На правах рукописи

Дорохин Михаил Владимирович

СПИН-ЗАВИСИМЫЕ ЯВЛЕНИЯ И ЦИРКУЛЯРНО-ПОЛЯРИЗОВАННАЯ ЛЮМИНЕСЦЕНЦИЯ В ГИБРИДНЫХ СТРУКТУРАХ ФЕРРОМАГНЕТИК/ПОЛУПРОВОДНИК АЗВ5

Специальность 01.04.10 – физика полупроводников

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора физико-математических наук

Нижний Новгород - 2016

Работа выполнена в Научно-исследовательском физико-техническом институте и на кафедре физики полупроводников и оптоэлектроники Физического факультета федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Научный консультант: Павлов Дмитрий Алексеевич доктор физико-математических наук, профессор, зав. кафедрой Физики полупроводников и оптоэлектроники ННГУ им. Н.И. Лобачевского

Официальные оппоненты Тагиров Ленар Рафгатович

доктор физико-математических наук, Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет», заведующий кафедрой Физики твёрдого тела.

Голик Леонард Леонидович

доктор физико-математических наук, Фрязинский филиал Федерального государственного бюджетного учреждения науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук, заведующий лабораторией Функциональной электроники

Буданов Александр Владимирович

доктор физико-математических наук, Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий", Заведующий кафедрой Физики, теплотехники и теплоэнергетики

Ведущая организация: Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук

Защита состоится «26» декабря 2016 г. в 14.00 на заседании диссертационного совета Д 212.166.01 при Нижегородском государственном университете им. Н.И. Лобачевского по адресу: 603950, Нижний Новгород, пр. Гагарина, д.23, корп.3, конференц-зал.

С диссертацией можно ознакомиться в фундаментальной библиотеке Нижегородского государственного университета им. Н.И. Лобачевского и на сайте **diss.unn.ru/644**.

Автореферат разослан «__» 2016 года.

Ученый секретарь диссертационного совета Д 212.166.01 к.ф.-м.н.

Марычев Михаил Олегович

Общая характеристика работы

Актуальность темы. Спинтроника – это динамично развивающаяся область науки и технологии, основанная на использовании, кроме заряда электронов в твердых телах, другого их фундаментального свойства – спина. Целью спинтроники является создание элементной базы микросхемотехники, функционирующей на основе новых физических принципов, которая станет перспективным направлением развития современной микроэлектроники.

Фундаментальные спин-зависимые явления могут быть использованы для улучшения параметров интегральных микросхем и приборов на их основе:

1) Снижение энергопотребления достигается за счёт использования схем с переносом спина без переноса заряда. В таких схемах ток, переносимый электрическим зарядом, равен нулю, а спиновый ток не равен нулю. Управление спином требует значительно меньших затрат энергии, чем перенос электрического тока.

2) Повышение быстродействия/производительности/объёма оперативной памяти. Современная электроника базируется на интеграции дискретных элементов. Для повышения производительности необходимо увеличивать число элементов на кристалле, что достигается за счёт уменьшения их размеров. Такой подход технически сложен и имеет пределы, связанные с достижением атомных размеров.

Спинтроника формирует методы реализации базовых функций электронной аппаратуры, основываясь непосредственно на спин-зависимых явлениях в твёрдом теле. В результате в приборах спинтроники уже на этапе выполнения базовых функций уменьшается количество необходимых элементов. Таким образом, экономится площадь кристалла, либо повышается производительность микросхемы.

3) Повышение надёжности/износостойкости. Достигается в перспективе за счёт отсутствия схем, использующих протекание электрического тока через полупроводниковую структуру. В случае отсутствия электрического тока становятся несущественными физические явления, приводящие к деградации полупроводниковых приборов: разогрев током, диффузия, электромиграция. Кроме того, переключение состояния элементов (с логического «нуля» на логическую «единицу») можно осуществлять путём перемагничивания, в этом случае элементт выдерживает большое количество циклов переключения.

Решение практических задач полупроводниковой спинтроники связано с использованием фундаментальных эффектов, обусловливающих спиновую поляризацию носителей заряда в неферромагнитных полупроводниках. Известен ряд подобных эффектов: спиновая поляризация в результате облучения циркулярно-поляризованным светом (Книга «Оптическая ориентация» под ред., Б.П. Захарчени, Ф. Майера, 1989), спиновая инжекция из ферромагнитного металла

(обзоры I. Zutic, S. Maekawa, M. Holub, 2004-2007), спиновая поляризация носителей в полупроводниках за счёт обменного взаимодействия с близкорасположенным ферромагнитным слоем (работы D.D. Awschalom, 2002-2005 гг., Б.П. Захарчени, 2003-2005 гг.). Наибольшие практические перспективы, на наш взгляд, имеют последние два из указанных выше эффектов, первый же, наиболее часто используется для анализа динамики спин-поляризованных носителей в полупроводниковых структурах.

В направлении применения эффектов инжекции и взаимодействия активные научные исследования ведутся по настоящее время (об этом можно судить по большому количеству публикаций 2014-2015 годов). Отдельно следует отметить работы, посвящённые созданию и исследованию приборов на основе эффекта спиновой инжекции: спинового светоизлучающего диода, спинового транзистора. Прогресс последнего времени в указанных исследованиях таков, что основные параметры работы приборов уже находятся на уровне коммерческих применений: значения степени спиновой поляризации выше 50 %, работа при комнатной температуре, низкий диапазон магнитных полей (например, исследования групп Р. Barate, R. Wang (2014 год), Т. Manago, Н. Akinaga (2007-2008)). В то же время существует ряд нерешённых задач как фундаментального, так и технологического характера. К задачам технологического характера относится необходимость расширения спектра методов формирования приборов спинтроники, т.к. уже разработанные методы отличаются сложностью, дороговизной и низкой производительностью (это замечание в полной мере применимо к наиболее распространённому для создания приборов спинтроники методу молекулярно-лучевой эпитаксии). Сложность методов получения связана с главной тенденцией в технологии спинтроники – созданием совершенных структур с близкими к идеальным границами раздела. Поэтому, актуальным вопросом для применения более простых технологических подходов является максимальная степень неидеальности гетерограниц в структурах, при которой параметры работы приборов не выйдут за рамки допустимых диапазонов.

С указанным вопросом связаны задачи фундаментального характера, а именно, изучение влияния ростовых дефектов на спин-зависимый транспорт и спин-зависимую люминесценцию. Описанные выше вопросы в литературе почти не исследованы. Например, нами не было обнаружено сообщений о изучении эффекта спиновой инжекции или спиновой поляризации в структурах, сформированных методом газофазной эпитаксии, который, наряду с молекулярнолучевой эпитаксией. является самым распространённым способом создания полупроводниковых эпитаксиальных структур (метод газофазной эпитаксии характеризуется наличием ростовых дефектов на границе ферромагнетик/полупроводник). В связи с вышеизложенным, затрагиваемые в настоящей работе вопросы создания ферромагнитных наноструктур методом газофазной эпитаксии и исследования в них эффектов спиновой

инжекции и обменного взаимодействия представляются актуальными для развития направления «спинтроника».

Цели и задачи работы.

Целью работы является поиск путей применения технологии газофазной эпитаксии из металлорганических соединений и гидридов – МОС-гидридной эпитаксии (МОСГЭ) и импульсного лазерного осаждения (ИЛО) для создания полупроводниковых наноструктур, обеспечивающих управление спиновой поляризацией носителей заряда на основе эффектов спиновой инжекции и обменного взаимодействия.

Для достижения указанной цели были поставлены следующие задачи:

- Анализ эффектов спиновой инжекции и обменного взаимодействия на основе известных экспериментальных результатов и теоретических моделей, а также с учётом свойств реальных структур, формируемых методами МОСГЭ и ИЛО;

- Создание методами МОСГЭ и ИЛО гетероструктур ферромагнетик/полупроводник, обеспечивающих управление спиновой поляризацией носителей заряда;

- Изучение свойств гетерограниц в сформированных структурах: степени разупорядочения, диффузионного перемешивания, влияния дефектов на рекомбинационные характеристики;

 Анализ влияния свойств границы раздела ферромагнетик/полупроводник на эффективность управления спиновой поляризацией носителей заряда путём исследования магнитоуправляемой циркулярно-поляризованной люминесценции сформированных структур. Определение условий, обеспечивающих спиновую поляризацию носителей.

Объекты исследования.

Объектами исследования являлись полупроводниковые гетеронаноструктуры с квантовыми ямами In_xGa_{1-x}As/GaAs ($x \approx 0, 1-0, 25$), содержащие ферромагнитные слои. В качестве ферромагнитных использованы наиболее изученные в мировой литературе слои разбавленного магнитного полупроводника $(A^3,Mn)B^5$ (A=In,Ga; B=As,Sb) и слои ферромагнитного металла Ni, Co, CoPt, кроме того, рассмотрена оригинальная конструкция, полученная при участии автора работы: ферромагнитные б<Мп>-легированные слои в матрице GaAs. Структуры формировались комбинированным эпитаксиальным методом, сочетающим МОС-гидридную эпитаксию и импульсное лазерное осаждение, объединённые в одном реакторе. Геометрия слоёв легирование полупроводниковой эпитаксиальной структуры обеспечивали И формирование светоизлучающих диодов: диодов с барьером Шоттки, структур металл/туннельно-тонкий окисел/полупроводник, *p-i-n* диодов, диодов с туннельным барьером (A³.Mn)B⁵/n++GaAs. При этом ферромагнитные слои используются как инжекторы спинполяризованных электронов или дырок.

Методы исследования. Исследования структуры поверхности металлических контактов и поверхности полупроводника под металлическим контактом были выполнены с помощью метода дифракции электронов на отражение на электронографе ЭМР-102. Исследования структуры и состава поперечного среза образцов проведены на просвечивающем электронном микроскопе JEM-2100F (JEOL) с термо-полевым катодом. Снимки высокого разрешения обрабатывались в программе Digital Micrograph. Элементный состав определялся методом энергодисперсионной рентгеновской спектроскопии (EDS), реализованным посредством детектора X-max компании Oxford Instruments, смонтированного на микроскопе JEOL.

Элементный анализ приповерхностных областей структур осуществлялся с применением методик рентгеновской фотоэлектронной спектроскопии (РФЭС) на базе сверхвысоковакуумного комплекса Omicron Multiprobe RM, а также вторично-ионной масс спектрометрии на масс-спектрометре MC-7201M.

Магнитополевые зависимости намагниченности исследовались при анализе измерений аномального эффекта Холла, а также измерялись на магнетометре переменного градиента силы, разработанном в Научно-исследовательском физико-техническом институте Нижегородского государственного университета им. Н.И. Лобачевского (НИФТИ ННГУ).

Электрические свойства сформированных диодов изучались при измерении вольтамперных характеристик (ВАХ). Для измерений ВАХ в НИФТИ ННГУ разработан специальный измерительный алгоритм с использованием источника-измерителя токов и напряжений Keithley 2400. Для анализа ВАХ были выполнены расчёты зонной диаграммы и распределения носителей заряда в модельных одномерных структурах аналогичных сформированным в настоящей работе диодам. Расчёты выполнялись помощью программы 1D Poisson/Schrödinger для температур 10 К и 77 К.

Исследования спектров фото- и электролюминесценции выполнялись на универсальных спектральных установках, расположенных в НИФТИ ННГУ, которые включают монохроматоры МДР-3, МДР-23, набор лазеров для исследований фотолюминесценции, источники тока Keithley-6221, Keithley 2400 для исследований электролюминесценции. Также контрольные исследования выполнялись с использованием установок, расположенных в Институте Физики твёрдого тела РАН, г. Черноголовка, и в лаборатории Оптических свойств твёрдых тел Института Физики Глеб Ватагин (IFGW) при Университете г. Кампинас (UNICAMP), Кампинас, Бразилия.

Исследования циркулярно-поляризованной электролюминесценции выполнялись на базе перечисленных выше спектральных установок. Для измерений исследуемые образцы помещались во внешнее магнитное поле, электромагнитов (для измерений в диапазоне ±0,3 Тл) либо сверхпроводящих соленоидов (для измерений в диапазоне ± 10 Тл).

Варьирование температуры измерений в электрических и люминесцентных методах измерения осуществлялось путём помещения образцов в сосуд Дьюара с жидким азотом (для измерений при 77 К) либо путём помещения образцов в криостат (гелиевый криостат замкнутого цикла Janis CCS-300S/202, гелиевый проточный криостат, гелиевый заливной криостат).

Достоверность результатов в экспериментальной части работы обеспечена использованием взаимодополняющих методов анализа, воспроизводимостью характеристик исследуемых объектов, многократной экспериментальной проверкой результатов измерений, использованием аттестованной измерительной техники. Также достоверность обеспечена совпадением в пределах погрешности характеристик структур, измеренных с использованием разного научного оборудования в разных научных группах (ИФТТ РАН, IFGW университет г. Кампинас).

Научная новизна работы.

1) Впервые показана возможность спиновой инжекции как электронов, так и дырок в прямосмещенных диодах Шоттки Ni(Co)/GaAs. Из экспериментов на образцах спиновых светоизлучающих диодов (ССИД) с различной глубиной залегания активной области по отношению к границе раздела металл/GaAs определена эффективная длина потери спиновой ориентации дырок в эпитаксиальном слое GaAs (~ 67 нм при 1,5 К; ~ 60 нм при 10 К).

2) Впервые изучена природа дефектов границы раздела ферромагнетик/полупроводник (GaAs) в спиновых светоизлучающих диодах, а также выполнен анализ влияния этих дефектов на эффективность инжекции спин-поляризованных носителей.

3) Впервые была обнаружена немонотонная зависимость степени циркулярной поляризации, обусловленной спиновой инжекцией, от величины пространственного разделения ферромагнитного инжектора (CoPt) и активной области (квантовой ямы InGaAs). Обнаруженный эффект позволяет управлять параметрами циркулярно-поляризованного излучения, в том числе и знаком, при варьировании толщины покровного слоя в структурах. Предложена качественная модель, объясняющая полученный эффект; модель основана на эффекте спиновой прецессии инжектированных носителей заряда в магнитном поле ферромагнитного контакта CoPt.

4) Впервые показана возможность формирования спиновых светоизлучающих диодов, содержащих слои разбавленного магнитного полупроводника, с применением метода МОС-гидридной эпитаксии. Высокое совершенство и однородность формируемых слоёв достигаются за счёт комбинации метода МОС-гидридной эпитаксии с методом импульсного лазерного осаждения. Впервые показана возможность спиновой инжекции электронов и дырок в

7

структурах, содержащих слои разбавленного магнитного полупроводника, сформированных комбинированным методом МОСГЭ и ИЛО.

5) Впервые получена инжекция спин-поляризованных носителей при комнатной температуре в структурах на основе разбавленного магнитного полупроводника. Результат получен в структурах с инжектором типа (Ga,Mn)Sb и гетероструктуры InGaAs/GaAs.

6) Впервые был сформирован спиновый светоизлучающий диод на основе ферромагнитной гетероструктуры, представляющей собой квантовую яму InGaAs/GaAs и ферромагнитный $\delta < Mn >$ -легированный слой, расположенный вблизи квантовой ямы, в матрице GaAs. Отличительной особенностью диода является принцип циркулярно-поляризованной люминесценции, основанный на спиновой поляризации носителей в активной области в результате взаимодействия с близкорасположенным ферромагнитным слоем. Подобный циркулярную принцип позволяет получить поляризацию как фототак и электролюминесценции.

7) Для спиновых светоизлучающих диодов, работающих на основе эффекта обменного взаимодействия, впервые продемонстрирована возможность управления знаком циркулярной поляризации ЭЛ при варьировании ростовых параметров.

Практическая значимость работы.

1) Разработана лабораторная технология создания спиновых светоизлучающих диодов, испускающих частично-циркулярно-поляризованный свет при комнатной температуре и в нулевом магнитном поле (за счёт остаточной намагниченности ферромагнитного слоя). Таким образом, выполнено большинство требований, предъявляемых к промышленным источникам циркулярно-поляризованного излучения.

2) Показано, что технология МОС-гидридной эпитаксии, в случае объединения с импульсным лазерным осаждением, применима для формирования спиновых светоизлучающих диодов, содержащих слои разбавленного магнитного полупроводника. Это открывает потенциальную возможность применения альтернативного метода - МОСГЭ, для создания приборов спинтроники (данный метод отличается дешевизной и высокой производительностью).

3) Показана возможность получения в диодах на основе разбавленных магнитных полупроводников циркулярно-поляризованной электролюминесценции при комнатной температуре.

4) Показана принципиальная возможность спиновой инжекции электронов, так и дырок для диодов, сформированных с применением подобных технологических операций. Вид спинполяризованных носителей определяется геометрией структур. Использование обоих видов носителей расширяет функциональные возможности приборов спинтроники.

8

5) Показана принципиальная возможность применения эффекта взаимодействия носителей в активной области и ионов марганца в близкорасположенном ферромагнитном слое (δ<Mn>- слое) для создания спиновых светоизлучающих диодов с магнитоуправляемой циркулярно-поляризованной фото- и электролюминесценцией. Подобное технологическое решение отличается простотой, при этом обеспечивает степень спиновой поляризации, сравнимую с полученной для «стандартных» диодов, работающих на основе эффекта спиновой инжекции.

Внедрение научных результатов.

Основные научные результаты использованы при выполнении следующих НИР: Базовый госбюджет (РНП 2.2.2.2.4737, 2.2.2./4297, 2.1.1.3778, контракт 02.740.11.0672), РФФИ (03-02-16777, 05-02-16624, 07-02-01153, 08-02-00548, 08-02-97038, 09-02-00770, 09-02-90711-моб_ст, 10-02-00739, 11-02-00645, 12-07-00433, 12-02-31230, 13-07-00982, 13-02-97140, 14-07-31280, 15-02-07824, 15-38-20642), ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. (гранты № 14.В37.21.0346, 02.740.11.0672, П-1279), гранты Президента РФ (16.120.11.5359_МК, МК-2708.2013.2), Проектная часть государственного задания (8.1054.2014/К)), а также Программы ОФН РАН «Спин-зависимые явления в твёрдых телах и спинтроника». Научные результаты работы легли в основу патента РФ (Светоизлучающий диод / О.В. Вихрова, Ю.А. Данилов, М.В. Дорохин, С.В. Зайцев, Б.Н. Звонков, В.Д. Кулаковский, М.М. Прокофьева / Патент Российской Федерации № 2400866, приоритет 22.05.2009, опубликовано 27.09.2010. Бюл. № 27.).

Основные научные положения, выносимые на защиту.

1) В диодах Шоттки ферромагнитный металл/GaAs и ферромагнитный металл/туннельнотонкий диэлектрик/GaAs осуществляется спиновая инжекция **неосновных** носителей (электронов для *p*-GaAs, дырок для *n*-GaAs) в режиме **прямого** смещения диода. Спиновая инжекция неосновных носителей обусловливает циркулярную поляризацию возбуждаемого электролюминесцентного излучения.

2) В структурах CoPt/Al₂O₃/GaAs в режиме спиновой инжекции спин-поляризованные носители в GaAs находятся под воздействием внутреннего магнитного поля, которое обусловливает спиновую прецессию. Спиновая прецессия приводит к изменению знака и степени спиновой поляризации носителей. Источником внутреннего магнитного поля является неоднороднонамагниченный контакт CoPt.

3) Комбинированный метод МОС-гидридной эпитаксии и импульсного лазерного осаждения позволяет формировать спиновые светоизлучающие диоды, содержащие слои разбавленного магнитного полупроводника (A^3 ,Mn) B^5 (A^3 =Ga, B^5 =As, Sb). Разбавленные магнитные полупроводники, содержащие кластеры Mn A^3 или Mn B^5 в матрице (A^3 ,Mn) B^5 , обеспечивают спиновую инжекцию электронов при комнатной температуре в диодах с туннельным барьером.

4) Комбинированное исследование фото- и электролюминесценции светоизлучающих диодов, в которых варьируется расстояние между ферромагнетиком и активной областью излучающей полупроводниковой структуры, представляет собой метод анализа временных процессов спинполяризованных носителей (спиновой релаксации, спиновой прецессии, спиновой поляризации), не требующий измерений с разрешением по времени.

5) Близкое расположение (менее 10 нм) ферромагнитного дельта-слоя Mn и квантовой ямы в структурах δ<Mn>/GaAs/InGaAs приводит к спиновой поляризации дырок в квантовой яме в результате обменного взаимодействия с атомами Mn в намагниченном дельта-слое. Спиновая поляризация дырок обусловливает циркулярную поляризацию люминесценции.

6) В структурах δ<Mn>/GaAs/InGaAs реализуется как ферромагнитное, так и антиферромагнитное взаимодействие дырок в квантовой яме и ионов Mn в δ<Mn>-слое в зависимости от ростовых параметров. Это обусловливает экспериментальную регистрацию положительного и отрицательного знаков степени циркулярной поляризации люминесценции, соответственно.

Апробация работы.

Основные результаты работы докладывались международных симпозиумах на 2005-15 гг.); Международных «Нанофизика и наноэлектроника» (Нижний Новгород, симпозиумах «Nanostructures: Science and technology» (С.-Петербург, 2005,2006,2010 гг., Новосибирск 2007 г., Нижний Новгород 2012 г.), Международной научной конференции «Тонкие пленки и наноструктуры» (Москва, 2005 г.), XIII конференции «Высокочистые вещества и материалы. Получение, анализ, применение» (Нижний Новгород, 2007 г., 2015 г.); Международной научной конференции «75 лет высшему образованию в Удмуртии», Ижевск, 2006; Евразийском симпозиуме по магнетизму (Казань 2007 г.); Российской конференции по физике полупроводников (2007,2009,2011,2013,2015 гг.), 14-м Евразийском симпозиуме по магнетизму EASTMAG (Екатеринбург, 2010 г.), Московском международном симпозиуме по магнетизму MISM (Москва 2011, 2014), II международной конференции по современным проблемам физики поверхности и наноструктур (Ярославль 2012), 5-й международной школеконференции по спинтронике и технологиям квантовых вычислений Spintech (Краков, Польша 2009 г.), 31-й международной конференции по физике полупроводников ICPS-12 (Цюрих, Швейцария, 2012 г.), 18-м российском симпозиуме по растровой электронной микроскопии и твёрдых тел (РЭМ-2013, г. аналитическим методам исследования Черноголовка). международной конференции «Физика, химия и применение наноструктур» Nanomeeting-2013 (Минск, Беларусь, 2013, 2015 г.), 15-м Европейском симпозиуме по газофазной эпитаксии EWMOVPE (Аахен, Германия, 2013 г.); 12 международной конференции-школы: Материалы нано-, микро-, оптоэлектроники и волоконной оптики, физические свойства и применение

(Саранск, 2013); Международной конференции «Спиновая физика, химия и технология» SPCT-2015 (С. Петербург, 2015 г.), ряде других молодёжных конференций, а также на семинарах физического факультета и НИФТИ ННГУ им. Н.И. Лобачевского.

Публикации.

По материалам диссертации опубликовано более 100 научных работ, включая 32 статьи, входящие в перечень ВАК, 2 учебно-методических пособия.

Личный вклад автора.

Автором внесён определяющий вклад в получение основных экспериментальных результатов и доработку методики исследования циркулярной поляризации применительно к электролюминесценции и фотолюминесценции гетероструктур InGaAs/GaAs. Также автор принимал участие в постановке, обсуждении и анализе всех экспериментов, которые не были выполнены лично им. Планирование экспериментов, обсуждение и анализ результатов проводились совместно с к.ф.-м.н., в.н.с. НИФТИ Ю.А. Даниловым и д.ф.-м.н., проф. Д.А. Павловым. Постановка ряда экспериментов и обсуждение результатов проведены со с.н.с. НИФТИ ННГУ, к.ф.-м.н. Е.А. Усковой, н.с. НИФТИ ННГУ к.ф.-м.н. А.В. Здоровейщевым (исследование диодов Шоттки), с зав.лаб. ЛНЭП ИФТТ РАН д.ф.-м.н. В.Д. Кулаковским (исследования циркулярной поляризации).

Исследования фото- и электролюминесценции, а также часть исследований циркулярнополяризованной люминесценции проведены автором самостоятельно. Часть экспериментов по исследованию циркулярно-поляризованной электролюминесценции, выполненных в НИФТИ ННГУ, произведена совместно с м.н.с. НИФТИ П.Б. Дёминой (исследования диодов Шоттки ферромагнитный металл/GaAs), м.н.с. НИФТИ Е.И. Малышевой (исследование диодов с инжектором, выполненным в виде (A³,Mn)B⁵, а также диодов с б<Mn>-легированным слоем), измерения циркулярной поляризации электролюминесценции структур, помещённых в сильное магнитное поле, проведены автором в Институте физики твёрдого тела РАН (г. Черноголовка) совместно с сотрудниками Лаборатории нелинейных электронных процессов к.ф.-м.н. С.В. Зайцевым, к.ф.-м.н. А.С. Бричкиным, к.ф.-м.н. А.В. Черненко, а также совместно со с.н.с. НИФТИ, к.ф.-м.н. Н.В. Байдусем. Исследования циркулярно-поляризованной люминесценции в Лаборатории Оптических свойств твёрдых тел IFGW выполнены совместно с Ю.А. Даниловым и профессором Университета г. Кампинос Ф. Икава (F. Iikawa).

Анализ экспериментальных результатов и разработка теоретических моделей выполнены автором самостоятельно, а также совместно с П.Б. Дёминой (описание механизмов инжекции неосновных носителей в диодах Шоттки), Е.И. Малышевой (анализ и описание циркулярной поляризации в структурах InGaAs/GaAs с б<Мп>-слоем), м.н.с. И.Л. Калентьевой (анализ

ферромагнитных свойств и моделирование прыжковой проводимости в структурах GaAs с δ<Mn>-слоем).

Ферромагнитные свойства структур, а также аномальный эффект Холла исследованы н.с., к.ф.-м.н. А.В. Кудриным. Исследования кристаллической структуры и фазового состава выполнены в группе проф. Д.А. Павлова (асп. А.И. Бобров, асп. Н.В. Малехонова, студ. Ю.В. Усов). Исследования электронографии на отражение выполнены к.ф.-м.н. Е.А. Питиримовой. Исследования профилей концентрации в структурах ФМ металл/полупроводник выполнены сотрудником ФТИ УрО РАН Ф.З. Гильмутдиновым. Исследования фазового состава методом РФЭС выполнены доц. Физич. ф-та ННГУ, к.ф.-м.н. Д.Е. Николичевым, асп. Р.Н. Крюковым и м.н.с. НОЦ ФТНС С.Ю. Зубковым.

Светоизлучающие структуры изготовлены при участии автора в группе эпитаксиальной технологии НИФТИ ННГУ вед.н.с., к.ф-м.н. Б.Н. Звонковым (выращивание структур), м.н.с. П.Б. Дёминой и с.н.с., к.ф.-м.н. А.В. Здоровейщевым (нанесение металлических и диэлектрических плёнок).

Структура и объём диссертации.

Диссертация состоит из введения, литературного обзора, четырёх оригинальных глав, списка литературы и двух приложений. Общий объём диссертации составляет 454 страницы, включая 155 рисунков и 27 таблиц. Объём приложений составляет 5 страниц. Список цитируемой литературы содержит 405 наименований.

Основное содержание работы

<u>Во введении</u> обоснована актуальность темы, сформулированы цель работы, основные задачи, научная новизна, практическая значимость и основные положения, выносимые на защиту.

В первой главе выполнен литературный обзор по физическим принципам генерации и детектирования спин-поляризованных В гибридных носителей гетероструктурах ферромагнетик/полупроводник. Наибольшее внимание уделено эффектам спиновой инжекции и спиновой поляризации в результате обменного взаимодействия. Эффект спиновой инжекции заключается в инжекции спин-поляризованных носителей в неферромагнитный полупроводник из намагниченного ферромагнитного (ФМ) электрода [1]. Эффект обменного взаимодействия носителей в полупроводнике с близкорасположенным ФМ слоем обусловливает равновесную спиновую поляризацию [2]. Для экспериментального исследования указанных эффектов предложено формирование спинового светоизлучающего диода (ССИД) – одного из базовых элементов спинтроники. Спиновые светоизлучающие диоды построены на гетероструктурах ферромагнетик/полупроводник, ферромагнитный слой используется для создания спиновой поляризации носителей в неферромагнитной активной области. Степень спиновой поляризации

рассчитывается по степени циркулярной поляризации рекомбинационного излучения, которое генерирует ССИД [1].

Классификация ССИД выполняется по виду структуры ферромагнетик/полупроводник, которая и обусловливает конкретный механизм спиновой поляризации носителей в активной области. Наибольшее распространение получили 4 вида структур:

1) Структуры ферромагнитный металл/полупроводник или ферромагнитный металл/туннельнотонкий диэлектрик/полупроводник. Такие приборы работают на основе эффекта инжекции спин-поляризованных носителей из ФМ металла в полупроводник [1,3].

2) Структуры полуметалл MnB⁵(MnA³)/полупроводник, для которых характерны подобные первому случаю принципы спиновой инжекции [4].

3) Структуры на основе разбавленных магнитных полупроводников (РМП) (A^3 ,Mn) B^5/A^3B^5 . Слои (A^3 ,Mn) B^5 играют роль областей *p*-типа проводимости в светоизлучающих *p-i-n* диодах и диодах с туннельным барьером [5].

4) Структуры ферромагнетик/полупроводник, функционирующие на основе эффекта обменного взаимодействия. В этом случае активная область ССИД расположена на небольшом (1-10 нм) удалении от ферромагнитного слоя [6].

В заключительной части главы изложены основные методы получения гетероструктур ферромагнетик/полупроводник.

<u>Во второй главе</u> описаны применённые в работе методы формирования спиновых светоизлучающих диодов, а также рассмотрены кристаллическая структура и фазовый состав гетерограниц ферромагнетик/полупроводник для всех видов исследованных диодов. Для формирования структур использовалась оригинальная технология, представляющая собой комбинацию методов МОС-гидридной эпитаксии и импульсного лазерного осаждения в одном технологическом цикле. Были сформированы гетероструктуры, для которых ранее была показана возможность инжекции спин-поляризованных носителей из ферромагнитного слоя в неферромагнитный полупроводник:

1) структуры разбавленный магнитный полупроводник (А³,Мn)В⁵/GaAs;

2) структуры ферромагнитный металл/полупроводник;

3) ферромагнитные полупроводниковые гетероструктуры $\delta < Mn > /GaAs / InGaAs$.

При формировании диодов на основе РМП и б<Мп>-легированных слоёв светоизлучающая полупроводниковая структура ССИД выращивается методом МОСГЭ при атмосферном давлении водорода, а ферромагнитные слои – в том же технологическом цикле в реакторе для МОСГЭ методом импульсного лазерного осаждения при пониженном давлении. Использование такого подхода связано с необходимостью снижения ростовой температуры до 350-450 °C, чего невозможно достичь методом МОСГЭ (для которого минимальное значение

~ 500 °C соответствует температуре разложения металл-органических соединений). Снижение температуры осаждения позволяет повысить однородность слоёв структуры и резкость гетерограниц, что является существенным фактором для наблюдения спин-зависимых эффектов. При формировании диодов с контактом ФМ метал/полупроводник светоизлучающая полупроводниковая структура ССИД выращивалась методом МОСГЭ, а ферромагнитный металлический электрод осаждался методом электронно-лучевого испарения в комбинированной вакуумной установке (при этом в технологический процесс вводился этап межоперационного хранения).

Во втором разделе второй главы приведены результаты исследований кристаллической структуры и фазового состава границы раздела ферромагнетик/полупроводник. Показано, что при осаждении ферромагнитного слоя в приповерхностную область полупроводниковой структуры вносятся дефекты различной природы. Основными видами дефектов являются нарушения кристаллической структуры, а также примесные атомы ферромагнетика, проникающие в полупроводниковую структуру в результате диффузии.

Особенностью формирования металлического инжектора является прерывание технологического процесса, связанное с перемещением образцов между ростовыми установками после выращивания полупроводниковой структуры ССИД. Это приводит к частично разупорядоченную поверхность, осаждению металла на окисленную, что обусловливает комплекс эффектов, связанных с диффузией атомов ФМ металла в область полупроводника. Профили концентрации элементов в области границы Co/GaAs, полученные методом рентгеновской фотоэлектронной спектроскопии, представлены на рисунке 1.

Рисунок 1 – Профили распределения элементов в структуре Co/GaAs, полученные методом РФЭС. На вставке показаны профили концентрации Со в GaAs при введении промежуточного слоя Al₂O₃ и без него

По данным исследований имеет место диффузия атомов Со в GaAs на глубину до 30 нм (т.е. близко к положению активной области ССИД). Предположительно, диффузия атомов переходного металла сопровождается взаимодействием с атомами Ga и As и образованием интерметаллических соединений, являюшихся центрами безызлучательной рекомбинации. Формирование промежуточного защитного слоя между ФМ металлом и полупроводником позволяет частично предотвратить эффекты,

связанные с диффузией атомов металла. В качестве такого слоя может выступать тонкая плёнка Au или слой диэлектрика Al₂O₃ (замедление диффузии показано на вставке к рисунку 1).

Для другого исследованного вида инжектора - разбавленного магнитного полупроводника выявлены особенности формирования слоёв, связанные с применением метода импульсного лазерного осаждения. К таким особенностям относятся сравнительно большой размер частиц, осаждаемых на подложку, а также высокие температуры формирования слоёв (по сравнению с альтернативным методом МЛЭ). Указанные особенности проявляются:

Рисунок 2 - Изображение поперечного среза (Ga,Mn)As/GaAs/InGaAs, полученное в режиме сканирующего просвечивающего электронного микроскопа Отмеченные области соответствуют: (1) – КЯ InGaAs, (2) матрице (Ga,Mn)As; (3) кластерам (Ga)MnAs.

в формировании многофазных слоёв,
 содержащих соединения MnGa или MnAs в матрице (A³,Mn)B⁵ (для системы (Ga,Mn)As/GaAs такая картина показана на рисунке 2). Избежать формирования кластеров возможно при создании ΦМ слоя путём δ<Mn>-легирования GaAs;

в диффузионном «размывании» профилей
 концентрации, приводящем к переносу
 части атомов Mn к активной области
 светоизлучающей структуры.

В заключении отмечено, что с применением метода МОС-гидридной эпитаксии в комбинации с импульсным лазерным осаждением в потоке водорода

могут быть сформированы наиболее распространённые виды спиновых светодиодов на основе GaAs.

<u>В третьей главе</u> приводятся результаты исследований циркулярно-поляризованной электролюминесценции (ЭЛ) спиновых светоизлучающих диодов на основе гетероструктур InGaAs/GaAs с инжектором ферромагнитный металл/GaAs или ФМ металл/туннельно-тонкий диэлектрик/GaAs (рисунок 3). Свойства таких диодов наиболее близки к диодам Шоттки, именно этим термином структуры обозначены в работе. Отличием исследованных структур от известных аналогов спиновых светоизлучающих диодов является использование режима прямого смещения диода Шоттки (схема включения показана на рисунке 3). В указанном режиме смещения и при введении диодов во внешнее магнитное поле получено частично циркулярно-поляризованное излучение, т.е. интенсивность компоненты ЭЛ с σ + поляризацией превышает интенсивность компоненты с σ - поляризацией (рисунок 4). Расщепление линии, связанной с переходами в КЯ, обусловлено квантованием энергии в магнитном поле и образованием уровней Ландау [7].

Рисунок 3 – Схематическое изображение диодов ФМ металл/GaAs с полярностями напряжения в режиме ЭЛ для структур на подложке *n*-GaAs (*p*-GaAs).

Рисунок 4 - Спектры ЭЛ для σ^+ и σ^- поляризаций излучения (ток диода 5 мА) с контактом Шоттки Au/Co/Au и KЯ в магнитном поле B=5 Тл, T=1,5 К.

Количественной характеристикой циркулярно-поляризованной люминесценции является величина, называемая степень циркулярной поляризации, и определяемая соотношением:

$$P_{\Im,\Lambda,\Phi,\Pi} = \frac{I(\sigma^+) - I(\sigma^-)}{I_{\Im,\Lambda,\Phi,\Pi}},\tag{1}$$

где $P_{\Im \Pi}$ – степень циркулярной поляризации ЭЛ, $P_{\Phi \Pi}$ – степень циркулярной поляризации фотолюминесценции (ФЛ), $I_{\Im \Pi, \Phi \Pi} = I(\sigma^+) + I(\sigma^-)$ - суммарная интенсивность электро, - фотолюминесценции; $I(\sigma^+)(I(\sigma^-))$ интенсивности ЭЛ или ФЛ, записанные в $\sigma^+(\sigma^-)$ поляризациях.

Зависимость степени поляризации ЭЛ от магнитного поля для диодов Шоттки CoPt/Al₂O₃/*n*-GaAs/InGaAs/GaAs и CoPt/Al₂O₃/*p*-GaAs/InGaAs/GaAs представлена на рисунке 5.

Рисунок 5 — Магнитополевая зависимость $P_{\Im Л}$ для структур CoPt/Al₂O₃/*n*-GaAs и CoPt/Al₂O₃/*p*-GaAs, а также для контрольной структуры Au/*n*-GaAs.

Зависимость является нелинейной с петлёй гистерезиса. Вид кривых характерен для магнитополевых зависимостей намагниченности ферромагнитного CoPt слоя [8], максимальное значение Рэл получено при насыщении намагниченности ферромагнетика. Для контрольной структуры, не содержащей ФМ слоя. полученное значение РЭл намного ниже, чем для спиновых светоизлучающих диодов (рисунок 5, кривая Au/n-GaAs). Данные, представленные на рисунке 5, подтверждают однозначную связь

полученной в эксперименте циркулярной поляризации ЭЛ с магнитными свойствами

инжектора. Для слоёв CoPt ось лёгкого намагничивания лежит в направлении, перпендикулярном плоскости контакта, что обусловливает насыщение намагниченности и $P_{\Im Л}$ в сравнительно небольшом поле ~ 70-100 мТл (рисунок 5). Для слоёв Со, Ni ось лёгкого намагничивания перпендикулярна направлению магнитного поля, и для насыщения намагниченности и $P_{\Im Л}$ требуется приложение поля ~ 2 Тл.

Показано, что в число физических явлений, обусловливающих спиновую поляризацию носителей и циркулярную поляризацию ЭЛ, входят:

1) Зеемановское расщепление уровней электронов и дырок в квантовой яме при введении структур во внешнее магнитное поле [9]. Зеемановское расщепление обусловливает циркулярную поляризацию ЭЛ контрольной структуры.

2) Эффект спиновой аккумуляции основных носителей в прямосмещённом барьере Шоттки ФМ металл/GaAs. Эффект связан с накоплением носителей спин-поляризованных носителей в приповерхностной области полупроводника за счёт спин-зависимого сопротивления металлического контакта [10].

3) Спиновая инжекция неосновных носителей в прямосмещённом барьере Шоттки ферромагнитный металл/*n*-GaAs [1]. Эффекты спиновой инжекции и аккумуляции связаны с введением и намагничиванием ферромагнитного контакта в исследованных структурах, они обусловливают сравнительно высокое (до 0,3) значение степени поляризации ЭЛ в исследованных диодах Шоттки.

В грубом приближении можно записать для степени циркулярной поляризации:

$$P_{\Im \Pi} = P_{\Im \Pi}{}^{o} + P_{\Im \Pi}{}^{n} + P_{\Im \Pi}{}^{z}, \tag{2}$$

где $P_{\Im \Pi}^{o}$ – компонента степени циркулярной поляризации, связанная со спиновой аккумуляцией основных носителей; $P_{\Im \Pi}^{n}$ – компонента поляризации, связанная со спиновой инжекцией неосновных носителей; $P_{\Im \Pi}^{z}$ – компонента поляризации, связанная с Зеемановским расщеплением уровней.

Выделение вклада $P_{\Im \Pi}{}^{z}$ в выражении (2) выполняется путём сопоставления значений $P_{\Im \Pi}$ для контрольной структуры (для которой $P_{\Im \Pi} = P_{\Im \Pi}{}^{z}$). Разделение $P_{\Im \Pi}{}^{o}$ и $P_{\Im \Pi}{}^{n}$ выполняется путём измерений циркулярной поляризации в структурах, отличающихся расстоянием от активной области до ФМ инжектора (*d*_C). Такое исследование было выполнено для структур с контактом Co/Al₂O₃/GaAs/InGaAs/*n*-GaAs и AuCoAu/GaAs/InGaAs/*n*-GaAs. Для диодов на основе *n*-GaAs основными носителями заряда являются электроны, неосновными – дырки, т.е. реализуется ситуация спиновой аккумуляции электронов ($P_{\Im \Pi}{}^{o} = P_{\Im \Pi}{}^{e}$) и спиновой инжекции дырок ($P_{\Im \Pi}{}^{n} = P_{\Im \Pi}{}^{h}$).

На рисунке 6 представлены зависимости степени поляризации ЭЛ от величины $d_{\rm C}$ для диодов, помещённых в магнитное поле различной величины. Согласно теории [1,11] степень поляризации максимальна на границе металла и полупроводника, а по мере удаления вглубь структуры $P_{\rm ЭЛ}$ убывает по закону:

$$P_{\Im \Pi}^{e(h)} = P_0 \exp\left(\frac{-d_c}{\lambda_{Ne(h)}}\right),\tag{3}$$

величина λ_{Ne} играет роль характерной длины спиновой диффузии электронов, λ_{Nh} – длина спиновой диффузии дырок, P_0 – циркулярная поляризация на границе ферромагнетика и полупроводника (при $d_c=0$). Для структуры с трёхслойным контактом AuCoAu/*n*-GaAs, помещённой в магнитное поле ~ 0,3 Тл, величина $P_{\Im J}$ слабо зависит от толщины покровного слоя (рисунок 6, кривая 1), при этом значение степени поляризации выше, чем для контрольной структуры (для последней $P_{\Im J}\approx0,0005$). Слабое изменение степени поляризации на масштабе ~100 нм характерно для спин-поляризованных электронов (т.к. λ_{Ne} ~6 мкм в GaAs [12]).

Рисунок 6 – Зависимость $P_{\Im \Pi}$ от толщины покровного слоя в структурах (1) AuCoAu/*n*-GaAs B=0,3Tл, T=2K; (2) – та же структура, B=2,5Tл, T=2K; (3) – структура Co/Al₂O₃/GaAs, B=0,3Tл, T=10K. Величина $P_{\Im \Pi}$ построена за вычетом значения, связанного с Зеемановским расщеплением уровней

Поэтому циркулярную поляризацию ЭЛ $P_{\Im \Pi} \sim 0,003$ в магнитном поле 300 мТл можно связать со спиновой аккумуляцией электронов в структуре с контактом AuCoAu/n-GaAs. При этом компонента поляризации, связанная со спиновой инжекцией дырок, пренебрежимо т.е. спиновая инжекция мала. дырок отсутствует. Для большего значения магнитного поля (2,5 Тл) и той же структуры показано, что значение Рэл с ростом dc уменьшается (рисунок 6, кривая 2). Изменение вида зависимости $P_{\Im \Pi}(d_{\rm C})$ относительно случая 0,3 Тл мы связываем с внесением вклада спиновой инжекции дырок (*P*_{ЭЛ}^{*n*} в формуле (2))В значение степени циркулярной поляризации. Увеличение вклада спиновой

инжекции дырок с ростом магнитного поля может быть обусловлено подавлением механизмов спиновой релаксации [13].

Для диода с контактом Co/Al₂O₃/*n*-GaAs, введённого в магнитное поле 0,3 Тл, зарегистрировано монотонное уменьшение *P*_{ЭЛ} с ростом толщины покровного слоя. Величина степени циркулярной поляризации за вычетом вклада Зеемановского расщепления уровней

 $(P_{\Im\Pi} - P_{\Im\Pi}^{z})$ может быть описана функцией $e^{d_{C}/_{\lambda Nh}}$ (рисунок 6, кривая 3). Следовательно, циркулярную поляризацию ЭЛ в случае структуры Co/Al₂O₃/*n*-GaAs можно связать со спиновой инжекцией дырок. Спиновая аккумуляция электронов пренебрежимо мала, т.к. на масштабах $d_{\rm C} \sim 100$ нм значение $P_{\Im\Pi}^{n}$ уменьшается до величины ниже погрешности измерений (длина спиновой диффузии дырок, согласно [5], ~ 80 нм при 5 К), значение степени поляризации, согласно (2) определяется как $P_{\Im\Pi} - P_{\Im\Pi}^{z} = P_{\Im\Pi}^{o} \approx 0$. Полученный результат согласуется с результатами измерений вольтамперных характеристик и электролюминесценции, согласно которым доминирующим механизмом протекания тока в диодах Co/Al₂O₃/*n*-GaAs является рекомбинационный. В этом случае большая часть основных носителей рекомбинирует в активной области и не переносится к ферромагнитному электроду. Для структур AuCoAu/*n*-GaAs, напротив, доля рекомбинационного тока сравнительно невелика, поэтом большая часть основных носителей переносится к ФМ контакту, в результате чего осуществляется спиновая поляризация за счёт эффекта спиновой аккумуляции.

Значение степени циркулярной поляризации в фиксированном магнитном поле зависит от вида границы раздела (Таблица 1). Наименьшие значения $P_{\Im J}$ получены для структур с контактом Co/GaAs. Введение тонкого промежуточного слоя (Au или Al₂O₃) между ФМ металлом и полупроводником позволяет повысить степень циркулярной поляризации.

Таблица 1. Максимальные значения $P_{\Im I}$			
для разных контактов			
Контакт (В)	<i>Р</i> эл(8 Тл)	$P_{\mathcal{I}}^{n}(0,1\mathrm{T}\pi)$	
Au	0,10	0	
Ni	0,30	0	
Со	0,20	0	
Au/Ni/Au	0,42	0	
Au/Co/Au	0,42	0	
CoPt/Al ₂ O ₃		0,04	
Во второй колонке приведены значения			
Рэл, обусловленные спиновой инжекцией			
неосновных носителей			

Зависимость $P_{\Im J}$ от вида контакта связывается с рассеянием спин-поляризованных носителей на дефектах в приповерхностной области GaAs вблизи границы с ФМ слоем (дефектообразование при осаждении ФМ металла было показано в главе 2). Использование промежуточного слоя Au или Al₂O₃ защищает структуру от воздействия дефектов, что снижает спиновую релаксацию на гетерогранице и, как следствие, способствует повышению эффективности спиновой инжекции и спиновой

аккумуляции. Низкое значение $P_{\Im J}$ в структурах Co/Al₂O₃/*n*-GaAs связано с отсутствием насыщения намагниченности Со контакта в использованном магнитном поле. Использование контакта CoPt позволяет изменить характер магнитной анизотропии слоя и снизить диапазон магнитных полей до ~ 100 мТл (рисунок 5).

В заключении третьей главы рассмотрен эффект прецессии спин-поляризованных носителей, инжектированных из контакта CoPt/Al₂O₃ в GaAs. Прецессия имеет место при низких температурах (10 K) в магнитном поле неоднородно намагниченного контакта CoPt и

экспериментально проявляется в осцилляциях зависимости *Р*_{ЭЛ} от толщины покровного слоя (рисунок 7).

Рисунок 7 - Зависимость $P_{\Im \Pi}$ от толщины покровного слоя диодов с контактом CoPt: 1 –на подложке *n*-GaAs; 2 –на *p*-GaAs. *T*=10 K, *B*=50 мТл. На вставке показана кривая $P_{\Im \Pi}(B)$ для $P_{\Im \Pi}<0$.

Осцилляции зарегистрированы как для случая спиновой инжекции электронов (CoPt/Al₂O₃/p-GaAs), так и для спиновой инжекции дырок (CoPt/Al₂O₃/n-GaAs). Источником магнитного поля является неоднородно намагниченный CoPt электрод. Неоднородное намагниченный соРt электрод. Неоднородное намагничивание подтверждается сопоставлением магнитополевых зависимостей $P_{3Л}$ и намагниченности. Перпендикулярная к нормали компонента поля контакта вызывает прецессию спина с частотой

$$\boldsymbol{w}_L = \frac{|\boldsymbol{g}|\boldsymbol{\mu}_B}{h} |\boldsymbol{B}_{\boldsymbol{F}\boldsymbol{M}}|, \qquad (4)$$

где g – фактор Ландэ, μ_B – магнетон Бора, h -

постоянная Планка, B_{FM} – магнитное поле контакта. За время дрейфа изменяется направление спина и на расстоянии *l* от границы Al₂O₃/GaAs равном

$$l(\pi) = v_d t(\pi) = v_d \frac{\pi}{w_L}$$
⁽⁵⁾

направление спина носителей меняется на противоположное (здесь v_d – дрейфовая скорость). Это обусловливает изменение знака степени циркулярной поляризации на обратный для структур с $d_C \approx 60$ нм при инжекции дырок и $d_C \approx 110$ нм при инжекции электронов (рисунок 7).

<u>В четвёртой главе</u> приводятся результаты исследования спиновой инжекции в диодах, содержащих слои разбавленного магнитного полупроводника (A^3 ,Mn) B^5 (A=Ga,In; B=As,Sb). Рассмотрены две конструкции ССИД, обеспечивающие спиновую инжекцию дырок и электронов: *p-i-n* диод, содержащий слой (A^3 ,Mn) B^5 в качестве полупроводника *p*-типа, и *p-n+i-p* диод с туннельный барьером на границе (A^3 ,Mn) B^5/n +GaAs (рисунок 8), соответственно. Диоды сформированы комбинированным методом МОС-гидридной эпитаксии и ИЛО, особенности метода рассмотрены в рамках описания Главы 2. Диоды (A^3 ,Mn) B^5/i -GaAs/InGaAs/*n*-GaAs представляют собой структуры с *p-n* переходом (рисунок 8, слева). В режиме прямого электрического смещения (положительный потенциал на (A^3 ,Mn) B^5 по отношению к базе *n*-GaAs) из разбавленного магнитного полупроводника в активную область инжектируются спин-поляризованные дырки.

Рисунок 8 - Схема диодов, содержащих слои РМП (Ga,Mn)As (10-90 нм), (Ga,Mn)Sb (10-50 нм), (In,Mn)As (10-90 нм). Слева – диод *p-i-n*, справа – диод с туннельным слоем.

В результате рекомбинации с неполяризованными электронами, инжектированными из подложки *n*-GaAs, генерируется циркулярнополяризованное ЭЛ излучение. Магнитополевая зависимость степени поляризации для диодов (Ga,Mn)As/i-GaAs/InGaAs/n-GaAs представлена на рисунке 9.

Зависимость является нелинейной функцией магнитного поля: видно

быстрое увеличение $P_{\exists J}$ с ростом *B* от 0 до 100 мТл и медленное изменение $P_{\exists J}$ при *B*>100 мТл. низких температурах подобен магнитополевым Вид кривых при зависимостям намагниченности (Ga,Mn)As [14]. Такое подобие является косвенным подтверждением спиновой инжекции в спиновых светоизлучающих диодах. Эффект спиновой аккумуляции в структурах отсутствует ($P_{\exists n}^{o} = 0$, формула 2), т.к. в *p-i-n* диодах доминирующим механизмом токопереноса является протекание рекомбинационного тока, подтверждается что исследованиями ВАХ.

Рисунок 9 - Магнитополевые зависимости $P_{\Im Л}$, измеренные для структуры (Ga,Mn)As/*i*-GaAs/*n*-GaAs T=10-30 K, ток диода 2 мА.

Точка перегиба на зависимости Рэл(В) соответствует насыщению намагниченности (Ga,Mn)As, а увеличение *Р*Эл при *В*>100 мТл связано с Зеемановским расщеплением уровней $(P_{\exists \pi}^{z})$ формула 2). С повышением температуры выше 30 К вид зависимости $P_{\Im \Pi}(B)$ изменяется: уменьшается степень циркулярной поляризации и исчезает участок быстрого роста Рэл в низком магнитном поле (т.е. зависимость $P_{\ni \Pi}(B)$ при *Т*>30 К может быть описана линейной функцией). Значение Т=30К

оценивается как температура Кюри ферромагнитного (Ga,Mn)As, что согласуется с результатами магнитотранспортных исследований [14].

Значение $P_{\Im\Pi}$ в структурах (A³,Mn)B⁵/*i*-GaAs/InGaAs/*n*-GaAs существенно зависит от вида границы раздела между слоем РМП и GaAs. В Таблице 2 приведено сравнение

полученных значений степени циркулярной поляризации ЭЛ для структур, отличающихся видом ферромагнитного инжектора ((Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb), но с одинаковыми значениями расстояния от активной области до ФМ инжектора (толщина спейсерного слоя – d_s =30 нм).

Таблица 2	– Наибольшие		
полученные	значения РЭл		
структур с р	различным ФМ		
слоем (Т=10 К, В=250 мТл)			
ФМ слой	$P_{\Im\Pi}$ (max)		
(Ga,Mn)As	0,018		
(Ga,Mn)Sb	0,008		
(In,Mn)As	0		

На основании данных Таблицы 2 видно снижение степени циркулярной поляризации при использовании контактов (Ga,Mn)Sb/GaAs и (In,Mn)As/GaAs (здесь *Р*Эл уменьшается до нуля) по сравнению с (Ga,Mn)As/*n*-GaAs. Подобное изменение связывается со вкладом рассеяния спинполяризованных носителей при инжекции через

гетерограницу $(A^3,Mn)B^5/i$ -GaAs, содержащую дефекты кристаллической структуры и примесные атомы Mn. Наибольшая однородность характерна для контакта (Ga,Mn)As/GaAs, что было показано в главе 2. Для структуры (Ga,Mn)Sb/GaAs зарегистрированы неоднородности и нарушения кристаллической структуры на гетерогранице [15], что, по нашему мнению, обусловливает снижение степени циркулярной поляризации ЭЛ при тех же параметрах образцов. В случае контакта (In,Mn)As/GaAs концентрация дефектов на гетерогранице ещё выше, чем для (Ga,Mn)Sb/GaAs, а значение степени поляризации для диода (In,Mn)As/GaAs снижается до нуля (Tаблица 2).

В втором разделе работы рассмотрены поляризационные характеристики люминесценции структур с туннельным слоем (схема показана на рисунке 8 справа). Указанные структуры работают в режиме туннельного барьера: При приложении электрического смещения как показано на рисунке 8 (справа) имеет место туннелирование связанных валентных электронов из слоя $(A^3, Mn)B^5$ в зону проводимости *n*-GaAs. Наличие туннельного тока может быть проиллюстрировано вольтамперными характеристиками, которые для структур (Ga,Mn)As/n+GaAs показаны на рисунке 10. Эквивалентная электрическая схема структур представляет собой два *p-n* перехода, включённых навстречу друг другу. Резкое увеличение тока при отрицательном напряжении (на (Ga,Mn)As подаётся отрицательный относительно базы потенциал) связано с туннелированием электронов из валентной зоны разбавленного магнитного полупроводника. Инжектированные из РМП электроны поляризованы по спину. Это обусловливает циркулярную поляризацию ЭЛ излучения, которое генерируется при рекомбинации этих электронов с дырками, инжектированными из подложки p-GaAs.

Рисунок 10 - ВАХ диода с туннельным слоем (Ga,Mn)As/n+GaAs, измеренные при разных температурах. На вставке показана кривая $P_{ЭЛ}(B)$ диода (10 K).

Зависимость $P_{\Im I}(B)$ (вставка к рисунку 10) при низких температурах подобна случаю p-i-n диода (Ga,Mn)As/*i*-GaAs/InGaAs/n-GaAs (рисунок 9) и также определяется магнитными свойствами $(A^3,Mn)B^5$ инжектора. Значение степени циркулярной поляризации В области насыщения намагниченности (при В=100 мТл) зависит от параметров структуры, а именно, от толщины туннельного слоя показано рисунке $(d_{tun}),$ как на 11. Подобный вил зависимости с

максимумом при $d_{tun}=15$ нм связывается с особенностями зонной диаграммы.

Рисунок 11 - Зависимость *Р*Эл (*d*tun), для структур (Ga,Mn)As/*n*+GaAs, *T*=10 К, ток 10 мА, *B*=250 мТл.

Для с небольшой толщиной структур туннельного слоя диаграмма имеет вид, показанный на рисунке 12а. В этом случае характерна независимая от температуры инжекция спин-поляризованных электронов туннелирование из валентной зоны (Ga,Mn)As. Эффективность спиновой инжекции определяется расщеплением зоны для носителей с разным спином в (Ga,Mn)As (такой вывод согласуется с работами по исследованию аналогичных структур,

например [16]). Для структур с $d_{tun.}$ > 12 нм значительную роль играют процессы термической активации электронов для преодоления барьера n++/n перехода (рисунок 12б). Поскольку энергии связанных электронов с «основным» и «неосновым» спином в (Ga,Mn)As различаются [16], вероятности надбарьерной эмиссии электронов с «основным» и «неосновным» и «неосновным» спином также будут различаться. Это вносит дополнительный вклад в спиновую поляризацию тока и, таким образом, приводит к повышению $P_{ЭЛ}$. Аналогичный механизм усиления степени поляризации ЭЛ был рассмотрен для структур с туннельным барьером (Ga,Mn)As/GaAs/AlGaAs [16,17]. Вклад такого механизма нивелируется при повышении температуры измерений, однако резкое уменьшение $P_{ЭЛ}$, связанное с достижением точки Кюри, не позволяет провести подобное наблюдение. Повышение толщины туннельного слоя выше 15 нм не приводит к изменению высоты барьера на границе n++/n (это согласуется с данными BAX). Зарегистрированное в

эксперименте уменьшение $P_{\Im\Pi}$ при $d_{tun}>15$ нм связано с повышением спинового рассеяния электронов при переносе в n++-GaAs слое большей толщины.

Рисунок 12 - Изображение зонной диаграммы туннельного диода в магнитном поле и при подаче прямого смещения: (а) толщина d_{tun} меньше области обеднения; (б) d_{tun} больше области обеднения. Стрелками обозначены токи спин-поляризованных носителей.

Зависимость степени поляризации от кристаллического совершенства гетерограниц для структур с туннельным слоем выражена гораздо слабее, по сравнению со случаем *p-i-n* диодов. Так, значение $P_{\Im \Lambda}$ при насыщении намагниченности (Ga,Mn)Sb для структур с контактом (Ga,Mn)Sb/*n*+-GaAs/n-GaAs/InGaAs/*p*-GaAs сопоставимо с таковым для диодов с (Ga,Mn)As инжектором с подобными параметрами полупроводниковой структуры ($P_{\Im \Lambda}$ =0,006).

На рисунке 13 показаны магнитополевые зависимости степени циркулярной поляризации ЭЛ диода на основе структуры (Ga,Mn)Sb/n+GaAs с туннельным слоем, измеренные при температуре 10 К (1) и 300 К (2).

Рисунок 13 - Зависимости $P_{\Im \Pi}(B)$ для диода (Ga,Mn)Sb/n+GaAs , T=10 К (1 - квадраты) и 300 К (2 – круги), ток 5 мА; 3 - зависимость намагниченности от магнитного поля для слоя (Ga,Mn)Sb толщиной 30 нм

Зависимость $P_{\ni \pi}(B)$ для T=300 К подобна магнитополевой зависимости намагниченности. Сохранение магнитных свойств (Ga,Mn)Sb до 300 К, показанное ранее в [15], обеспечивает регистрацию циркулярно-поляризованной

люминесценции при комнатной температуре, что является рекордом для разбавленных магнитных полупроводников.

Ферромагнетизм слоёв при 300 К связан с формированием двухфазной системы, содержащей кластеры MnGa, именно MnGa и сохраняет магнитные свойства при 300 К. Некоторое снижение РЭЛ с ростом температуры от 10 до 300 К связывается со уменьшением длины спиновой диффузии [1].

В пятой главе представлены результаты исследований спиновых светоизлучающих диодов на основе гетероструктур InGaAs/GaAs, содержащих $\delta < Mn >$ -слой в матрице GaAs (рисунок 14).

В работе исследованы серии структур с варьированием содержания Mn Q_{Mn} (0,1-0,3 монослоя, один монослой соответствует поверхностной концентрации равной 6,3×10¹⁴ см-²), толщины спейсерного слоя между б<Мn> и квантовой ямой (d_s), толщины покровного слоя GaAs ($d_{\rm C}$), концентрации дырок в структуре за счёт введения дополнительных легированных слоёв (например, *б*<*C*>-слоя перед КЯ).

С точки зрения электрической схемы

Рисунок 14 Схема исследованных ССИД с δ<Мп>-слоем в режиме ЭЛ.

показанные на рисунке 14 структуры представляют собой промежуточный случай между диодами Шоттки и *p-i-n* диодами. Введение акцепторного δ<Mn>-легированного слоя в приповерхностную область вносит изменения в зонную диаграмму диода Шоттки Au/n-GaAs. В результате происходит уменьшение потенциального барьера для неосновных носителей в диодах с $\delta < Mn >$ -легированием [18]. Это проявляется в существенном повышении интенсивности электролюминесценции диодов с δ<Мn>-слоем по сравнению с диодами без δ-легирования (на 2 порядка). При одинаковых условиях возбуждения интенсивность ЭЛ сопоставима с таковой для *p-i-n* диодов [18].

Для структур б<Mn>/GaAs/InGaAs исследованы магнитополевые зависимости степени циркулярной поляризации фото- и электролюминесценции (рисунок 15). Зависимости, представленные на рисунке 15, подобны магнитополевым зависимостям Рэл(В), полученным для диодов с инжектором (Ga,Mn)As (рисунок 9). Вид кривых определяется магнитными свойствами (Ga,Mn)As. Зависимость степени поляризации от магнитного поля может быть приблизительно представлена как сумма двух слагаемых:

$$P_{\Im \Pi} = P_{\Im \Pi}^{FM} + P_{\Im \Pi}^{z}, \tag{6}$$

где $P_{\exists J}^{FM}$ – компонента степени циркулярной поляризации, связанная с ферромагнитными свойствами δ<Mn>-слоя. Величина $P_{\exists \Pi}^{FM}$ насыщается в магнитном поле ~ 100 мTл, соответствующем насыщению намагниченности δ<Mn> [18]. Величина $P_{ЭЛ}^{z}$ – компонента, связанная с Зеемановским расщеплением уровней, данная компонента обусловливает сравнительно слабое увеличение степени поляризации с ростом поля при В>100 мТл. В отличие

от случая диодов с однородно-легированным слоем (Ga,Mn)As, для структур с δ <Mn>легированием значения степени циркулярной поляризации фото- и электролюминесценции совпадают, т.е. $P_{\Im J}=P_{\Phi J}$ во всём исследованном диапазоне магнитных полей (рисунок 15). Подобная закономерность была получена для большого набора образцов из серии исследованных структур (на рисунке 15 показана типовая зависимость). Согласно критерию, предложенному в [19], совпадение степени циркулярной поляризации для ΦJ и $\Im J$ является свидетельством отсутствия инжекции спин-поляризованных носителей из ферромагнитного контакта в активную область структуры. При этом значения степени $P_{\Im J}$ и $P_{\Phi J}$ в несколько раз превышают таковые для контрольных структур (рисунок 15, без Mn).

Рисунок 15 - Зависимости степени поляризации от магнитного поля для ФЛ (точки) и ЭЛ (линии) структур InGaAs/GaAs/δ<Mn>, и ЭЛ контрольной структуры (без Mn). *T*= 10 К, ток диода 5 мА/мощность накачки ФЛ 6 мВт

Последнее свидетельствует о влиянии б<Мn>слоя на спиновую поляризацию носителей в КЯ. Механизмом, обусловливающим такое влияние, и рассмотренным ранее в литературе, является равновесная поляризации дырок в квантовой яме В результате ИХ взаимодействия с магнитными ионами Mn в δ-слое [18,20]. Взаимодействие с ионами Мп приводит к спиновой поляризации дырок, инжектированных в квантовую яму в режиме ЭЛ или ФЛ.

Важным следствием отсутствия спиновой инжекции в структурах δ<Mn>/GaAs/InGaAs является прямая связь регистрируемой в

эксперименте циркулярной поляризации и намагниченности $\delta < Mn >$ -слоя. В структурах со спиновой инжекцией степень циркулярной поляризации определяется соотношением (3) $P_{\Im J} = P_0 exp\left(-\frac{d_c}{\lambda_{Nh}}\right)$ и зависит от двух параметров: $P_0 = P_0(B,T)$ и $\lambda_{Nh} = \lambda_{Nh}(B,T)$, являющихся функциями температуры измерений и внешнего магнитного поля [21,22]. Таким образом, прямое сопоставление намагниченности и $P_{\Im J}$ невозможно. Для структур $\delta < Mn >$ /GaAs/InGaAs прямая связь намагниченности (*M*) ФМ слоя и степени циркулярной поляризации ($P_{\Im J}$) подтверждается подобием магнитополевых зависимостей степени поляризации и относительной намагниченности, определённой из измерений аномального эффекта Холла (рисунок 16). Исследование зависимости $P_{\Im J}(T)$ диодов, введённых в магнитное поле 100 мТл, позволяет, таким образом, анализировать механизмы ферромагнитного упорядочения $\delta < Mn >$ -слоя. Согласно результатам анализа, для структур с $\delta < Mn >$ -легированием

характерен перколяционный механизм ФМ упорядочения, рассмотренный ранее для разбавленных магнитных полупроводников [23,24]. Согласно [23,24], подобный механизм характерен для (Ga,Mn)As со сравнительно низкой концентрацией дырок, что вполне соответствует исследованным структурам [25].

Рисунок 16 Магнитополевая зависимость $P_{\Im J}$ (точки) и относительной намагниченности (линия) структуры $\delta < Mn > /GaAs/InGaAs$. T=10 K, ток диода– 5 мА.

Согласно перколяционной модели, ферромагнитное состояние в материале, легированном магнитной примесью, существенно зависит от конфигурации локализованных магнитных моментов в В системе. неупорядоченном ферромагнетике случайным co распределением магнитной примеси ориентация данного магнитного момента системы определяется энергией обменного взаимодействия с ближайшими магнитными центрами, которая

экспоненциально убывает при увеличении расстояния между ними. При низкой температуре, когда энергия обменного взаимодействия выше тепловой энергии, эффективно взаимодействуют все магнитные центры и РМП находится в ферромагнитно-упорядоченном состоянии. При повышении температуры удалённые магнитные центры не взаимодействуют с остальной магнитной системой и не участвуют в упорядочении. При температуре выше точки Кюри система разбивается на не связанные между собой магнитные кластеры [26].

Для количественного описания перколяционной модели используется математическая теория протекания [26]. Применение указанной теории для исследованных структур позволяет выполнить качественную оценку температурной зависимости степени поляризации при насыщении намагниченности. При *T*=0 все спины ориентированы параллельно. Относительная намагниченность M(T)/M(0) равна вероятности того, что данный магнитный центр принадлежит упорядоченному кластеру. Эта вероятность получена в [26], в диссертационной работе по данным [26] была рассчитана зависимость M(T)/M(0) от $T/T_{\rm C}$. На рисунке 17 представлены экспериментальные точки температурной зависимости *P*_{ЭЛ}, пересчитанные в относительные единицы ($P_{ЭЛ}^{\rm FM}(T)/P_{3Л}^{\rm FM}(0)$ от $T/T_{\rm C}$). Данные получены для структур, отличающихся содержанием Mn в δ-слое. Также на графике построено семейство рассчитанных зависимостей M(T)/M(0).

Рисунок 17 Семейство температурных зависимостей относительной намагниченности неупорядоченного ферромагнетика с параметром *v*_R а также зависимости (линии), относительной $P_{\Im \Pi}^{\rm FM}(T)/P_{\Im \Pi}^{\rm FM}(0)$ поляризации степени ОТ относительной температуры для б<Mn> структур с $Q_{\rm Mn} = 0.3$ MC (квадраты), и с $Q_{\rm Mn} = 0.1$ MC (круги).

Параметром кривых семейства является безразмерная величина

$$v_R = \frac{4}{3}\pi N_F R^3,$$
 (7)

соответствует которая количеству взаимодействующих магнитных центров (N_{F}) в объёме с радиусом *R* (этот радиус соответствует расстоянию, на котором потенциал обменного взаимодействия уменьшается е раз). Измерения В выполнены магнитном В поле, соответствующем насыщению намагниченности δ<Mn>-слоя. Значение *P*(0) получено экстраполяцией в точку T = 0. За значение точки Кюри ($T_{\rm C}$) принималась температура, при которой значение *Р*Эл^{FM}=0 (6). Из рисунка 17

видно, что экспериментальные результаты совпадают с результатами моделирования зависимостей M(T)/M(0). Принадлежность экспериментальных результатов к кривой с тем или иным параметром связана с различием в содержании атомов Mn. Для структуры с содержанием Mn 0,3 монослоя (рисунок 17 квадраты) параметр v_R в 2,5 раза выше по сравнению со структурой с $Q_{Mn}=0,1$ монослоя (рисунок 17 круги), что является согласованным результатом, поскольку значение v_R меняется пропорционально концентрации магнитных центров (7).

В заключении главы рассмотрен эффект изменения знака степени циркулярной поляризации в зависимости от параметров структур. Эффект заключается в варьировании знака слагаемого $P_{\Im \Pi}^{FM}$ в формуле (6) при изменении таких параметров структур как Q_{Mn} , толщина спейсерного слоя d_S , толщина покровного слоя GaAs над δ <Mn> d_C (рисунок 18). При «положительном» знаке $P_{\Im \Pi}^{FM}$, в соответствии с формулой (1), интенсивность σ^+ поляризованной компоненты превышает интенсивность σ^- поляризованной компоненты (вставка к рисунку 18), положительный знак степени поляризации всегда характерен для слагаемого $P_{\Im \Pi}^Z$, связанного с Зеемановским расщеплением уровней в КЯ. В случае «отрицательного» знака $P_{\Im \Pi}$ $I(\sigma^-) > I(\sigma^+)$. Для таких структур компоненты $P_{\Im \Pi}^{FM}$ и $P_{\Im \Pi}^Z$ входят в формулу (6) с разным знаком. В небольшом магнитном поле и при низкой температуре $|P_{\Im \Pi}^{FM}| > P_{\Im \Pi}^{FM}$, это обусловливает отрицательную суммарную степень поляризации (рисунок 186). При повышении

температуры или *В* величина $P_{\Im J}^{Z}$ становится выше $|P_{\Im J}^{FM}|$, что обусловливает инверсию знака на положительный (рисунок 18, *T*=25 K). Полученный эффект связывается с варьированием знака спиновой поляризации дырок в квантовой яме. Согласно [18,20] циркулярная поляризация ЭЛ в структурах $\delta < Mn > /GaAs / InGaAs$ обусловлена спиновой поляризацией дырок в KЯ, которая, в свою очередь связана с обменным взаимодействием с ионами Mn в δ -слое. Гамильнониан обменного взаимодействия дырок и ионов Mn обсуждался в [27], общее выражение:

$$\widehat{H}_{h-Mn} = N_0 \beta \sum \int \left(\vec{j} \, \vec{S_n} \right) \ |\psi(\vec{r})|^2 \delta\left(\vec{r} - \vec{R_n} \right) d^3r, \tag{8}$$

где $N_0\beta$ – параметр обменного взаимодействия, S_n – спиновый оператор иона Mn в позиции R_n , \vec{j} – угловой момент дырки, а ψ , r - волновая функция и координата дырок [28]. Суммирование по всем магнитным ионам. В соответствии с указанной моделью, инверсия знака спиновой поляризации дырок может связывается с изменением знака параметра обменного взаимодействия $N_0\beta$. Подобный эффект рассмотрен теоретически и экспериментально в [29], согласно [29] знак $N_0\beta$ зависит от электрического состояния Mn в GaAs (ионизованный или нейтральный акцептор).

Рисунок 18 – Зависимости $P_{\Im\Pi}(B)$ для структур $\delta < Mn > /GaAs/InGaAs, с разной толщиной покровного слоя: (a) <math>d_C = 40$ нм, (б) $d_C = 12$ нм. Пунктиром обозначена компонента $P_{\Im\Pi}$, связанная с Зеемановским расщеплением ($P_{\Im\Pi}^{Z}$). На вставке к (a) спектры ЭЛ, записанные при 10 К в σ + и σ - поляризациях.

В силу низкой концентрации дырок в исследованных структурах (концентрация дырок на порядок ниже концентрации Mn) можно предположить наличие как ионизованных (A^-), так и нейтральных (A^0) акцепторов. В этом случае величина $N_0\beta$ является усреднённым по площади значением. Знак $N_0\beta$ зависит от параметров структур и может меняться при варьировании расстояния от δ <Mn> до поверхности (в силу захвата носителей на поверхностные состояния), а

также других ростовых параметров (содержания Mn в структурах (Q_{Mn}), толщины спейсерного слоя d_S).

В Заключении сформулированы основные результаты работы.

В диссертационной работе рассмотрены эффекты спиновой инжекции и обменного взаимодействия носителей В гетероструктурах ферромагнетик/полупроводник, сформированных с применением комбинированного метода МОС-гидридной эпитаксии и импульсного лазерного осаждения. Получены и исследованы основные известные из литературы материалы для инжекции спин-поляризованных носителей: ферромагнитные металл/туннельно-тонкий диэлектрик/полупроводникметаллы (структура MTOI) И разбавленные магнитные полупроводники (структуры *p-i-n* диодов и диодов с туннельным барьером (A³,Mn)B⁵/n+-GaAs). Предложена оригинальная конструкция светоизлучающего диода на основе структуры InGaAs/GaAs с ферромагнитным δ<Mn>-легированным слоем в GaAs барьере.

1) Впервые показана спиновая инжекция неосновных носителей в диодах Шоттки ферромагнитный металл/GaAs и ферромагнитный металл/туннельно-тонкий диэлектрик/GaAs. Спиновая инжекция обусловливает циркулярно-поляризованную электролюминесценцию.

2) Помимо спиновой инжекции для диодов ФМ металл/GaAs вклад в циркулярную поляризацию электролюминесценции вносит эффект спиновой аккумуляции (накопления спинполяризованных носителей в приконтактной области полупроводника из-за спин-зависимого сопротивления ФМ контакта). Вклады спиновой инжекции и аккумуляции в циркулярнополяризованную люминесценцию являются аддитивными, т.е. эффект спиновой аккумуляции повышает измеряемое в эксперименте значение степени поляризации ЭЛ. В структурах МТОП ток основных носителей не переносится в область ферромагнитного электрода, а расходуется на излучательную рекомбинацию с неосновными носителями, в таком случае эффект спиновой аккумуляции пренебрежимо мал.

3) Получена немонотонная зависимость степени циркулярной поляризации электролюминесценции от толщины спейсерного слоя GaAs для МТОП структур с контактом CoPt/Al₂O₃/GaAs/InGaAs. Подобный вид зависимости связывается с прецессией спинполяризованных носителей заряда при переносе к активной области в магнитном поле неоднородно-намагниченного слоя CoPt.

4) Комбинированный ростовый метод, объединяющий МОС-гидридную эпитаксию с импульсным лазерным осаждением в одном реакторе, позволяет формировать спиновые светоизлучающие диодные структуры на основе квантовых ям InGaAs/GaAs и слоёв разбавленного магнитного полупроводника (A³,Mn)B⁵ (A=Ga,In; B=As,Sb), причём слои РМП играют роль областей *p*-типа проводимости в светоизлучающих *p-i-n* диодах и диодах с

туннельным барьером. Механизм электролюминесценции зависит от вида зонной диаграммы контакта (A³,Mn)B⁵/GaAs, при этом может быть реализовано несколько случаев: прямая инжекция дырок, туннелирование электронов, инжекция или туннелирование со вкладом термического заброса.

5) Получена циркулярно-поляризованная электролюминесценция ССИД с инжектором $(A^3,Mn)B^5/GaAs$, которая связана со спиновой инжекцией из слоя РМП: в режиме *p-i-n* диода инжектируются спин-поляризованные дырки, в режиме диода с туннельным барьером – электроны. При уменьшении расстояния между (Ga,Mn)As слоем и активной областью значение степени циркулярной поляризации повышается, что связано с уменьшением деполяризации за счёт спинового рассеяния носителей при переносе к активной области. В структурах с туннельным барьером (Ga,Mn)Sb/n+GaAs получена спиновая инжекция при комнатной температуре, что является рекордом для разбавленных магнитных полупроводников. 6) В структурах ферромагнетик/полупроводник с реальной границей раздела эффективность спиновой инжекции снижается по сравнению со случаем идеального контакта вследствие спинового рассеяния на дефектах, вносимых в приповерхностную область полупроводника в результате осаждения ферромагнитного слоя. К таковым дефектам относятся разупорядочение кристаллической структуры и примесные центры ферромагнитного слоя в полупроводнике. Формирование кристаллически-упорядоченной границы, а также использование промежуточных защитных слоёв, замедляющих диффузию магнитной примеси, позволяет понизить концентрацию дефектов и повысить эффективность спиновой инжекции и степень циркулярной поляризации ССИД.

7) Сформированы и исследованы спиновые светоизлучающие диоды на основе гетероструктур *i*-GaAs/InGaAs/*n*-GaAs, содержащих δ<Mn>-легированный слой в *i*-GaAs барьере. Структуры представляют собой промежуточный случай между диодом с барьером Шоттки и *p*-*i*-*n* диодом, и характеризуются высокой интенсивностью электролюминесценции, а также циркулярно-поляризованной компонентой в люминесцентном излучении. Последнее связывается с влиянием δ<Mn>-слоя на спиновую поляризацию носителей в КЯ.

8) Для структур $\delta < Mn/i$ -GaAs/InGaAs/n-GaAs показано совпадение магнитополевых зависимостей степени циркулярной поляризации фото- и электролюминесценции, а также подобие этих зависимостей магнитополевой зависимости относительной намагниченности. Это позволяет сделать вывод, что циркулярная поляризация люминесценции связана со спиновой поляризацией носителей в квантовой яме, которая появляется в результате взаимодействия с ионами Mn в близкорасположенном дельта-слое.

9) Ферромагнитное упорядочение в δ<Mn>-слое, как и взаимодействие дырок в квантовой яме с ионами Mn в δ-слое, подчиняются закономерностям, характерным для теории неупорядоченных

разбавленных ферромагнетиков. В рамках указанной теории, магнитные свойства структур существенно зависят от конкретной технологической конфигурации. Для исследованных структур это проявляется в варьировании магнитополевой и температурной зависимостей степени поляризации люминесценции при изменении технологических параметров. В частности, при варьировании толщины спейсерного слоя и/или содержания Mn в б-слое знака зарегистрировано изменение PЭл, ϕ л, что объясняется сложным характером взаимодействия ионов Mn и дырок в KЯ, включающим возможность как ферромагнитного, так и антиферромагнитного обменного взаимодействия (с заряженными или нейтральными акцепторами).

Список цитированной литературы:

[1] Holub, M. Spin-polarized light-emitting diodes and lasers / M. Holub, P. Bhattacharya // J. Phys.
D: Appl. Phys. - 2007. - V.40. - P.R179–R203.

[2] Захарченя, Б.П. Интегрируя магнетизм в полупроводниковую электронику / Б.П. Захарченя, В.Л. Коренев // УФН. - 2005. - Т.175, вып.6. - С.629-635.

[3] Comparison of Fe/Schottky and Fe/Al₂O₃ tunnel barrier contacts for electrical spin injection into GaAs / O.M.J. van't Erve, G. Kioseoglou, A.T. Hanbicki, et.al. // Appl. Phys. Lett. - 2004. - V.84, n.21. - P.4334-4336.

[4] Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature /
E.D. Fraser, S. Hegde, L. Schweidenback, et.al.// Appl. Phys. Lett. - 2010. - V.97. - P. 041103.

[5] Optical, electrical and magnetic manipulation of spins in semiconductors / D.K. Young, J.A. Gupta, E. Johnston-Halperin, et.al. // Semicond. Sci. Tech. - 2002. - V.17. - P.275-284.

[6] Myers, R.C. Tunable spin polarization in III-V quantum wells with a ferromagnetic barrier / R.C. Myers, A.C. Gossard, D.D. Awschalom // Phys.Rev. B. - 2004. - V.69. P.161305(R).

[7] Electrical spin injection in forward biased Schottky diodes based on InGaAs–GaAs quantum well heterostructures / N.V. Baidus, M.I. Vasilevskiy, M.J.M. Gomes, et.al. // Appl. Phys. Lett. - 2006. - V. 89, n. 18. - P. 181118.

[8] Ферромагнитный инжектор CoPt в светоизлучающих диодах Шоттки на основе наноразмерных структур InGaAs/GaAs / A.B. Здоровейщев, М.В. Дорохин, П.Б. Демина, и др. // Физика и техника полупроводников. – 2015. – Т.49, В.12. – С.1649-1653.

[9] Zeeman spin splittings in semiconductor nanostructures / R. Kotlyar, L.T. Reinecke, M. Bayer, A. Forchel // Phys. Rev. B. - 2001. - V.63. - P.085310.

[10] Spin accumulation near Fe/GaAs (001) interfaces: The role of semiconductor band structure /
 Q.O. Hu, E.S. Garlid, P.A. Crowell, C.J. Palmstrom // Phys. Rev. B. - 2011. - V.84. - P. 085306.

[11] Spintronics: Fundamentals and applications / I. Zutic, J. Fabian, S. Das Sarma // Rev. Mod. Phys.
2004. - V.76. - P.323-410.

[12] Giant enhancement of spin detection sensitivity in (Ga,Mn)As/GaAs Esaki diodes / J. Shiogai, M. Ciorga,M. Utz, et.al. // Phys. Rev. B. - 2014. - V.89. - P.081307(R).

[13] Оптическая ориентация // под. ред. Б.П. Захарчени, Ф. Майера. Ленинград: Наука (ленингр. отделение). - 1989. - 408 С.

[14] Влияние напряжений сжатия и растяжения в слоях GaMnAs на их магнитные свойства / Б.Н. Звонков, О.В. Вихрова, Ю.А. Данилов, и др. // ФТТ. - 2010. - Т.51, вып.11. - С.2124-2127.

[15] Исследования структуры ферромагнитного слоя GaMnSb / А.И. Бобров, Е.Д. Павлова, А.В. Кудрин, Н.В. Малехонова // ФТП. - 2013.- Т.47, в.12. - С.1613-1616.

[16] Very high spin polarization in GaAs by injection from a (Ga,Mn)As Zener diode / P. Van Dorpe,Z. Liu, W. Van Roy, et.al. // Appl. Phys. Lett. - 2004. - V.84, n.18. - P.3495-3497.

[17] Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction / M. Kohda, Y. Ohno, F. Matsukura, H. Ohno // Physica E - 2006. - V.32. - P.438-441.

[18] Emission properties of InGaAs/GaAs heterostructures with delta < Mn >-doped barrier / M.V.

Dorokhin, Yu.A. Danilov, P.B. Demina, et.al // J. of Phys. D-Appl. Phys. - 2008. - V. 41 - P. 24.

[19] Schmidt, G. Spin injection into semiconductors, physics and experiments / G. Schmidt, L.W. Molenkamp // Semicond.Sci.Tech. - 2002. - V.17. - P.310-321.

[20] Myers, R.C. Tunable spin polarization in III-V quantum wells with a ferromagnetic barrier / R.C. Myers, A.C. Gossard, D.D. Awschalom // Phys.Rev. B. - 2004. - V.69. P.161305(R).

[21] Вонсовский, С.В. Магнетизм / С.В. Вонсовский // М. Наука. - 1971. - 1032 С.

[22] Concepts in spin electronics / Ed. by S. Maekawa. - New York: Oxford University Press. - 2006. -398 P.

[23] Magnetic and transport percolation in diluted magnetic semiconductors / A. Kaminski, S. Das Sarma // Phys. Rev. B. - 2003. - V.68. - P.235210.

[24] Polaron percolation in diluted magnetic semiconductors / A. Kaminski, S. Das Sarma // Phys.Rev. Lett. - 2002. - V.88, n.24. - P.247202.

[25] Влияние концентрации примесей на люминесцентные свойства спиновых светоизлучающих диодов InGaAs/GaAs с δ-слоем Mn / A.B. Рыков, М.B. Дорохин, Е.И. Малышева, и др. // ΦΤΠ. – 2016. – Т.50, В.1. – С.3-8.

[26] Коренблит, И.Я. Ферромагнетизм неупорядоченных систем / И.Я. Коренблит, Е.Ф. Шендер // УФН. 1978. т.126. С.233-268.

[27] Ферромагнитное воздействие δ-<Мп>-слоя в GaAs барьере на спиновую поляризацию носителей в InGaAs/GaAs квантовой яме / С.В. Зайцев, М.В. Дорохин, А.С. Бричкин, и др. // Письма в ЖЭТФ. – 2009. – Т.90, в.10. – С.730-735

[28] Govorov, A.O. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation / A.O. Govorov, A.V. Kalameitsev // Phys. Rev. B. - 2005. - V.71. - P.035338.

[29] Tuning of the average p-d exchange in (Ga,Mn)As by modification of the Mn electronic structure / T. Hartmann, S. Ye, P.J. Klar, et.al. // Phys. Rev.B. - 2004. - V.70. - P.233201.

Список основных публикаций автора по теме диссертации:

[A1] Исследование эффектов спиновой инжекции носителей заряда из ферромагнитного контакта Шоттки Ni (Co) /GaAs в гетероструктурах с квантовой ямой / М.В. Дорохин, С.В. Зайцев, Н.В. Байдусь, Ю.А. Данилов, П.Б. Демина, Б. Н. Звонков, В.Д. Кулаковский, Е.А. Ускова // Известия РАН. Серия физическая. - 2008. - Т. 72, вып.2. - С. 180-183.

[A2] Применение лазерного распыления для получения полупроводниковых структур / Б.Н. Звонков, О.В. Вихрова, Ю.А. Данилов, Е.С. Демидов, П.Б. Демина, М.В. Дорохин, Ю.Н. Дроздов, В.В. Подольский, М.В. Сапожников // Оптич. Журнал. 2008. - Т.75, вып.6. - С.56-61.

[A3] Emission properties of InGaAs/GaAs heterostructures with delta < Mn >-doped barrier / M.V. Dorokhin, Yu.A. Danilov, P.B. Demina, V.D. Kulakovskii, O.V. Vikhrova, S.V. Zaitsev, B.N. Zvonkov // J. of Phys. D-Appl. Phys. -2008. - V.41 - P.24.

[A4] Circularly polarized electroluminescence in LED heterostructures with InGaAs/GaAs quantum well and Mn d-layer / S.V. Zaitsev, M.V. Dorokhin, V.D. Kulakovskii, Yu.A. Danilov, P.B. Demina, M.V. Sapozhnikov, O.V. Vikhrova, B.N. Zvonkov // Physica E. - 2009. - V.41. - P.652-654.

[A5] Излучательные свойства квантовых ям GaAs/InGaAs с GaAs барьером, δ-легированным атомами Mn / O.B. Вихрова, Ю.А. Данилов, П.Б. Дёмина, М.В. Дорохин, Б.Н. Звонков, Ю.Н. Дроздов, М.В. Сапожников // Изв. РАН. Серия физическая. - 2009. - Т.73, вып.1. - С.14-17.

[А6] Ферромагнетизм в GaAs структурах с дельта-легированным Mn слоем / О.В. Вихрова, Ю.А. Данилов, М.В. Дорохин, Б.Н. Звонков, И.Л. Калентьева, А.В. Кудрин // Письма в Журнал Технической Физики. – 2009. - Т.35, в.14. - С.8-17.

[A7] Ферромагнитное воздействие δ-<Мп>-слоя в GaAs барьере на спиновую поляризацию носителей в InGaAs/GaAs квантовой яме / С.В. Зайцев, М.В. Дорохин, А.С. Бричкин, О.В. Вихрова, Ю.А. Данилов, Б.Н. Звонков, В.Д. Кулаковский // Письма в ЖЭТФ. – 2009. – Т.90, в.10. – С.730-735.

[A8] Electrical spin-injection and depolarization mechanisms in forward biased ferromagnetic Schottky diodes / S.V. Zaitsev, M.V. Dorokhin, P.B. Demina, N.V. Baidus, E.A. Uskova, B.N. Zvonkov // Phys. Status Solidi B, – Basic Solid State Physics. - 2009. – V.246, n.5. – P.1132-1137.

[A9] Электролюминесценция квантово-размерных гетероструктур InGaAs/GaAs с ферромагнитными инжекторами вида (AIII,Mn)BV и Ni / M.B. Дорохин, Ю.А. Данилов, А.В. Кудрин, О.В. Вихрова, М.М. Прокофьева // ФТП, 2010, Т. 44, вып. 11. С. 1447-1450.

[A10] Инжекционная электролюминесценция в квантово-размерных структурах InGaAs/GaAs с контактом металл/полупроводник и металл/окисел/полупроводник / М.В. Дорохин, П.Б. Демина, Н.В. Байдусь, Ю.А. Данилов, Б.Н. Звонков, М.М. Прокофьева // Поверхность. Рентгеновские, синхротронные и нейтронные исследования.». 2010. - вып.5. - С.34-39.

[A11] Температурная стабильность фотолюминесценции в гетероструктурах с InGaAs/GaAs квантовой ямой и акцепторным дельта< Mn >-слоем в GaAs барьере // М.В. Дорохин, Ю.А. Данилов, М.М. Прокофьева, А.Е. Шолина // ПЖТФ. - 2010. - Т.36, вып.17. - С.87-95

[A12] Влияние параметров дельта<Мn>-легирования GaAs-барьера на циркулярно поляризованную люминесценцию гетероструктур GaAs/InGaAs / М.В. Дорохин, С.В. Зайцев, А.С. Бричкин, О.В. Вихрова, Ю.А. Данилов, Б.Н. Звонков, В.Д. Кулаковский, М.М. Прокофьева, А.Е. Шолина // ФТТ. – 2010. - Т.52, вып.11. - С. 2147-2152.

[A13] Дорохин М.В., Измерение поляризационных характеристик излучения наногетероструктур / М.В. Дорохин, Ю.А. Данилов // Учебно-методическое пособие. 2010. http://www.unn.ru/books/resources.html

[A14] Светодиоды на основе гетероструктур InGaAs/GaAs с магнитоуправляемой электролюминесценцией / А.В. Кудрин, М.В. Дорохин, Ю.А. Данилов, Е.И. Малышева // Письма в журнал технической физики. – 2011. – Т.37, в.24. – С.57-65.

[A15] Фотолюминесцентный отклик квантовой ямы на изменение магнитного поля дельта-слоя Мп в гетероструктурах InGaAs/GaAs /А.И. Дмитриев, А.Д. Таланцев, С.В. Зайцев, Ю.А. Данилов, М.В. Дорохин, Б.Н. Звонков, О.В. Коплак, Р.Б. Моргунов // Журнал Экспериментальной и Теоретической Физики. – 2011. – Т.140, в.1(7). – С.158-169.

[A16] Формирование спиновых светоизлучающих диодов на основе гетероструктур InGaAs/GaAs, содержащих ферромагнитные включения / М.М. Прокофьева, М.В. Дорохин, Ю.А. Данилов, Е.И. Малышева, А.В. Кудрин, И.Л. Калентьева, О.В. Вихрова, Б.Н. Звонков // Изв. РАН. Сер. Физ. – 2012. – Т.76, в.2. – С.255-258.

[A17] Спиновые светоизлучающие диоды на основе гетероструктур с квантовой ямой GaAs/InGaAs/GaAs и ферромагнитным инжектирующим слоем GaMnSb / М.В. Дорохин, Е.И. Малышева, А.В. Здоровейщев, Ю.А. Данилов // Письма в журнал технической физики. – 2012. – Т.38, в.16. – С.69-77.

[A18] Особенности формирования методом газофазной эпитаксии квантовых точек InAs/GaAs, легированных атомами Mn / M.B. Дорохин, А.В. Здоровейщев, Е.И. Малышева, Ю.А. Данилов, Б.Н. Звонков, А.Е. Шолина // Поверхность. Рентгеновские, синхронные и нейтронные исследования. - 2012. - вып.6. - С.55-58.

[A19] Светоизлучающие диоды с ферромагнитным инжектирующим слоем на основе гетероструктур GaMnSb/InGaAs/ GaAs / М.В. Дорохин, Е.И. Малышева, А.В. Здоровейщев, Ю.А. Данилов, А.В. Кудрин // ФТП. – 2012. – Т.46, в.12. – С.1554-1560.

[A20] Свойства гетероструктур MnSb/GaAs / О.В. Вихрова, Ю.А. Данилов, М.В. Дорохин, Ю.Н. Дроздов, Б.Н. Звонков, А.В. Здоровейщев. А.В. Кудрин, И.Л. Калентьева // Известия РАН. Сер. Физическая. – 2013. – Т.77, в.1. – С.79-81.

[A21] Химический и фазовый состав спиновых светоизлучающих диодов GaMnAs/GaAs/InGaAs / Д.Е.Николичев, А.В.Боряков, С.Ю.Зубков, Р.Н.Крюков, М.В.Дорохин, А.В.Кудрин // ФТП. - 2014. - Т.48, вып.6. С.839-844.

[A22] Влияние особенностей дизайна гетероструктур InGaAs/GaAs с магнитной примесью на их гальваномагнитные и излучательные свойства / И.Л. Калентьева, О.В. Вихрова, Ю.А. Данилов,

М.В. Дорохин, Ю.Н. Дроздов, Б.Н. Звонков, А.В. Кудрин, П.А. Юнин // Известия РАН. Серия физическая. - 2014. - Т.78, вып.1. - С.24-29.

[A23] Структурное совершенство и распределение примеси в магнитных полупроводниковых наногетеросистемах на основе GaAs / А.И. Бобров, О.В. Вихрова, Ю.А. Данилов, М.В. Дорохин, Ю.Н. Дроздов, М.Н. Дроздов, Б.Н. Звонков, Н.В. Малехонова, Е.Д. Павлова // Известия РАН. Серия физическая. – 2014. – Т.78, №1. – С.18-21.

[A24] Эпитаксиальное выращивание слоев MnGa/GaAs для диодов со спиновой инжекцией / М.В. Дорохин, Д.А. Павлов, А.И. Бобров, Ю.А. Данилов, П.Б. Дёмина, Б.Н. Звонков, А.В. Здоровейщев, А.В. Кудрин, Н.В. Малехонова, Е.И. Малышева // Физика твердого тела. – 2014. – Т.56, В.10. – С.2062-2065.

[A25] Спиновая инжекция электронов в светоизлучающих диодах на основе структур GaMnAs/GaAs/InGaAs с туннельным переходом / М.В. Дорохин, Е.И. Малышева, Б.Н. Звонков, А.В. Здоровейщев, Ю.А. Данилов, Д.Е. Николичев, А.В. Боряков, С.Ю. Зубков // Журнал технической физики. – 2014. – Т.84, В.12. – С.102-106.

[A26] Effects of a nearby Mn delta layer on the optical properties of an InGaAs/GaAs quantum well / M.A.G. Balanta, M.J.S.P. Brasil, F. Iikawa, J.A. Brum, Udson, C. Mendes, Yu.A. Danilov, M.V. Dorokhin, O.V. Vikhrova, B.N. Zvonkov // Journal of Applied Physics. – 2014. – V.116. – P.203501.

[A27] Температурная зависимость циркулярной поляризации люминесценции спиновых светоизлучающих диодов на основе гетероструктур InGaAs/GaAs / М.В. Дорохин, Е.И. Малышева, Ю.А. Данилов, А.В. Здоровейщев, А.В. Рыков, Б.Н. Звонков // Поверхность. Рентгеновские, синхронные и нейтронные исследования. - 2014. - вып.5. - С.28-34.

[A28] Циркулярно-поляризованная электролюминесценция светоизлучающих диодов InGaAs/GaAs/(A III,Mn)BV на основе структур с туннельным барьером / Е.И. Малышева, М.В. Дорохин, М.В. Ведь, А.В. Кудрин, А.В. Здоровейщев // Физика и техника полупроводников. – 2015. – Т.49, В.11. – С.1497-1500.

[A29] Оптические и магнитотранспортные свойства структур InGaAs/GaAsSb/GaAs, легированных магнитной примесью / И.Л. Калентьева, Б.Н. Звонков, О.В. Вихрова, Ю.А. Данилов, П.Б. Демина, М.В. Дорохин, А.В. Здоровейщев // Физика и техника полупроводников. – 2015. – Т.49, В.11. – С.1478-1483.

[A30] Ферромагнитный инжектор CoPt в светоизлучающих диодах Шоттки на основе наноразмерных структур InGaAs/GaAs / A.B. Здоровейщев, М.В. Дорохин, П.Б. Демина, А.В. Кудрин, О.В. Вихрова, М.В. Ведь, Ю.А. Данилов, И.В. Ерофеева, Р.Н. Крюков, Д.Е. Николичев // Физика и техника полупроводников. – 2015. – Т.49, В.12. – С.1649-1653.

[A31] Применение кобальта в спиновых светоизлучающих диодах Шоттки с квантовыми ямами InGaAs/GaAs / Бобров А.И., Данилов Ю.А., Дорохин М.В., Здоровейщев А.В., Малехонова Н.В., Малышева Е.И., Павлов Д.А., Сайед С. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования.- 2015.- № 7.- С. 57-60.

[A32] The circular polarization inversion in δ/InGaAs/GaAs light-emitting diodes / M.V. Dorokhin,
Yu.A. Danilov, B.N. Zvonkov, M.A. Gonzalez Balanta, M.J.S.P. Brasil, F. Iikawa, U.C. Mendes, J.A.
Brum, P.B. Demina, E.I. Malysheva, A.V. Zdoroveischev, A.V. Kudrin // Applied Physics Letters. –
2015. – V.107, N.4. – P.028531.

[АЗЗ] Влияние концентрации примесей на люминесцентные свойства спиновых светоизлучающих диодов InGaAs/GaAs с δ-слоем Mn / А.В. Рыков, М.В. Дорохин, Е.И. Малышева, П.Б. Демина, О.В. Вихрова, А.В. Здоровейщев // Физика и техника полупроводников. – 2016. – Т.50, В.1. – С.3-8.

Подписано к печати 26.09.2016 Формат 60×84/16 Авт. л. 2. Тираж 120 экз. Отпечатано в типографии «Оливер» г.Нижний Новгород, ул. Артельная д.15 http://www.olivernn.ru/