионам и один – молекуле воды.

Основными урансодержащими структурными единицами XII являются одноядерные группировки $[UO_2(i-C_4H_9COO)_3]^-$ и $[UO_2(NO_3)(i-C_4H_9COO)_2]^-$, относящиеся к кристаллохимической группе AB^{01}_3 ($A = UO_2^{2+}, B^{01} = i-C_4H_9COO^-$ и NO_3^-) комплексов уранила. Указанные группировки связаны за счет электростатических взаимодействий с внешнесферными катионами Na⁺ в двойные слои (рис. 36), распространяющиеся параллельно (001). Соседние слои объединены между собой за счет водородных связей, образованных атомами водорода двух молекул воды, координированных Na2 и Na3 (первые четыре строки в табл. 23). Третья молекула воды, координированная Na4, участвует еще в двух водородных связях, действующих внутри вышеуказанных слоев (последние две строки в табл. 23). Согласно классификации [112], все реализующиеся в структуре XII водородные связи можно отнести к средним по

силе. Таким образом, координационная формула соединения XII записывается следующим образом: Na₄[UO₂(*i*-C₄H₉COO)₃]₃[UO₂(*i*-C₄H₉COO)₂(NO₃)]·3H₂O.

Связь	d, Å	Ω, %	Угол	ω, град.
	Гексагонали	ьная бипирами	ида U1O ₈	
U101	1.623(7)	23.37	O1–U1–O2	175.8(5)
U1–O2	1.743(12)	21.96	O3–U1–O4	52.3(4)
U1–O3	2.451(11)	9.67	O4–U1–O5	67.4(4)
U1–O4	2.444(11)	9.26	O5–U1–O6	52.5(4)
U1–O5	2.454(1)	8.92	O6-U1-O7	65.5(4)
U1-06	2.461(12)	8.42	O7–U1–O8	53.1(4)
U1–07	2.427(11)	9.26	O8–U1–O3	70.0(4)
U1–O8	2.490(12)	9.13		
	Гексагонали	ьная бипирами	ида U2O ₈	
U2–O9	1.649(12)	23.07	O9–U2–O10	177.3(6)
U2–O10	1.785(12)	21.15	O11–U2–O12	53.0(4)
U2–O11	2.468(11)	9.06	O12–U2–O13	66.1(4)
U2–O12	2.449(11)	9.39	O13–U2–O14	52.6(4)
U2–O13	2.454(13)	9.00	O14–U2–O15	69.0(4)
U2–O14	2.358(12)	10.14	O15–U2–O16	52.9(4)
U2–O15	2.423(12)	9.22	O16-U2-O11	66.9(4)
U2–O16	2.451(12)	8.98		
	Гексагонали	ьная бипирами	ида U3O ₈	
U3–O17	1.693(13)	22.74	O17–U3–O18	177.4(6)
U3–O18	1.687(12)	22.73	O19–U3–O20	53.7(4)
U3–O19	2.500(12)	8.98	O20-U3-O21	66.2(4)
U3–O20	2.474(11)	9.04	O21–U3–O22	52.1(4)
U3–O21	2.468(11)	8.77	O22–U3–O23	70.4(4)
U3–O22	2.464(12)	9.19	O23–U3–O24	51.3(4)
U3–O23	2.452(13)	9.53	O24–U3–O19	66.5(4)
U3–O24	2.485(13)	9.02		
	Гексагонали	ьная бипирами	ида U4O ₈	-
U4–O25	1.661(7)	22.87	O25–U4–O26	178.9(6)
U4–O26	1.722(13)	22.39	O27–U4–O28	53.6(4)
U4–O27	2.447(12)	9.07	O28–U4–O29	67.7(4)
U4–O28	2.460(12)	9.18	O29–U4–O30	53.0(4)
U4–O29	2.454(13)	9.26	O30–U4–O31	67.8(4)
U4–O30	2.457(12)	9.26	O31–U4–O32	52.4(4)
U4–O31	2.512(11)	8.52	O32–U4–O27	65.5(4)
U4–O32	2.433(10)	9.30		

Таблица 22. Геометрические параметры координационных полиэдров атомов урана в структуре Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII)

Рис. 36. Двойной слой в структуре $Na_4(UO_2)_4(i-C_4H_9COO)_{11}(NO_3) \cdot 3H_2O$ (XII) в проекциях на плоскости (001) (а) и (100) (б). Показаны только атомы Na, U и O бидентатных лигандов.

	Pac	сстояния	I, Å	Угол		$O(\Pi \circ O)$	
О–Н…О	00	O–H	Н…О	О–Н…О, град.	<u>32(О</u> –п), %	%	
O36–H5…O22	3.24	0.85	2.50	145	32.0	14.3	
O36–H6…O23	3.02	0.85	2.33	138	31.9	14.3	
O34–H1…O15	3.14	0.85	2.40	146	29.7	10.9	
O34–H2…O14	3.00	0.85	2.33	135	31.2	18.0	
O35–H3…O29	2.71	0.85	1.96	145	33.5	17.0	
O35–H4…O28	3.00	0.85	2.45	123	33.7	12.1	

Таблица 23. Водородные связи в структуре Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII) *

* Учтены контакты с расстояниями H····O ≤ 2.50 Å, углом ∠O–H···O ≥ 120° и $\Omega(\text{H···O}) \ge 10\%$.

2.5. Нелинейные оптические свойства кротонат-, бутират- и валератсодержащих комплексов уранила

В ходе данной работы были получены вещества, кристаллы которых принадлежат к нецентросимметричным пространственным группам и с точки зрения симметрии могут проявлять нелинейные оптические свойства [116]. Так как ранее уже описывался круговой дихроизм кубических кристаллов пропионатсодержащих соединений уранила [95], представляло интерес изучить оптическую активность впервые полученных комплексов. Для исследования были отобраны 5 соединений с нецентросимметричными структурами (табл. 24): кротонатоуранилаты калия (I) и рубидия (II), бутиратоуранилат калия (VII) и валератоуранилаты калия (X) и рубидия (XI). Для сравнения способность к генерации второй гармоники была проверена также и для гексагидрата нитрата уранила. Хотя строение кристаллов UO₂(NO₃)₂·6H₂O давно изучено [117], какихлибо данных об их нелинейных оптических свойствах обнаружить в литературе не удалось.

N⁰	Соединение	Пр. гр.	$Q = I_{2\omega} / I_{2\omega} \mathrm{SiO}_2$
	$UO_2(NO_3)_2 \cdot 6H_2O$	$Cmc2_1$ [117]	0.4
Ι	$KUO_2(C_3H_5COO)_3$	<i>P</i> 2 ₁ 3	3.8
II	RbUO ₂ (C ₃ H ₅ COO) ₃	<i>P</i> 2 ₁ 3	4.2
VII	$KUO_2(C_3H_7COO)_3$	$P2_{1}2_{1}2_{1}$	2.0
Х	$KUO_2(C_4H_9COO)_3$	$C222_{1}$	2.2
XI	RbUO ₂ (C ₄ H ₉ COO) ₃	$C222_{1}$	0.9

Таблица 24. Нелинейная оптическая активность *Q* порошков некоторых комплексных соединений уранила

Из полученных данных видно (табл. 24), что нелинейная оптическая активность *Q* всех пяти изученных в ходе данного исследования соединений превышает (I, II, VII и X) таковую для кварца или сопоставима с ней (в случае XI). Способность к генерации второй гармоники у гексагидрата нитрата уранила

существенно меньше, чем у карбоксилатных комплексов. Следует также отметить, что значения Q для кротонатсодержащих комплексов приблизительно в два раза больше таковых для бутират- и валератсодержащих соединений. Повидимому, это связано с наличием в кротонат-ионе сопряжения между двойной связью C=C и карбоксильной группой, что обычно способствует усилению нелинейной оптической активности [116, 118].

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Комплексы уранила с анионами монокарбоновых кислот

С целью выявления влияния размера на особенности лиганда реализующейся структуры комплексов уранила с монокарбоновыми кислотами был проведен кристаллохимический анализ всех изученных соединений состава $UO_2L_2 \cdot nH_2O$, где $L - \phi$ ормиат- (XIIIa и XIIIb), ацетат- (XIV), кротонат- (XV), нбутират- (V), *изо*-бутират- (**XVI**) или *н*-валерат- (IX) ион (табл. 25). Отметим, что в формиате и ацетате атомы урана имеют КЧ 7 и координируют только одну молекулу воды, тогда как в соединениях, содержащих карбоксилат-ионы с более КЧ урана равно длинными углеводородными радикалами, 8 И В координационной сфере атомов урана содержится две молекулы воды. Как видно из табл. 25, размерность урансодержащих комплексных группировок $([UO_2L_2(H_2O)]$ для XIII или XIV и $[UO_2L_2(H_2O)_2]$ для остальных) уменьшается по мере увеличения размера карбоксилат-иона. Так, у XIIIa структура каркасная, у XIIIb и XIV – цепочечная, а у остальных – молекулярная. Указанное различие связано с изменением типа координации карбоксилат-иона от бидентатномостикового (B^2) в формиатах XIIIa и XIIIb, к смешанному (B^2 и B^{01}) в ацетате XIV и только бидентатно-циклическому (B^{01}) в остальных комплексах. Смена типа координации от мостикового к циклическому при переходе от формиатного комплекса уранила к ацетатному была ранее показана авторами [10]. Отметим, что оба формиатных комплекса (XIIIa и XIIIb) относятся к одной и той же кристаллохимической группе $AB^2 M^1$ комплексов уранила, но различаются координационными последовательностями C_P^N [119], которые показывают число атомов урана, связанных с базисным всеми мостиковыми лигандами соответственно в 1, 2, ..., N координационных сферах. Так, в каркасной структуре [UO₂(HCOO)₂(H₂O)] (XIII*a*) для первых трех координационных сфер атома урана $C_P = 4$, 12 и 24, тогда как в XIII*b* того же химического состава, но обладающего нанотрубчатой структурой, $C_P^{1-3} = 4, 8$ и 8. Указанное различие позволяет считать структуры XIII*a* и XIII*b* топологическими изомерами.

N⁰	Соединение	КХΦ	Размер- ность	КЧ _U	$V_{\rm UU},{ m \AA}^3$	$d_{ m UU}$, Å	d _{cp} , Å	$D_A, \mathrm{\AA}$	G_3	Nf	KTT **	Лите- ратура	
XIIIa	[UO ₂ (HCOO) ₂ (H ₂ O)]	$AB^2 M^1$	3D	7	165.9	5.82-7.18	6.42	0	0.079	14	$[4^4 \ 5^4 \ 6^6]$	[120]	
XIIIb	$[UO_2(HCOO)_2(H_2O)] \cdot H_2O$	$AB^2 M^1$	1 <i>D</i>	7	242.4	5.64-8.25	6.79	0.79	0.089	10	$[3^2 4^2 5^6]$	[6]	
XIV	[UO ₂ (CH ₃ COO) ₂ (H ₂ O)]·H ₂ O	$AB^{01}B^2M^1$	1 <i>D</i>	7	242.9	5.68-9.23	7.47	0.34	0.085	12	$[4^8 6^4]$	[121]	
XV	$[UO_2(C_3H_5COO)_2(H_2O)_2]$	$AB^{01}{}_2M^{1}{}_2$	0D	8	322.7	6.53–9.95	8.10	0	0.084	12	$[4^8 6^4]$	[9]	
V	$[UO_2(n-C_3H_7COO)_2(H_2O)_2]$	$AB^{01}{}_2M^{1}{}_2$	0.0	8	343.6	6.31–11.29	8.77	0	0.086	16	$[4^6 5^4 6^2 7^4]$	Данная	
v			AD 2WI 2	AD 2WI 2	$AD^{2}M^{2}$	0D	0	343.1	6.31–12.59	8.68	0.06	0.086	15
XVI	[UO ₂ (<i>i</i> -C ₃ H ₇ COO) ₂ (H ₂ O) ₂]	$AB^{01}{}_2M^{1}{}_2$	0D	8	343.3	6.63–9.92	8.42	0	0.083	14	$[4^6 6^8]$	[10]	
IX	$[UO_2(n-C_4H_9COO)_2(H_2O)_2]$	$AB^{01}_{2}M^{1}_{2}$	0D	8	386.4	6.66–10.76	8.97	0	0.086	14	$[4^6 6^8]$	Данная работа	

Таблица 25. Параметры ПВД атомов урана в U-подрешетках структур UO₂ $L_2 \cdot nH_2O$ *

* Для кристаллов V все характеристики ПВД указаны для каждого сорта атомов U отдельно.

** В обозначении комбинаторно-топологического типа (КТТ) цифры в строке показывают число вершин у грани, а надстрочные индексы показывают общее число таких граней.

Некоторые характеристики ПВД атомов в подрешетках, содержащих только атомы урана, были рассчитаны по методике [122] с помощью комплекса программ TOPOS [82]. Как и следовало ожидать, объем ПВД атома урана в U-подрешетке (V_{UU}) достаточно закономерно растет при увеличении объема карбоксилат-иона в кристаллах UO₂ $L_2 \cdot nH_2O$ (табл. 25). Отметим, что в структуре XIII*b* V_{UU} атома U значительно больше, чем в XIII*a*, в которой лигандами также являются формиат-ионы, и близок к V_{UU} атома U в ацетатсодержащей структуре XIV. По-видимому, это связано с наличием больших пустот между и внутри нанотрубок в структуре XIII*b*, что подтверждается очень большим (0.79 Å) смещением ядра атома U из центра тяжести его ПВД (D_A , табл. 25). В кротонате уранила (XV) V_{UU} на 20 Å³ меньше, чем для его бутиратного и изобутиратного аналогов, из-за наличия в кротонат-ионе двойной связи C=C, обусловливающей уменьшение объема лиганда. Средние расстояния между соседними атомами урана (d_{ep}) в карбоксилатах уранила изменяются симбатно с V_{UU} , включая указанную особенность для XV.

В то же время комбинаторно-топологические типы ПВД атомов в Uподрешетках характеризуются значительным разнообразием. В зависимости от природы карбоксилат-иона число граней (N_f) у ПВД атомов урана изменяется от 10 до 16. Максимальные значения N_f (16 и 15), а также наиболее сложные комбинаторно-топологические типы из-за наличия 5- и 7-угольных граней имеют ПВД атомов урана в изученном бутирате уранила (V). Одинаковые по форме ПВД реализуются в U-подрешетках структур ацетатного (XIV) и кротонатного (XV) (при $N_f = 12$), а также бутиратного (XVI) и валератного (IX) (при $N_f = 14$) комплексов. Интересно, что наиболее равномерно по отношению друг к другу атомы урана размещены в каркасном формиате XIII*a*, которому соответствует наименьшее значение (0.079) безразмерного второго момента инерции (G_3) ПВД урана, а наименее равномерно – в нанотрубчатом формиате XIII*b*, для которого G_3 увеличено до 0.089. Для U подрешеток остальных карбоксилатов значение G_3 для ПВД атомов урана лежит в промежуточном диапазоне 0.083–0.086 (табл. 25). Сравнительный анализ межмолекулярных взаимодействий с помощью метода молекулярных ПВД (ММПВД) [62] возможен только для структур V, IX и XV, т.к. для них определены координаты всех атомов (включая атомы H). В табл. 26 представлены характеристики всех невалентных контактов *A*/*Z* с рангом граней ПВД, равным 0, которые с позиции ММПВД отвечают межмолекулярным взаимодействиям.

Таблица 26. Характеристики межмолекулярных взаимодействий в структурах [UO₂(C₃H₅COO)₂(H₂O)₂] (XV), [UO₂(*n*-C₃H₇COO)₂(H₂O)₂] (V) и [UO₂(*n*-C₄H₉COO)₂(H₂O)₂] (IX) с позиций метода молекулярных ПВД *

Тип контакта А/Z	k	d_{\min} – d_{\max} , Å	$S_{A/Z}$, Å ²	$\Delta_{A/Z}$, %						
$[UO_2(C_3H_5COO)_2(H_2O)_2]$ (XV)										
O/O	3.9									
C/O	20	3.36-3.93	7.9	2.2						
H/O	100	1.99–4.71	179.4	49.6						
C/C	6	3.71-3.79	1.4	0.4						
H/C	60	2.73-3.89	42.3	11.7						
H/H	64	2.34-4.76	116.4	32.2						
Всего	262		361.5							
[$UO_2(n-C)$	$L_3H_7COO)_2(H_2O)$	2] (V)							
O/O	7	3.18-4.06	4.6	1.2						
H/O	95	1.82-5.01	164.0	44.2						
H/C	21	3.00-3.99	9.8	2.6						
H/H	127	2.30-4.33	192.6	51.9						
Всего	250		371.0							
[$UO_2(n-C)$	$_{4}H_{9}COO)_{2}(H_{2}O)$	2] (IX)							
H/O	104	1.93–4.32	184.7	42.3						
H/C	36	2.68-4.53	11.8	2.7						
H/H	168	1.91–4.77	239.9	55.0						
Всего	308		436.4							

* При анализе учтены все теоретически возможные типы межмолекулярных невалентных контактов A/Z с $P\Gamma = 0$, при этом: k – общее число таких контактов, d – диапазон межатомных расстояний $A \cdots Z$, $S_{A/Z}$ – общая площадь граней ПВД, отвечающих всем реализующимся контактам A/Z, а $\Delta_{A/Z}$ – парциальный вклад взаимодействий A/Z в общую сумму $S_{A/Z}$ (совпадает с ⁰S [62]), которая соответствует одной формульной единице вещества.

Полученные данные (табл. 26, рис. 37) показывают, что комплексы $[UO_2L_2(H_2O)_2]$ в кристаллах V, IX и XV связаны в основном дисперсионными взаимодействиями H/H и водородными связями H/O, суммарный парциальный вклад которых во всех случаях превышает 80%. Для дигидратов бутирата (V) и валерата (IX) уранила разница парциальных вкладов одноименных контактов *A/Z* составляет менее 3%, и поэтому отвечающие им кривые на рис. 37 практически совпадают.

Рис. 37. Парциальные вклады межмолекулярных контактов в структурах UO₂(C₃H₅COO)₂(H₂O)₂ (XV), UO₂(*n*-C₃H₇COO)₂(H₂O)₂ (V) и UO₂(*n*-C₄H₉COO)₂(H₂O)₂ (IX) (точечная, сплошная и пунктирная линии соответственно).

В то же время в структуре дигидрата кротоната уранила (XV) значительно меньшую роль играют дисперсионные взаимодействия H/H ($\Delta_{H/H}$ в XV примерно на 20% меньше, чем в V или IX), что вызвано наличием в XV кратной связи C=C и, как следствие, меньшим количеством атомов H, приходящихся на один атом U в составе соединения (14, 18 и 22 соответственно для кротонатного (XV), бутиратного (V) и валератного (IX) комплексов). За счет этого в структуре кротоната уранила (XV) на 3–9% увеличены парциальные вклады всех остальных типов взаимодействий, а также появляются межмолекулярные контакты C/O и C/C ($\Delta = 2.2$ и 0.4% соответственно), отсутствующие в бутиратном (V) и валератном (IX) комплексах. Дисперсионные взаимодействия

О/О наблюдаются только в кристаллах бутирата (V) и кротоната (XV) уранила ($\Delta = 1.2$ и 3.9% соответственно) и отсутствуют в валерате IX.

В целом полученные результаты показывают, что при увеличении объема ацидолиганда в соединениях $UO_2L_2 \cdot nH_2O$, где L – формиат-, ацетат-, кротонат-, *н*-бутират-, *изо*-бутират- или *н*-валерат-ион, размерность структурной группировки снижается от каркасной до молекулярной, преимущественными становятся бидентатно-циклический (B^{01}) тип координации карбоксилат-иона Lи КЧ атомов U, равное 8. При этом характер межмолекулярных взаимодействий, определяющих взаимную упаковку комплексов [$UO_2L_2(H_2O)_2$], при переходе от *н*-бутирата к *н*-валерату уранила практически не изменяется.

3.2. Натрийсодержащие соединения уранила с анионами монокарбоновых

кислот

Кроме изученных в данной работе Na[UO₂(*n*-C₃H₇COO)₃]·0.25H₂O (VI) и Na₄[UO₂(*i*-C₄H₉COO)₃]₃[UO₂(*i*-C₄H₉COO)₂(NO₃)]·3H₂O (XII) к комплексам типа Na[UO₂L₃]·*n*H₂O, имеющим кристаллохимическую формулу AB^{01}_{3} , относится Na[UO₂(CH₃COO)₃] (**XVII**) [123]. Роль лигандов L в указанных соединениях играют ацетат- (XVII), *н*-бутират- (VI), *изо*-валерат- и нитрат-ионы (XII). Отметим, что в [12] также имеются данные о структуре NaUO₂(HCOO)₃·H₂O {SURFOR}, содержащей формиат-ионы и обладающей схожим составом с тремя вышеперечисленными соединениями. Однако формиат-ионы в NaUO₂(HCOO)₃·H₂O реализуют типы координации B^2 , B^3 и B^{21} , а, следовательно, обладают отличным от VI, XII и XVII строением и не рассматриваются в данной работе при дальнейшем анализе соединений Na[UO₂L₃]·*n*H₂O.

Во всех трех соединениях VI, XII и XVII КЧ атома U равно 8, все лиганды L реализуют бидентатно-циклический тип координации B^{01} . В ацетатном (XVII), бутиратном (VI) и валератном (XII) комплексах содержится, соответственно, по 1, 4 и 4 кристаллографическому сорту атомов U (или Na). Принимая во внимание только атомы U, Na и связанные с U атомы O экваториальных лигандов L, в трех указанных соединениях можно выделить однотипный фрагмент состава NaUO₆, являющийся каркасом структуры данных кристаллов. Следовательно, все особенности строения указанных фрагментов связаны с различными размерами карбоксилатных лигандов, объемы которых увеличиваются при переходе от ацетат- к *н*-бутират- и *изо*-валерат-ионам (см. раздел 1.3).

Основное различие структуры фрагментов NaUO₆ заключается в разной кристаллохимической роли атомов Na. Tak, в ацетате (XVII) атомы Na связаны со всеми шестью атомами O фрагмента NaUO₆ (рис. 38a) и образуют КП в виде октаэдра. Такое же связывание характерно для атомов Na1, Na2 и Na4 в бутирате (VI) и атома Na1 в валерате (XII). Все атомы Na с KЧ = 6 связаны с ближайшими атомами U двумя мостиками Na–O–U и среднее расстояние Na…U для них равно

3.9(1) Å (табл. 27). В то же время все остальные атомы натрия (Na3 в VI и Na2, Na3 и Na4 в XII) связаны только с четырьмя атомами О фрагмента NaUO₆ (рис. 38б). Такие атомы Na увеличивают свое KЧ до 5 за счет координации атомов кислорода молекул воды. Указанные молекулы воды, не входящие в состав фрагментов NaUO₆, располагаются в области между атомом Na и ближайшим атомом U, образуя при этом водородные связи Na–O–H…O–U (рис. 386), из-за чего одно из трех расстояний Na…U резко увеличивается (в среднем до 6.5 Å) по сравнению с двумя другими (табл. 27), длина которых определяется мостиками Na–O–U.

Рис. 38. Схематическое изображение окружения атомов Na и U во фрагментах NaUO₆ структур кристаллов Na[UO₂L₃]·*n*H₂O при КЧ атома Na, равном 6 (а) и 5 (б). Дугами связаны атомы кислорода, входящие в состав одного бидентатного лиганда L.

Из сравнения рис. 38а и 38б видно, что уменьшение КЧ атома Na и появление дополнительной молекулы воды приводит к разрыву мостиковых связей Na–O–U с одним из атомов U. В результате в структурах Na[UO₂L₃]·*n*H₂O при замене ацетат-иона на *н*-бутират- или *изо*-валерат-ионы происходит частичная деполимеризация фрагмента NaUO₆. Усиление деполимеризации при увеличении объема карбоксилатного лиганда отчетливо заметно при рассмотрении координационных последовательностей C_P^N [119] для атомов металла *R*, где *R* = Na или U, C_P – количество атомов *R*, которые связаны с базисным цепями *R*–(O–*R*–)_N, а *N* – номер координационной сферы (**КС**) (табл.

28). В частности, C_P^1 для атома Na во фрагменте структуры на рис. 38a равно 3, а на рис. 38б равно 2.

Соединение	Pacc	Расстояния Na…U, Å *				
Соединение	U1	U2	U3	U4		
$N_{2}IIO_{2}(CH_{2}COO)_{2}(XVII)$	Na1 (KU 6)	3.93	_			
	Nai (K 10)	(x3)				
	Na1 (КЧ 6)	3.98	4.02	3.95	_	
	Na2 (КЧ 6)	_	3.93	3.99	3.89	
$NaUU_2(h-C_3H_7CUU)_3 \cdot 0.23H_2U(VI)$	Na3 (КЧ 5)	3.82	_	3.90	6.58	
	Na4 (КЧ 6)	3.96	4.03	_	3.99	
	Na1 (КЧ 6)	3.99	3.98	4.02	_	
Na ₄ (UO ₂) ₄ (<i>i</i> -C ₄ H ₉ COO) ₁₁ (NO ₃)·3H ₂ O (XII)	Na2 (КЧ 5)	3.92	_	6.54	3.93	
	Na3 (КЧ 5)	—	6.41	3.92	3.92	
	Na4 (KY 5)	3.86	3.92	—	6.56	

Таблица 27. Характеристики трех кратчайших контактов Na…U в структурах Na[UO₂ L_3]·nH₂O

* Цифры, выделенные жирным шрифтом, соответствуют случаям, когда между атомами Na и U находится молекула воды.

Таблица 28. Координационные последовательности C_P^N атомов U в структурах NaUO₂(CH₃COO)₃ (XVII), NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (VI) и Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII) *

N⁰	Соединение	$C_P{}^N, N = 1 - 7$	Лите- ратура
XVII	Na[UO ₂ (CH ₃ COO) ₃]	3, 6, 12, 24, 35, 48, 69	[123]
VI	Na[UO ₂ (n -C ₃ H ₇ COO) ₃]·0.25H ₂ O	3, 5, 9, 15, 23, 35, 50 3, 6, 9, 12, 22, 37, 50 3, 5, 8, 14, 23, 34, 48 2, 4, 7, 11, 19, 28, 42	Данная работа
XII	$Na_{4}[UO_{2}(i-C_{4}H_{9}COO)_{3}]_{3}$ $[UO_{2}(i-C_{4}H_{9}COO)_{2}(NO_{3})]\cdot 3H_{2}O$	3, 4, 4, 5, 7, 9, 11 2, 3, 5, 6, 6, 7, 10 2, 3, 4, 4, 6, 9, 10 2, 2, 3, 5, 6, 7, 10	Данная работа

* Координационные последовательности указаны для каждого сорта атомов U отдельно. При расчете координационных последовательностей учитывались также атомы Na каркасов NaUO₆ (см. текст).

Из рис. 39 видно, что наибольшие C_P^N характерны для ацетатного соединения (XVII), обладающего самой высокой среди VI, XII и XVII кубической симметрией и содержащего в структуре кристаллов атомы Na только с KЧ = 6. Появление одного атома Na с KЧ = 5 в моноклинном бутирате (VI) приводит к частичной деполимеризации фрагмента NaUO₆ и, как следствие, значительному понижению C_P^N . Еще сильнее значения C_P^N понижаются в структуре валерата (XII), т.к. в ней уже 3 из 4 сортов атомов Na реализуют KЧ = 5 и деполимеризация усиливается. Вследствие этого в валерате (XII) фрагмент NaUO₆ является уже двумерным (рис. 36), тогда как в ацетатном (XVII) и бутиратном (VI) комплексах он трехмерный.

Рис. 39. Координационные последовательности *C_P^N* атомов U в структурах NaUO₂(CH₃COO)₃ (XVII) (a), NaUO₂(*n*-C₃H₇COO)₃·0.25H₂O (VI) (б) и Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O (XII) (в). Для (б) и (в) приведены средние значения для четырех сортов атомов U.

Таким образом, в кристаллах Na[UO₂ L_3]·nH₂O при увеличении объема карбоксилатных лигандов увеличивается число кристаллографических сортов атомов металлов (U и Na) и значительно понижаются KЧ их дальних координационных сфер в связи с деполимеризацией фрагментов NaUO₆ в структурах соединений. Одновременно атомы Na в бутиратном и валератном комплексах вынуждены понижать KЧ до 5 и образовывать связи с атомами O

небольших по объему молекул воды, поскольку координировать 6 атомов О шести карбоксильных групп (как в кубическом ацетатном комплексе) становится невозможно из-за стерических затруднений. Возможно, по этой же причине один из четырех атомов U в валератном соединении координирован нитрат-ионом вместо *изо*-валерат-иона.

3.3. Калийсодержащие соединения уранила с анионами монокарбоновых кислот

К $K[UO_2L_3],$ комплексным соединениям типа где L анион монокарбоновой кислоты, кроме I, VII и X, изученных в настоящей работе, относятся К[UO₂(CH₃COO)₃] (**XVIII**) [124] и К[UO₂(C₂H₅COO)₃] (**XIX**) [125], сведения о структуре которых присутствуют в КБСД [12]. Таким образом, в роли лигандов в указанных пяти соединениях выступают ацетат- (XVIII), пропионат-(XIX), *н*-бутират- (VII) и *н*-валерат- (X) ионы, являющиеся последовательными членами одного гомологического ряда, а также кротонат-ионы (I), имеющие двойную связь С=С и по количеству атомов в формульной единице занимающие промежуточное положение между пропионат- и бутират-ионами (табл. 29). Лиганды во всех перечисленных соединениях имеют бидентатно-циклический тип координации, а сами структуры принадлежат к кристаллохимической группе АВ⁰¹3 комплексов уранила. В бутирате (VII) и валерате (X) содержится, соответственно, по 4 и 3 сорта атомов U (и K), а в остальных соединениях – по одному. Атомы К4 в бутиратном комплексе (VII) имеют тригональнопризматическую координацию, все остальные атомы калия в рассматриваемых пяти соединениях имеют КЧ = 6 и КП в виде искаженного октаэдра. Если из состава обсуждаемых $K[UO_2L_3]$ одновременно исключить все концевые атомы, принимают участия в образовании которые не трехмерного катионкислородного каркаса, то получим пять фрагментов одинакового состава KUO₆, в которых по сравнению с исходными соединениями отсутствуют атомы О ионов уранила и углеводородные радикалы карбоксилат-ионов. В таких каркасах KUO₆ каждый атом урана (калия) связан с тремя атомами калия (урана) через двойные мостиковые связи –О– (рис. 40а). Пустоты рассматриваемых каркасов заполнены углеводородными цепочками различной длины (рис. 41). Следовательно, все каркасов обусловлены только различия строения указанных влиянием углеводородных радикалов, входящих в состав карбоксилат-ионов.

N⁰	Соединение	Пр. гр.	Ζ	V _{UU} , Å ³	$d_{ m UU},{ m \AA}$	d _{cp} , Å	$D_A,$ Å	G_3	Nf	KTT **	$C_P{}^N, N = 1 - 7 * * *$	Литера- тура		
XVIII	K[UO ₂ (CH ₃ COO) ₃]	$I4_1/a$	16	314.5	6.53–10.20	8.1	0.12	0.081	14	$[4^6 6^8]$	3, 6, 12, 21, 34, 52, 71	[124]		
XIX	K[UO ₂ (C ₂ H ₅ COO) ₃]	<i>P</i> 2 ₁ 3	4	373.6	7.38–9.07	8.2	0.30	0.081	12	[4 ¹²]	3, 6, 12, 24, 35, 48, 69	[125]		
Ι	K[UO ₂ (C ₃ H ₅ COO) ₃]	<i>P</i> 2 ₁ 3	4	448.7	7.49–12.02	10.1	0.26	0.085	18	$[4^{12} 8^6]$	3, 6, 12, 24, 35, 48, 69	Данная работа		
				466.1	7.17–12.84		0.23	0.086	12	$[4^6 5^2 6^2 7^2]$	3, 6, 12, 20, 30, 44, 63			
X / T T			10	472.4	6.41–14.72	0.0	0.86	0.091	17	$[4^7 \ 5^4 \ 6^1 \ 7^4 \ 8^1]$	3, 6, 10, 17, 30, 45, 60	Данная		
VII	K[UU2(C3H7CUU)3]	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	P_{212121} 1	16	454.6	6.41–13.72	9.9	0.93	0.092	14	$[4^6 5^4 6^1 7^2 8^1]$	3, 6, 10, 17, 30, 45, 60	работа
					460.3	6.94–14.72		0.35	0.092	17	$[4^7 \ 5^4 \ 6^2 \ 7^2 \ 8^2]$	3, 6, 10, 16, 29, 44, 59		
				541.3	7.58–11.50		0.11	0.086	12	$[3^4 5^2 6^4 7^2]$	3, 6, 12, 20, 30, 44, 63			
Х	$K[UO_2(C_4H_9COO)_3]$	C2221	16	526.0	7.08–14.86	10.4	0.25	0.093	14	$[3^4 \ 4^2 \ 5^2 \ 6^2 \ 7^2 \ 8^2]$	3, 6, 10, 16, 29, 44, 59	Данная работа		
				521.9	6.24–14.86		1.11	0.096	19	$[3^3 4^3 5^4 6^5 7^2 8^1 9^1]$	3, 6, 10, 17, 30, 45, 60	Paccia		

Таблица 29. Параметры ПВД атомов металла в U-подрешетках кристаллов K[UO₂L₃] *

* Для VII и X все характеристики ПВД (кроме *d*_{ср}) указаны для каждого сорта атомов U отдельно.

** В обозначении комбинаторно-топологического типа (КТТ) цифры в строке показывают число вершин у грани, а надстрочные индексы показывают общее число таких граней.

*** При расчете координационных последовательностей учитывались также атомы К каркасов KUO₆ (см. текст).

Рис. 40. (а) Строение первой координационной сферы центрального атома *R*⁰ в каркасе KUO₆. (б) Три цепочки *R*–(O–*R*–)_N распространяются от центрального атома *R*⁰. Две из них соединяются в третьей координационной сфере за счет общего атома *R*³, образуя 6-членный цикл. Надстрочные индексы обозначают номер координационной сферы.

Рис. 41. Каркас КUO₆ в структуре соединения КUO₂(C₄H₉COO)₃ (X) в виде координационных полиэдров. Пустоты каркаса заполнены углеводородными радикалами карбоксилат-ионов.

Для сравнения пяти каркасов KUO₆ рассмотрим соответствующие им координационные последовательности C_P^N [119] для атомов металла R, где R = K или U, C_P – количество атомов R, связанных с базисным цепями R–(O–R–) $_N$, N – номер координационной сферы. Условимся, что центральными являются атомы U, тогда все нечетные координационные сферы будут состоять только из

атомов K, а четные – из атомов U. Поскольку каждый атом *R* каркаса связан через кислородные мостики с тремя другими атомами металла (рис. 40а), то в каждой следующей координационной сфере количество атомов *R* должно увеличиваться в два раза и координационные последовательности для соединений, указанных в табл. 29, теоретически должны образовывать ряд 3, 6, 12, 24, 48, 96, 192 и т.д. Однако такому «лавинообразному» увеличению C_P с ростом *N* препятствуют стерические затруднения, в результате которых в какой-то момент появляются атомы *R*, общие для двух соседних цепей, что приводит к «сшиванию» этих цепей и образованию циклов (рис. 40б). Как видно из рис. 42, в структуре XVIII, содержащей ацетат-ионы, уменьшение значений C_P^N в сравнении с теоретически возможными начинается только с четвертой КС, в результате чего образуются 8-членные (если учитывать атомы кислорода, то 16-членные) циклы.

Рис. 42. Координационные последовательности атомов U в структурах KUO₂(CH₃COO)₃ (XVIII) (a), KUO₂(C₂H₅COO)₃ (XIX) и KUO₂(C₃H₅COO)₃ (I) (б) и атомов U(1) (в) в структурах KUO₂(C₃H₇COO)₃ (VII) и KUO₂(C₄H₉COO)₃ (X), а также U(2) (г), U(3) (г) и U(4) (д) в структуре KUO₂(C₃H₇COO)₃ (VII) и U(2) (д) и U(3) (г) в структуре KUO₂(C₄H₉COO)₃ (X). Жирная сплошная линия соответствует максимальным теоретически возможным значениям *С*_{*P*}.

В кубических структурах XIX и I, содержащих пропионат- и кротонатионы, «сшивание» цепей начинается только в пятой КС, и поэтому образуются не менее чем 10-членные металлоциклы.

Для атомов U1 в VII и X «сшивание» цепей начинается с четвертой координационной сферы, как и в случае ацетата (XVIII). В то же время для атомов U2, U3 и U4 в VII и X «сшивание» цепей начинается уже с третьей координационной сферы, и поэтому в этих структурах кроме восьмичленных присутствуют и 6-членные циклы. Из сравнения координационных последовательностей видно, что каркасы пяти рассматриваемых структур одинаковы только в первых двух, но различны в дальних координационных сферах.

Такое различие в дальних координационных сферах позволяет каркасам KUO₆ размещать разные по объему углеводородные группы. Поскольку пустоты в рассматриваемых каркасах являются трехмерными, то можно оценить объем пустот, приходящийся на фрагмент каркаса KUO₆ в элементарной ячейке. Согласно нашим расчетам, суммарный объем полиэдров Вороного–Дирихле атомов, входящих в состав фрагмента KUO₆, а также двух атомов кислорода иона уранила для рассматриваемого ряда K-содержащих соединений примерно одинаков и составляет около 150 Å³. Следовательно, весь остальной объем элементарной ячейки приходится на углеводородные цепочки, который для ацетатного (XVIII), пропионатного (XIX), кротонатного (I), бутиратного (VII) и валератного (X) комплексов составляет ≈ 160 , 230, 300, 310 и 370 Å³ соответственно. Из сопоставления этих величин видно, что каркасы бутиратной (VII) и валератной (X) структур предоставляют больше места для более объемных лигандов за счет формирования меньших 6-ти членных циклов в более ранних координационных сферах.

Следует отметить, что структуры с максимальным размером первого возникающего цикла (пропионат (XIX) и кротонат (I)) обладают наивысшей возможной симметрией – кубической. Вероятно, каркас KUO₆ даже в отсутствие углеводородных цепочек испытывает стерические затруднения и не может быть

103

построен с большим размером цикла. При этом в случае соединений XIX и I углеводородные группы ($-C_3H_5$ и $-C_4H_5$ соответственно) по размеру точно помещаются в пустоты такого высокосимметричного каркаса. Меньшие углеводородные цепочки в ацетате (XVIII) ($-C_2H_3$) приводят к более раннему сближению соседних цепей для образования невалентных взаимодействий между ними, что приводит к понижению симметрии до тетрагональной. Большие же углеводородные цепочки в бутирате (VII) и валерате (X) ($-C_4H_7$ и $-C_5H_9$ соответственно) не помещаются в пустоты такого каркаса, поэтому структура искажается для их размещения. Такое искажение структуры приводит к уменьшению кратчайших межатомных расстояний U…U (табл. 29), увеличению числа независимых сортов атомов U и K и сопровождается изменением типа координации некоторых атомов K. В целом все это приводит к снижению симметрии кристаллов соединений VII и X до ромбической. Рассмотренные каркасы KUO₆ в структурах K[UO₂L₃] могут служить новым примером трехмерной топологической изомерии в координационных соединениях U(VI).

Отметим также, что в отличие от Na-содержащих соединений, в калиевых комплексах при увеличении размеров карбоксилат-ионов не происходит деполимеризация каркасов и координирование атомами К молекул воды. Вместо этого размещение более объемных лигандов в каркасах KUO₆ происходит за счет циклов и изменения размеров катион-кислородных изменения типов координации атомов щелочного металла. В этом контексте интерес представляет соединение KUO₂(CH₃COO)₃·0.5H₂O [126], которое авторы назвали «старым» Как безводный ацетатоуранилатом калия. И аналог XVIII. гидрат кристаллизуется в той же пространственной группе симметрии *I*4₁/а с объемом ячейки 5500 Å³ (в сравнении с 5032 Å³ для XVIII). В структуре $KUO_2(CH_3COO)_3 \cdot 0.5H_2O$ тоже присутствуют комплексы $[UO_2(CH_3COO)_3]^-$ и ионы K^+ с $K\Psi = 6$. Отличие от XVIII заключается в появлении в составе соединения молекул воды, которые координируются атомами щелочного металла. Однако, это приводит к разрыву только одной из двух мостиковых связей К–О–U с одним из ближайших атомов U (рис. 38б), а не двух, как в случае

Na-содержащих комплексов уранила с бутират- и *изо*-валерат-ионами. Поэтому деполимеризации каркаса в $KUO_2(CH_3COO)_3 \cdot 0.5H_2O$ не происходит и координационные последовательности для полугидрата аналогичны таковым для безводного комплекса. Данные [126] доказывают, что при «старении» безводного $KUO_2(CH_3COO)_3$ в его структуру проникают молекулы воды. Т.к. ацетат-ионы меньше по объему пропионат- и кротонат-ионов, которые оптимально по размеру входят в пустоты каркаса KUO_6 , образуя кубические структуры, можно предположить, что в тетрагональном ацетатоуранилате калия не весь объем пустот таких каркасов занят углеводородными лигандами и остается свободное пространство, которое со временем при старении и заполняется молекулами воды.

Удлинение углеводородного радикала в составе карбоксилатов $K[UO_2L_3]$ сказывается на характере невалентных взаимодействий в структуре кристаллов. Дополнительный анализ соединений, указанных в табл. 29, с помощью метода молекулярных ПВД [62] показал, что при переходе от ацетатного комплекса к валератному значительно усиливается парциальный вклад дисперсионных взаимодействий H/H (рис. 43). Так, в ацетатном комплексе (XVIII) контактам Н/Н отвечает лишь 28.5% общей площади всех граней ПВД, соответствующих невалентным взаимодействиям, а при увеличении длины углеводородной цепочки (т.е. в пропионате (XIX), кротонате (I), бутирате (VII) и валерате (X)) – уже 42.6, 39.6, 57.6 и 60.5% соответственно. Указанный рост происходит в основном за счет уменьшения роли водородных связей Н/О и дисперсионных взаимодействий О/О, парциальные вклады которых снижаются соответственно от 41.3 и 15.8% в ацетате (XVIII) до 35.2 и 9.8% в пропионате (XIX), 28.9 и 9.5% в кротонате (I), 22.0 и 9.1% в бутирате (VII) и 19.6 и 7.7% в валерате (X). Парциальный вклад невалентных взаимодействий Н/С для четырех соединений, являющихся гомологами (VII, X, XVIII и XIX), практически не меняется и составляет в среднем 8.7%, а в кротонатном комплексе (I) заметно увеличивается до 16.0%. Для всех остальных типов невалентных контактов (С/С, С/О и др.) парциальный вклад не превышает 4%.

Рис. 43. Парциальные вклады некоторых типов невалентных контактов в структурах KUO₂(CH₃COO)₃ (XVIII) (a), KUO₂(C₃H₅COO)₃ (I) (б), KUO₂(C₂H₅COO)₃ (XIX) (в), KUO₂(C₃H₇COO)₃ (VII) (г) и KUO₂(C₄H₉COO)₃ (X) (д).

С целью выявления влияния природы лиганда *L* на особенности строения пяти рассматриваемых соединений K[UO₂L₃] с помощью комплекса программ ТОРОЅ по методике [122] были рассчитаны также некоторые параметры ПВД атомов в подрешетках структуры кристаллов, содержащих только атомы урана (U-подрешетки). Из табл. 29 видно, что переход от ацетатного комплекса к валератному приводит к росту объема ПВД атомов урана (V_{UU}) и среднего расстояния U–U во всех ПВД U-подрешетки (d_{cp}). Следовало ожидать, что минимальное межатомное расстояние между атомами урана (d_{UU}) также должно увеличиваться при удлинении углеводородной цепочки. Однако, d_{UU} сначала повышается от 6.53 Å в ацетатном комплексе (XVIII) до 7.38 и 7.49 Å в пропионатном (XIX) и кротонатном (I) комплексах соответственно, а потом снижается до 6.41 Å в бутиратном (VII) и даже до 6.24 Å в валератном (X) комплексе. Наличие вышеуказанного короткого контакта U3…U3 в структуре валератоуранилата калия (X) приводит к локальным искажениям U-подрешетки, которое проявляется в рекордно высоких на общем фоне значений как вектора D_A (характеризует смещение ядра атома из центра тяжести его ПВД), так G_3 и

общего числа граней (N_f) ПВД именно для атомов U3 (табл. 29). При переходе от ацетатного комплекса к валератному в U-подрешетках в среднем увеличивается как D_A , так и G_3 . Следует отметить, что в структурах бутиратного (VII) и валератного (X) комплексов минимальные значения D_A и G_3 соответствуют атомам U1. Этому же сорту атомов соответствует и наименьшее число (12) соседних атомов U, окружающих центральный в U-подрешетке, тогда как для остальных атомов U $N_f = 12-19$. Об отличающейся структурной роли атомов U1 говорят и координационные последовательности C_P^N , которые для U2, U3 и U4 в VII и X имеют приблизительно одинаковый вид, но заметно отличаются для U1 (рис. 42). Так, в 3, 4 и 7 координационных сферах атомов U1 содержится в среднем соответственно на 2, 3.4 и 3.4 атомов *R* больше, чем в случае атомов урана других сортов (табл. 29, предпоследняя колонка).

Таким образом, при формально однотипном строении первых координационных сфер атомов К и U в структурах рассмотренных $K[UO_2L_3]$ переход от ацетат-, пропионат- и кротонатсодержащих комплексов к бутират- и валератсодержащим аналогам сопровождается понижением симметрии кристаллов, увеличением числа кристаллографически разных сортов атомов (К, U и др.), искажением подрешетки из атомов урана и реализацией упаковки из ионов K^+ и $[UO_2L_3]^-$ с более низкими КЧ для дальних координационных сфер изза образования не только десяти- и восьми-, но и шестичленных металлоциклов. Указанные и некоторые другие особенности бутиратного и валератного комплексов являются следствием образования в каркасе из атомов К, U и O пустот, увеличенных по сравнению с остальными соединениями и пригодных для размещения более крупных углеводородных радикалов.

3.3.1. Растворимость в воде и фотохимические превращения

Для установления взаимосвязи между составом, строением и свойствами в ряду координационных соединений уранила и калия с ацетат-, пропионат-, кротонат-, бутират- и валерат-ионами была изучена их растворимость в воде. Определение растворимости проводили по следующей методике. Сначала получали насыщенные растворы комплексов при 25° С путем перемешивания веществ в дистиллированной воде. Равновесие устанавливалось в течение 50 часов. Далее навески полученных насыщенных растворов высушивали, а затем прокаливали до 850° С в корундовых тиглях. Искомые значения растворимости (рис. 44) рассчитывали по изменению массы в результате прокаливания, с учетом того, что конечным продуктом прокаливания во всех случаях являлся оранжевый $K_2U_2O_7$.

Рис. 44. Растворимость комплексных соединений KUO_2L_3 в воде в зависимости от объема аниона $L(V_L)$.

Как видно из рис. 44, растворимость соединений-гомологов закономерно уменьшается при переходе от ацетатного комплекса к валератному, что, повидимому, связано с увеличением объема гидрофобного углеводородного лиганда. Самое низкое значение растворимости среди изученных соединений отвечает кротонатному комплексу, наличие двойных связей C=C в котором
снижает растворимость в воде. Согласно полученным данным, соединения $KUO_2(C_3H_5COO)_3$ (I) и $KUO_2(C_4H_9COO)_3$ (X) следует отнести к малорастворимым в воде, тогда как остальные комплексы достаточно хорошо растворимы.

Следует отметить, что перемешивание для насыщения растворов проводили в темноте, так как было обнаружено, что на свету водные растворы рассматриваемых комплексов подвергаются фотохимическим превращениям. Визуально это сопровождается изменением цвета нерастворенного осадка с характерного для соединений уранила желтого на фиолетовый. Согласно литературным данным [84], в результате таких превращений происходит разложение комплексных соединений с образованием оксидов урана, CO₂ и газообразных продуктов гомологического ряда метана. Для подтверждения этого факта для двух соединений ($KUO_2(C_3H_7COO)_3$ (VII) и $KUO_2(C_4H_9COO)_3$ (X)) после протекания фотохимических превращений в герметичной емкости была изучена газовая среда при помощи газового хроматографа «Цвет 500». Проба объемом 5 мл вводилась в колонку «Полисорб-1» (длина 0.75 м, диаметр 0.3 мм), заполненную полимерным зернистым сорбентом, и попадала на пламенноионизационный который детектор, В заданных условиях позволяет регистрировать только углеводороды (углекислый газ не определяется). Оптимальной для разделения всех компонентов оказалась температура 70°C, при которой время выхода метана, этана, пропана, бутана и пентана составило соответственно около 0.15, 0.32, 0.87, 2.7 и 10.6 мин. Результаты исследования показали (рис. 45, 46), что в случае соединения KUO₂(C₃H₇COO)₃ (VII) фотохимическое разложение происходит в основном с образованием пропана (77%, содержание рассчитано по площадям соответствующих пиков). Также на хроматограмме для VII присутствуют пики, отвечающие метану (< 1%), этану (16%), бутану (2%) и пентану (5%). В случае соединения KUO₂(C₄H₉COO)₃ (X) в газовой фазе основным компонентом является бутан (89%), одновременно с которым содержатся метан (<1%), этан (2%) и пропан (9%).

Рис. 45. Хроматограмма газовой фазы после протекания фотохимических превращений в водном растворе KUO₂(C₃H₇COO)₃ (VII) на свету в герметичном сосуде. Пики 1–5 отвечают, соответственно, метану, этану, пропану, бутану и пентану.

Рис. 46. Хроматограмма газовой фазы после протекания фотохимических превращений в водном растворе $KUO_2(C_4H_9COO)_3$ (X) на свету в герметичном сосуде. Пики 1–4 отвечают, соответственно, метану, этану, пропану и бутану.

Полученные данные показывают, что в водном растворе в результате фотохимического разложения комплексов типа K[UO₂ L_3], где L – анион предельной монокарбоновой кислоты $C_nH_{2n+1}COO^-$, преимущественно выделяется углеводород C_nH_{2n+2} гомологического ряда метана.

Изучить фиолетовый осадок не удалось, так как при воздействии воздуха он быстро окисляется до оксида урана(VI) UO₃·2H₂O, что подтверждается ИКспектроскопическим исследованием. Однако известно, что в отсутствии окислителей, в частности, O₂, степени окисления урана +4 и +5 становятся достаточно устойчивыми. Согласно литературным данным [84] состав фиолетового осадка отвечает смешанновалентному оксиду урана U₃O₈·2H₂O, который в течение месяца в анаэробных условиях не претерпевает никаких изменений. Другими исследователями было обнаружено образование в водных растворах с низким pH черного золя из смешанного гидроксида U(IV)·U(VI) [127]. Такой коллоидный раствор также стабилен более месяца и, вероятно, может образовываться при перемешивании комплексных соединений уранила с анионами монокарбоновых кислот на свету.

3.4. Влияние природы карбоксилатного лиганда на некоторые характеристики соединений уранила состава *A*[UO₂*L*₃]·*n*H₂O

В результате данной работы количество структурно изученных соединений уранила с анионами алифатических монокарбоновых кислот, содержащих более трех атомов углерода, увеличилось от 2 до 14. Из них десять соединений имеют общую формулу $A[UO_2L_3] \cdot nH_2O$, где A – катионы Na⁺, K⁺, Rb⁺, Mg²⁺ или NH₄⁺, а L – кротонат-, бутират- или валерат-анионы (в табл. 30 для них приведены соответствующие номера соединений). Также в этой таблице учтены имеющиеся в КБСД [12] семь Na, K, Rb или Cs-содержащих соединений уранила состава $A[UO_2L_3] \cdot nH_2O$ с ацетат- или пропионат-ионами.

Как известно [128], благодаря небольшой полярности связей С-Н алкильные группы обладают положительным индуктивным эффектом +*I*, причем этот эффект увеличивается при переходе от группы –СН₃ (в ацетат-ионе) к –C₄H₉ (в валерат-ионе). Следовательно, в этом направлении должна увеличиваться электронная плотность на карбоксильной группе, что в свою укорочению длин связей $U-O_L$ очередь должно приводить К В трикарбоксилатных комплексах уранила. Для проверки предполагаемой закономерности были установлены средние значения $R_{CII}(U)$, длин связей U=O, U-О_L, С-О и углов ∠ОСО в структурах 17 комплексов уранила (табл. 30). Полученные данные показали, что указанные параметры в пределах погрешностей совпадают и не зависят от природы карбоксилат-иона. Так, средние значения R_{CII} лежат в диапазоне от 1.305 до 1.307 Å, средняя длина связей d(U=O) составляет 1.75–1.76 Å, d(U–O_L) 2.46–2.47 Å, d(C–O) 1.26–1.27 Å, а среднее значение угла ∠ОСО равно 118–120°. Небольшое уменьшение средних значений R_{CI} , d(U=O) и $d(U-O_L)$, которое наблюдается только при переходе к валератным комплексам, на наш взгляд, нельзя считать значимым, т.к. этим соединениям отвечают самые высокие значения *R*-факторов (в области 0.06-0.09) и, как следствие, повышенные стандартные отклонения.

Соотнолио		D	Лите-	Iите- Средние значения по соедин			инениям с одинаковыми лигандами		
Соединение	11p. 1p.	Λ 1	ратура	<i>R</i> _{СД} (U), Å	<i>d</i> (U=O), Å	$d(U-O_L), \text{\AA}$	<i>d</i> (C–O), Å	∠OCO, °	
NaUO ₂ (CH ₃ COO) ₃	<i>P</i> 2 ₁ 3	0.029	[123]						
KUO ₂ (CH ₃ COO) ₃	$I4_{1}/a$	0.067	[124]	1.207(2)	1 76(1)	2 47(2)	1 26(1)	110(1)	
RbUO ₂ (CH ₃ COO) ₃	$I4_{1}/a$	0.030	[129]	1.307(3)	1.70(1)	2.47(2)	1.20(1)	119(1)	
CsUO ₂ (CH ₃ COO) ₃	Pbca	0.042	[124]						
$KUO_2(C_2H_5COO)_3$	<i>P</i> 2 ₁ 3	0.020	[125]						
RbUO ₂ (C ₂ H ₅ COO) ₃	<i>P</i> 2 ₁ 3	0.055	[96]	1.306(3)	1.75(2)	2.47(2)	1.27(6)	118(2)	
$CsUO_2(C_2H_5COO)_3$	<i>P</i> 2 ₁ 3	0.075	[96]						
α -NH ₄ UO ₂ (C ₃ H ₅ COO) ₃	<i>P</i> 2 ₁ 3	0.033	III		1 7((2)	2.46(1)	1.27(2)	118(2)	
β -NH ₄ UO ₂ (C ₃ H ₅ COO) ₃	$P\overline{1}$	0.051	IV	1.205(4)					
$KUO_2(C_3H_5COO)_3$	<i>P</i> 2 ₁ 3	0.036	Ι	1.303(4)	1.70(2)				
RbUO ₂ (C ₃ H ₅ COO) ₃	<i>P</i> 2 ₁ 3	0.028	II						
$NaUO_2(C_3H_7COO)_3 \cdot 0.25H_2O$	<i>P</i> 2 ₁	0.049	VI						
$KUO_2(C_3H_7COO)_3$	$P2_12_12_1$	0.088	VII	1.305(6)	1.75(2)	2.47(2)	1.26(3)	119(2)	
$Mg(H_2O)_6(UO_2(C_3H_7COO)_3)_2$	$Pa\overline{3}$	0.025	VIII						
$Na_4(UO_2)_4(i-C_4H_9COO)_{11}NO_3\cdot 3H_2O$	<i>P</i> 2 ₁	0.062	XII						
KUO ₂ (C ₄ H ₉ COO) ₃	C222 ₁	0.085	X	1.289(12)	1.71(4)	2.45(3)	1.26(5)	119(4)	
RbUO ₂ (C ₄ H ₉ COO) ₃	<i>C</i> 222 ₁	0.076	XI						

Таблица 30. Геометрические параметры структур некоторых соединений состава $A[UO_2L_3] \cdot nH_2O$

Интересно, что 8 из 17 соединений, приведенных в табл. 30, имеют кубическую симметрию, которая нехарактерна для U-содержащих органических соединений. Так, из почти 3400 соединений урана, содержащихся в КБСД [12], к кубической сингонии относятся менее 1%. На рис. 47 представлена зависимость симметрии кристаллов от объема полиэдров Вороного–Дирихле атомов щелочных металлов $A(V_A)$ и лигандов $L(V_L)$. При построении рис. 47 для всех соединений использовались средние значения V_A (которые в соответствии с литературными данными [113], [105], [106] и [130] для атомов Na, K, Rb и Cs составляют 15.3, 20.9, 23.6 и 27.8 Å³ соответственно) и V_L , рассчитанные нами по известным структурным данным для соединений, указанных в КБСД [12], как объемы соответствующих молекулярных ПВД (для ацетат-, пропионат-, кротонат-, бутират- и валерат-ионов составляют около 77, 103, 117, 132 и 151 Å³ соответственно, см. раздел 1.3).

Рис. 47. Зависимость симметрии кристаллов *A*[UO₂*L*₃]·*n*H₂O от объема полиэдров Вороного–Дирихле атомов *A* (*V_A*) и лигандов *L* (*V_L*). Кристаллы, относящиеся к моноклинной, ромбической, тетрагональной и кубической симметрии, отмечены соответственно символами М, Р, Т и К. Знаками вопроса отмечены соединения, для которых отсутствуют структурные данные.

Напомним, что катион-кислородные каркасы структур соединений, приведенных на рис. 47, описываются общей формулой AUO₆ (см. разделы 3.2, 3.3). В каркасах AUO_6 имеются пустоты, которые должны увеличиваться при увеличении размера атома $A(V_A)$ за счет удлинения связей A-O. При соотношении размеров пустот каркасах объемов оптимальном В И карбоксилатных лигандов L (V_L), которые размещаются в этих пустотах, образуются однотипные в трех измерениях высокосимметричные кубические структуры кристаллов (самая большая область на рис. 47). Одновременное увеличение размеров атомов A (при переходе от Na к K, Rb и Cs) и лигандов L(при переходе от ацетатов к пропионатам и кротонатам) способствует сохранению оптимальной геометрии структуры и системы реализующихся невалентных взаимодействий. Если же размер атома А увеличивается при фиксированной природе лиганда L (например, L – ацетат), то получается, что в каркасах с увеличенными пустотами должны располагаться слишком маленькие по объему лиганды. Поэтому в этом случае размеры пустот уменьшаются за счет искажения каркасов (изменения размеров циклов, см. раздел 3.3). Это приводит, с одной стороны, к сближению соседних углеводородных цепей для установления невалентных взаимодействий между ними, а, с другой стороны, сопровождается понижением симметрии от кубической до тетрагональной или ромбической, как в случае ацетатсодержащих соединений (рис. 47). Если, наоборот, объемы лигандов увеличиваются при фиксированном A, то лиганды не могут разместиться в имевшихся маленьких пустотах каркасов. Поэтому для их размещения структуры либо искажаются (за счет изменения размеров циклов, см. раздел 3.3), либо происходит частичная деполимеризация каркасов вследствие гидратации Na-содержащих соединений (см. раздел 3.2), в результате чего симметрия кристаллов понижается до ромбической или моноклинной (рис. 47).

Из вышесказанного следует, что увеличение размеров атомов *A* в каркасах *A*UO₆ не обязательно приводит к реальному увеличению объема пустот в структурах каркасов. Реальные размеры пустот определяются объемами

карбоксилатных лигандов, а каркас вынужден подстраиваться под необходимый размер пустот. При этом при благоприятном соотношении объемов V_A и V_L каркас (в конечном итоге и структура кристаллов соединения в целом) остается кубическим, а при неблагоприятном – вынужден искажаться или деполимеризоваться.

ВЫВОДЫ

- Впервые разработаны методики синтеза 12 кротонат-, бутират-, валерат- и изовалератсодержащих соединений U(VI). Установлены их кристаллографические, ИК спектроскопические и термографические характеристики.
- 2. Проведено рентгеноструктурное исследование монокристаллов 12 новых соединений уранила. Установлено, что в структурах кристаллов образуются либо нейтральные $[UO_2L_2(H_2O_2)]$, либо анионные $[UO_2L_3]^-$ комплексы. Во всех случаях координационным полиэдром атомов урана является гексагональная бипирамида, а карбоксилат-ионы L имеют бидентатно-циклический тип 850°C полученные координации. Выяснено, что при нагревании до образованием соединения разлагаются с U_3O_8 либо диуранатов соответствующих металлов.
- 3. С помощью метода молекулярных полиэдров Вороного–Дирихле проведен анализ невалентных взаимодействий в структурах кристаллов [UO₂L₂(H₂O)_n]. Обнаружено, что комплексы связаны между собой в основном дисперсионными взаимодействиями H/H и водородными связями H/O.
- 4. Выяснено, что в комплексах *A*[UO₂L₃]·*n*H₂O, где *A* − Na или K, a *L* − карбоксилат-ионы, при увеличении объема карбоксилатных лигандов увеличивается число кристаллографических сортов атомов металлов. Для размещения объемных лигандов структуры кристаллов либо искажаются (при *A* = K), либо вследствие гидратации (при *A* = Na) происходит частичная деполимеризация каркасов *A*UO₆.
- 5. Установлено, что в соединениях К[UO₂L₃] при переходе от ацетатного комплекса к валератному значительно усиливается парциальный вклад дисперсионных взаимодействий Н/Н в основном за счет уменьшения роли водородных связей Н/О. Выявлено, что каркасы KUO₆ в структурах К[UO₂L₃] могут служить новым примером трехмерной топологической изомерии в координационных соединениях U(VI).

- 6. На примере комплексов K[UO₂ L_3] показано, что увеличение объема карбоксилат-иона приводит к снижению растворимости соединений в воде. Комплексы с непредельными кротонат-ионами обладают наименьшей из изученных соединений растворимостью. Методами газовой хроматографии выяснено, что в водных растворах K[UO₂ L_3], где L бутират- или валерат-ионы, на свету происходят фотохимические превращения с образованием в газовой фазе углеводородов гомологического ряда метана, преимущественно пропана в случае бутиратного комплекса и бутана в случае валератного.
- Установлено, что некоторые синтезированные соединения обладают способностью к генерации второй оптической гармоники, что подтверждает нецентросимметричность структур их кристаллов, выявленную при рентгеноструктурном исследовании.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Lenhart J.J., Cabaniss S.E., MacCarthy P., Honeyman B.D. Uranium(VI) complexation with citric, humic and fulvic acids. // Radiochim. Acta. 2000. V. 88. №
 P. 345–353.

2. Roßberg A., Baraniak L., Reich T. et al. EXAFS structural analysis of aqueous uranium(VI) complexes with lignin degradation products. // Radiochim. Acta. 2000. V. 88. № 9–11. P. 593–597.

3. Haas J.R., Northup A. Effects of aqueous complexation on reductive precipitation of uranium by *Shewanella putrefaciens*. // Geochem. Trans. 2004. V. 5. № 3. P. 41–48.

4. Berto S., Crea F., Daniele P.G. et al. Advances in the investigation of dioxouranium(VI) complexes of interest for natural fluids. // Coord. Chem. Rev. 2012. V. 256. № 1–2. P. 63–81.

5. Wang K.-X., Chen J.-S. Extended structures and physicochemical properties of uranyl-organic compounds. // Acc. Chem. Res. 2011. V. 44. № 7. P. 531–540.

6. Thuéry P. Two uranyl-organic frameworks with formic acid. A novel example of a uranyl-based nanotubular assemblage. // Inorg. Chem. Commun. 2008. V. 11. № 6. P. 616–620.

7. Ling J., Wallace C.M., Szymanowsky J.E.S., Burns P.C. Hybrid uraniumoxalate fullerene topology cage clusters. // Angew. Chem. Int. Ed. 2010. V. 49. № 40. P. 7271–7273.

8. Leciejewicz J., Alcock N.W., Kemp T.J. Carboxylato complexes of the uranyl ion: Effects of ligand size and coordination geometry upon molecular and crystal structure. // Coordination Chemistry. Springer Berlin Heidelberg, 1995. P. 43–84.

9. Alcock N.W., Kemp T.J., de Meester P. The structure of diaquabis(crotonato)dioxouranium(VI). // Acta Cryst. 1982. V. B38. Part 1. P. 105–107.

10. Юранов И.А., Дунаева К.М. Кристаллическая структура и свойства дигидрата изобутирата уранила. // Коорд. химия. 1989. Т. 15. № 6. С. 845–847.

11. Сережкин В.Н. Стереоатомная модель строения кристаллических веществ. // Теоретическая химия. Издательство Санкт-Петербургского университета, 2005. С. 503–582.

12. Allen F.H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. // Acta Cryst. 2002. V. B58. Part 3. № 1. P. 380–388.

13. Manyik R.M., Walker W.E., Wilson T.P. Polymerization process: pat. 3347840 USA. 1967.

14. Proops W.R., McGary, Jr. C.W., Montgomery D.R. Epoxide compositions: pat. 3328318 USA. 1967.

15. Comstock L.R., Hardman D.E., Brezinski J.J. Thermoset vinyl chloride coatings from a mixture of epoxidized addition copolymers and carboxylated addition copolymers: pat. 3472914 USA. 1969.

16. Pettijohn T.M., Hsieh H.L. Olefin polymerization: pat. CA 2058383 USA. 1992.

17. Mathur R.S., Sangokoya S.A., Luo L. Haloaluminoxane compositions: pat. WO2007/005364 A2 USA. 2007.

18. Luo L. Activator compositions, their preparation, and their use in catalysis: pat. WO2012071205 A2 USA. 2012.

19. Shurshikov E.N. Nuclear data sheets for A = 238. // Nucl. Data Sheets. 1988. V. 53. № 4. P. 601–676.

20. Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. Handbook of mineralogy: halides, hydroxides, oxides. V. III. Mineral Data Publishing, 1997. 648 p.

21. Greenwood N., Earnshaw A. Chemistry of the elements. Butterworth-Heinemann, 1997. 1600 p.

22. Jorgensen C.K. The Uranyl ion, fluorescent and fluorine-like: a review. // J. Electrochem. Soc. 1983. V. 130. № 3. P. 681–684.

23. Leung A.F., Hayashibara L., Spadaro J. Fluorescence properties of uranyl nitrates. // J. Phys. Chem. Solids. 1999. V. 60. № 3. P. 299–304.

24. Alcock N.W., Flanders D.J., Brown D. Actinide structural studies. Part 6. A confirmed non-linear uranyl group in dioxobis(pentane-2,4dionato)pyridineuranium(VI). // J. Chem. Soc., Dalton Trans. 1984. № 4. P. 679–681.

25. Maynadié J., Berthet J.-C., Thuéry P., Ephritikhine M. The first cyclopentadienyl complex of uranyl. // Chem. Commun. 2007. № 5. P. 486–488.

26. Cotton S. Lanthanide and actinide chemistry. Wiley, 2006. 280 p.

27. Pepper M., Bursten B.E. The electronic structure of actinide-containing molecules: a challenge to applied quantum chemistry. // Chem. Rev. 1991. V. 91. № 5. P. 719–741.

28. Schreckenbach G., Hay P.J., Martin R.L. Density functional calculations on actinide compounds: survey of recent progress and application to $[UO_2X_4]^{2-}$ (X=F, Cl, OH) and AnF₆ (An=U, Np, Pu). // J. Comput. Chem. 1999. V. 20. No 1. P. 70–90.

29. Kaltsoyannis N. Recent developments in computational actinide chemistry. // Chem. Soc. Rev. 2003. V. 32. № 1. P. 9–16.

30. Kaltsoyannis N., Hay P.J., Li. J et al. Theoretical studies of the electronic structure of compounds of the actinide elements. // The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, 2006. P. 1893–2012.

31. Zhang Z., Pitzer R.M. Application of relativistic quantum chemistry to the electronic energy levels of the uranyl ion. // J. Phys. Chem. A. 1999. V. 103. № 34. P. 6880–6886.

32. Denning R.G. Electronic structure and bonding in actinyl ions. // Complexes, clusters and crystal chemistry. Springer Berlin Heidelberg, 1992. P. 215– 276.

33. Denning R.G. Electronic structure and bonding in actinyl ions and their analogs. // J. Phys. Chem. A. 2007. V. 111. № 20. P. 4125–4143.

34. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. Ростов-на-Дону: Феникс, 1997. 560 с.

35. Комплексные соединения урана. / Под ред. Черняева И.И. М.: Наука, 1964. 502 с.

36. Щелоков Р.Н. Реакции внутрисферного замещения в тетрацидосоединениях уранила. // Химия платиновых и тяжелых металлов. М.: Наука, 1975. С. 111–126.

37. Burns P.C. U⁶⁺ Minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. // Can. Mineral. 2005. V. 43. № 6. P. 1839–1894.

38. Mungur S.A., Liddle S.T., Wilson C. et al. Bent metal carbene geometries in amido N-heterocyclic carbene complexes. // Chem. Commun. 2004. № 23. P. 2738– 2739.

39. Oldham W.J. Jr., Oldham S.M., Scott B.L. et al. Synthesis and structure of N-heterocyclic carbene complexes of uranyl dichloride. // Chem. Commun. 2001. № 15. P. 1348–1349.

40. Berthet J.-C., Thuéry P., Ephritikhine M. The first actinyl cyanide. // Chem. Commun. 2007. № 6. P. 604–606.

41. Tourneux J.-C., Berthet J.-C., Cantat T. et al. Exploring the uranyl organometallic chemistry: from single to double uranium–carbon bonds. // J. Am. Chem. Soc. 2011. V. 133. № 16. P. 6162–6165.

42. Ephritikhine M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. // Dalton Trans. 2006. № 21. P. 2501–2516.

43. Sarsfield M.J., Helliwell M., Raftery J. Distorted equatorial coordination environments and weakening of UO bonds in uranyl complexes containing NCN and NPN ligands. // Inorg. Chem. 2004. V. 43. № 10. P. 3170–3179.

44. Masci B., Nierlich M., Thuéry P. Trigonal versus tetragonal or pentagonal coordination of the uranyl ion by hexahomotrioxacalix[3]arenes: solid state and solution investigations. // New J. Chem. 2002. V. 26. № 1. P. 120–128.

45. Burns C.J., Eisen M.S. Organoactinide chemistry: synthesis and characterization. // The Chemistry of the Actinide and Transactinide Elements. Springer Netherlands, 2006. P. 2799–2910.

46. Serezhkin V.N. Some features of stereochemistry of U(VI). // Structural Chemistry of Inorganic Actinide Compounds. Elsevier Science, 2007. P. 31–65.

47. Thuéry P., Nierlich M., Masci B. et al. An unprecedented trigonal coordination geometry for the uranyl ion in its complex with *p-tert*-butylhexahomotrioxacalix[3]arene. // J. Chem. Soc., Dalton Trans. 1999. N_{2} 18. P. 3151–3152.

48. Burns C.J., Clark D.L., Donohoe R.J. et al. A trigonal bipyramidal uranyl amido complex: synthesis and structural characterization of [Na(THF)₂][UO₂(N(SiMe₃)₂)₃]. // Inorg. Chem. 2000. V. 39. № 24. P. 5464–5468.

49. Masci B., Thuéry P. Versatility of {M(30-crown-10)} ($M = K^+$, Ba²⁺) as a guest in UO₂²⁺ complexes of [3.1.3.1]- and [3.3.3]homooxacalixarenes. // CrystEngComm. 2007. V. 9. No 7. P. 582–590.

50. Чарушникова И.А., Ден О.К. Кристаллическая структура двух новых молекулярных аддуктов нитрата уранила с 2,2-6,2-терпиридином. // Коорд. химия. 2007. Т. 33. № 1. С. 55–62.

51. Berthet J.-C., Thuéry P., Dognon J.-P. et al. Sterically congested uranyl complexes with seven-coordination of the UO₂ unit: the peculiar ligation mode of nitrate in $[UO_2(NO_3)_2(Rbtp)]$ complexes. // Inorg. Chem. 2008. V. 47. No 15. P. 6850–6862.

52. Taylor J.C., Wilson P.W. The structure of uranyl chloride monohydrate by neutron diffraction and the disorder of the water molecule. // Acta Cryst. 1974. V. B30. Part 1. P. 169–175.

53. Fortier S., Hayton T.W. Oxo ligand functionalization in the uranyl ion (UO_2^{2+}) . // Coord. Chem. Rev. 2010. V. 254. No 3-4. P. 197-214.

54. Spencer L.P., Yang P., Scott B.L. et al. Uranium(VI) bis(imido) chalcogenate complexes: synthesis and density functional theory analysis. // Inorg. Chem. 2009. V. 48. № 6. P. 2693–2700.

55. Brown D.R., Denning R.G. Stable analogs of the uranyl ion containing the –NUN– group. // Inorg. Chem. 1996. V. 35. № 21. P. 6158–6163.

56. Williams V.C., Muller M., Leech M.A. et al. Uranium(VI) sulfilimine complexes: a new class of nitrogen analogues of the uranyl ion. // Inorg. Chem. 2000. V. 39. № 12. P. 2538–2541.

57. Hayton T.W., Boncella J.M., Scott B.L. et al. Synthesis of imido analogs of the uranyl ion. // Science. 2005. V. 310. № 5756. P. 1941–1943.

58. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. Crystallochemical formula as a tool for describing metal-ligand complexes – a pyridine-2,6-dicarboxylate example. // Acta Cryst. 2009. V. B65. Part 1. P. 45–53.

59. Порай-Кошиц М.А., Сережкин В.Н. Кристаллоструктурная роль лигандов в диаминных комплексонатах с одним топологическим типом атомов комплексообразователей. // Журн. неорг. химии. 1994. Т. 39. № 7. С. 1109–1132.

60. Мирная Т.А., Полищук А.П., Молочаева В.И., Толочко А.С. Кристаллическая структура бутирата бария и строение застеклованной мезофазы на его основе. // Кристаллография. 1991. Т. 36. № 2. С. 377–383.

61. Casarin M., Corvaja C., Di Nicola C. et al. One-dimensional and twodimensional coordination polymers from self-assembling of trinuclear triangular Cu(II) secondary building units. // Inorg. Chem. 2005. V. 44. № 18. P. 6265–6276.

62. Сережкин В.Н., Сережкина Л.Б. Новый критерий конформационного полиморфизма. // Кристаллография. 2012. Т. 57. № 1. С. 39–49.

63. Шевченко А.П., Сережкин В.Н. Стереоатомная модель и строение кристаллов насыщенных углеводородов. // Журн. физ. химии. 2004. Т. 78. № 10. С. 1817–1825.

64. Nickolov Z., Georgiev G., Stoilova D., Ivanov I. Raman and IR study of cobalt acetate dehydrate. // J. Mol. Struct. 1995. V. 354. № 2. P. 119–125.

65. Koleva V., Stoilova D. Infrared and Raman studies of the solids in the Mg(CH₃COO)₂–Zn(CH₃COO)₂–H₂O system. // J. Mol. Struct. 2002. V. 611. № 1–3. P. 1–8.

66. Musumeci A.W., Frost R.L., Waclawik E.R. A spectroscopic study of the mineral paceite (calcium acetate). // Spectrochim. Acta, Part A. 2007. V. 67. № 3–4. P. 649–661.

67. Severin K.G., Ledford J.S., Torgerson B.A., Berglund K.A. Characterization of titanium and zirconium valerate sol-gel films. // Chem. Mater. 1994. V. 6. № 7. P. 890–898.

68. Severin K.G., Ledford J.S. Synthesis and characterization of tin valerate and tin oxide thin films. // Langmuir. 1995. V. 11. № 6. P. 2156–2162.

69. Kansiz M., Gapes J.R., McNaughton D. et al. Mid-infrared spectroscopy coupled to sequential injection analysis for the on-line monitoring of the acetone– butanol fermentation process. // Anal. Chim. Acta. 2001. V. 438. № 1–2. P. 175–186.

70. Park J.S., Lee G.S., Yoon K.B. Micropatterned monolayer assembly of zeolite microcrystals on glass by ionic linkages. // Microporous Mesoporous Mater. 2006. V. 96. № 1–3. P. 1–8.

71. Ramos Moita M.F., Duarte M.L.T.S., Fausto R. An infrared spectroscopic study of crystalline copper (II) propionate and butyrate. // Spectrosc. Lett. 1994. V. 27. № 10. P. 1421–1430.

72. Silverstein R.M., Webster F.X., Kiemle D. Spectrometric identification of organic compounds. Wiley, 2005. 512 p.

73. Mehrotra R.C., Bohra R. Metal carboxylates. Academic Press, 1983. 416 p.

74. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.

75. Groenewold G.S., de Jong W.A., Oomens J., Van Stipdonk M.J. Variable denticity in carboxylate binding to the uranyl coordination complexes. // J. Am. Soc. Mass Spectrom. 2010. V. 21. № 5. P. 719–727.

76. Современная кристаллография в четырех томах. Т. 2. Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. М.: Наука, 1979. 359 с.

77. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. 532 с.

78. Niggli P. Die topologische Strukturanalyse. I. // Z. Kristallogr. 1927. V. 65. № 4. P. 391–415.

79. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. Метод пересекающихся сфер для определения координационного числа атомов в структуре кристаллов. // Журн. неорг. химии. 1997. Т. 42. № 12. С. 2036–2077.

80. Сережкин В.Н., Блатов В.А., Шевченко А.П. Полиэдры Вороного– Дирихле атомов урана (VI) в кислородсодержащих соединениях. // Коорд. химия. 1995. Т. 21. № 3. С. 163–171.

81. Кузьмина Л.Г. Вторичные связи и их роль в химии. // Коорд. химия.1999. Т. 25. № 9. С. 643–663.

82. Блатов В.А., Шевченко А.П., Сережкин В.Н. Автоматизация кристаллохимического анализа: комплекс компьютерных программ TOPOS. // Коорд. химия. 1999. Т. 25. № 7. С. 483–497.

83. Сережкин В.Н., Шевченко А.П., Сережкина Л.Б. Новый метод анализа межмолекулярных взаимодействий в структуре кристаллов: π-комплексы. // Коорд. химия. 2005. Т. 31. № 7. С. 495–505.

84. Rabinowitch E. Photochemistry of uranyl compounds. Oak Ridge, Tenn.:U.S. Atomic Energy Commission, 1954. 98 p.

85. Rabinowitch E., Belford R.L. Spectroscopy and photochemistry of uranyl compounds. New York: Macmillan, 1964. 370 p.

86. Balzani V., Carassiti V. Photochemistry of coordination compounds. London: Academic Press, 1970. 432 p.

87. Burrows H.D., Kemp T.J. The photochemistry of the uranyl ion. // Chem. Soc. Rev. 1974. V. 3. № 2. P. 139–165.

88. Alcock N.W., Herron N., Kemp T.J., Shoppee C.W. Orientation of photodimerization by metal ions: the crystal structure of bis(dibenzylideneacetone)uranyl dichloride. // J. Chem. Soc., Chem. Commun. 1975. № 19. P. 785–786.

89. Alcock N.W., de Meester P., Kemp T.J. Solid-state photochemistry. Part 1. Nature of the stereocontrol in the photodimerisation of dibenzylideneacetone by UO_2^{2+} ion: crystal and molecular structure of *trans*-dichlorobis(*trans,trans*-dibenzylideneacetone)dioxouranium(VI) and of its acetic acid solvate. // J. Chem. Soc., Perkin Trans. 2. 1979. No 7. P. 921–926.

90. Bosch E., Matheny J.M., Rath N. Solid-state photodimerization of 1,2bis(5'-pyrimidyl)ethane. // Synth. Commun. 2007. V. 37. № 21. P. 3835–3839. 91. Schmidt G.M.J. Photodimerization in the solid state. // Pure Appl. Chem. 1971. V. 27. № 4. P. 647–678.

92. Nagarathinam M., Vittal J.J. A Rational approach to crosslinking of coordination polymers using the photochemical [2+2] cycloaddition reaction. // Macromol. Rapid Commun. 2006. V. 27. № 14. P. 1091–1099.

93. Georgiev I.G., MacGillivray L.R. Metal-mediated reactivity in the organic solid state: from self-assembled complexes to metal-organic frameworks. // Chem. Soc. Rev. 2007. V. 36. № 8. P. 1239–1248.

94. Nagarathinam M., Peedikakkal A.M.P., Vittal J.J. Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. // Chem. Commun. 2008. № 42. P. 5277–5288.

95. Burkov V.I. Circular dichroism and magnetic circular dichroism in cubic crystals of uranyl compounds: symmetry of electronic states. // Inorg. Mater. 1996. V. 32. № 12. P. 1237–1251.

96. Бурков В.И., Мистрюков В.Э., Михайлов Ю.Н., Чукланова Е.Б. Хироптические свойства и структура гиротропных кристаллов уранилпропионатов. // Журн. неорг. химии. 1997. Т. 42. № 3. С. 391–395.

97. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.

98. Belokoneva E.L., Korchemkina T.A., Dimitrova O.V., Stefanovich S.Yu. $Na_{0.5}Pb_2[B_5O_9]Cl(OH)_{0.5}$, A new polar variety of hilgardite containing Na^+ cations in the cavities of the framework. The OD-family of the 5: 2Δ + 3diagonal inside box sign pentaborates: hilgardites, heidornite, probertite, and ulexite. // Crystallogr. Rep. 2000. V. 45. No 5. P. 744–753.

99. Plachinda P.A., Dolgikh V.A., Stefanovich S.Yu., Berdonosov P.S. Nonlinear-optical susceptibility of hilgardite-like borates $M_2B_5O_9X$ (M = Pb, Ca, Sr, Ba; X = Cl, Br). // Solid State Sci. 2005. V. 7. No 10. P. 1194–1200.

100. Белоконева Е.Л., Стефанович С.Ю., Ерилов М.А. и др. Новая модификация Ba[B₅O₈(OH)]·H₂O, уточненная структура Ba₂[B₅O₉]Cl·0.5H₂O и

роль структурных единиц пентаборатов в формировании квадратичной оптической нелинейности. // Кристаллография. 2008. Т. 53. № 2. Р. 255–263.

101. Bruker. APEX2 software package. Madison, Wisconsin, USA: Bruker AXS Inc., 2005.

102. CrysAlisPro. Agilent Technologies, 2012.

103. Sheldrick G.M. SADABS, Bruker/Siemens Area Detector Absorption Correction Program. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

104. Sheldrick G.M. A short history of SHELX. // Acta Cryst. 2008. V. A64. Part 1. P. 112–122.

105. Блатов В.А., Погильдякова Л.В., Сережкин В.Н. Окружение ионов калия в кислородсодержащих соединениях. // Докл. АН. 1996. Т. 351. № 3. С. 345–348.

106. Блатов В.А., Сережкин В.Н. Области действия атомов рубидия в структуре кислородсодержащих соединений. // Коорд. химия. 1997. Т. 23. № 9. С. 651–654.

107. Сережкин В.Н., Веревкин А.Г., Смирнов О.П., Плахтий В.П. Нейтронографическое исследование Rb₂UO₂(SeO₄)₂·2D₂O. // Журн. неорган. химии. 2010. Т. 55. № 10. С. 1695–1701.

108. Сережкин В.Н., Неклюдова Н.А., Смирнов О.П. Нейтронографическое исследование Na₂UO₂(C₂O₄)₂·5D₂O. // Журн. неорган. химии. 2012. Т. 57. № 6. С. 937–942.

109. Савченков А.В., Вологжанина А.В., Сережкин В.Н. и др. Рентгеноструктурное и ИК-спектроскопическое исследование UO₂(*н*-C₃H₇COO)₂(H₂O)₂ и Mg(H₂O)₆[UO₂(*н*-C₃H₇COO)₃]₂. // Кристаллография. 2014. Т. 59. № 2. С. 235–241.

110. Пушкин Д.В., Вологжанина А.В., Сережкина Л.Б. и др. Синтез, кристаллическая структура и ИК-спектроскопическое исследование Na[(UO₂)(C₃H₇COO)₃]·0.25H₂O и K[(UO₂)(C₃H₇COO)₃]. // Журн. неорг. химии. 2012. Т. 57. № 7. С. 1013–1018.

128

111. Rojas R.M., Gonzales V., Bermudez J., de Paz M.L. Uranyl butyrate complexes with divalent cations – I. Synthesis and thermal behaviour of magnesium and manganese uranyl butyrate hexahydrates. // J. Inorg. Nucl. Chem. 1977. V. 39. \mathbb{N} 1. P. 157–159.

112. Steiner T. The hydrogen bond in the solid state. // Angew. Chem. Int. Ed. 2002. V. 41. № 1. P. 48–76.

113. Блатов В.А., Сережкин В.Н. Анализ окружения ионов натрия в структуре кислородсодержащих соединений с помощью полиэдров Вороного-Дирихле. // Журн. неорг. химии. 1998. Т. 43. № 5. С. 823–828.

114. Savchenkov A.V., Vologzhanina A.V., Serezhkina L.B. et al. The first uranyl complexes with valerate ions. // Acta Cryst. 2013. V. C69. Part 7. P. 721–726.

115. Савченков А.В., Вологжанина А.В., Сережкина Л.Б. и др. Рентгеноструктурное исследование Na₄(UO₂)₄(*i*-C₄H₉COO)₁₁(NO₃)·3H₂O. // Радиохимия. 2013. Т. 55. № 5. С. 389–393.

116. Chemla D.S., Zyss J. Nonlinear optical properties of organic molecules and crystals. V. 1. Academic Press, 1987. 496 p.

117. Taylor J.C., Mueller M.H. A neutron diffraction study of uranyl nitrate hexahydrate. // Acta Cryst. 1965. V. 19. Part 4. P. 536–543.

118. Супоницкий К.Ю., Тимофеева Т.В., Антипин М.Ю. Молекулярный и кристаллический дизайн нелинейных оптических органических материалов. // Успехи химии. 2006. Т. 75. № 6. С. 515–556.

119. O'Keeffe M. Coordination sequences for lattices. // Z. Kristallogr. 1995.V. 210. № 12. P. 905–908.

120. Mentzen B.F., Puaux J.-P., Loiseleur H. The crystal structure of uranyl diformate monohydrate, UO₂(HCOO)₂·H₂O. // Acta Cryst. 1977. V. B33. Part 6. P. 1848–1851.

121. Howatson J., Grev D.M., Morosin B. Crystal and molecular structure of uranyl acetate dihydrate. // J. Inorg. Nucl. Chem. 1975. V. 37. № 9. P. 1933–1935.

122. Сережкин В.Н., Веревкин А.Г., Пушкин Д.В., Сережкина Л.Б. Принцип максимального заполнения и подрешетки атомов актинидов в структуре кристаллов. // Коорд. химия. 2008. Т. 34. № 3. С. 230–237.

123. Navaza A., Charpin P., Vigner D., Heger G. Single-crystal neutron diffraction: structure of sodium tris(acetato)dioxouranate(1–). // Acta Cryst. 1991. V. C47. Part 9. P. 1842–1845.

124. Сережкина Л.Б., Вологжанина А.В., Клепов В.В., Сережкин В.Н. Кристаллическая структура R[UO₂(CH₃COO)₃] (R = NH₄⁺, K⁺ или Cs⁺). // Кристаллография. 2010. Т. 55. № 5. С. 822–828.

125. Сережкина Л.Б., Пересыпкина Е.В., Вировец А.В. и др. Рентгеноструктурное исследование $R[UO_2(C_2H_5COO)_3]$ (R = K или NH₄). // Радиохимия. 2012. Т. 54. № 6. С. 495–499.

126. Anisimova N., Hoppe R., Serafin M. The crystal structure of an "old" potassium uranyl acetate, $K(UO_2)(CH_3COO)_3 \cdot 0.5H_2O$. // Z. Anorg. Allg. Chem. 1997. V. 623. No 1-6. P. 35–38.

127. Гоголев А.В., Шилов В.П., Перетрухин В.Ф. и др. Образование золя смешанного гидроксида U(IV)·U(VI) в водных растворах с pH 1.5–4. // Радиохимия. 2008. Т. 50. № 4. С. 303–307.

128. Ингольд К. Теоретические основы органической химии. М: Мир, 1973. 1054 с.

129. Ferrari A., Cavalca L., Tani M.E. Ricerche chimiche e cristallografiche su alcuni composti di uranile. Uranilacetati di metalli monovalenti tetragonali. // Gazz. Chim. Ital. 1959. V. 89. № 2. P. 1534–1538.

130. Блатов В.А., Сережкин В.Н. Области действия ионов цезия в структуре кислородсодержащих соединений. // Журн. структ. химии. 1998. Т. 39. № 1. С. 167–171.

ПРИЛОЖЕНИЕ

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
U1	-0.6496(1)	-0.6496(1)	-0.6496(1)	0.034(1)
K1	-0.3876(2)	-0.8876(2)	-0.6124(2)	0.034(1)
01	-0.7346(9)	-0.7346(9)	-0.7346(9)	0.067(5)
O2	-0.5647(7)	-0.5647(7)	-0.5647(7)	0.062(5)
O3	-0.7336(10)	-0.7370(9)	-0.4891(10)	0.067(3)
O4	-0.5849(8)	-0.8134(9)	-0.5514(9)	0.067(3)
C1	-0.6683(15)	-0.8151(12)	-0.4827(17)	0.081(6)
C2A	-0.6970(30)	-0.9240(20)	-0.4300(40)	0.097(5)
C3A	-0.8010(30)	-0.9520(40)	-0.4250(40)	0.097(5)
C4A	-0.8510(40)	-0.10550(30)	-0.3790(40)	0.097(5)
C2B	-0.6740(30)	-0.8900(30)	-0.3850(30)	0.097(5)
C3B	-0.7740(30)	-0.9190(30)	-0.3560(40)	0.097(5)
C4B	-0.8030(40)	-0.10100(40)	-0.2770(40)	0.097(5)

Таблица П1. Координаты и тепловые параметры базисных атомов в структуре $KUO_2(C_3H_5COO)_3$ (I)

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
U1	0.3370(1)	0.3370(1)	0.3370(1)	0.028(1)
Rb1	0.4003(1)	0.5997(1)	0.0997(1)	0.028(1)
O1	0.4178(4)	0.4178(4)	0.4178(4)	0.046(2)
O2	0.2555(4)	0.2555(4)	0.2555(4)	0.044(2)
O3	0.3892(4)	0.1741(4)	0.4379(4)	0.043(1)
O4	0.2471(4)	0.2585(4)	0.4957(4)	0.041(1)
C1	0.3089(6)	0.1787(6)	0.4989(6)	0.039(2)
C2	0.2871(8)	0.0876(7)	0.5749(8)	0.074(3)
C3	0.2023(9)	0.0824(8)	0.6355(9)	0.085(3)
C4A	0.1685(14)	-0.0135(11)	0.6993(14)	0.087(5)
C4B	0.2010(20)	0.0190(20)	0.7403(16)	0.050(8)

Таблица П2. Координаты и тепловые параметры базисных атомов в структуре $RbUO_2(C_3H_5COO)_3$ (II)

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
U1	0.58299(3)	0.08299(3)	-0.58299(3)	0.04262(16)
01	0.6629(6)	0.1629(6)	-0.6629(6)	0.055(3)
O2	0.5021(7)	0.0021(7)	-0.5021(7)	0.058(3)
O3	0.4915(6)	0.2420(7)	-0.5075(6)	0.0553(17)
O4	0.6318(6)	0.1853(6)	-0.4218(7)	0.0566(17)
C1	0.5516(9)	0.2482(9)	-0.4247(10)	0.059(3)
C2	0.5297(11)	0.3238(13)	-0.3383(12)	0.088(5)
H2A	0.5789	0.3278	-0.2823	0.105
C3	0.4472(16)	0.3856(17)	-0.3343(15)	0.129(9)
H3A	0.3994	0.3801	-0.3914	0.155
C4	0.4186(19)	0.465(2)	-0.2489(17)	0.232(18)
H4A	0.396	0.5313	-0.2818	0.348
H4B	0.4802	0.4786	-0.2044	0.348
H4C	0.3613	0.4372	-0.2056	0.348
N1	0.8429(8)	0.1571(8)	-0.3429(8)	0.049(3)

Таблица ПЗ. Координаты и тепловые параметры базисных атомов в структуре α -NH₄UO₂(C₃H₅COO)₃ (III)

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
U1	0.46364(3)	0.72309(2)	0.861665(19)	0.02973(12)
U2	0.94838(3)	0.21442(2)	0.868040(18)	0.02863(12)
O1	0.3014(8)	0.7935(6)	0.8785(5)	0.0408(16)
O2	0.6264(8)	0.6527(6)	0.8489(5)	0.0453(17)
O3	0.4547(8)	0.6631(6)	1.0070(5)	0.0395(16)
O4	0.5414(8)	0.8286(6)	1.0157(5)	0.0399(16)
05	0.5894(8)	0.8936(5)	0.8492(4)	0.0404(16)
O6	0.5163(8)	0.7872(6)	0.7223(4)	0.0437(17)
O7	0.3595(8)	0.6055(6)	0.7231(5)	0.0428(17)
08	0.3376(8)	0.5472(6)	0.8486(4)	0.0396(16)
O9	0.7801(8)	0.1533(6)	0.8834(4)	0.0399(16)
O10	1.1163(8)	0.2773(6)	0.8570(5)	0.0420(17)
011	0.8498(8)	0.2553(5)	0.7271(4)	0.0400(16)
O12	0.8292(8)	0.3826(6)	0.8498(4)	0.0419(17)
013	0.9366(8)	0.3489(5)	1.0132(4)	0.0377(15)
O14	1.0210(7)	0.1886(5)	1.0220(4)	0.0333(14)
015	1.0562(8)	0.0356(6)	0.8613(4)	0.0428(17)
016	1.0024(8)	0.0772(5)	0.7314(4)	0.0382(15)
C1	0.5052(11)	0.7511(8)	1.0552(6)	0.030(2)
C2	0.5306(10)	0.7586(8)	1.1524(7)	0.035(2)
H2A	0.5026	0.6974	1.1769	0.042
C3	0.5902(11)	0.8447(8)	1.2098(7)	0.037(2)
H3A	0.6152	0.9068	1.1857	0.044
C4	0.6206(13)	0.8512(10)	1.3082(7)	0.045(3)
H4A	0.7222	0.8687	1.3214	0.067
H4B	0.5966	0.7807	1.3237	0.067
H4C	0.5631	0.9086	1.3447	0.067
C5	0.5832(11)	0.8729(8)	0.7627(7)	0.038(2)

Таблица П4. Координаты и тепловые параметры базисных атомов в структуре β -NH₄UO₂(C₃H₅COO)₃ (IV)

Продолжение табл. П4

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
C6	0.6546(13)	0.9439(9)	0.7106(8)	0.045(3)
H6A	0.6969	1.0106	0.7434	0.054
C7	0.6643(13)	0.9214(10)	0.6207(8)	0.047(3)
H7A	0.6201	0.855	0.5888	0.057
C8	0.7363(16)	0.9888(10)	0.5659(9)	0.063(3)
H8A	0.6656	1.0165	0.5281	0.094
H8B	0.8054	0.9446	0.5265	0.094
H8C	0.7862	1.0505	0.6063	0.094
C9	0.3078(10)	0.5319(7)	0.7618(6)	0.033(2)
C10	0.2261(12)	0.4389(8)	0.7154(7)	0.040(2)
H10A	0.199	0.3841	0.7477	0.049
C11	0.1864(13)	0.4264(10)	0.6277(8)	0.048(3)
H11A	0.2173	0.481	0.5963	0.058
C12	0.0980(17)	0.3340(12)	0.5757(9)	0.071(4)
H12A	0.0123	0.3623	0.5512	0.107
H12B	0.0699	0.2853	0.6161	0.107
H12C	0.1533	0.293	0.5252	0.107
C13	0.8032(11)	0.3479(8)	0.7649(6)	0.037(2)
C14	0.7133(12)	0.4119(8)	0.7160(6)	0.038(2)
H14A	0.6843	0.4829	0.7455	0.045
C15	0.6714(13)	0.3697(10)	0.6283(7)	0.047(3)
H15A	0.7012	0.2981	0.6013	0.056
C16	0.5813(14)	0.4282(11)	0.5710(8)	0.061(4)
H16A	0.6318	0.4327	0.515	0.092
H16B	0.5626	0.5023	0.6054	0.092
H16C	0.4905	0.3879	0.555	0.092
C17	0.9878(11)	0.2846(9)	1.0608(7)	0.037(2)
C18	1.0156(11)	0.3298(9)	1.1576(7)	0.038(2)

Окончание табл. П4

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
H18A	0.9857	0.4021	1.1822	0.046
C19	1.0804(11)	0.2754(9)	1.2136(6)	0.037(2)
H19A	1.1044	0.2016	1.1891	0.044
C20	1.1177(13)	0.3197(10)	1.3095(7)	0.046(3)
H20A	1.0867	0.2678	1.3465	0.069
H20B	1.0699	0.3895	1.3301	0.069
H20C	1.2213	0.3316	1.3163	0.069
C21	1.0631(11)	0.0135(8)	0.7747(6)	0.035(2)
C22	1.1365(13)	-0.0844(8)	0.7272(7)	0.040(2)
H22A	1.1753	-0.1322	0.7623	0.048
C23	1.1506(11)	-0.1085(8)	0.6387(7)	0.036(2)
H23A	1.1092	-0.061	0.6042	0.044
C24	1.2267(12)	-0.2047(9)	0.5886(7)	0.046(3)
H24A	1.1655	-0.245	0.5387	0.069
H24B	1.2505	-0.2527	0.6304	0.069
H24C	1.3147	-0.1803	0.5636	0.069
N1	0.7624(12)	0.9866(8)	0.9972(7)	0.046(2)
N2	0.7434(11)	0.5358(7)	1.0015(6)	0.038(2)

Атом	X	У	Z	$U_{ m eq},{ m \AA}^2$
Rb1	0.09418(7)	-0.5	0	0.0982(5)
Rb2	0	-0.29383(5)	-0.25	0.1323(7)
Rb3	0.29626(6)	-0.51048(5)	-0.31735(7)	0.1288(4)
U1	0	-0.10552(2)	-0.25	0.08881(14)
U2	-0.16855(3)	-0.5	0	0.11018(18)
U3	0.16979(2)	-0.40917(2)	-0.17403(2)	0.09423(10)
01	-0.0368(3)	-0.1027(4)	-0.17604(11)	0.126(3)
O2	0.1322	-0.1133	-0.2116	0.089
O3	0.0713	-0.1908	-0.2269	0.085
O4	0.0569	-0.0133	-0.2308	0.083
C1	0.1305	-0.1675	-0.2098	0.09
C2	0.1951	-0.2032	-0.1846	0.08
H2A	0.2244	-0.2188	-0.2207	0.096
H2B	0.1725	-0.2356	-0.1614	0.096
C6	0	0.01510(14)	-0.25	0.102(3)
C7	0	0.07887(16)	-0.25	0.125(6)
H7A	0.004	0.0922	-0.2074	0.15
H7B	-0.0481	0.0922	-0.2669	0.15
C8	0.0631(3)	0.10323(17)	-0.29018(14)	0.125(9)
H8A	0.1131	0.0871	-0.2766	0.149
H8B	0.0652	0.1448	-0.2837	0.149
C9	0.0517(3)	0.0912(3)	-0.35897(14)	0.153(12)
H9A	0.0017	0.0716	-0.3649	0.184
H9B	0.0494	0.1276	-0.3822	0.184
C10	0.1147(3)	0.0552(2)	-0.3863(2)	0.0801(15)
H10A	0.1155	0.0948	-0.4003	0.12
H10B	0.1645	0.0457	-0.3671	0.12
H10C	0.0736	0.05	-0.3552	0.12

Таблица П5. Координаты и тепловые параметры базисных атомов в структуре RbUO₂(*n*-C₄H₉COO)₃ (XI)

Продолжение табл. П5

Атом	X	у	Z	$U_{ m eq},{ m \AA}^2$
O5	-0.1644(4)	-0.4299(3)	-0.0142(3)	0.107(2)
O6	-0.0538(4)	-0.5126(3)	-0.0627(3)	0.098(2)
O7	-0.1592(4)	-0.5219(3)	-0.1109(3)	0.097(2)
O8	-0.2953(4)	-0.5007(4)	-0.0532(4)	0.110(2)
C11	-0.0889(6)	-0.5242(4)	-0.1138(5)	0.093(3)
C12	-0.0474(6)	-0.5335(5)	-0.1706(5)	0.104(3)
H12A	-0.0255	-0.4971	-0.1855	0.125
H12B	-0.0831	-0.5477	-0.2034	0.125
C13	0.0200(5)	-0.57800(17)	-0.1603(5)	0.098(3)
H13A	0.0535	-0.5765	-0.198	0.118
H13B	0.0513	-0.5644	-0.1244	0.118
C14	0.0023(2)	-0.63628(17)	-0.1489(3)	0.0918(14)
H14A	-0.0087	-0.6506	-0.1903	0.11
H14B	-0.0449	-0.6381	-0.1254	0.11
C16	-0.34031(19)	-0.5	0	0.127(6)
C17	-0.42690(18)	-0.5	0	0.0902(10)
H17A	-0.445	-0.4805	0.0368	0.108
H17B	-0.445	-0.5385	0.0021	0.108
O9	0.2402(6)	-0.3692(4)	-0.1384(5)	0.135(3)
O10	0.0971(5)	-0.4480(4)	-0.2063(4)	0.121(3)
011	0.1446(4)	-0.3411(3)	-0.2580(4)	0.110(2)
O12	0.2341(4)	-0.4058(3)	-0.2764(4)	0.103(2)
013	0.2466(4)	-0.4954(3)	-0.1928(3)	0.1015(13)
O14	0.1968(4)	-0.4891(3)	-0.1036(4)	0.110(2)
015	0.1018(4)	-0.4032(3)	-0.0753(3)	0.105(2)
O16	0.0743(5)	-0.3399(4)	-0.1409(4)	0.129(3)
C21	0.2047(6)	-0.3587(4)	-0.2908(5)	0.092(3)
C26	0.2413(7)	-0.5131(6)	-0.1353(6)	0.117(4)

Продолжение табл. П5

Атом	X	у	Z.	$U_{ m eq}$, Å 2
C27	0.2760(6)	-0.5731(3)	-0.1307(2)	0.120(4)
H27A	0.2579	-0.5967	-0.1664	0.144
H27B	0.3329	-0.5711	-0.1323	0.144
C28	0.2506(5)	-0.59883(17)	-0.0696(2)	0.153(4)
H28A	0.1991	-0.6163	-0.0749	0.183
H28B	0.2464	-0.5688	-0.0372	0.183
C29	0.3116(8)	-0.6465(2)	-0.0466(3)	0.153(4)
H29A	0.365	-0.6341	-0.0554	0.183
H29B	0.3063	-0.6534	-0.0008	0.183
C30	0.2931(6)	-0.69939(14)	-0.0828(3)	0.175(7)
H30A	0.2428	-0.6952	-0.1033	0.263
H30B	0.2916	-0.7318	-0.054	0.263
H30C	0.3328	-0.7058	-0.1149	0.263
C31	0.0607(8)	-0.3598(5)	-0.0904(6)	0.118(4)
C32	0.0032(5)	-0.33829(13)	-0.0401(4)	0.1059(12)
H32A	-0.0384	-0.3663	-0.033	0.127
H32B	0.0298	-0.3309	0.0003	0.127
C33	-0.0286(2)	-0.28434(10)	-0.0674(2)	0.1059(12)
H33A	-0.0807	-0.2794	-0.0533	0.127
H33B	-0.0295	-0.2886	-0.1124	0.127
C3A	0.2506(2)	-0.1731(2)	-0.1417(3)	0.08
H3AA	0.2684	-0.1379	-0.1625	0.096
H3AB	0.2233	-0.1622	-0.1026	0.096
C4A	0.31939(19)	-0.2088(3)	-0.1250(2)	0.08
H4AA	0.3284	-0.2414	-0.1535	0.096
H4AB	0.3673	-0.187	-0.1174	0.096
C5A	0.2745(4)	-0.2228(6)	-0.0668(2)	0.08
H5AA	0.3042	-0.2493	-0.0408	0.12

Продолжение табл. П5

Атом	x	у	Z.	$U_{ m eq}$, Å 2
H5AB	0.2253	-0.2402	-0.0786	0.12
H5AC	0.2647	-0.1879	-0.0429	0.12
C15A	0.0540(4)	-0.6775(3)	-0.1156(4)	0.138(11)
H15A	0.0302	-0.7152	-0.1158	0.207
H15B	0.0615	-0.665	-0.072	0.207
H15C	0.1039	-0.6791	-0.137	0.207
C24A	0.37168(16)	-0.3382(5)	-0.3486(3)	0.1031(12)
H24A	0.3669	-0.3593	-0.3086	0.124
H24B	0.3772	-0.2974	-0.3383	0.124
C25A	0.44290(19)	-0.3579(5)	-0.3826(4)	0.1031(12)
H25A	0.4887	-0.3474	-0.3582	0.155
H25B	0.4453	-0.3399	-0.4242	0.155
H25C	0.4411	-0.3992	-0.3877	0.155
C34A	-0.0311(4)	-0.22119(17)	-0.0588(2)	0.1059(12)
H34A	0.0221	-0.2069	-0.0533	0.127
H34B	-0.0526	-0.2036	-0.0973	0.127
C35A	-0.0786(4)	-0.2033(2)	-0.0034(2)	0.1059(12)
H35A	-0.0565	-0.1688	0.0151	0.159
H35B	-0.0789	-0.2337	0.0281	0.159
H35C	-0.1315	-0.1956	-0.0171	0.159
C3B	0.2809(2)	-0.2002(2)	-0.1865(7)	0.08
H3BA	0.2988	-0.1718	-0.1554	0.096
H3BB	0.2974	-0.1873	-0.2288	0.096
C4B	0.3187(2)	-0.25621(13)	-0.1724(5)	0.08
H4BA	0.3253	-0.2572	-0.1261	0.096
H4BB	0.3713	-0.2535	-0.1904	0.096
C5B	0.2897(6)	-0.31428(19)	-0.1903(6)	0.08
H5BA	0.3408	-0.3285	-0.1831	0.12

Продолжение табл. П5

Атом	x	у	Z.	$U_{ m eq}$, Å 2
H5BB	0.2556	-0.3286	-0.1584	0.12
H5BC	0.272	-0.3265	-0.231	0.12
C15B	0.0627(3)	-0.67894(15)	-0.1671(6)	0.106(7)
H15D	0.0579	-0.6879	-0.212	0.159
H15E	0.0557	-0.7136	-0.1423	0.159
H15F	0.114	-0.6632	-0.1588	0.159
C24B	0.34295(18)	-0.2959(2)	-0.4113(3)	0.1031(12)
H24C	0.3345	-0.2931	-0.4573	0.124
H24D	0.3219	-0.2611	-0.3916	0.124
C25B	0.42794(18)	-0.2990(4)	-0.3986(7)	0.1031(12)
H25D	0.452	-0.2628	-0.4099	0.155
H25E	0.4508	-0.3295	-0.4237	0.155
H25F	0.4365	-0.3066	-0.3537	0.155
C34B	0.0236(3)	-0.23452(14)	-0.0564(2)	0.1059(12)
H34C	0.0558	-0.2285	-0.0943	0.127
H34D	-0.0083	-0.2001	-0.0501	0.127
C35B	0.0752(3)	-0.2421(4)	-0.0005(2)	0.1059(12)
H35D	0.0908	-0.2048	0.0155	0.159
H35E	0.121	-0.2636	-0.0129	0.159
H35F	0.0474	-0.2628	0.0326	0.159
C22	0.22768(16)	-0.3307(3)	-0.3520(2)	0.1031(12)
H22A	0.1844	-0.3365	-0.3817	0.124
H22B	0.2306	-0.2894	-0.3437	0.124
C23	0.29980(13)	-0.34647(18)	-0.3865(2)	0.1031(12)
H23A	0.3034	-0.3233	-0.4253	0.124
H23B	0.2964	-0.3868	-0.3994	0.124
C18	-0.46112(16)	-0.4731(2)	-0.05747(19)	0.0902(10)
H18A	-0.4213	-0.4711	-0.0908	0.108

Окончание табл. П5

Атом	X	у	Z	$U_{ m eq}$, Å 2
H18B	-0.4769	-0.4338	-0.0472	0.108
C19	-0.52965(18)	-0.5049(2)	-0.0823(2)	0.0902(10)
H19A	-0.5365	-0.54	-0.0575	0.108
H19B	-0.5195	-0.516	-0.1265	0.108
C20	-0.60272(19)	-0.4711(3)	-0.0799(7)	0.0902(10)
H20A	-0.6443	-0.4926	-0.0979	0.135
H20B	-0.6118	-0.466	-0.0356	0.135
H20C	-0.5998	-0.4348	-0.1001	0.135