МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н. И. ЛОБАЧЕВСКОГО»

УНИВЕРСИТЕТ БРИТАНСКОЙ КОЛУМБИИ

Химический факультет

На правах рукописи

МОИСЕЕВ ДМИТРИЙ ВИКТОРОВИЧ

ВЗАИМОДЕЙСТВИЕ АЛЬДЕГИДОВ И а,b-НЕНАСЫЩЕННЫХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ, СОДЕРЖАЩИХ ФЕНИЛПРОПАНОИДНЫЙ СКЕЛЕТ, С ТРЕТИЧНЫМИ И ВТОРИЧНЫМИ ФОСФИНАМИ

Специальность: 02.00.08 – химия элементоорганических соединений 02.00.03 – органическая химия

Диссертация на соискание ученой степени доктора химических наук

Научные консультанты: д.х.н., профессор А.В. Гущин профессор В. R. James

Нижний Новгород 2017 г.

І. ВВЕДЕНИЕ	4
ІІ. ПРИНЯТЫЕ СОКРАЩЕНИЯ	12
Ш. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ	13
Глава 1. Взаимодействие фосфинов с алифатическими и ароматическими	
альдегидами. Устойчивость (а-гидроксиалкил)фосфинов	13
1.1. Устойчивость водных растворов (НОСН ₂) ₄ РС1 и (НОСН ₂) ₃ Р к распаду и	
окислению	13
1.2. Сравнение устойчивости α -гидроксифосфина (HOCH ₂) ₃ Р и γ -гидроксифосфина	
(HOCH2CH2CH2)3P	19
1.3. Синтез, характеристика и устойчивость фосфониевой соли [HO(Me)CH] ₄ PCl и	
третичного α-гидроксифосфина [HO(Me)CH] ₃ P	20
1.4. Взаимодействие ароматических и алифатических альдегидов с вторичными	
фосфинами	25
1.5. Взаимодействие ароматических и алифатических альдегидов с третичными	
фосфинами	35
Глава 2. Взаимодействие третичных фосфинов, не содержащих а-ОН-групп, с	
коричными альдегидами	42
2.1. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в	
воде	43
2.2. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в	
спиртах	49
2.3. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в	
апротонных растворителях	53
2.4. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричными альдегидами лигнина в	
присутствии HCl	54
2.5. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричными альдегидами, не содержащих	
фенольных групп	
2.5.1. Взаимодействие (HOCH ₂ CH ₂ CH ₂) ₃ Р с коричным альдегидом в воде	56
2.5.2. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричным альдегидом в воде в	
присутствии НСІ	60
2.5.3. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричными альдегидами, не	
содержащих фенольную группу, в органических растворителях	67
2.6. Кинетические исследования реакции (HOCH ₂ CH ₂ CH ₂) ₃ P с конифериловым	
альдегидом в воде. Зависимость скорости от рН	
2.6.1. Кинетические исследования при pH > 10	
2.6.2. Кинетические исследования при рН ≤ 3.5	
2.6.3. Кинетические исследования при 5 < pH < 10	80
Глава 3. Взаимодействие моно(а-гидроксиалкил)фосфинов и вторичного фосфина	
Ph ₂ PH с коричными альдегидами	
3.1. Взаимодействие Ph_2PH с коричными альдегидами в отсутствие растворителя	
3.2. Реакции фосфин-альдегидов по альдегидной группе	
3.3. Взаимодействие Ph ₂ PH с коричным альдегидом в ДМСО	
3.4. Взаимодействие Ph ₂ PH с коричными альдегидами в CD ₃ OD	93
3.5. Взаимодействие $Ph_2PCH(OH)R$ (R = Et, CH_2Ph , Ph) с коричными альдегидами в	- -
ДМСО	97

3.6. Взаимодействие $Ph_2PCH(OH)R$ (R = Et, CH_2Ph , Ph) с коричным альдегидом в	
CD_3OD	100
Глава 4 . Взаимодействие (гидроксиметил)фосфинов Ph_2PCH_2OH , $PhP(CH_2OH)_2$,	
(НОСН ₂) ₃ Р с коричными альдегидами	
4.1. Взаимодействие Ph ₂ PCH ₂ OH с коричным альдегидом	104
4.2. Взаимодействие PhP(CH ₂ OH) ₂ с коричными альдегидам в соотношение 1:1 в	
MeOH/CD ₃ OD	105
4.3. Первичные продукты взаимодействия (НОСН ₂) ₃ Р с коричным альдегидом в	
MeOH/CD ₃ OD	116
4.4. Конечные продукты взаимодействия (HOCH ₂) ₃ P с коричным альдегидом в	120
MeOH	120
Глава 5. Взаимодействие (HOCH ₂ CH ₂ CH ₂) ₃ P с а,b-ненасыщенными кетонами,	
содержащих фенилпропаноидный скелет	122
5.1. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с 4-HO-бензилиденацетоном в воде и	
ацетоне	
5.2. Взаимодействие ($HOCH_2CH_2CH_2$) ₃ Р с бензилиденацетонами в CD_3OD	124
Глава 6 . Взаимодействие $(HOCH_2CH_2CH_2)_3P$ и $(HOCH_2)_3P$ с коричными кислотами и	
их метиловыми эфирами	129
6.1. Взаимодействие (HOCH ₂ CH ₂ CH ₂) ₃ Р с коричными кислотами	129
6.2. Взаимодействие (HOCH ₂) ₃ Р с коричными кислотами	133
6.3. Взаимодействие (HOCH ₂ CH ₂ CH ₂) ₃ Р с метиловыми эфирами коричных кислот	136
Глава 7 . Взаимодействие третичных фосфинов с <i>n</i> -бензохинонами	140
7.1. Взаимодействие третичных фосфинов с <i>n</i> -бензохинонами в органических	
растворителях	141
7.2. Взаимодействие третичных фосфинов с n -бензохинонами в D_2O	145
Глава 8. Взаимодействие третичных фосфинов с бензиловыми и коричными	
спиртами	147
8.1. Взаимодействие третичных фосфинов с гидроксибензиловыми спиртами	148
8.2. Взаимодействие (HOCH ₂) ₃ Р и (HOCH ₂) ₄ PCl с гидроксибензиловыми спиртами	153
8.3. Взаимодействие третичных фосфинов с коричными спиртами	
Глава 9. Взаимодействие (HOCH ₂) ₃ P, (HOCH ₂) ₄ PCl и [HOCH(Me)] ₄ PCl с	
серосодержащими солями натрия. Синергизм системы $(HOCH_2)_3P/Na_2S_2O_4$	157
Глава 10. Комплексы палладия(II) с новыми фосфинами. Синтез новых	10 /
олигофосфинов	163
10.1. Комплексы палладия(II) с фосфином Ph ₂ PCH(Ph)CH(Me)CHO и дифосфином	100
Ph ₂ PCH(Ph)CH ₂ CH(OH)PPh ₂	163
10.2. Синтез и характеристика водорастворимых олигофосфинов, содержащие	100
этановые мостики между атомами фосфора	166
V. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	
. ВЫВОДЫ	
т. литература	230

І. ВВЕДЕНИЕ

Актуальность темы исследования

При механической обработке древесины с целью получения дешевой бумаги весь лигнин или его часть присутствует в конечном продукте. Исходная белизна бумаги определяется наличием остаточных мономеров лигнина, так называемых монолигнолов, которые содержат хромофорные группы типа Ar-C=C-C=O [1–12], а стабильность белизны определяется деградацией полимерных цепей остаточного лигнина до монолигнолов под действием кислорода, света и микроорганизмов [1–4, 6, 12–15]. Отбеливание механической пульпы путем разрушения цепочек π - π сопряжения в монолигнолах является одной из ключевых стадий при производстве бумаги. Поиск эффективных отбеливающих агентов, а также оптимизация промышленного процесса составляют одну из важных целей современной бумажной промышленности [16–41].

Открытие отбеливающего и фотостабилизирующего эффектов водорастворимых гидроксиалкилфосфинов (HOCH₂)₃P и (HOCH₂CH₂CH₂)₃P в процессе механической переработки древесины [42–51] послужило импульсом для изучения реакций нуклеофильного 1,2- и 1,4-присоединения фосфинов к ненасыщенным карбонильным соединениям – моделям лигнина. Использование данных фосфинов было запатентовано и применено в промышленности, но нуждалось в надежном научном обосновании.

Водорастворимые фосфины, в частности (НОСН₂)₃Р и его производные, в последнее десятилетие все чаще применяются в биохимии [52–68] и медицине [69–76]. Кроме того, они используются для удаления переходных металлов из продуктов органического синтеза с применением металлокомплексного катализа [77–79], в нефтегазовой промышленности [80–82], в качестве пламягасителей в текстильной промышленности и в полимерах [83–88], а также используются в биоцидных композициях [89–94]. (НОСН₂)₃Р и другие фосфины, содержащие гидроксиметильные группы, активно используются в качестве прекурсоров для синтеза других фосфинов [95–100]. Несмотря на это, до сих пор отсутствует систематическая информация об устойчивости (НОСН₂)₃Р и (α-гидроксиалкил)фосфинов к распаду и окислению, а также механизмам их взаимодействия с органическими молекулами. Помимо бумажной

промышленности, исследования, изложенные в данной работе, актуальны в рамках гомогенного катализа, где часто используются ненасыщенные органические субстраты и фосфиновые комплексы переходных металлов, а также в области органического синтеза, связанного с получением дейтерированных органических соединений, которые активно используются для изучения механизмов реакций [101–113], биомолекул [114–119] и метаболизма [120–122].

Объектами исследования в диссертационной работе являются ароматические и а,b-ненасыщенные альдегиды и родственные соединения (кетоны, спирты, кислоты, сложные эфиры), содержащие фенилпропаноидный скелет – структурную единицу лигнина, бензохиноны; третичные и вторичные фосфины, продукты их окисления, фосфониевые соли, некоторые соединения серы в низких степенях окисления (сульфит, гидросульфит, дитионат, тиосульфат натрия) как отбеливающие реагенты лигнина.

Степень разработанности темы

Литературные данные, имевшиеся к началу исследований в открытой печати, свидетельствовали в пользу того, что участие фосфорсодержащих веществ в процессе отбеливания осуществляется через нуклеофильную атаку фосфина на электрофильные центры хромофоров лигнина. В литературе описаны реакции третичных фосфинов с бензохинонами, однако реакции проводилась в органических растворителях, а фосфорсодержащие продукты реакций были недостаточно полно охарактеризованы. Известны реакции с участием а,b-ненасыщенных кетонов и сложных эфиров, в которых третичный фосфин через нуклеофильную атаку на С=С связь катализирует реакции димеризации с образованием новых органических веществ [реакция Раухута-Курриера (Rauhut-Currier) и реакция Морита-Байлиса-Хильмана (Morita-Baylis-Hillman)]. Однако было отмечено, что кетоны и эфиры, содержащие фенилпропаноидный скелет, имеют более низкую активность в данных реакциях и практически не изучались. Также в литературе достаточно подробно описано взаимодействие третичных фосфинов с а, bненасыщенными кислотами. В отличие от этого информация о взаимодействии третичных фосфинов с а,b-ненасыщенными альдегидами, основными хромофорами лигнина, практически отсутствовала.

Фосфин ($HOCH_2$)₃P, проявляющий уникальную отбеливающую активность, является объектом ряда больших обзоров. Известно, что в реакциях с непредельными соединениями идет замещение $HOCH_2$ -групп фосфина с образованием новых P-C связей. Однако в большинстве случаев реакции проводились в неводных средах, а фосфорсодержащие продукты реакций были недостаточно полно охарактеризованы. До наших исследований фосфин ($HOCH_2$)₃P характеризовался в литературе как среднеустойчивый к окислению кислородом воздуха, но не имелось никаких экспериментальных данных по стабильности его водных растворов.

Цель и задачи

Изучить условия устойчивости растворов (а-гидроксиалкил)фосфинов и их фосфониевых солей в водных средах. Провести систематические исследования реакций а,b-ненасыщенных альдегидов и родственных им соединений, как моделей красящих соединений лигнина, с третичными и вторичными фосфинами. Выделить и охарактеризовать продукты фиксации атома фосфора в органических молекулах. Выявить влияние радикалов в молекулах фосфинов и монолигнолов и условий на скорость и пути протекания реакций для оптимизации процесса отбеливания.

Научная новизна

Впервые проведены систематические исследования устойчивости (а-гидроксиалкил)фосфинов в растворах. Показано, что все (а-гидроксиалкил)фосфины являются нестабильными веществами и в растворах подвергаются обратимому распаду. Изучено влияние стерических и электронных факторов, влияние растворителя, ловушек альдегида, рН водных растворов на данное равновесие.

Исследована устойчивость к окислению фосфинов ($HOCH_2$)₃P и ($HOCH_2CH_2CH_2$)₃P, известных отбеливателей бумаги, в водной среде в зависимости от рН. Установлено существование зон стабильности, где в пределах определенного интервала рН, зависящего от природы фосфина, окисление не наблюдается в течение долгого времени. Вне этого интервала фосфины окисляются либо кислородом воздуха, либо анаэробно с участием воды.

Впервые изучено взаимодействие a,b-ненасыщенных альдегидов с третичными фосфинами. Выделены и охарактеризованы все конечные продукты, установлены интермедиаты реакций и предложены схемы взаимодействия. Проведены сравнительные реакции с другими a,b-ненасыщенными карбонильными соединениями (кетоны, кислоты, сложные эфиры), содержащими фенилпропаноидный углеродный скелет. Выявлено определяющее влияние ОН-группы в *пара*-положении ароматического кольца на реакционную способность альдегидов, кетонов и сложных эфиров.

В рамках данных исследований открыта новая реакция восстановления ароматических альдегидов в водной среде до соответствующих спиртов с участием (HOCH₂CH₂CH₂)₃P и реакция восстановительной конденсации a,b-ненасыщенных альдегидов. Предложены новые методы получения фосфониевых солей в водной среде и в мягких условиях.

Проведены детальные кинетические исследования реакции $(HOCH_2CH_2CH_2)_3P$ с конифериловым альдегидом в водной среде в зависимости от pH. Установлена сравнительная активность фенольной и фенолятной форм альдегида, сравнительная активность связей C=O и C=C в реакциях нуклеофильной атаки фосфина.

Объяснен синергетический эффект на эффективность отбеливания с использованием смеси фосфина (HOCH $_2$) $_3$ P и отбеливающего агента Na $_2$ S $_2$ O $_4$.

Теоретическая и практическая значимость работы

Показано наличие зон устойчивости к окислению для водорастворимых фосфинов, что является путем решения существующей проблемы предотвращения спонтанного окисления фосфинов в водной среде при их выделении и изучении.

Предложены новые реакции с участием водорастворимых фосфинов: а) реакция восстановления ароматических альдегидов до спиртов; б) реакция восстановительной конденсации коричных альдегидов. Новые способы получения монофосфониевых и бисфосфониевых солей, а также циклических фосфор- и кислородсодержащих соединений. Предложены новые реакции для синтеза органических и фосфорорганических молекул, содержащих атомы дейтерия. С помощью современных методов ЯМР определена стереоселективность некоторых нуклеофильных реакций.

Синтезированы и охарактеризованы новые третичные фосфины, содержащие альдегидную группу в боковой цепи. Данные фосфины являются перспективными прекурсорами для создания новых лигандов. Получены и охарактеризованы, в том числе с использование РСА, новые комплексы палладия(II) с новыми фосфинами. Синтезированы и охарактеризованы новые моно- и бисфосфониевые цвиттер-ионы, а также моно- и бисфосфониевые хлориды. Синтезированы и охарактеризованы новые производные фосфора, содержащие три, четыре, пять и шесть атомов фосфора, разделенные этановыми мостиками.

Установлены продукты фиксации атома фосфора на модельных соединениях лигнина, предложены схемы их взаимодействия, что будет способствовать пониманию механизма его отбеливания. Выявлены реакции, лежащие в основе известного факта синергетического действия водорастворимых фосфинов и соединений серы в низких степенях окисления.

Методология и методы исследования

В работе использованы методы спектроскопии ЯМР 1 H, 13 C, 31 P (включая двумерную), масс-спектрометрия, РСА, элементный анализ полученных органических, фосфорорганических продуктов, методы корреляционного анализа и изучения скорости и равновесия реакций в зависимости от строения реагентов и рН среды на основе данных ЯМР и УФ-спектроскопии.

Положения, выносимые на защиту

устойчивость Влияние радикалов, растворителя pН на моно(гидроксиалкил)фосфинов; результаты исследования взаимодействия бензальдегидов с (НОСН₂СН₂СН₂)₃Р в воде; взаимодействие коричных альдегидов с фосфинами, методы синтеза новых фосфинов и третичными и вторичными фосфониевых солей; кинетические исследования взаимодействия (НОСН₂СН₂СН₂)₃Р с конифериловым альдегидом при различных рН; сравнение реакционности коричных альдегидов и бензилиденацетонов по отношению к третичным фосфинам; результаты исследования взаимодействия третичных фосфинов с коричными кислотами и их эфирами, с бензиловыми и коричными спиртами, а также с бензохинонами; объяснение синергетического эффекта системы $(HOCH_2)_3P-Na_2S_2O_4$.

Степень достоверности и апробация результатов

По теме диссертационной работы опубликованы 19 научных статей, получен 1 международный патент. Основные результаты докладывались и обсуждались на двух региональных конференциях в Канаде: Inorganic Chemistry Discussion Weekend (Canada, Kelowna, BC, 2006), Inorganic Chemistry Discussion Weekend (Canada, Victoria, BC, 2007), 15-ой международной конференции по гомогенному катализу (South Africa, Sun City, 2006), международной конференции по металлоорганической и координационной химии (Россия, Нижний Новгород, 2008), 91-ой канадской химической конференции (Canada, Edmonton, Alberta, 2008), 22-ой конференции общества по катализу органических реакций (USA, Richmond Virginia, 2008), 94-ой канадской химической конференции (Canada, Montreal, Quebec, 2011), международной конференции по катализу в органическом синтезе (Россия, Москва, 2012), 21-ой международной конференции по химии фосфора (Россия, Казань, 2016).

Личный вклад автора

Вклад автора состоит в анализе и систематизации литературных данных по теме исследования, в постановке экспериментов и синтезов, в съемке и расшифровке ЯМР- и УФ-спектров реакций и их продуктов, в обработке, анализе и систематизации полученных результатов в научные статьи и доклады. Рентгеноструктурный анализ соединений был выполнен доктором Патриком Б. О. (Patrick B. O., Ph.D.) в Университете Британской Колумбии (Ванкувер, Канада). Профессор Джеймс Б. Р. (James B. R.), Ху Т. К. (Ни Т. Q.) и д.х.н. Гущин А. В. участвовали в обсуждении результатов. Доктор Фабио Лоренцини (Fabio Lorenzini Ph.D.) подготовил к публикации совместные с автором результаты по комплексам переходных металлов с новыми фосфинами. Доктор Паоло Маркаццан (Paolo Marcazzan Ph.D.) синтезировал и получил данные элементного анализа для Ph₂PCH(OH)CH₂Ph.

Объем и структура работы

Диссертационная работа изложена на 275 страницах машинописного текста и состоит из введения, глав обсуждения результатов, экспериментальной части, выводов и списка цитируемой литературы. Работа содержит 22 таблицы, 75 рисунков и 112 схем. Список литературы включает 438 ссылки.

Соответствие диссертации паспортам специальности

Изложенный материал и полученные результаты по своим целям, задачам, научной новизне, содержанию и методам исследования соответствуют п.1 «Синтез, выделение и очистка новых соединений», п.2 «Разработка новых и модификация существующих методов синтеза элементоорганических соединений», п.3 «Исследование механизмов и стереохимии химических реакций», п.6 «Выявление закономерностей типа «структура — свойство»» и п.7 «Выявление практически важных свойств элементоорганических соединений» паспорта специальности 02.00.08 — химия элементоорганических соединений, а также п.2 «Открытие новых реакций органических соединений и методов их исследования» паспорта специальности 02.00.03 — органическая химия, и решает две основные задачи химии элементоорганических соединений — изучение строения, физико-химических свойств и реакционной способности элементоорганических соединений и установление взаимосвязей между строением и свойствами элементоорганических соединений, — а также одну из основных задач органической химии — установление структуры и исследование реакционной способности органических соединений.

Благодарности

Автор выражает глубокую благодарность профессору Брайну Р. Джеймсу (Brain R. James) за возможность продуктивно работать в его лаборатории, за конструктивное обсуждение результатов и консультации. Также автор выражает глубокую признательность сотрудникам лаборатории спектроскопии ЯМР высокого разрешения Университета Британской Колумбии Марии Б. Ежовой и Нику Е. Бёрлинсону (Nick E.

Burlinson) за помощь в освоении ЯМР-спектрометров и современных методов анализа на основе ЯМР, руководителю лаборатории рентгеноструктурного анализа Университета Британской Колумбии Брайну О. Патрику (Brian O. Patrick) за проведение и помощь в расшифровке рентгеноструктурных экспериментов, а также Паоло Маркаццану (Paolo Marcazzan), Фабио Лоренцини (Fabio Lorenzini) и Джулио Ребукасу (Julio Reboucas) за помощь в проведении некоторых экспериментов.

II. ПРИНЯТЫЕ СОКРАЩЕНИЯ

ДМСО – диметилсульфоксид

ДМФА – диметилформамид

ТГФ – тетрагидрофуран

THP – аббревиатура от английского «Tris(Hydroxymethyl)Phosphine» -три(гидроксиметил)фосфин (HOCH₂)₃P

THPC – аббревиатура от английского «Tetra(Hydroxymethyl)Phosphonium
 Chloride» - тетра(гидроксиметил)фосфоний хлорид (HOCH₂)₃P

THEPC – аббревиатура от английского «Tetra(a-HydroxyEthyl)Phosphonium
 Chloride» - тетра(α-гидроксиэтил)фосфоний хлорид [HO(Me)CH]₄PCl

THEP — аббревиатура от английского «Tri(a-HydroxyEthyl)Phosphin» - три(α -гидроксиэтил)фосфин [HO(Me)CH] $_3$ Pl

THPP – аббревиатура от английского «Tris(3-HydroxyPropyl)Phosphine» -трис(3-гидроксипропил)фосфин (HOCH₂CH₂CH₂)₃P

THPPO – аббревиатура от английского «Tris(3-HydroxyPropyl)Phosphine Oxide» - трис(3-гидроксипропил)фосфиноксид (HOCH₂CH₂CH₂)₃PO

r. t. — аббревиатура от английского «room temperature» - комнатная температура

d. r. — аббревиатура от английского «diastereomeric ratio» - соотношение диастереомеров

РСА – рентгеноструктурный анализ

ЯМР – ядерный магнитный резонанс

УФ – ультрафиолетовый

ІІІ. РЕЗУЛЬТЫА И ИХ ОБСУЖДЕНИЕ

ГЛАВА 1.

Взаимодействие фосфинов с алифатическими и ароматическими альдегидами. Устойчивость (а-гидроксиалкил)фосфинов

До наших исследований в литературе существовало мнение, что ТНР является устойчивым фосфином и относительно нечувствителен к кислороду воздуха [123, 124], котя конкретных исследований в этом направлении не проводилось. Большой интерес, который проявляется к ТНР и другим водорастворимым фосфинам в различных областях науки и промышленности [42–100, 125–127], требовал изучения его устойчивости в водных растворах при разных рН и к окислению кислородом воздуха, тем более, что некоторые авторы, на основе своих исследований, делают прямо противоположный вывод: водорастворимые (гидроксиметил)фосфины чувствительны к окислению [128]. Информация о стабильности водных растворов ТНР необходима и для оптимизации процесса отбеливания в промышленных условиях, протекающего в различных диапазонах рН и с доступом к воздуху, а также для исследования кинетики некоторых реакций с участием ТНР.

1.1. Устойчивость водных растворов $(HOCH_2)_4PCl$ и $(HOCH_2)_3P$ к распаду и окислению

В 1921 г Хоффман впервые продемонстрировал, что фосфин PH₃ взаимодействует с четырьмя эквивалентами формальдегида в воде в присутствии одного эквивалента HCl, давая четвертичную фосфониевую соль (HOCH₂)₄PCl (традиционная аббревиатура в литературе – THPC) (ур. 1) [129]. До 50-х годов XX века THPC не привлекал особого внимания, однако после открытия его способности придавать огнестойкость хлопковым материалам [130–132], появилось огромное число публикаций по реакциям и применению как самого THPC, так и его производных. В качестве обзоров можно рекомендовать публикации [125–127].

$$PH_3 + 4 CH_2O + HCl \longrightarrow (HOCH_2)_4PCl$$
 (1)

Взаимодействие PH₃ с формальдегидом включает в себя несколько равновесных процессов и протекает через несколько интермедиатов, которые до наших исследований никогда не регистрировались и не описывались: моногидроксиметилфосфин HOCH₂PH₂ (МНР) и бисгидроксиметилфосфин HOCH₂PH₂ (ВНР) (схема 2). Стадией, определяющей скорость данного процесса, является образование первичного фосфина HOCH₂PH₂, и в отсутствие катализаторов равновесие полностью смещено в сторону исходных реагентов ввиду низкой нуклеофильности PH₃. Активация может проходить в присутствии кислоты за счет увеличения электрофильности формальдегида (схема 3), что ведет к образованию в качестве конечного продукта THPC (ур. 1) [129, 133], либо на комплексах переходных металлов, при этом в качестве продукта получается третичный фосфин THP (ур. 2) [123, 134–138]. Недавно были опубликованы квантово-химические расчеты механизма некаталитического синтеза THP из PH₃ и формальдегида [139, 140].

$$(HOCH_2)_4P^+Cl^- \xrightarrow{+ CH_2O} (HOCH_2)_3P \xrightarrow{+ CH_2O} (HOCH_2)_2PH \xrightarrow{+ CH_2O} HOCH_2PH_2 \xrightarrow{+ CH_2O} PH_3$$

$$THPC THP BHP MHP$$

$$Cxema 2$$

$$PH_3 + 3 CH_2O \xrightarrow{[M]} (HOCH_2)_3P$$
 (2)

Водные растворы ТНРС и являются кислотными, что вызвано диссоциацией протонов ОН-групп (ур. 3). В литературе приведено значение р $K_a = 5.5$ для этой диссоциации [141, 142], однако оно не учитывает диссоциацию цвиттер-иона до ТНР и формальдегида (ур. 4) и, соответственно, ставится под сомнение [125]. Литературное значение константы диссоциации р K_d , определенной с помощью титрования раствора (НОСН₂)₄Р⁺СІ⁻ гидроксидом натрия, равняется 7.06 [143].

$$(HOCH_2)_3P^+CH_2OH \iff (HOCH_2)_3P^+CH_2O^- + H^+$$
 (3)

Нами установлено [144], что растворение (HOCH₂)₄P⁺Cl⁻ (0.0125 M) в ацетатном буферном растворе с рН 4.9 и в гидрофталатном буферном растворе с рН 5.0 уменьшает рН до 4.8 и 4.7 соответственно. В спектрах ЯМР 31 P{ 1 H} полученных растворов присутствуют сигналы катиона (HOCH₂)₄P⁺ (d_P +27.5 м.д.) и THP (d_P -23.3 м.д.) в соотношении 1.10 и 1.33 соответственно. Данные этих двух экспериментов дают значения р K_d равное 7.07 и 7.09 соответственно, что отлично согласуется со значением, представленным в литературе. При рН \geq 6.5 в спектрах ЯМР 31 P{ 1 H} регистрируется только сигнал THP.

Обратимость реакции ТНР с формальдегидом (ур. 4) и ее зависимость от рН используется для получения ТНР, действием либо основаниями на ТНРС, такими как NaOH (ур. 5) [141, 145] и Et_3P [123, 146] или Bu_3P [147], либо взаимодействием с ловушками формальдегида, например, Na_2SO_3 (ур. 6) [148]. Также предложен метод синтеза ТНР из фосфониевых солей взаимодействием с ионообменными смолами [149].

$$(HOCH2)4P+Cl- + NaOH \longrightarrow (HOCH2)3P + CH2O + NaCl + H2O (5)$$

$$(HOCH2)4P+Cl- + Na2SO3 \longrightarrow (HOCH2)3P + HOCH2SO3Na + NaCl$$
 (6)

По аналогии с распадом ТНРС (ур. 3 и 4), следовало ожидать, что аналогичные процессы происходят и в растворах третичного фосфина ТНР (ур. 7 и 8). Действительно, 0.01 М раствор ТНР в деионизированной воде, свободной от CO_2 и насыщенной аргоном, дает слабокислую реакцию (рН ~ 5.5), что соответствует диссоциации гидроксильных групп (ур. 7), а не протонированию атома фосфора молекулами воды и генерации гидроксид ионов (ур. 9), что можно было ожидать от третичного фосфина с неподеленной электронной парой. Следует отметить, что фосфониевый катион (HOCH₂)₃PH⁺ не был зарегистрирован в спектрах ЯМР 31 P{ 1 H} даже при низких рН.

$$(HOCH2)2PCH2O- \xrightarrow{-CH2O} (HOCH2)2P- \xrightarrow{+H+} (HOCH2)2PH$$
 (8)

Главным результатом наших исследований явилось обнаружение зоны стабильности. В буферных растворах с 7 < pH < 8 в спектрах ЯМР 31 Р{ 1 H} присутствует только один синглет при d_P –23.3 м.д., принадлежащий исходному ТНР. Окисление ТНР кислородом воздуха в данных условиях протекает очень медленно, и образование следовых количеств (~7%) три(гидроксиметил)фосфиноксида (HOCH₂)₃PO (THPO, d_P 49.9 м.д.) при pH 7.5 наблюдалось только через 7 дней.

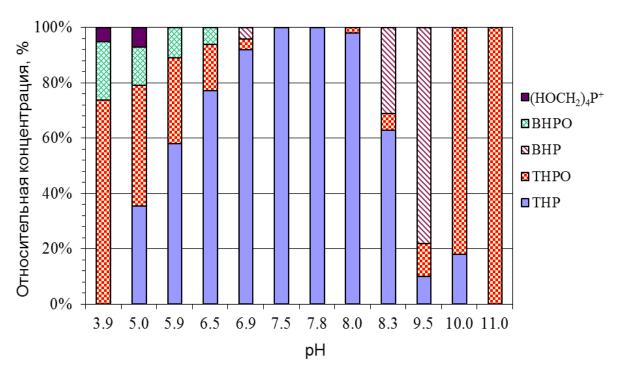


Рис. 1. Состав водных буферных растворов ТНР в зависимости от рН и относительная концентрация фосфорсодержащих веществ в них после 24 ч (r.t., аргон).

При более низких значениях pH регистрируются как процессы распада, так и увеличение скорости окисления кислородом воздуха. На рисунке 1 представлено процентное соотношение фосфорсодержащих веществ в буферном растворе при заданном pH, зарегистрированное с помощью спектроскопии ЯМР ³¹P{ ¹H} после 24 ч. При pH 6.9 через 24 ч в смеси регистрируются ТНРО и вторичный фосфин ВНР (d_P -57.2 м.д.) с ЯМР выходом ~ 4% каждого. При более низких значениях pH концентрация ТНРО увеличивается и наблюдается образование ди(гидроксиметил)фосфиноксида (НОСН₂)₂P(O)H (ВНРО, d_P 36.9 м.д.). При этом сигнал вторичного фосфина ВНР больше не регистрируется через 24 ч, но наблюдается на начальном этапе эксперимента. При pH

5.0 в спектре ЯМР 31 Р{ 1 H} появляется фосфониевый катион (HOCH $_{2}$) $_{4}$ Р $^{+}$. При рН 3.9 исходный фосфин полностью исчезает из смеси в течение 24 ч и главными фосфорсодержащими компонентами являются ТНРО и ВНРО с небольшим количеством (HOCH $_{2}$) $_{4}$ Р $^{+}$. В работе, опубликованной в 2012 г, сигнал в спекрте ЯМР 31 Р{ 1 H} при d_{P} 36.9 м.д. был ошибочно присвоен гидроксиду (HOCH $_{2}$) $_{4}$ Р $^{+}$ ОН $^{-}$ [150].

В сильнокислой среде (0.1 н HCl) наблюдается быстрая реакция диспропорционирования ТНР до (HOCH₂)₄P⁺ и ВНР (ур. 10), и уже через 1 ч в спектре ЯМР ³¹P{ 1 H} эти два соединения были обнаружены с выходом 54 и 24% соответственно, а также оксиды ТНРО (12%) и ВНРО (10%). Катион (HOCH₂)₄P⁺ не окисляется в данных условиях, тогда как ВНР полностью окисляется до оксида ВНРО за 6 ч.

$$2 (HOCH_2)_3P + H^+ \iff (HOCH_2)_4P^+ + (HOCH_2)_2PH$$
 (10)

Образование ВНР в буферных растворах ТНР при рН < 7, вероятно, обусловлено равновесными процессами, представленными в уравнениях 3 и 4, где формальдегид, образующийся при распаде ТНР (ур. 7 и 8), связывается в более стабильный фосфониевый катион. Ожидалось, что при рН > 8 ТНР будет диссоциировать до аниона (HOCH₂)₂PCH₂O $^{-}$, как следует из кислотности его водных растворов, который будет распадаться до формальдегида и фосфид-аниона (HOCH₂)₂P $^{-}$. Последний, принимая протон от растворителя, дает ВНР (ур. 8)

Действительно, в боратных буферных растворах с pH 8.3 и 9.5 ВНР обнаруживается в спектрах ЯМР с выходом ~ 32 и 78% соответственно (рис. 1). Спектры не меняются в течение двух дней, что свидетельствует о наличии зоны стабильности для ВНР при pH ~ 9.5 . Однако было неожиданным, что при pH 10 (карбонатный буфер HCO_3^-/CO_3^{-2-}) ВНР был зарегистрирован только в следовых количествах. Основным продуктом становиться ТНРО (рис. 1).

В щелочной среде в атмосфере аргона окисление ТНР протекает анаэробно с участием гидроксид ионов и сопровождается выделением H_2 . При рН буферного раствора 11.0 окисление завершается за 5 ч, а в 0.1 н растворе NaOH уже за 10 мин.

Анаэробное окисление водорастворимых третичных фосфинов в щелочной среде описано в литературе [151]. Механизм, предложенный авторами, аналогичен известному механизму распада фосфониевых гидроксидов в присутствии NaOH [152–164] и

включает образование пентаковалентного промежуточного соединения, которое взаимодействует с гидроксид ионами, давая фосфиноксид и гидрид-анион Н⁻ (схема 4). Последний взаимодействует с водой с выделением водорода и гидроксид-иона. В случае фосфониевых гидроксидов образуется фосфиноксид и углеводород RH (схема 5).

$$R_3P + H_2O \longrightarrow R_3P \longrightarrow R_3P = O + H_2O + H^-$$

$$Cxema 4$$

$$R_4P^+$$
OH + OH $\stackrel{-}{\longleftarrow}$ R_4P O $\stackrel{-}{\longleftarrow}$ R_3P O + R_3

Из литературы известно, что в процессе получения ТНР из $(HOCH_2)_4PCl$ с использованием NaOH (ур. 5), избыток NaOH ведет к образованию фосфиноксида и H_2 по схеме 6 [129, 165, 166]. Грайсон предложил два возможных механизма анаэробного окисления – коллинеарный и циклический. Однако оба этих механизма постулируют, что в процессе окисления участвует катион $(HOCH_2)_4P^+$ [141], что, скорее всего, не соответствует действительности, поскольку данный катион, как было нами показано, не существует при $pH \ge 6.5$ и в окислении участвует третичный фосфин по схеме 4.

$$(HOCH_2)_4 P^+ Cl^- + NaOH (изб.)$$
 — \longrightarrow $(HOCH_2)_3 P=O + H_2 + CH_2O + NaCl$ Схема 6

Таким образом, нами было установлено, что устойчивость ТНР зависит от рН раствора и максимальна при рН 7–8, где в спектрах ЯМР наблюдается исключительно сигнал ТНР и окисление кислородом воздуха протекает крайне медленно. В растворах с кислым рН окисление заметно ускоряется и наблюдается реакция диспропорционирования ТНР до вторичного фосфина ВНР и фосфониевого катиона $(HOCH_2)_4P^+$. В щелочных растворах происходит анаэробное окисление ТНР до фосфиноксида.

1.2. Сравнение устойчивости α -гидроксифосфина (HOCH₂)₃P и γ -гидроксифосфина (HOCH₂CH₂CH₂)₃P

Выявленное нами влияние pH водного раствора на устойчивость THP было изучено также на примере его гомолога (HOCH $_2$ CH $_2$ CH $_2$) $_3$ P (THPP), который является водорастворимым третичным (γ -гидроксиалкил)фосфином, и который также проявил отбеливающие способности.

Характерным отличием ТНРР от ТНР является наличие кислотно-основного равновесия (ур. 11), определяющим щелочную реакцию водных растворов ТНРР. В спектрах ЯМР 31 Р{ 1 H} растворов ТНРР регистрируется только один сигнал, который является усредненным сигналом исходного ТНРР и его протонированной формы [(HOCH₂CH₂CH₂)₃P⁺H] (ур. 11) ввиду быстрого обмена между ними. Сигнал чистого ТНРР виден при d_P –29.6 м.д. при $pH \geq 8.5$ как несколько уширенный синглет. Сигнал чистого [(HOCH₂CH₂CH₂)₃P⁺H] виден как уширенный синглет при δ_P 17.0 м.д. при $pH \leq 4$ [144].

Установлено, что ТНРР, как и ТНР, имеет зону стабильности, которая, однако, находится в интервале 10 < pH < 12, где изменений в спектрах ЯМР $^{31}P\{^{1}H\}$ не наблюдается в течение 3 дней (рис. 2). При рН > 12 наблюдается щелочное окисление фосфина до фосфиноксида [HO(CH₂)₃]₃PO, который регистрируется в спектре ЯМР $^{31}P\{^{1}H\}$ при d_{P} 61.1 м.д. При рН < 10 наблюдается окисление кислородом воздуха, при этом максимальная скорость окисления достигается при рН \sim 8. Данный процесс является радикальным [167, 168], и в наших системах мы также наблюдали продукты радикального окисления — $R_{2}P(O)OR$, $P(O)(OR)_{3}$ и $RP(O)(OR)_{2}$. Уменьшение рН до уровня ниже 8 ведет к замедлению окисления ввиду увеличения доли катиона [(HOCH₂CH₂CH₂)₃P⁺H], являющегося стабильным по отношению к кислороду воздуха. В интервале рН 1–4 продуктов окисления не наблюдалось вообще.

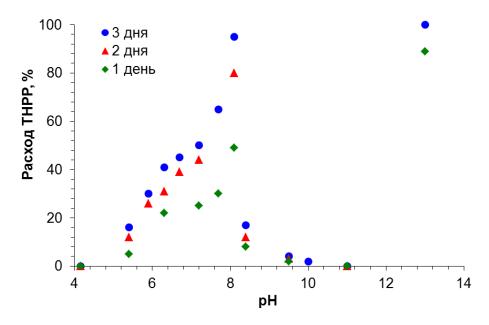


Рис. 2. Расход ТНРР в буферных растворах с доступом к воздуху (r. t.).

Таким образом, ТНРР устойчив к распаду во всем диапазоне pH, а к окислению кислородом воздуха при 10 < pH < 12. При pH < 4 THPP полностью переходит в протонированную форму, стабильную к кислороду.

Существует публикация, посвященная синтезу водорастворимых (гидроксиметил)фосфинов, где конечные продукты были сильно загрязнены фосфиноксидами, и авторы делают вывод о плохой стабильности данных фосфинов и непригодными для исследований в области водорастворимых лекарств [128]. Полученные нами результаты показывают путь для более эффективного синтеза и выделения данного класса фосфинов через определение зон стабильности.

1.3. Синтез, характеристика и устойчивость фосфониевой соли [HO(Me)CH]₄PCl и третичного α-гидроксифосфина [HO(Me)CH]₃P

В предыдущем разделе было показано, что длина гидроксиалкильного радикала у фосфина: фосфора устойчивость третичного атома влияет на три(угидроксипропил)фосфин устойчив к распаду и более устойчив к окислению кислородом воздуха, чем три(α-гидроксиметил)фосфин. В продолжение исследований было необходимо изучить влияния радикала в а-положении на устойчивость три(агидроксиалкил)фосфинов, эффективностть чтобы оценить возможность И использования в процессе отбеливания.

В сравнении **THPC** ПО синтезу свойствам тетра(αдругих гидроксиалкил)фосфониевых хлоридов публикаций достаточно мало. Тетра(агидроксиэтил)фосфоний хлорид [НО(Ме)СН]₄РС1 и α-гидроксипропиловый аналог [HO(Et)CH]₄PCl впервые 1888 были синтезированы В году по реакции гидрофосфинирования ацетальдегида и пропиональдегида фосфином РН₃ в присутствии HCl [169]. В начале 1960-х годов подобным методом были получены [HO(R)CH]₄PCl (где $R = n-C_6H_{13}$ и $n-C_{11}H_{23}$), которые были охарактеризованы только элементным анализом и температурой плавления [170, 171]. В 1975 г. Frank A. W. и др. сообщили о синтезе тетра(а-гидроксибензил)фосфоний хлорида [172]. В 1998 г. хлориды $[HO(R)CH]_4PCI$ (R = n-C₉H₁₉ и n-C₁₁H₂₃) были синтезированы тем же методом и впервые охарактеризованы спектроскопией ЯМР 1 H, 31 P{ 1 H} и 13 C{ 1 H} [173]. Реакция альдегидов, разветвленных в α-положении, с PH₃/HCl ведет к образованию только вторичных (α-гидроксиалкил)фосфинов [174]. Ароматические альдегиды в присутствии кислоты реагируют с РН₃ по другому механизму, в котором присутствует перенос кислорода из одной боковой цепи на атом фосфора (схема 7) [174].

3 PhCHO + PH₃
$$\longrightarrow$$
 [PhCH(OH)]₃P \longrightarrow [PhCH(OH)]₂P(O)CH₂Ph Cxema 7

За исключением (HOCH₂)₃P примерами третичных три(α -гидроксиалкил)фосфинов в литературе являются [HO(Cl₃C)CH]₃P, который был получен с выходом 95% прямой реакцией PH₃ с хлоралем в отсутствие кислоты (ур. 12) [175], и [HO(F₃C)CH]₃P [176]. Вероятно, увеличение электрофильности альдегидного углерода за счет введения акцепторных групп позволяет взаимодействовать с PH₃ в отсутствие кислоты. К сожалению, данные фосфины не растворимы в воде и не могут быть использованы в наших исследованиях по устойчивости.

$$3 \text{ Cl}_3\text{CCHO} + \text{PH}_3 \longrightarrow [\text{Cl}_3\text{CCH(OH)}]_3\text{P}$$
 (12)

С целью изучения влияние заместителя в α -положении на устойчивость три(α -гидроксиалкил)фосфинов нами был получен хлорид [HO(Me)CH]₄PCl (аббревиатура THEPC) по стандартной реакции PH₃ с ацетальдегидом в воде в присутствии HCl.

Хлорид ТНЕРС очень хорошо растворим в воде, и его водные растворы подобно (HOCH₂)₄PCl стабильны на воздухе.

ТНЕРС был впервые охарактеризован с помощью спектроскопии ЯМР [177]. Спектр ЯМР 31 Р{ 1 H} в D₂O показал наличие трех синглетов в области фосфониевых солей при $d_{\rm P}$ 27.6, 28.3 и 27.8 м.д. с интегральным соотношением 1:4:4 соответственно (рис. 3). ТНЕРС содержит четыре идентичных хиральных углеродных центра, связанных с атомом фосфора в тетраэдрической конфигурации. Теоретически, три наблюдаемых синглета в спектре ЯМР 31 Р{ 1 H} соответствуют трем возможным диастереомерам и должны наблюдаться в соотношении 1:4:3 (схема 8). Незначительное отклонение наблюдаемого соотношения 1:4:4 от теоретического, возможно, связано с равновесием, существующим в D₂O (схема 9), подобное тому, что известно для (HOCH₂)₄PCl (pK_d ~7.1, см раздел 2.1, ур. 3 и 4). Данное равновесие приводит к предпочтительному образованию одного из трех диастереомеров хлорида ТНЕРС ввиду стерических затруднений, оказываемых гидроксиэтиловыми группами фосфина ТНЕР. Для фосфониевых солей [HO(n-C₉H₁₉)CH]₄PCl и [HO(n-C₁₁H₂₃)CH]₄PCl сообщается о трех сигналах в спектрах ЯМР 31 P{ 1 H} в соотношении 2:3:5 и ~1:2:3 соответственно [173].

Нами была предпринята попытка получения третичного фосфина [HO(Me)CH]₃P (THEP) из THEPC по реакции с Na_2SO_3 (1:1). ЯМР исследования данной реакции в D_2O (г.t., аргон) показали, что действительно на первоначальной стадии образуется третичный фосфин THEP и α -дейтероксиэтансульфонат натрия [177], что соответствует

стехиометрии, показанной в уравнении 13 и найденной для ТНР [125, 178]. Однако в отличие от ТНР, который устойчив в данных условиях, ТНЕР частично распадается до вторичного фосфина [DO(Me)CH]₂PD (ВНЕР- d_1) и ацетальдегида (ур. 14).

$$[DO(Me)CH]_4P^+CI^- + Na_2SO_3 \longrightarrow [DO(Me)CH]_3P + DO(Me)C(H)SO_3Na + NaC1$$

$$[DO(Me)CH]_3P \longrightarrow [DO(Me)CH]_2PD + MeCHO$$

$$THEP \qquad BHEP-d_1$$

$$(14)$$

Как и ожидалось (схема 8), в спектре ЯМР 31 Р{ 1 Н} сигналы фосфина ТНЕР наблюдаются как два синглета в соотношении 1:3 при $\delta_{\rm P}$ 8.4 и 7.1 м.д. (рис. 3а). Вторичный фосфин ВНЕР- $\rm d_{1}$, вместо ожидаемых двух сигналов одинаковой интенсивности для диастереомеров (RR)/(SS) и (RS)/(SR) (схема 8), виден как три триплета в соотношении 1:2:1 при $\rm d_{\rm P}$ –26.8, –28.5 и –31.6 м.д. ($^{1}J_{\rm PD}$ 33 Гц) (рис. 3а). Возможным объяснением этого может служить факт, что в случае энантиомеров (RS)/(SR) атом фосфора является хиральным, так как дейтероксиэтильные группы с (R)-или (S)-хиральностью различаются, что ведет к образованию двух энантиомеров (RSR) и (SRS), которые, по-видимому, не идентичны в спектрах ЯМР.

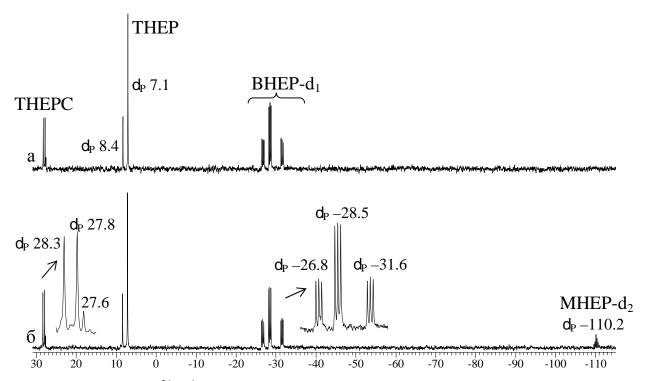


Рис. 3. Спектр ЯМР 31 Р{ 1 H} реакции хлорида ТНЕРС и Na₂SO₃ (1:1, аргон, D₂O, r. t.) полученный через: (а) 15 минут; (б) 1 день.

Через один день в спектре ЯМР 31 Р{ 1 H} (рис. 3б) был обнаружен квинтет при d_{P} – $(^{1}J_{\mathrm{PD}}$ дейтерированному 110.2 32 который был присвоен м.д. Гц), моно(а-дейтероксиэтил)фосфину [DO(Me)CH]PD₂ $(MHEP-d_2),$ продукту диспропорционирования вторичного фосфина ВНЕР-d₁ (ур. 15). Использование двукратного избытка Na₂SO₃ (D₂O, r.t., аргон) полностью расходует хлорид ТНЕРС и в спектрах ЯМР, полученных через 20 мин, присутствуют только сигналы фосфинов THEР и ВНЕР- d_1 в соотношении 4:5.

$$2 [DO(Me)CH]_{2}PD \longrightarrow [DO(Me)CH]_{3}P + DO(Me)CHPD_{2}$$

$$BHEP-d_{1} THEP MHEP-d_{2} (15)$$

Обработка хлорида ТНЕРС триэтиламином Et_3N (1:1 или 1:2, r. t., аргон, D_2O) также ведет к образованию смеси фосфинов ТНЕР и ВНЕР- d_1 . Однако соотношение между ними составляет 2:1, что обусловлено сдвигом равновесия (ур. 14) в сторону третичного фосфина в отсутствие анионов SO_3^{2-} , являющихся ловушками для ацетальдегида в этих условиях (ур. 13).

Неустойчивость фосфина ТНЕР, первого гомолога широко используемого фосфина (HOCH₂)₃P, в водных средах находится в согласии с известными данными, что стерические затруднения препятствуют образованию три- и тетра(α -гидроксиалкил) производных фосфора [171]. Нестабильность фосфина ТНЕР также согласуется с нашими результатами, которые будут обсуждаться ниже, и которые свидетельствуют, что электронодонорные заместители способствуют распаду (α -гидроксиалкил)фосфинов. В случае с [HO(Cl₃C)CH]₃P [175] и [HO(F₃C)CH]₃P [176] использование электроноакцепторных групп CCl₃ и CF₃ ведет к стабилизации соединений.

тетра(α-гидроксиэтил)фосфоний [HO(Me)CH]₄PCl Таким образом, хлорид впервые охарактеризован с помощью спектроскопии ЯМР, которая показала, что данное трех диастереомеров в соотношении соединение состоит из 4:4:1. Реакция $[HO(Me)CH]_4PCl$ с Na_2SO_3 или Et_3N , с целью получения третичного фосфина [HO(Me)CH]₃P, ведет К равновесию между НИМ И вторичным фосфином [HO(Me)CH]₂PH. Таким образом, можно заключить, что три(α-гидроксиалкил)фосфины, кроме (НОСН₂)₃Р, неустойчивы в водных средах.

1.4. Взаимодействие ароматических и алифатических альдегидов с вторичными фосфинами

Проблема взаимодействия вторичных фосфинов с ароматическими и алифатическими альдегидами возникла при попытках синтезировать моно(α-гидроксиалкил)диорганофосфинов с целью изучения их реакций с α,β-ненасыщенными соединениями, т.к. на первом этапе исследований реакций с участием ТНР были очень сложны для разбора. В дополнение к этому, как было показано выше, вторичные фосфины могут генерироваться в процессе отбеливания механической пульпы, и поэтому их реакции с монолигнолами были важны для понимания всего процесса.

В литературе некоторое время существовало мнение, что первичные и вторичные фосфины, по аналогии с PH₃, могут взаимодействовать с альдегидами только в присутствии сильной кислоты, давая соответствующие фосфониевые соли (схема 10) [179–181]. Действием основанием на них получали третичные фосфины.

$$R_2PH + 2 R'CHO + HC1 \longrightarrow R_2P[CH(OH)R']_2C1 \xrightarrow{NaOH} R_2PCH(OH)R'$$

Cxema 10

Впоследствии было установлено, что моно- и бис(α -гидроксиалкил)фосфины могут быть получены прямой реакцией первичного или вторичного фосфина на альдегид. Так, нагревание параформальдегида с PhPH₂ или Ph₂PH ведет к образованию PhP(CH₂OH)₂ [182, 183] и Ph₂PCH₂OH [182, 184] соответственно. По устойчивости данных фосфинов было известно, что Ph₂PCH₂OH при кипячении в толуоле распадается до формальдегида и Ph₂PH [185].

Рамирез и др. установили, что Ph_2PH взаимодействует в толуоле с $(CF_3)_2C=O$ или C_6F_5CHO с образованием устойчивых моно(α -гидроксиалкил)фосфинов (схема 11), тогда как реакция с трифторацетофеноном $PhC(O)CF_3$ или с бензальдегидом ведет к равновесию между исходными реагентами и моно(α -гидроксиалкил)фосфином (схема 12) [186].

$$Ph_2PH + R' \longrightarrow Ph_2P \longrightarrow R'$$

Схема 11: $R = R' = CF_3$; R = H, $R' = C_6F_5$

$$Ph_2PH + R' \longrightarrow Ph_2P \longrightarrow R'$$

Схема 12: $R = CF_3$, R' = Ph; R = H, R' = Ph

Мюллер и др. описали приготовление двух моно(α -гидроксиалкил)фосфинов, $Ph_2PCH(OH)R$ (R=Ph и Et), по реакции Ph_2PH с соответствующим альдегидом в отсутствие растворителя [187]. Приводятся данные ЯМР анализа для растворов в $CDCl_3$ без упоминания или обсуждения устойчивости данных фосфинов, хотя по результатам наших исследований моно(α -гидроксиалкил)фосфины крайне неустойчивы в хлороформе (см ниже).

Моно(α-гидроксиалкил)фосфины являются промежуточными соединениями в реакциях синтеза других классов фосфорорганических соединений. Так, было показано, что в присутствии кислоты 3-гидроксипропилфенилфосфин и 3-гидроксипропил-трет-бутилфосфин взаимодействуют с альдегидами и кетонами, давая 1,3-оксафосфоринаны (схема 13) [188, 189]. В трехкомпонентной системе, состоящей из вторичного фосфина, ароматического альдегида и спирта, в присутствии кислоты протекает реакция конденсации с образованием устойчивого фосфина (схема 14) [190]. Реакция Ph₂PH с *п*-диметиламинобензальдегидом в этаноле в присутствии кислоты ведет к образованию *п*-диметиламинобензилиден-бис(дифенилфосфина) (схема 15) [190]. Реакция вторичных фосфинов с бензальдегидами в присутствии кислоты также протекает через моно(α-гидроксиалкил)фосфин, как интермедиат, который быстро трансформируется в фосфиноксид [174, 191].

Схема 13: R' = Ph, t-Bu

$$R_2PH + PhCHO + HOR' \xrightarrow{H^+} R_2P \xrightarrow{OR}$$

Схема 14

Синтез моно(а-гидроксиалкил)диорганофосфинов

Для изучения устойчивости нами был синтезирован Ph_2PCH_2OH по известной методике и ряд моно(α -гидроксиалкил)фосфинов по реакции Ph_2PH или (c- C_6H_{11}) $_2PH$ с соответствующим альдегидом в отсутствие растворителя при комнатной температуре в атмосфере аргона (схема 16). Все соединения получены с количественным выходом в виде белых твердых веществ и подтверждены элементным анализом и спектрами ЯМР 1H -, $^1H\{^{31}P\}$ - и $^{13}C\{^1H\}$ в ДМСО- d_6 [192]. Соединения **Ic** и **Ie** синтезированы впервые.

Было установлено, что фосфины **Ia-e**, как правило, не устойчивы в органических растворителях и распадаются с установлением равновесия между исходными компонентами и третичным фосфином (схема 16). Данное равновесие зависит от природы растворителя, радикалов R и R'. Следует отметить, что распад моно(α -гидроксиалкил)фосфинов наблюдается даже в твердом состоянии при пониженном давлении.

Влияние растворителя на стабильность моно(а-гидроксиалкил)фосфинов

Влияние растворителя было прослежено на примере фосфина $Ph_2PCH(OH)Et$ (**Ib**), 0.05 M растворы которого контролировались с помощью спектроскопии ЯМР $^{31}P\{^{1}H\}$. На рисунке 4 представлены кривые относительной концентрации фосфина **Ib** в апротонных растворителях в зависимости от времени. Установлено, что скорость и степень разложения фосфина **Ib** зависит от донорности растворителя и уменьшается в ряду $CHCl_3$ (донорное число 4.0) ~ CH_2Cl_2 (1.0) > C_6H_6 (0.1) > MeCN (14.1) > Me_2CO (17.0) > Et_2O (19.2). Данная тенденция подразумевает увеличение устойчивости с ростом донорного числа растворителя. Действительно, в таких растворителях, как ДМСО (29.8), December MP (26.6) и пиридин (33.1), фосфин **Ib** стабилен.

Протонные растворители, такие как спирты, обладают относительно высокими донорными числами. Однако в них также наблюдается распад фосфина ${\bf Ib}$, уменьшающийся в ряду ${\rm MeOH} > {\rm EtOH} > i{\rm -PrOH}$ (рис. 5), что совпадает с увеличением донорного числа данных растворителей: 19.0, 19.2 и 21.1 соответственно. Значительное смещение равновесия между третичным и вторичным фосфинами в сторону продуктов распада в спиртах можно объяснить связыванием выделяющегося альдегида в полуацеталь (схема 17), который может быть зарегистрирован с помощью спектроскопии ${\rm SMP}^{-1}{\rm H}$ в дейтерированных спиртах.

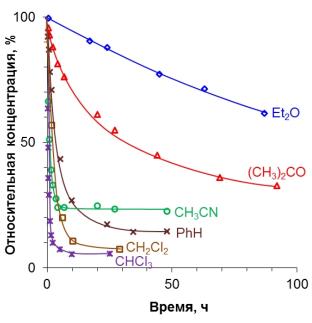


Рис. 4. Зависимость относительной концентрации фосфина **Ib** в апротонных растворителях от времени.

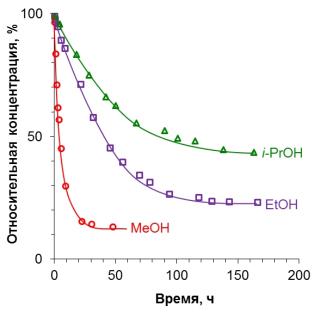


Рис. 5. Зависимость относительной концентрации фосфина **Ib** в спиртах от времени.

$$R_{2}P \xrightarrow{OH} R_{2}PH + \left[H \xrightarrow{O} \begin{array}{c} +R"OH \\ \hline R' \end{array} R"O \xrightarrow{R"OH} R"O \xrightarrow{R'} \right]$$

Схема 17

(а-гидроксиалкил)фосфинов, вероятно, осуществляется через внутримолекулярное кислотно-основное взаимодействие между ОН протоном и неподеленной парой электронов атома фосфора, в результате которого образуется фосфониевый интермедиат, распадающийся на альдегид и вторичный фосфин (схема 18). Донорные растворители в соответствии с этой схемой должны затруднять взаимодействие ОН...Р, координируя протон на себя. В литературе описаны протонированные формы пиридина, ДМСО и ДМФА [193, 194]. Подтверждением предложенной схемы распада являются химические сдвиги фосфина Ів в различных растворителях (таблица 1). В недонорных растворителях сигнал ЯМР 31 Р{ 1 H} фосфина **І**в заметно сдвинут в слабое поле, например: в $CHCl_3$ и бензоле $d_P - 1.6$ и -1.7 м.д. соответственно, тогда как в донорных ДМСО и пиридине сигнал ЯМР ³¹Р{ ¹H} регистрируется в более сильном поле при $d_P - 6.8$ и -4.5 м.д. соответственно. Это свидетельствует о более выраженной координации протона на атом фосфора в способствует недонорных растворителях, ЧТО формированию фосфониевого интермедиата и, соответственно, более быстрому распаду. В тех же самых условиях, химические сдвиги Ph₂PH отличаются незначительно (таблица 1).

$$\begin{array}{c}
O-H \leftarrow |Solv \\
 & \stackrel{\uparrow}{PPh_2}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H} \\
 & \stackrel{\downarrow}{PPh_2}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H} \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H} \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H} \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}
\end{array}$$

$$\begin{array}{c}
H \\
 & \stackrel{\downarrow}{H}$$

$$\begin{array}{c}
H \\
 & \stackrel$$

Таблица 1. Химические сдвиги 31 P{ 1 H} Ph $_{2}$ PH и моно(α -гидроксиалкил)фосфинов **Ia-е** в различных растворителях

Растворитель	Ph ₂ PH	Ia	Ib	Ic	Id	Ie
ДМСО	-39.7	-14.7	-6.8	-5.7	0.7	16.8
Пиридин	-39.6		-4.5			
Ацетон	-39.1		-4.0			
CH ₃ CN	-39.0		-4.4			
Et_2O	-39.7	-11.5	-3.0	-1.8	3.8	распад
CH_2Cl_2	-39.6		-2.4			•
CHCl ₃	-39.8	-9.1	-1.6	-1.8	распад	распад
Бензол	-40.1		-1.7		-	•
MeOH	-39.8	-13.4	-5.7	-4.7	0.7	распад
EtOH	-39.8		-5.8			•
<i>i</i> -PrOH	-39.9		-6.1			

Введение донорной группы в **g**-положение относительно карбонильного углерода увеличивает стабильность моно(α-гидроксиалкил)фосфина. Так, дифосфин **Ha**, синтез и свойства которого обсуждаются в главе 3, ведет себя в органических растворителях аналогично моно(α-гидроксиалкил)дифенилфосфинам (схема 19). Однако его стабильность во всех растворителях выше, чем фосфина **Ib** (рис. 6 и 7). С большой долей вероятности можно утверждать, что **g**-атом фосфора внутри- или межмолекулярно взаимодействует с протоном ОН-группы, затрудняя протонирование **a**-атома фосфора (схема 19).

В таблице 2 приведены значения химических сдвигов \mathbf{a} - и \mathbf{g} -P дифосфина $\mathbf{H}\mathbf{a}$ в различных органических растворителях. Дифосфин $\mathbf{H}\mathbf{a}$ имеет два хиральных центра, и в спектрах ЯМР регистрируется как смесь диастереомеров (\mathbf{A} и \mathbf{b}), которые будут обсуждаться подробно в главе 3. Рисунок 8 иллюстрирует примеры спектров ЯМР 31 P{ 1 H} дифосфина $\mathbf{H}\mathbf{a}$ в некоторых растворителях. Можно видеть, что химический

сдвиг a-P сильно зависит от природы растворителя, тогда как химический сдвиг g-P меняется незначительно, что согласуется с предложенной схемой распада через протонирование a-P.

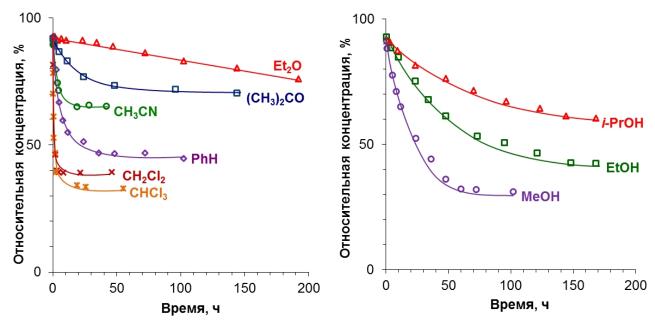


Рис. 6. Зависимость относительной концентрации дифосфина **IIa** в апротонных растворителях от времени.

Рис. 7. Зависимость относительной концентрации дифосфина **Па** в спиртах от времени.

Таблица 2. Химические сдвиги 31 Р{ 1 H} дифосфина **Иа** в различных растворителях

Растворитель	a -P (A)	<i>g</i> -P (A)	а -Р (Б)	<i>g</i> Р (Б)
ДМСО	-7.5	-0.8	-5.7	1.5
ДМФ	-6.0	-0.4	-4.6	2.1
Пиридин	-5.2	0.4	-4.0	2.2
Ацетон	-4.8	0.3	-3.8	2.5
CH ₃ CN	-4.5	-0.5	-4.2	1.5
Et ₂ O	-3.6	0.4	-3.6	2.4
CH_2Cl_2	-3.0	-0.8	-4.1	1.0
CHCl ₃	-2.4	0.3	-3.9	1.8
Бензол	-1.8	0.1	-3.7	1.6
Гексан	-1.0	-0.3	-3.4	2.0
MeOH	-6.6	0.3	-4.5	2.6
EtOH	-6.6	0.4	-4.5	2.7
<i>i</i> -PrOH	-6.5	0.4	-4.7	2.5

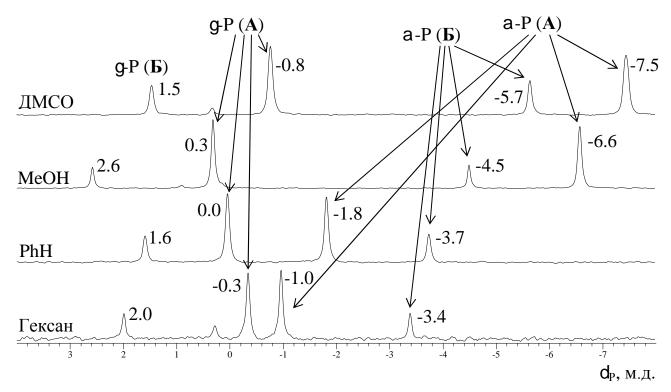


Рис. 8. Спектры ЯМР 31 Р{ 1 H} дифосфина **Иа** в некоторых органических растворителях.

Из литературы известно, что «нейтрализация» неподеленной электронной пары атома фосфора с помощью кислоты Льюиса, а именно, ВН₃, также ведет к устойчивым соединениям. Так, сообщается о реакции гидрофосфинирования бензальдегидов, ацетона и коричного альдегида дифенилфосфин-бораном в присутствии основания с образованием фосфорсодержащих соединений с ОН группой в α-положении (схема 20) [195–197].

Влияние природы фосфина и альдегида

Предложенная схема распада моно(а-гидроксиалкил)дифенилфосфинов (схема 18) подтверждается эффектом радикалов R и R'. Так, все фосфины, содержащие Phгруппу у атома фосфора $Ph_2PCH(OH)R'$ (R' = H, Et, CH_2Ph , Ph), стабильны в ДМСО, тогда как фосфин с донорным циклогексиловым радикалом (c- C_6H_{11}) $_2PCH(OH)Ph$ (**Ie**) в тех же условиях полностью распадается за 12 часов. В Et_2O соединение **Ie** распадается

за 5 минут. При этом соединения **Ib-d** также распадаются, но заметно медленнее (рис. 9). Фосфин **Ia** стабилен в Et_2O .

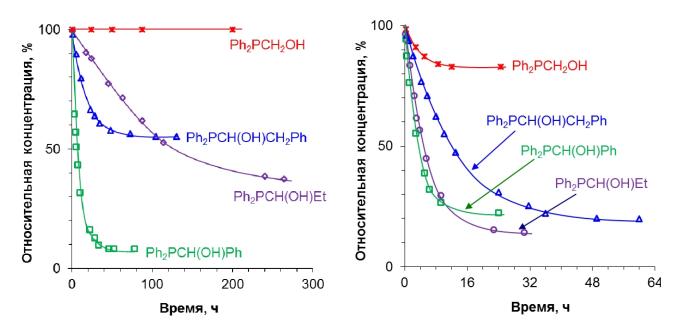


Рис. 9. Зависимость относительной концентрации $Ph_2PCH(OH)R'$ в Et_2O от времени

Рис. 10. Зависимость относительной концентрации $Ph_2PCH(OH)R'$ в MeOH от времени

В МеОН все моно(а-гидроксиалкил)дифенилфосфины неустойчивы, так как распад облегчается связыванием альдегида в полуацеталь (схема 17). Скорость и степень распада в зависимости от радикала R' уменьшается в ряду $Ph > Et > CH_2Ph > H$ (рис. 10). Полученные данные также свидетельствует, что более электронодонорный атом фосфора дает менее устойчивый (а-гидроксиалкил)дифенилфосфин.

Для того, чтобы показать чистый эффект радикала R' на устойчивость моно(агидроксиалкил)дифенилфосфинов и исключить эффект спирта, были проведены реакции Ph_2PH с ароматическими альдегидами с различными заместителями в *пара*-положении ($[Ph_2PH] = [альдегид] = 0.1$ M, MeOH, r. t., аргон) (схема 21). Концентрация фосфорсодержащих соединений во времени была отслежена с помощью ЯМР $^{31}P\{^{1}H\}$. Найдено, что реакционноспособность альдегидов зависит от заместителя X и уменьшается в ряду: CN > Cl > F > H > Me > OMe. Зависимость равновесной концентрации соответствующего моно(а-гидроксиалкил)дифенилфосфина от σ_n констант Гамметта дает прямую линию (рис. 11). Таким образом, как и ожидалось, акцепторные группы смещают равновесие в сторону (а-гидроксиалкил)фосфина.

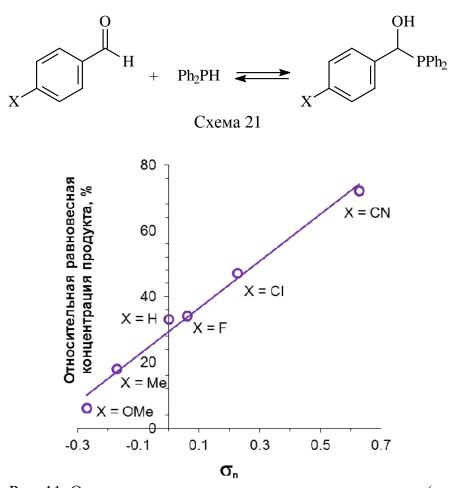


Рис. 11. Относительная равновесная концентрация моно(α-гидроксиалкил)дифенилфосфинов в реакции Ph_2PH с 4-X- C_6H_4CHO в MeOH (1:1, 300 K, аргон) от σ_n констант Гамметта.

Таким образом, хотя моно(а-гидроксиалкил)фосфины и могут быть легко и количественно получены прямой реакций вторичного фосфина и альдегида, их применение в реакциях с монолигнолами ограничивается неустойчивостью данного класса соединений в органических растворителях и, как следствие, установлением равновесия с исходными компонентами. Чем выше донорное число растворителя, тем сильнее равновесие смещено в сторону моно(а-гидроксиалкил)фосфина. Электроноакцепторные заместители, как у атома фосфора, так и в молекуле альдегида, увеличивают устойчивость фосфинов.

1.5. Взаимодействие ароматических и алифатических альдегидов с третичными фосфинами

Как показано в предыдущих разделах вторичные фосфины взаимодействуют с альдегидами в отсутствие кислоты, давая третичные фосфины, содержащие ОН-группы в а-положение, и которые могут быть выделены и/или охарактеризованы. Из что продукты взаимодействия третичных литературы известно, фосфинов с карбонильными соединениями могут быть выделены только в присутствии сильной кислоты, которая стабилизирует фосфониевый катион. Так, было показано, что добавление HCl к раствору Me₃P или Et₃P в ацетоне при -78°C ведет к образованию белого кристаллического осадка соответствующей фосфониевой соли (схема 22). Аналогично были получены производные ацетальдегида в растворе ТГФ [198]. Авторы также показали, что устойчивые продукты взаимодействия Me_3P или Et_3P с бензальдегидом могут быть получены в присутствии Me₃SiCl (схема 23). Позже было триарилфосфины (Рh₃Р И Ph₂PC₆H₄SO₃Na) установлено, что и аналогично взаимодействуют с алифатическими, ароматическими и коричными альдегидами в растворителях присутствии сильной органических В кислоты, давая (αгидроксиалкил)фосфониевые соли [199, 200].

$$R'$$
 $\stackrel{O}{\longleftarrow}$ $+ R_3P + HCl$ \longrightarrow R' $\stackrel{OH}{\longleftarrow}$ $Cl^ P^+R_3$ $CI^ OSiMe_3$ R' $\stackrel{O}{\longleftarrow}$ $+ R_3P + Me_3SiCl$ \longrightarrow R' $\stackrel{OSiMe_3}{\longleftarrow}$ $Cl^ P^+R_3$ $Cxema 23$

Данные представленные в литературе однозначно свидетельствуют, что в органических растворителях третичные фосфины взаимодействуют с альдегидами по стандартному механизму нуклеофильной атаки, однако продукты этого взаимодействия, фосфониевые соли, можно выделить только в присутствии сильной кислоты. Поскольку процесс отбеливания протекает в водной среде, было необходимо проследить

реакционность третичных фосфинов по отношению к альдегидам в воде. Среди альдегидов ароматические альдегиды представляют особый интерес для наших исследований, т.к. данный класс органических соединений является продуктом биодеградации лигнина и промежуточным звеном в синтезе некоторых хромофоров.

Взаимодействие третичных фосфинов с ароматическими альдегидами в воде

В качестве модельной реакции для изучения взаимодействия третичных фосфинов с ароматическими альдегидами была выбрана реакция водорастворимого фосфина (HOCH₂CH₂CH₂)₃P (THPP) с вератровым альдегидом (схема 24). В последнем присутствуют МеО-группы, характерные для компонентов лигнина, и он относительно хорошо растворим в воде.

Было установлено [201], что при комнатной температуре в реакции вератрового альдегида с ТНРР (1:1, г.t., Ar) в воде устанавливается равновесие между исходными компонентами и фосфониевым гидроксидом **III** (схема 24). Равновесие в данных условиях практически полностью смещено в сторону исходных реагентов. Доказательством взаимодействия служит тот факт, что в присутствии альдегида исходный синглет ТНРР (d_P –29.3 м.д.) в спектре ЯМР ³¹Р{¹H} незначительно смещается в слабое поле и виден как уширенных синглет при d_P –28.5 м.д., как результат усреднения сигналов исходного фосфина и гидроксида **III**.

Схема 24; $R = CH_2CH_2CH_2OH$

Равновесие, представленное на схеме 24, зависит от рН раствора и смещается в сторону продуктов в присутствии 1 экв. HCl, давая фосфониевый хлорид **IV** в соотношении 3:1 к THPP (схема 25). После удаления воды сухой остаток был проанализирован с помощью масс-спектроскопии ESI+, которая показала основной пик

при m/e 375.4, соответствующий массе фосфониевого катиона **IV**. Спектры ЯМР также согласуются со структурой **IV**.

Наши дальнейшие исследования показали, что в отсутствие кислоты при повышении температуры в растворе вератрового альдегида и THPP в воде протекает окислительно-восстановительная реакция. После нагревания при 90°С в течение 72 ч из реакционной смеси был выделен вератровый спирт с выходом 86% (схема 26, путь A), в качестве фосфорсодержащего продукта был зарегистрирован фосфиноксид THPP=O. Сами по себе исходные реагенты стабильны в воде в данных условиях. При проведении реакции в D_2O был выделен вератровый спирт, монодейтерированный в бензильном положении (схема 26, путь Б). Инкорпорация одного атома дейтерия доказана с помощью спектроскопии ЯМР 1 H и $^2D\{^1$ H} в растворе CDCl₃ и CHCl₃ соответственно.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Предположительно, механизм данной окислительно-восстановительной реакции включает на первой стадии нуклеофильную атаку фосфина на карбонильный углерод с образование фосфониевого гидроксида **III** (схема 24). Дальнейший процесс идентичен процессу распада четвертичных фосфониевых оснований [152–164], где под действием второго гидроксид-аниона образуется пятивалентный фосфорорганический анион,

Схема 26; ($R = CH_2CH_2CH_2OH$)

который распадается на фосфиноксид и карбанион (схема 27). Последний быстро захватывает протон или дейтрон от растворителя, давая соответствующий бензиловый спирт. Разрыв связи фосфор-бензил энергетически более выгоден, чем разрыв связи фосфор-пропил, т.к. образуется более стабильный карбанион.

Схема 27; ($R = CH_2CH_2CH_2OH$)

Установлено, что в отличие от THPP, другие водорастворимые фосфины, такие как (HOCH₂)₃P и Ph₂(m-NaSO₃C₆H₄)P, в тех же самых условиях не реагируют с вератровым альдегидом. Предположительно данные фосфины являются более слабыми нуклеофилами, чем THPP, что подтверждается их химическими сдвигами в спектре 31 P{ 1 H} в растворе D₂O, где они видны в более слабом поле при δ_{P} –23.2 и –5.3 м.д. соответственно (THPP дает сигнал при δ_{P} –29.3 м.д.). Более основный фосфин Et₃P также не вступает в реакцию, но это, вероятно, связано с его низкой растворимостью в воде.

Другие ароматические альдегиды в тех же условиях (H_2O , 90 °C, 72 ч, аргон) реагируют с THPP аналогично вератровому альдегиду, давая соответствующий бензиловый спирт с выходом 50- 90% (таблица 3).

Таблица 3.

Выход спиртов в реакции альдегидов (ArCHO) с THPP (1:1, H ₂ O, 90°C, Ar)							
Ar	Выход, %	Ar	Выход, %				
Ph	89 ^a	$4-IC_6H_4$	77				
$3-HOC_6H_4$	82	4 -BrC $_6$ H $_4$	83				
$2\text{-MeOC}_6\text{H}_4$	86	$4-ClC_6H_4$	85				
$3-MeOC_6H_4$	81	$4-FC_6H_4$	64				
$4-MeOC_6H_4$	82	$2,6-Cl_2C_6H_3$	85				
$3,4-(MeO)_2C_6H_3$	86	$2\text{-MeC}_6\text{H}_4$	83				
$2,4,6-(MeO)_3C_6H_2$	50	$4-MeC_6H_4$	75				
$3,5-Me_2C_6H_3$	65						

^а Выход определен с помощью ГЖХ.

Ароматические альдегиды, содержащие *n*- или *o*-OH группу, в реакции с ТНРР также восстанавливаются до соответствующих бензиловых спиртов. Однако продукты не могут быть выделены из-за их быстрого взаимодействия с исходным фосфином с образованием фосфониевых цвиттер-ионов. Данный тип реакций будет детально обсуждаться в главе 8.

Таким образом, нами было установлено, что ароматические альдегиды в количеств фосфина **THPP** В 90°C присутствии эквимолярных воде при восстанавливаются до бензиловых спиртов, которые могут быть выделены с выходами 50-90%. Фосфин при этом окисляется до фосфиноксида. Данная окислительновосстановительная реакция протекает через нуклеофильную атаку фосфина на альдегидный атом углерода с образованием фосфониевого гидроксида, который распадается по механизму распада четвертичных фосфониевых оснований. Предложен удобныхй метод синтеза а-дейтерированных бензиловых спиртов. Дейтерированные органические молекулы необходимы для изучения механизмов реакций [101–113], биомолекул [114-119], а таже метаболизма [120-122, 202, 203]. В литературе описаны методы синтеза соединений с дейтронами, в том числе а-дейтерированных бензиловых спиртов [204–211], однако предложенный нами способ выгодно отличается отсутствием необходимости использовать соединения переходных металлов и относительно невысокими температурами.

Сравнение реакционной способности ароматических альдегидов с ароматическими кетонами и алифатическими альдегидами в реакции с THPP

Реакция 3,4-диметоксиацетофенона с ТНРР была проведена в тех же самых условиях, что и реакция с вератровым альдегидом (1:1, H₂O, 90 °C, аргон), чтобы сравнить реакционность ароматических альдегидов и ароматических кетонов. Через 3 дня нагревания соответствующий а-метилвератровый спирт был выделен с выходом 3% (схема 28). Низкая реакционность 3,4-диметоксиацетофенона объясняется \$-донорным эффектом метильной группы, которая понижает электрофильность карбонильного атома углерода и, соответственно, еще больше смещает равновесие между исходными реагентами и промежуточным фосфониевым оксидом в сторону исходных реагентов (схема 24).

На примере гидрокоричного альдегида показано, что алифатические альдегиды, содержащие **а**-протон, не восстанавливаются, а участвуют в реакции самоконденсации. Так, при нагревании реакционной смеси, состоящей из гидрокоричного альдегида и ТНРР (1:1, H₂O, 90 °C, аргон, 72 ч), был выделен 2-бензил-5-фенил-2-пентеналь с выходом 59% (схема 29). Нуклеофильная атака фосфина на С=О связь ведет к образованию ОН⁻ аниона (см. схема 24), который катализирует альдольную конденсацию.

Таким образом, ароматические кетоны, по сравнению с ароматическими альдегидами, проявляют меньшую реакционную способность в окислительновосстановительной реакции с ТНРР в воде, что связано с более низкой электрофильность карбонильного атома углерода. Алифатические альдегиды в тех же условиях не восстанавливаются, а подвергаются альдольной конденсации ввиду генерирования в системе ОН⁻ анионов.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 1

Вторичные фосфины взаимодействуют с алифатическими и ароматическими альдегидами с образование неустойчивых продуктов 1,2-присоединения – моно(а-гидроксиалкил)диорганофосфинов, которые в органических растворителях образуют равновесие с исходными компонентами. Данное равновесие зависит от природы

заместителей у атома фосфора и в альдегиде, а также от природы растворителя: донорные заместители смещают равновесие влево, тогда как донорные растворители смещают его вправо. Третичные фосфины в реакциях с алифатическими и ароматическими альдегидами также дают продукты 1,2-присоединения, которые, однако, значительно менее устойчивы, чем моно(а-гидроксиалкил)диорганофосфины, и могут быть зарегистрированы только в присутствии сильной кислоты. Взаимодействие (HOCH₂CH₂CH₂)₃P с бензальдегидами в воде при 90°C ведет к образованию бензиловых спиртов с высокими выходами, что может являться одним из синтетических методов их получения. Данная реакция может вносить вклад в процессе отбеливания механической пульпы с участием (НОСН2СН2СН2)3Р, поскольку бензальдегиды являются продуктами биодеградации лигнина. Установлено, что фосфин (НОСН2СН2СН2)3Р катализирует содержащие альдольно-кротоновую конденсацию алифатических альдегидов, активированные протоны.

ГЛАВА 2.

Взаимодействие третичных фосфинов, не содержащих а-ОН-групп, с коричными альдегидами

а,b-Ненасыщенные альдегиды, содержащие фенилпропаноидный скелет, являются промежуточными звеньями в биосинтезе лигнина [1–12] и вносят значительный вклад в цвет продуктов термомеханической переработки древесины. Изучение взаимодействия данного класса органических соединений с третичными фосфинами является важным для понимания процесса отбеливания.

В литературе существуют публикации по реакциям третичных фосфинов со всеми классами a,b-ненасыщенных карбонильных соединений (кислоты, сложные эфиры, амиды, кетоны), литературные обзоры по которым будут даны в соответствующих разделах. На этом фоне было удивительно обнаружить практически полное отсутствие работ по взаимодействию третичных фосфинов с a,b-ненасыщенными альдегидами. До наших исследований единственным примером реакций данного типа является реакция n-Bu₃P с (арилметилен)малональдегидами в бензоле или CH_2Cl_2 по схеме 30 [212]. В тех же условиях Ph_3P не взаимодействует с подобными бисальдегидами [212].

Ar
$$CH=O$$
 + $n-Bu_3P$ \longrightarrow $n-Bu_3P$ H $CH=O$

Схема 30

Взаимодействие третичных фосфинов с а,b-ненасыщенными альдегидами (акролеин, метакролеин и кротоновый альдегид) используется для удаления третичный фосфинов из отработанного катализатора в реакциях гидроформилирования [213]. Авторы предположили, что взаимодействие протекает по схеме 31 [214].

$$O + R_3P \longrightarrow R_3P^{\oplus}$$
 $O \cap Cxema 31$

Таким образом, наши исследования взаимодействия третичных фосфинов с a,bненасыщенными альдегидами важны не только для изучения процессов отбеливания термомеханической пульпы, но также интересны применительно к процессам гидроформилирования, протекающих в присутствии комплексов переходных металлов с фосфиновыми лигандами.

2.1. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в воде

Установлено [215], что в воде третичные фосфины Et_3P , Me_3P , $[HO(CH_2)_3]_3P$, Me_2PPh и Et_2PPh реагирует с синаповым, конифериловым и кумаровым альдегидами (1:1, r.t., Ar), давая в качестве конечного продукта соответствующий бисцвиттер-ион **Va**-**g** (схема 32).

2 HO

$$X = X = Y = OMe; R = R \not\subset Et$$
 $X = X = Y = OMe; R = R \not\subset Et$
 $X = X = X = OMe; R = R \not\subset Et$
 $X = X = X = OMe; R = R \not\subset Et$
 $X = X = X = OMe; R = R \not\subset Et$
 $X = X = X = OMe; R = R \not\subset Et$

b: X = Y = H; $R = R \not = Et$

c: $X = OMe; Y = H; R = R \not = Et$

d: X = Y = OMe; $R = R \not e = Me$

e: X = Y = OMe; $R = R \not = (CH_2)_3 OH$

f: X = Y = OMe; R = Me, $R \not = Ph$

g: X = Y = OMe; R = Et, $R \not = Ph$

Схема 32

После выделения все вещества представляют собой твердые некристаллические вещества почти черного цвета. Соединения доказаны с помощью ЯМР- и масс-спектрометрии. В спектрах ЯМР 31 Р{ 1 H} соединения **Va-g** регистрируются в области типичной для фосфониевых солей [216–218]. Получить удовлетворительные данные по элементному анализу не удалось, т.к. фенольные соединения из водных растворов могут

быть выделены только как смесь цвиттер-ионной формы и соответствующей протонированной фосфониевой соли с ОН в качестве противоиона. Данные переходы типичны для протонированных и депротонированных форм фенольных соединений [219].

ЯМР исследования реакции фосфина Et_3P с синаповым альдегидом в D_2O показали, что образование соединения Va протекает через моноцвиттер-ион VIIa – продукта нуклеофильной атаки фосфина на C=C связь пропеноидной цепи исходного альдегида, который в растворе D_2O быстро замещает b-протоны на дейтроны (схема 33). В водной среде соединение VIIa в основном существует как диол VIIIa (VIIIa/VIIa) » 10). Образование VIIIa/VIIa протекает в течение 5-10 минут реакции. На второй, более медленной стадии происходи альдольная конденсация двух молекул VIIa и миграция одного фосфина с образованием бисцвиттер-иона Va (схема 33).

Обработка соединений **Va-g** водной соляной кислотой ведет к образованию соответствующих бисфосфониевых дихлоридов **VIa-g** (схема 32). Все соединения могут быть очищены перекристаллизацией из спиртов за исключением соединений **VIf** и **VIg**, которые нестабильны в спиртах.

Соединение **VIa** является твердым веществом, хорошо растворимым в воде и имеющим значительно менее интенсивной окраску, чем его прекурсор **Va**. На рисунке 12 представлены УФ-спектры соединения **VIa** при разных рН. При рН ≤ 4.2 в растворе присутствует только протонированная форма **VIa**, которая имеет максимумы поглощения при 368 и 250 нм. При увеличении рН происходит последовательное депротонирование фенольного гидроксида ароматического кольца **A**, а затем кольца **Б** с образованием фенолятной формы **Va** с максимумами поглощения 450 и 270 нм (рис. 12). Интересно, что поглощение при 450 нм достигает максимума при рН **»** 9, а затем

несколько уменьшается (примерно на 3%) (рис. 12), в то время как абсорбция при 270 нм продолжает увеличиваться. Константы диссоциации р K_a фенольных гидроксидов кольца \mathbf{A} и \mathbf{B} , полученные анализом спектров поглощения по уравнению Хендерсона-Хасселбаха [220–222], равны 6.85 ± 0.08 и 8.8 ± 0.2 соответственно. Точность определения значения р K_a для кольца \mathbf{B} несколько ниже, чем для кольца \mathbf{A} , но находится в ожидаемом диапазоне и близка к измеренному значению р K_a для производного $\mathrm{Et}_3\mathrm{P}$ и метилванильного спирта (9.14 ± 0.02) (глава 8). Незначительное уменьшение абсорбции при 450 нм при р H > 9, вероятно, связано с образованием фенолятного кольца \mathbf{B} .

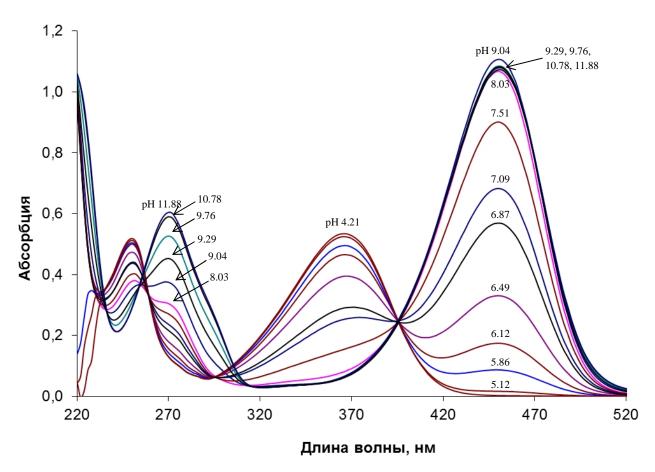


Рис. 12. УФ-спектры соединения **VIa** в зависимости от pH водного раствора при 25°C.

Соединения **V** и **VI** имеют ограничение в свободном вращение ароматического кольца **Б**, в результате чего его стороны становятся ЯМР-неэквивалентными, а соответствующие атомы появляются при разных химических сдвигах. Так, ароматические протоны H^{12} и H^{12} соединения **VIa** видны как два синглета при δ_H 6.71 и 6.22 м.д. соответственно (рис. 13A) и коррелируют в эксперименте ${}^1H^{-1}H$ COSY. Для кольца **A** был зарегистрирован только один синглет при δ_H 6.48 для эквивалентных протонов H^8 и H^8 . Подобно этому, отдельные сигналы ЯМР 1H и ${}^{13}C\{{}^1H\}$ видны для

групп МеО кольца **Б**, но не для кольца **A**. Эксперимент NOE с облучением протона H^{12} дает спектр, в котором сигнал противоположного протона H^{12} появляется в той же фазе, что и облучаемый протон H^{12} (рис. 13Б). Это свидетельствует о том, что за время эксперимента, ароматическое кольцо **Б** успевает сделать оборот и облученный протон H^{12} перемещается на место протона H^{12} . Сигналы MeO-групп, связанные с кольцом **Б**, ведут себя аналогично.

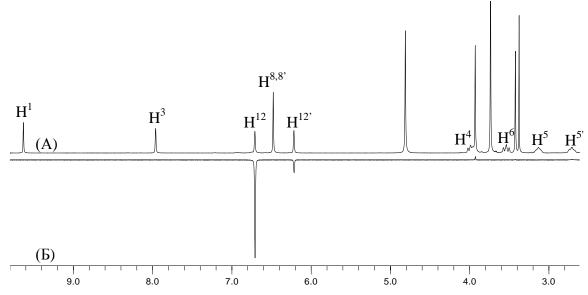


Рис. 13. (A) Часть спектра ЯМР 1 Н соединения **VIa** в D_{2} О; (Б) спектр 1D NOE соединения **VIa** в D_{2} О с облучением протона H^{12} .

Конифериловый альдегид имеет несимметричное ароматическое кольцо. В связи с этим соединение **VIc** образуется как смесь двух атропоизомеров (**VIc-a** и **VIc-b**) в соотношении 3:1, которые легко могут быть идентифицированы с помощью ЯМР-спектроскопии. Наиболее выгодная конфигурация **VIc-a** видна в спектре ЯМР 31 Р{ 1 H} при δ_{P} 45.1 и 42.3 м.д. для атомов фосфора P^{1} и P^{2} соответственно, тогда как менее интенсивные сигналы при δ_{P} 44.9 и 42.4 м.д. присвоены энергетически менее выгодной конфигурации **VIc-b**.

Соединения V и VI имеют два хиральных центра — атомы углерода C^4 и C^6 . Относительная простота ЯМР-спектров свидетельствует о том, что эти соединения генерируются исключительно как смесь двух энантиомеров. Это подразумевает, что реакция самоконденсации, а также миграция фосфина в промежуточных соединениях, протекает стереоспецифично.

Кристаллизацией из насыщенного раствора в ЕtOH были выделены качественные кристаллы соединения **VId**. Полученная с помощью PCA молекулярная структура (рис. 14) показала, что соединение **VId** формируется как смесь (S,S)- и (R,R)-энантиомеров. Некоторые геометрические параметры соединения **VId** представлены в таблице 4. Можно видеть, что ароматические кольца располагаются друг под другом, что и вызывает наблюдаемый эффект затрудненного вращения кольца **Б**.

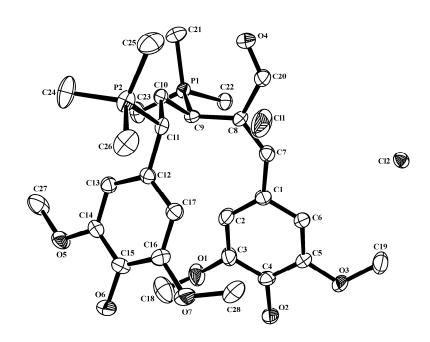


Рис. 14. Диаграмма ORTEP соединения **VId** (*R*,*R*-изомер); атомы H не показаны.

Таблица 4. Избранные длины связей и углы для соединения **VId**

Связь	Длина (Å)	Связь	Угол (град)
C(9)-P(1)	1.815(2)	C(12)-C(11)-P(2)	109.51(16)
C(11)-P(2)	1.804(2)	C(10)-C(11)-P(2)	112.26(16)
C(24)-P(2)	1.773(3)	C(8)-C(9)-P(1)	113.22(17)
C(25)-P(2)	1.769(3)	C(10)-C(9)-P(1)	110.51(16)
C(26)-P(2)	1.771(3)	O(4)-C(20)-C(8)	125.4(3)
C(20)-O(4)	1.203(3)	C(7)-C(8)-C(20)	114.2(2)
C(8)-C(20)	1.462(4)	C(7)-C(8)-C(9)	127.5(2)
C(7)-C(8)	1.341(3)	C(8)-C(7)-C(1)	136.8(2)
C(7)-C(1)	1.453(3)	C(9)-P(1)-C(21)	109.93(12)
		C(9)-P(1)-C(22)	112.11(12)
		C(9)-P(1)-C(23)	106.48(12)
		C(11)-P(2)-C(24)	109.77(13)
		C(11)-P(2)-C(25)	111.10(13)
		C(11)-P(2)-C(26)	108.46(13)

Химические сдвиги геминальных протонов $H^{5,5'}$ соединений Va и Vd-g демонстрируют одну характерную особенность. Степень анизохронности $D(H^5-H^{5'})$ увеличивается с увеличением объема фосфина: Me_3P (D=0.59) < [$HO(CH_2)_3$] $_3P$ (0.67) » Et_3P (0.71) < Me_2PPh (1.16) < Et_2PPh (1.38). Это вероятно связано с увеличением напряжения в углеродной цепи C^4-C^6 .

Действительно, использование более объемных фосфинов, таких как i-Pr₃P и Ph₂PMe, в реакции с синаповым альдегидом (1:1, H₂O или D₂O, r.t., Ar), реакции самоконденсации не наблюдалось. С помощью спектроскопии ЯМР ¹H было показано, что в реакции i-Pr₃P с синаповым альдегидом устанавливается равновесие между исходными реагентами и цвиттер-ионами VIIh и VIIIh (схема 34): соотношение VIIIh : VIIh = 10 : 1, а соотношении альдегид : (VIIh + VIIIh) = 2 : 3. В реакции синапового альдегида с МеРPh₂ соотношения VIIIi : VIIi и альдегид : (VIIi + VIIIi) составляют 8 и 2 соответственно.

MeO

$$+ R_2R'P$$
 $+ R_2R'P$
 $+ R_2R'P$

 $Ph_2P(m-NaSO_3-C_6H_4)$ и $(c-C_6H_{11})_3P$ в реакции с синаповым альдегидом дают соответствующие моноцвиттер-ионы только в следовых количествах. В случае $(NCCH_2CH_2)_3P$ реакции не наблюдалось вовсе ввиду его низкой нуклеофильности [223].

Таким образом, коричные альдегиды, содержащиеся в структуре лигнина взаимодействуют с третичными фосфинами в водной среде при комнатной температуре с образованием продуктов 1,4-присоединения. В зависимости от природы фосфина продукты реакции либо количественно подвергаются самоконденсации с образованием бисцвиттер-ионов $\{R_2R'P\ [R=R'=Me,\ Et,\ (CH_2)_3OH;\ R=Me\ или\ Et,\ R'=Ph\}$, либо находятся в равновесии с исходными реагентами $[i\text{-Pr}_3P,\ MePPh_2,\ (c\text{-C}_6H_{11})_3P\ u\ Ph_2P(m-NaSO_3\text{-C}_6H_4)]$.

2.2. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в спиртах

Было установлено [224], что в отличие от реакций в воде, в спиртах взаимодействие третичных фосфинов и а, в-ненасыщенных альдегидов не ведет к образованию бисцвиттер-ионов. На примере реакции синапового альдегида с некоторыми третичными фосфинами в CD₃OD (1:1, r.t., Ar) было показано, что в системе устанавливается равновесие между исходными реагентами и моноцвиттерионом в форме полуацеталя (схема 35). Соединение $\mathbf{IX-D_2}$ имеет два хиральных центра и формируется как смесь четырех стереомеров, из которых с помощью ЯМР можно различить только пары энантиомеров (RR)/(SS)(RS)/(SR). Соотношение диастереомеров (d.r.) определено интегрированием в спектрах $\text{ЯМР}^{31}\text{P}\{^{1}\text{H}\}$. Присвоение сигналов ЯМР конкретным диастереомерам основывается на наших исследованиях по реакции коричного альдегида с Рh₂PH (глава 3), где в продуктах диастереомеры с хиральностью (RR)/(SS) преобладают над (RS)/(SR) изомерами.

MeO
$$\longrightarrow$$
 MeO \longrightarrow MeO

Схема 35

Обратимость, показанная на схеме 35, подтверждается наблюдаемым в спектроскопии ЯМР 1 Н медленным обменом b-протона синапового альдегида на дейтрон. Дублет дублетов при d_{H} 6.43 м.д., принадлежащий b-протону, медленно исчезает из спектров ЯМР, тогда как дублеты при d_{H} 9.36 и 7.51 м.д., принадлежащие а-и q-протону соответственно, трансформируются в синглеты. В таблице 5 приведены

ЯМР данные для соединений $IX-D_2$, измеренные после 24 ч, когда H/D обменный процесс завершился.

Таблица 5. Данные ЯМР 31 Р{ 1 H} и 1 H, и равновесные соотношения для фосфина и фосфониевых полуацеталей, образующихся в реакции с синаповым альдегидом в CD₃OD (1:1, r.t. Ar)

№	Фосфин	R_3P , d_P	$(RS)/(SR)^{a}$		$(RR)/(SS)^{a}$					
			d_{P}	а-Н,	g-H,	$d_{\mathbb{P}}$	а-Н,	g-H,	$R'R_3P^+/R_3P$	d. r. ⁶
				d_{H}	d_{H}		d_{H}	d_{H}		
1	Et ₃ P	- 17.5	40.1	4.37	3.74	39.7	4.33	3.73	5.2	1.1
2	n-Bu ₃ P	- 30.5	35.4	4.38	3.74	35.0	4.33	3.72	4.0	1.1
3	THPP	- 29.5	37.8	4.36	В	37.4	4.32	В	2.5	1.1
4	Me ₂ PPh	- 45.5	27.9	4.32	3.92	27.6	4.28	3.90	2.5	1.1
5	MePPh ₂	- 26.7	26.4	4.37	4.66	26.1	4.31	4.65	0.4	1.2
6	i-Pr ₃ P	20.8	41.6	4.28	4.04	41.2	4.20	4.01	0.7	1.2
7	$(c-C_6H_{11})_3P$	12.3	32.9	4.29	В	32.5	4.21	В	Γ	1.2

а) Назначение диастереомеров является условным (см. текст). б) d. r. – соотношение диастереомеров. в) Перекрывается с сигналами ОМе-групп. г) Пояснения в тексте..

Данные, представленные в таблице 5, свидетельствуют, что соотношение $R'R_3P^+/R_3P$, где R' представляет фенолятную форму альдегидной части полуацеталя, зависит, как от стерических, так и от электронных факторов фосфина. Самое высокое значение 5.2 (табл. 5, оп. № 1 и рис. 15) наблюдается в случае фосфина Et_3P , который имеет конусный угол q 132° [225], тогда как n-Bu₃P с тем же значением угла дают соотношение 4.0 (табл. 5, оп. № 2), в случае $[NC(CH_2)_2]_3P$ реакции не наблюдалось вовсе. Ряд активности $Et_3P > n$ -Bu₃P $>> NC(CH_2)_2]_3P$ соответствует, вероятно, уменьшению нуклеофильности фосфина, хотя нуклеофильность Et_3P и n-Bu₃P очень близки [223]. Значение соотношения $R'R_3P^+/R_3P$ в реакции с THPP равно 2.5 (оп. № 3), что соответствует этой тенденции, если с высокой долей вероятности допустить, что угол q для THPP тоже равен 132° и его нуклеофильность находится между $[NC(CH_2)_2]_3P$ и n-Bu₃P. Ме₂PPh, обладающий самым низким значением q (122°), дает соотношение 2.5, тогда как низкое значение соотношение 0.4 для MePPh₂ (q = 136°) должно быть связано с негативным эффектом фенильных групп на нуклеофильность (табл. 5, оп. № 4

и 5). Объемный фосфин i-Pr₃P ($q = 160^\circ$) дает соотношение 0.7 (табл. 5, оп. № 6), тогда как для самого объемного (c-C₆H₁₁)₃P ($q = 170^\circ$) данное соотношения не может быть измерено ввиду низкой растворимости фосфина в CD₃OD. Соотношение диастереомеров (d. r.) во всех случаях отличается незначительно.

Нами также было изучено влияние различных спиртов на реакцию Et_3P с синаповым альдегидом (1:1, г.t., Ar). В таблице 6 суммированы данные для равновесного состояния, измеренные после 24 ч (схема 36; в спиртах CD_3OD и i-PrOD- d_8 OH- и β -протоны будут представлены как дейтроны). Результаты показывают, что соотношение $R'R_3P^+/R_3P$ зависит от диэлектрической постоянной (ε) спирта. В гликоле, с самым высоким значением ε (37.7), наблюдается количественный выход фосфониевого полуацеталя (табл. 6, оп. № 1 и рис. 15а). В других спиртах интенсивность сигнала $^{31}P\{^1H\}$ фосфина Et_3P постепенно увеличивается (т. е. равновесие смещается влево) в порядке: CD_3OD (ε = 32.7) > EtOH (24.6) > (CD_3) $_2CDOD$ (18.3) > s-BuOH (15.8), как показано на рисунке 15. Соотношение диастереомеров при варьировании спиртов изменяется сильнее, чем при варьировании фосфина. Так, в i-PrOD- d_8 наблюдается самое высокое значение d. г. 1.3 (табл. 6, оп. № 4; см. так же ниже).

Таблица 6. Данные ЯМР 31 Р{ 1 Н} и равновесные соотношения для Et_{3} Р и его фосфониевых полуацеталей в реакции с синаповым альдегидом в различных спиртах (1:1, r. t., Ar)

№	Растворитель	e	R_3P , d_P	$(RS)/(SR)$, d_P	(RR)/(SS), d _P	$R'R_3P^+/R_3P$	d. r.
1	(CH ₂ OH) ₂	37.7	-	40.4	40.0	¥	1.2
2	CD ₃ OD	32.7	-17.5	40.1	39.7	5.2	1.1
3	EtOH	24.6	-17.5	41.1	40.7	1.7	1.1
4	<i>i</i> -PrOD-d ₈	18.3	-18.8	40.4	40.0	0.5	1.3
5	s-BuOH	15.8	-18.7	a	a	0.4	a
6	t-BuOH ⁶	12.5	-18.9	_	_	0	_

а) Пояснения в тексте. б) Реакции не наблюдалось.

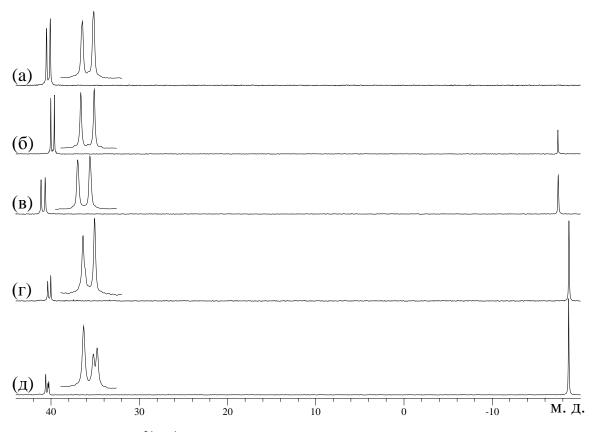


Рис. 15. Спектр ЯМР 31 Р{ 1 H} раствора Et_{3} Р и синапового альдегида (1:1, r.t., Ar) в: (а) (CH₂OH)₂, (б) CD₃OD, (в) EtOH, (г) i-PrOD-d₈, (д) s-BuOH.

В случае хирального спирта s-ВиОН стереохимия реакции значительно более сложная. Ожидалось, что в спектре ЯМР 31 Р{ 1 H} будут зарегистрированы четыре фосфониевых сигнала, поскольку возможны четыре диастереомера (SSS)/(RRR), (SSR)/(SRR), (SRS)/(RSR) и (RSS)/(RSR) [соединение X]. Однако было зарегистрировано только три синглета при $\delta_{\rm P}$ 40.4, 40.1 и 40.0 м.д. с относительной интенсивностью 1.0:0.5:0.6 (рис. 15д). Это может быть объяснено тем, что хиральность g-углерода промежуточного цвиттер-иона в форме альдегида (схема 36) определяет хиральность атакующей молекулы s-ВиОН. Например, если g-углерод имеет (S)-хиральность, то, возможно, только (S)-бутанол может давать полуацеталь. В данном случае возможны только два диастереомера [(SSS)/(RRR) и (SRS)/(RSR)]. Если формирование полуацеталя в данном растворителе не полное, то один из трех сигналов может соответствовать альдегидной форме соединения X. В этом отношение, следует отметить, что меньший сигнал в спектре ЯМР 31 Р{ 1 H} реакционной смеси в i-РгОD- d_{8} (рис. 15r) имеет небольшое плечо, которое может быть связано с присутствием альдегидного цвиттериона. В данном случае, реальное соотношение диастереомеров выше, чем 1.3.

Таким образом, взаимодействие третичных фосфинов с а,β-ненасыщенными альдегидами лигнина в спиртах, как и в водных растворах, ведет к образованию продуктов 1,4-присоединения и, соответственно, разрушению сопряжения. Однако в спиртах реакции самоконденсации продуктов не происходит, и они находятся в равновесии с исходными реагентами. Донорные фосфины и спирты с высокой диэлектрической постоянной сдвигают равновесие в сторону продуктов.

2.3. Взаимодействие третичных фосфинов с коричными альдегидами лигнина в апротонных растворителях

В апротонных растворителях, таких как ацетон и ДМСО, третичные фосфины ТНРР, Et_3P , n- Bu_3P , (NCC H_2CH_2) $_3P$ и p- Tol_3P не взаимодействует с конифериловым или синаповым альдегидом, за одним исключением [224].

Реакция ТНРР с конифериловым или синаповым альдегидом (1:1) в ацетоне при комнатной температуре в атмосфере аргона дает немедленное осаждение, соответственно, желтого или желто-коричневого фосфониевого цвиттер-иона **XIa** или **XIb** соответственно (схема 37). Соединения **XIa** и **XIb**, выделенные с высоким выходом, нерастворимы в ацетоне, CH_2Cl_2 , $CHCl_3$ и CH_3CN , но легко растворимы в воде, MeOH и ДМСО.

MeO
$$+$$
 (HOCH₂CH₂CH₂)₃P $\xrightarrow{\text{auetoh}}$ $\xrightarrow{\text{o}}$ $\xrightarrow{\text{o}}$

Схема 37

Будучи растворенным в метаноле или CD_3OD , соединение **XIa** или **XIb** дает красный раствор, в котором устанавливается равновесие между исходными реагентами и полуацеталем, описанное выше. Растворение цвиттер-ионов **XIa** и **XIb** в D_2O приводит к образованию бисцвиттер-ионов, что подробно описано для данных соединений в разделе 2.1. Растворение цвиттер-ионов **XIa** и **XIb** в ДМСО- d_6 дает зеленый раствор, спектры ЯМР которого показали их полное разложение до исходного альдегида и ТНРР.

Таким образом, было установлено, что в отличие от реакций в воде и спиртах, в апротонных растворителях а,b-ненасыщенные альдегиды лигнина не дают продуктов с третичными фосфинами, за исключением реакций с ТНРР в ацетоне, где образуются моноцвиттер-ионы. Образование последних обусловлено их низкой растворимостью в ацетоне.

2.4. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричными альдегидами лигнина в присутствии HCl

Как было показано на примере взаимодействия бензальдегидов с ТНРР, присутствие НС1 позволяет зарегистрировать продукты нуклеофильной атаки фосфина на карбонильный атом углерода (раздел 1.5, схема 25). Было интересно проверить, существует ли, помимо нуклеофильной атаки фосфинов на С=С связь a,b-ненасыщенных альдегидов лигнина (далее g-нуклеофильная атака), рассмотренной выше, нуклеофильная атака ТНРР на карбонильную группу (далее a-нуклеофильная атака).

Действительно, в реакции ТНРР с конифериловым альдегидом в присутствии кислоты устанавливается равновесие между исходными реагентами и продуктом а-нуклеофильной атаки (схема 38). В реакции гидрохлорида ТНРР с конифериловым альдегидом в D_2O (1:1, r.t., Ar) в спектре ЯМР $^{31}P\{^1H\}$, полученном через 2 ч, были зарегистрированы два интенсивных сигнала: триплет при d_P 19.0 м.д. ($^1J_{PD}$ 76 Γ ц), принадлежащий фосфониевому катиону [$DO(CH_2)_3]_3P^+D$ и синглет при d_P 37.6 м.д., присвоенный соединению **XIIa** (схема 38). Спектроскопия ЯМР 1 Н подтверждает образование фосфониевой соли **XIIa**. Соотношение **XVIa**/альдегид, полученное интегрирование в спектре ЯМР 1 Н через 48 ч, равняется 2.

MeO
$$+ R_3P + DCl$$
 $\xrightarrow{D_2O, r.t., Ar}$ MeO $\xrightarrow{B_3P^{\oplus} Cl^{\ominus}}$ \xrightarrow{XIIa}

Схема 38; $R = CH_2CH_2CH_2OD$

Интересно, что при взаимодействии гидрохлорида ТНРР с конифериловым и синаповым альдегидами в CD_3OD , соединения **XIIa** и **XIIb** являются интермедиатами. Конечными продуктами реакции являются стабильные α -эфиры **XIIIa** и **XIIIb** (схема 39) [226]. В дополнение к этому в начальный момент реакций регистрируется образование полуацеталей (схема 39), сигналы которых постепенно исчезают из спектров ЯМР.

Образование соединения **XIIIb** было подтверждено масс-спектрометрией ESI+ сухого остатка, полученного после удаления растворителя и растворения его в MeOH. В масс-спектре был зарегистрирован основной сигнал при m/e 434.1, соответствующий молекулярной массе фосфониевого катиона соединения **XIIIb** (OD-дейтроны в метаноле быстро обмениваются на протоны).

MeO

Ar, r.t.

MeO

Ar, r.t.

$$R_3P^{\oplus}$$
 Cl $^{\ominus}$
 R_3P^{\oplus} Cl $^{\ominus}$
 R_3P^{\oplus} Cl $^{\ominus}$

XIIIa

XIIIa X = H

XIIIb

XIIIb X = MeO

Cxema 39

Таким образом, нами было показано, что α,β-ненасыщенные альдегиды лигнина при взаимодействии с THPP в присутствии HCl дают продукты 1,2-присоединения. В

воде устанавливается равновесие между исходными реагентами и (α-гидрокси)фосфониевой соли, тогда как в метаноле эта соль быстро конвертируется в стабильный (α-эфир)фосфониевой соли, который является конечным продуктом и был доказан с помощью ЯМР- и масс-спектрометрии.

2.5. Взаимодействие ($HOCH_2CH_2CH_2$) $_3$ Р с коричными альдегидами, не содержащих фенольных групп

2.5.1. Взаимодействие (HOCH₂CH₂CH₂)₃Р с коричным альдегидом в воде

Реакция коричного альдегида с ТНРР (1:1) в воде при комнатной температуре в атмосфере аргона протекает гетерогенно. Через 48 ч органические продукты реакции были экстрагированы эфиром и разделены на хроматографической колонке. В результате были выделены два изомерных продукта: 2-бензил-5-фенилпент-2,4-диеналь (XIV) и 5-фенил-2-(фенилметилен)-4-пентаналь (XV) с выходом 29% и 21% соответственно (схема 40), структура которых доказана с помощью спектроскопии ЯМР, включая 1D NOE и COSY эксперименты, масс-спектрометрии и элементного анализа [227]. Суммарный процесс образования этих изомеров включает "димеризацию" двух молекул коричного альдегида, с сопутствующей потерей одного атома кислорода.

Мониторинг реакции с помощью спектроскопии ЯМР 31 Р{ 1 Н} показал, что исходный фосфин (d_P –29.3 м.д.) быстро исчезает в реакционной смеси в течение 5 мин, а рН реакционной массы увеличивается с 9.0 до 11.2 после добавления альдегида к раствору ТНРР. Одновременно с этим, в типичной для фосфониевых солей области, появляются новые сигналы (рис. 16): уширенный синглет при d_P 38.0 м.д. и два набора синглетов при d_P 36.6, 35.3 (одинаковой интенсивности) и 36.5, 35.6 м.д. (также

одинаковой интенсивности). Данные сигналы медленно исчезают в течение реакции и, одновременно, появляются сигналы оксида ТНРРО (d_P 61.3 м.д.) и исходного ТНРР. Не удаляемые фосфиновые примеси видны как синглеты при d_P - 21.4 и - 34.5 (рис. 16); синглеты при d_P 60.6 и 63.0 м.д. являются фосфин оксидами, образовавшимися в результате окислительно-восстановительной реакции этих примесей с коричным альдегидом.

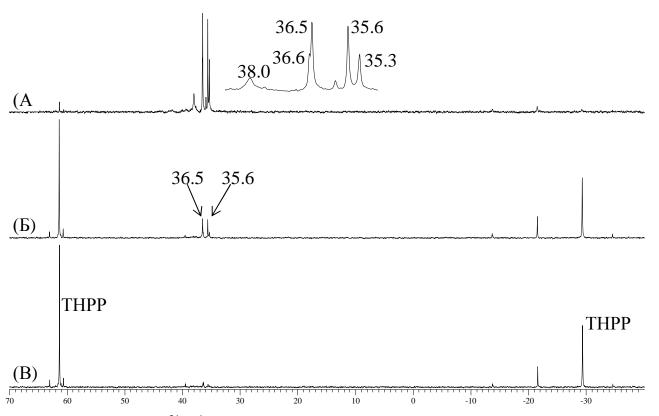


Рис. 16. Спектр ЯМР 31 Р{ 1 H} реакция ТНРР с коричным альдегидом в 1 H2O, полученный через: (A) 10 мин, (Б) 48 ч, (В) 6 дней.

Когда реакция ТНРР и коричного альдегида была проведена в растворе D_2O , были выделены дейтерированные продукты **XIV-D**₅ и **XV-D**₅ (схема 41), подтвержденные спектроскопией ЯМР 1 H и 2 D{ 1 H} и масс-спектроскопией.

На основе имеющихся данных была предложена схема данной восстановительной конденсации коричного альдегида (схеме 42 [$R = (CH_2)_3OH$]). Первичная нуклеофильная атака THPP на g-углерод дает карбанион xv. В отсутствие фенольной группы в ароматическом кольце карбанион xv. Доказательством этого служит факт увеличения pH реакционной массы. Фосфониевые соли в присутствии сильного основания и при наличии g-протона у атома фосфора способны генерировать илиды [228–230]. Тот факт, что в g-протона фенилпропаноидной цепи, подтверждает существование равновесной илидной формы (схема 42). Гидроксид g-протона фенилиропаноидной цепи, подтверждает существование равновесной илидной формы (схема 42). Гидроксид g-протона фенилиропаноидной g-протона g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона фенилиропаноидной g-протона g-п

$$\begin{array}{c} \mathbf{R}_{3}\mathbf{P}^{\bullet} & \mathbf{R}_{$$

Конденсация XVI и XVII должна приводить к формированию дифосфониевого дигидроксида XVIIIa (схема 42). В литературе описаны процессы разложения фосфониевых гидроксидов под действием оснований, что ведет к образованию фосфиноксида и продукта восстановления органического радикала, связанного с атомом фосфора [152–164]. Данный процесс также был обнаружен нами в реакциях восстановления бензальдегидов с ТНРР в водной среде до бензиловых спиртов (раздел 1.5). Генерация ТНРРО (рис. 16) в реакции с коричным альдегидом находится в согласии с подобным редокс процессом, который должен вести к формированию монофосфониевого гидроксида **XIXa**. Последний, в свою очередь, теряет фосфин и H_2O , ЯМР-сигнал фосфина снова появляется в спектре, и генерирует конечных продукт XIV получен (схема 42). Изомерный продукт $\mathbf{X}\mathbf{V}$ быть может аналогичной

последовательности реакций через бисфосфониевый дигидроксид **XVIIIb**, который формируется внутримолекулярной миграцией молекулы THPP в **XVIIIa** (схема 42). Стабильные бисфосфониевые интермедиаты подобного строения были выделены и полностью охарактеризованы в реакциях с альдегидами лигнина (раздел 2.1). Доказательством для существования изомеров **XVIIIa** и **XVIIIb** служит наличие двух наборов двух синглетов в спектре ЯМР ³¹Р{¹H} (d_P 36.6, 35.3 и 36.5, 35.6 м.д. в соотношении 2:3; рис. 16A). Относительная простота спектра ЯМР ³¹Р{¹H} свидетельствует о том, что, как и в случае альдегидов лигнина, дигидроксиды **XVIIIa** и **XVIIIb** образуются только как смесь энантиомеров.

Следует отметить, что окислительно-восстановительный процесс затрагивает только фосфониевую группу у \mathfrak{g} -углерода (относительно альдегидной группы дигидроксидов **XVIIIa** и **XVIIIb**). Это, вероятно, связано с формированием наиболее стабильного карбаниона, который в данных случаях стабилизируется через сопряжение неподеленной электронной пары карбаниона с π -системой a,b-ненасыщенного альдегида.

Для подтверждения формирования бисфосфониевых солей реакция коричного альдегида с THPP (1:1, r.t., Ar) в H_2O была нейтрализована HCl через 45 мин для предотвращения редокс процессов под действием основания. После удаления воды остаток был растворен в MeOH и проанализирован с помощью масс-спектрометрии ESI+. Главный сигнал m/e 455.5 в спектре соответствует монофосфониевому катиону, полученному из **XVIIIa** или **XVIIIb** после потери протонированного фосфина THPP, $[HO(CH_2)_3PH]^+$. Меньший пик при m/e 699.3 (8%) соответствует монокатиону, полученному из **XVIIIa** или **XVIIIb**, в котором один из фосфониевых центров нейтрализован анионом Cl^- .

Таким образом, было показано, что конечными продуктами взаимодействия коричного альдегида с ТНРР в воде являются органические соединения 2-бензил-5-фенилпент-2,4-диеналь и 5-фенил-2-(фенилметилен)-4-пентаналь. Их образование протекает через продукты 1,4-присоединения фосфина к альдегиду, которые подвергаются окислительно-восстановительным реакциям с участием гидроксид-ионов. В случае а,b-ненасыщенных альдегидов лигнина, содержащих *пара*-ОН-группу, образуются стабильные бисфосфониевые соединения, т.к. ОН⁻ ионы нейтрализуются фенольной группой.

2.5.2. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричным альдегидом в воде в присутствии HCl

Поскольку для синтеза соединений **XIV** и **XV** по реакции коричного альдегида и THPP требуется присутствие основания (схема 42), было интересно проследить аналогичную реакцию в кислых условиях.

Реакция коричного альдегида и гидрохлорида ТНРР (1:1) была проведена в растворе D_2O при комнатной температуре в атмосфере аргона [227]. Значение рН реакционной массы ~ 4.4 . Было установлено, что в данных условиях фосфин, как и в случае с а,b-ненасыщенными альдегидами лигнина (раздел 2.4), атакует карбонильный атом углерода (схема 43, путь A).

$$R_3P^+$$
 СГ R_3P^+ ОО R_3

Спектры ЯМР, полученные после 10 мин реакции, показали присутствие фосфониевой соли **XX** (рис. 17A). Соотношение между солью **XX** и исходным альдегидом в реакционной смеси через 10 мин равно ~5.

Схема 43

Таким образом, в кислых условиях а-нуклеофильная атака фосфина является более предпочтительной, устанавливается равновесие между (а-гидрокси)фосфониевой солью и исходными реагентами. При более высоких значениях рН равновесие смещается в левую сторону и наблюдаются более медленные процессы, связанные с днуклеофильной атакой фосфина на С=С связь.

Действительно, даже при pH 4.4 есть свидетельства γ -нуклеофильной атаки. В спектре ЯМР 31 Р 1 H 1 , полученном через 24 ч, были зарегистрированы два новых

дублета при d_P 39.1 и 38.6 м.д. (${}^4J_{PP}$ 4 Γ ц) (рис. 17Б), которые коррелируют в эксперименте ${}^{31}P\{{}^1H\}-{}^{31}P\{{}^1H\}$ СОЅҮ. Данные сигналы после анализа спектров ЯМР 1H и ${}^{13}C\{{}^1H\}$ и двухмерных спектров ${}^1H-{}^{31}P\{{}^1H\}$ НМQС были присвоены монодейтерированной бисфосфониевой соли **ХХІІ-D**₁ (схема 43, путь Б).

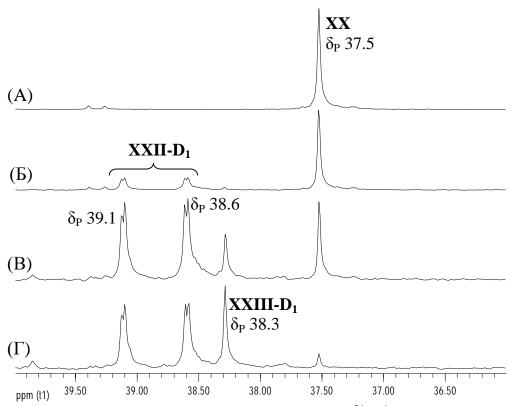


Рис. 17. Область фосфониевых солей спектров ЯМР 31 Р{ 1 H} реакции коричного альдегида с гидрохлоридом ТНРР в D_2 O (1:1, r.t., Ar) через: (A) 10 мин, (Б) 1 день, (В) 8 дней, (Г) 40 дней.

На рисунке 18 представлен спектр ЯМР 1 Н реакционной массы после 13 дней. 9 Протон соединения **XXII-D**₁ виден при d_{H} 4.26 м.д. как псевдо дублет ($^{2}J_{PH}$ 15.4 Γ Ц, сочетание на b-протоне и дейтроне не различимы). Данный протон в эксперименте 1 Н– 31 Р{ 1 Н} НМQС коррелирует с сигналом δ_{P} 39.1, указывая на то, что это сигнал принадлежит 9-фосфору. а-Протон соединения **XXII-D**₁ виден как дублет при d_{H} 4.35 м.д. Мультиплет b-протона полностью перекрывается интенсивным сигналом алкильных протонов фосфина, но его химический сдвиг может быть определен при помощи двухмерной корреляционной спектроскопии 1 Н– 1 Н COSY, в которой а- и 9-протоны коррелируют с сигналом при d_{H} 2.46 м.д.

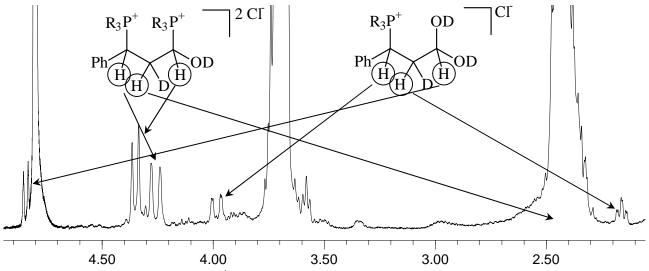


Рис. 18. Часть спектра ЯМР 1 Н реакции коричного альдегида с гидрохлоридом ТНРР в $D_{2}O$ (1:1, r.t., Ar) через 13 дней.

Таким образом, даже в кислых условиях, где фосфин присутствует в качестве фосфониевого катиона, g-углерод медленно подвергается атаке. Механизм данной реакции показан на схеме 43. Первоначально формирующийся карбанион **XVI** принимает дейтрон с образованием монофосфониевой соли **XXI-D**₁. Альдегидная группа соли **XXI-D**₁ предпочтительнее подвергается атаке, чем альдегидная группа ненасыщенного альдегида, что приводит к образованию **XXII-D**₁ (схема 43, путь Б).

В спектре ЯМР 31 Р{ 1 H}, полученном через 8 дней реакции, был обнаружен синглет при d_P 38.3 м.д., который был ассоциирован с монофосфониевым диолом **ХХІІІ- D**₁ (рис. 17В). Данные ЯМР 1 H (рис. 18) согласуются с предложенной формулой.

В присутствии кислоты возможности для димеризации карбаниона **XVI** отсутствуют. При стехиометрии исходных реагентов 1:1 в водной среде диол **XXIII-D₁** должен быть конечным продуктом. При данных условиях реакции (r.t., Ar) формирования **XXIII-D₁** идет очень медленно и даже через 40 дней она не завершается (рис. 17Γ).

Когда реакция между гидрохлоридом ТНРР и коричным альдегидом была проведена в соотношении 2:1 в тех же условиях, конечным продуктом через 40 дней, как и ожидалось по стехиометрии, была бисфосфониевая соль **XXII-D**₁. Монофосфониевая соль **XXIII-D**₁ была обнаружена в следовых количествах. После удаления растворителя полученный сиропообразный остаток был проанализирован с помощью спектроскопии

ЯМР 2 D и 2 D{ 1 H}, которая показала присутствие только одного уширенного синглета при d_D 2.61 м.д., соответствующего дейтрону соединения **XXII-D**₁.

Данные масс-спектроскопии подтверждают инкорпорацию только одного дейтрона при проведении реакции в растворе D_2O . Масс-спектр ESI водного раствора полученного остатка дал главный пик m/e 586.2, соответствующий монохлориду катиона **XXII-D₁**, и пики меньшей интенсивности m/e 342.2 и 360.3 для монокатионов **XXI-D₁** и **XXIII-D₁**. Продукт аналогичной реакции в H_2O (90 °C, 2 ч) дает в масс-спектре ESI (H_2O) пики m/e 585.2, 341.2 и 359.3, соответствующие недейтерированным соединениям **XXII**, **XXI** и **XXIII** соответственно.

Соединения **XXII**, **XXII-D**₁ и **XXIII-D**₁ имеют два, два и три хиральных центра соответственно, что подразумевает возможное существование 4, 4 и 8 стереоизомеров для данных соединений. Однако относительная простота спектров ЯМР 1 H, 31 P{ 1 H} и 13 C{ 1 H} свидетельствует о том, что каждое соединение образуется исключительно как смесь энантиомеров. Это, в свою очередь, указывает на то, что формирование соединения **XXIII-D**₁ и **XXII/XXII-D**₁ проходит стереоспецифично.

На рисунке 19А показан расчетный спектр ЯМР 1 Н{ 31 Р} протонов пропеноидной цепи соединения **XXIII**, где четыре протона формируют спиновую систему Y-AB-X с параметрами, указанными на рисунке. Рисунок 19Б показывает расчетный спектр трех протонов соединения **XXIII-D**₁, формирующих трехспиновую систему Y-B-X. Расчетные спектры вместо экспериментальных показаны для наглядности и лучшего восприятия, они детально воспроизводят экспериментальные, но без сигналов других протонов. Можно видеть, что при формировании соединения **XXIII-D**₁ дейтрон занимает место протона H_A , сдвинутого в более слабое поле по сравнению с протоном H_B . При этом исчезают константы спин-спинового взаимодействия J_{YA} , J_{XA} и J_{AB} , а взаимодействие с дейтроном не разрешимо.

Аналогичная картина наблюдается и в случае соединений **XXII** и **XXII-D**₁ (рис. 20), где при проведении реакции в растворе D_2O дейтрон замещает протон H_A . В представленных спектрах малые значения констант спин-спинового взаимодействия J_{YA} и J_{XB} не представлены, т.к. они не разрешимы в исходных экспериментальных спектрах (рис. 18).

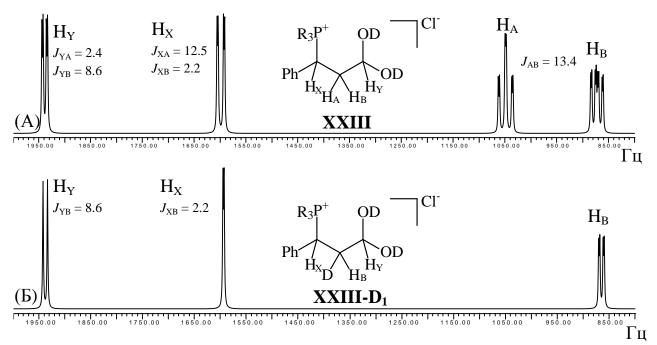


Рис. 19. (A) Расчетный спектр ЯМР 1 H{ 31 P} протонов пропеноидной цепи соединения **XXIII** в D₂O. (Б) Расчетный спектр ЯМР 1 H{ 31 P} протонов пропеноидной цепи соединения **XXIII-D**₁ в D₂O. Значения констант спин-спинового взаимодействия даны в Γ ц.

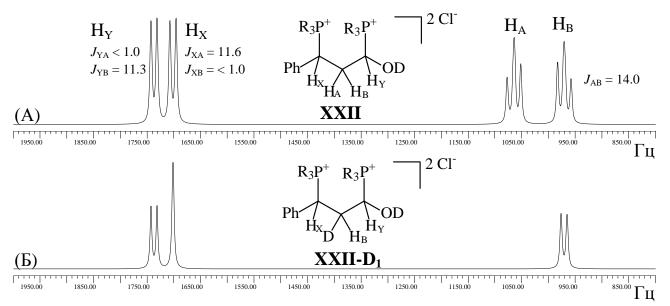


Рис. 20. (A) Расчетный спектр ЯМР 1 H $\{{}^{31}$ P $\}$ протонов пропеноидной цепи соединения **XXII** в D_2 O. (Б) Расчетный спектр ЯМР 1 H $\{{}^{31}$ P $\}$ протонов пропеноидной цепи соединения **XXII-D**₁ в D_2 O. Значения констант спин-спинового взаимодействия даны в Γ ц.

Значительная разница между вицинальными $^3J_{\rm HH}$ сочетаниями протонов $H_{\rm Y}$ и $H_{\rm X}$ на геминальных протонах $H_{\rm A}$ и $H_{\rm B}$ предполагает, что в молекуле соединений **XXII** и **XXIII** существует ограничения в свободном вращении. Известно, что константы спинспинового взаимодействия $^3J_{\rm HH}$ транс-протонов, когда дигедральный угол (Θ)

составляет $\sim 180^\circ$, как правило, выше (8–15 Γ ц), чем константы спин-спинового взаимодействия протонов, расположенных под углом $\Theta \sim 60^\circ$ (2- 5 Γ ц) [231, 232]. Для соединений **XXII** и **XXIII** следует предположить, что их молекулы образуются в наиболее энергетически выгодной конфигурации с наименьшими стерическими затруднениями между объемными заместителями. На схеме 44 представлены проекции Ньюмана для соединений **XXII/XXIII** и **XXII-D**₁/**XXIII-D**₁ по связи $\Gamma(\beta)$ – $\Gamma(\gamma)$ с (R)-хиральностью на γ -углероде, в которых положение протонов пропеноидной цепи согласуется с экспериментальными константами $^3J_{\text{HH}}$ (рис. 19 и 20). Так, в соединениях **XXII** и **XXIII** протоны в парах { H_X и H_A } и { H_Y и H_B } находятся в транс-положении, что согласуется с высокими значениями $^3J_{\text{HH}} \sim 8$ –12 Γ ц, тогда как протоны в парах { H_X и H_B } и { H_Y и H_A } находятся в гош-положении ($^3J_{\text{HH}} < 2.5 \Gamma$ ц). Замещение протона H_A на дейтрон в соединениях **XXII-D**₁ и **XXIII-D**₁ ведет к сохранению транс-сочетания для протонов H_Y и H_B и гош-сочетания для протонов H_X и H_B , что подтверждают спектры ЯМР (рис. 19 и 20).

$$H_{B}$$

$$H_{A}$$

$$H_{A$$

Таким образом, можно сделать вывод, что нуклеофильная атака фосфина на C=C связь альдегида, которая может происходить либо сверху, либо снизу плоскости молекулы, генерирует карбанион, направленный в сторону противоположную нуклеофильной атаки (схема 45). Карбанионы, принимая дейтрон растворителя, генерируют промежуточное соединение **XVI-D**₁ как смесь (*S,S*)- и (*R,R*)-энантиомеров, неразличимых в спектрах ЯМР. Предложенный механизм (схема 45) является противоположным механизму реакции элиминирования E2.

Взаимодействие соединения **XVI-D**₁ с молекулой D_2O ведет к образованию диола **ХХІІІ-D**₁ (схема 43) тоже как смесь (S,S)- и (R,R)-энантиомеров. В случае соединения **ХХІІ-D**₁ приоритет групп у b-углерода меняется и хиральность в каждом энантиомере меняется на противоположную. В дополнение к этому, нуклеофильная атака фосфина на альдегидную группу интермедиата $XVI-D_1$ также протекает стереоспецифично, о чем свидетельствует простота спектров ЯМР 1 H, 31 P{ 1 H} и 13 C{ 1 H} бисфосфониевой соли $XXII/XXII-D_1$ (рис. 20). Применяя правило наибольшего отталкивания объемных заместителей (схема 44), можно предположить, что хиральность а-углерода в соединении $XXII/XXII-D_1$ совпадает с хиральностью g-углерода и, таким образом, соединение **XXII** формируется как смесь (S,S)- и (R,R)-энантиомеров, а соединение **ХХІІ-D**₁ как смесь (S,R,S)- и (R,S,R)-энантиомеров. Подтверждением этому является работа $Arjona\ u\ \partial p$. [233], где было показано, что объемный (R)-хиральный центр у ууглерода в 3-фенил-4,4-диметилпентанале при взаимодействии с PhMgBr генерирует предпочтительно (S)-хиральность на α-углероде в конечном продукте (схема 46). В данной работе спиртовой продукт был получен с 67% диастереомерным избытком. В случае атаки фосфина, более объёмного, чем PhMgBr, на альдегидную группу XVI/XVI- ${\bf D_1}$ стереоселективность должна быть значительно выше и (R)-хиральный центр у ууглерода должен генерировать (R)-хиральность на α-углероде, T.K. приоритет фосфинового заместителя выше, чем у Рh-группы.

2.5.3. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с коричными альдегидами, не содержащих фенольную группу, в органических растворителях

В отличие от альдегидов лигнина коричный и 3,4-диметоксикоричный альдегиды в чистом ацетоне не взаимодействуют с ТНРР. Это подтверждает факт, что присутствие *p*-OH-группы является критичным для генерации О ... P цвиттер-ионов. Однако нами найдено, что в смеси ацетон/H₂O (1:1 v/v, r.t., Ar) коричный и 3,4-диметоксикоричный альдегиды в присутствии каталитических количеств ТНРР (6–10%) подвергаются реакции кросс-сочетания с образованием ненасыщенных кетонов (схема 47) с высокими выходами (до 74% за 17 ч реакции) [227]. В тех же условиях альдегиды лигнина не конденсируются. Предположительно на первой стадии ТНРР взаимодействует с альдегидом, генерируя фосфониевый гидроксид (схема 42). Образующиеся гидроксид ионы запускают процесс конденсации. В литературе описаны синтезы данного класса триенов по реакции конденсации, но максимальный выход составил 60% [234–236].

$$Ar$$
 — O — O

В реакции коричного альдегида с гидрохлоридом THPP в CD₃OD (1:1, r.t., Ar), как и в случае с альдегидами лигнина (раздел 2.4), в системе устанавливаются два равновесия: (а) между альдегидом и полуацеталем (схема 48, путь A) и (б) между альдегидом и (α -гидрокси)фосфониевой соли **XXIV** (схема 48, путь Б). Как полуацеталь, так и соль **XXIV** легко могут быть идентифицированы в спектрах ЯМР ¹H (рис. 21).

В спектре ЯМР 31 Р{ 1 H}, полученном через 2 ч после начала реакции, триплет катиона (DOCH $_{2}$ CH $_{2}$ CH $_{2}$) $_{3}$ Р $^{+}$ D (d_{p} 19.0 м.д.) и синглет соли **XXIV** (d_{p} 37.5 м.д.) наблюдаются в соотношении 1:1. В ходе реакции данные сигналы исчезают, а новый синглет при d_{p} 38.0 м.д., соответствующий конечному продукту **XXV**, увеличивается. Интересно, что переход соли **XXIV** в соль **XXV** при комнатной температуре осуществляется очень медленно: через 37 дней реакции соотношение **XXV** / **XXIV**

составило \sim 8, тогда как в случае альдегидов лигнина формирование соответствующего α -эфира заканчивается в течение 24 ч. Остаток, полученный после удаления растворителя из реакции, был проанализирован с помощью масс-спектроскопии ESI+. В полученном спектре присутствовал главный пик m/e 358.3, соответствующий катиону соли **XXV**.

$$\begin{array}{c} & & \\$$

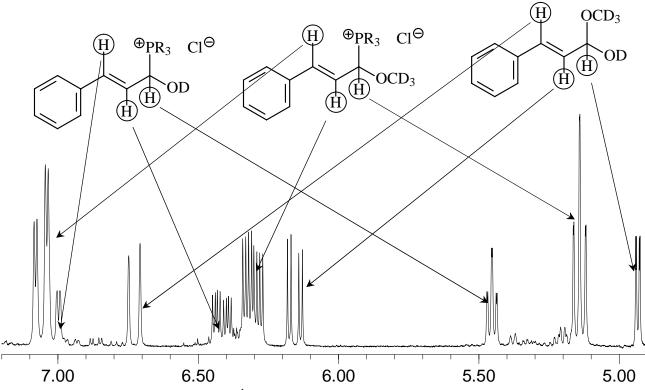


Рис. 21. Часть спектра ЯМР 1 Н реакции между гидрохлоридом ТНРР и коричным альдегидом (1:1, CD₃OD, r.t., Ar), полученного через 16 дней.

2.6. Кинетические исследования реакции (HOCH₂CH₂CH₂)₃P с конифериловым альдегидом в воде. Зависимость скорости от рН

Очевидное влияние pH на скорость и продукты реакции THPP и ненасыщенных альдегидов в водной среде подняло вопрос об изучение кинетики процесса с целью количественной оценки скоростей нуклеофильной атаки фосфина на связи C=O и C=C, а также поиска оптимальных условий для процесса отбеливания. Исследования проводились по изменению поглощения в УФ-спектрах на спектрометре HP 8452A.

В качестве модельного соединения был выбран коммерчески доступный конифериловый альдегид. Данное соединение обладает фенольной группой и в зависимости от рН среды может существовать в фенольной и/или фенолятной форме, которые условно здесь обозначены **АН** и **A** соответственно (ур. 16), с максимумами поглощения в УФ-спектрах при 340 и 402 нм соответственно (рис. 22). Анализ полученных спектров по уравнению Хендерсона-Хасселбаха [220–222] дает величину р $K_{\rm a(a)}=8.11\pm0.02$. Известные литературные значения р $K_{\rm a}$ для кониферилового альдегида 7.94 [219] и 8.7 [237]. Начальная концентрация альдегида [Ald_0] во всех реакциях 4.89 ′ 10^{-5} М. Фосфин ТНРР также может находиться в протонированной и свободной форме с константой диссоциации $K_{\rm a(p)}\approx7.2$ (ур. 17).

MeO

$$K_{a(a)}$$
 Θ
 HO
 $K_{a(a)}$
 Θ
 HO
 H



Рис. 22. Зависимость УФ-спектров раствора кониферилового альдегида от pH (25 °C, $[Ald_0] = 2.35$ ′ 10^{-5} M).

При анализе УФ-данных рассматривались четыре возможных взаимодействия между альдегидом и фосфином, которые могут вести к расходованию альдегида и участвовать в процессе отбеливания (схема 49): 9-нуклеофильная атака ТНРР на протонированную $\mathbf{A}\mathbf{H}$ и фенолятную \mathbf{A} формы альдегида с константами второго порядка k_1 и k_2 соответственно, с образованием фосфобетаинов \mathbf{B} и \mathbf{C} в качестве первичных продуктов, которые быстро принимая протон дают более стабильные вторичные продукты $\mathbf{B}\mathbf{H}$ и $\mathbf{C}\mathbf{H}$ соответственно, находящиеся в равновесии друг с другом, и \mathbf{a} -нуклеофильные атаки фосфина на $\mathbf{A}\mathbf{H}$ и \mathbf{A} с константами второго порядка k_3 и k_4 соответственно, с образованием вторичных продуктов $\mathbf{E}\mathbf{H}$ и $\mathbf{F}\mathbf{H}$ соответственно, которые также находятся в равновесии друг с другом. Соединения $\mathbf{B}\mathbf{H}$ и $\mathbf{C}\mathbf{H}$ могут конвертироваться в другие соединения через реакцию с $\mathbf{T}\mathbf{H}\mathbf{P}\mathbf{P}$ (соединения $\mathbf{G}\mathbf{H}$ и $\mathbf{K}\mathbf{H}$) или с молекулой $\mathbf{H}_2\mathbf{O}$ (соединения $\mathbf{D}\mathbf{H}$ и \mathbf{D}). Все взаимодействия, показанные на схеме 49, рассматриваются как обратимые.

Ar
$$R_3P^{\bullet}$$

E EH
 R_3P^{\bullet}
 $R_3P^$

Таким образом, общее уравнение скорости взаимодействия фосфина с альдегидом:

$$-\frac{d[Ald_t]}{dt} = (k_1 + k_3)[P_t][AH_t] + (k_2 + k_4)[P_t][A_t] - k_{-1}[B_t] - k_{-2}[C_t] - k_{-3}[E] - k_{-4}[F]$$
(18)

где k_1 и k_2 — константы скорости второго порядка для нуклеофильной атаки фосфина на связь C=C соединений **АН** и **А** соответственно, k_3 и k_4 — константы скорости второго порядка для нуклеофильной атаки фосфина на связь C=O соединений **АН** и **А** соответственно, k_{-1} , k_{-2} , k_{-3} и k_{-4} — константы скорости первого порядка для реакции элиминирования фосфина из **B**, **C**, **E**, **F** соответственно; $[Ald_t] = [AH_t] + [A_t]$ — суммарная концентрация альдегида в момент времени t, $[AH_t]$ и $[A_t]$ — концентрация фенольной и фенолятной формы альдегида в момент времени t, $[P_t]$, $[B_t]$, $[C_t]$, $[E_t]$, $[F_t]$ — концентрация фосфина и интермедиатов **B**, **C**, **E**, **F**, соответственно, в момент времени t.

Кинетические исследования были проведены на реакции псевдо-первого порядка с избытком ТНРР в интервале рН 1.53-11.80 при 25°C в закрытой оптической кювете. Во время УФ-измерениях отслеживалась абсорбций реакционной смеси при 340 и 402 нм. Первоначальная абсорбция смеси A_1 измерялась после 60 с реакции. Анализ изменения

абсорбции проводился на основе метода Гуггенхайма (ур. 19) [238–240], когда поглощение в нулевой момент времени A_0 и конечная абсорбция A_{\pm} были неизвестны [A_t = абсорбция во время t и A_{t+D} = абсорбция во время t+Dt, приращение времени Dt соответствует времени, когда начальная абсорбция A_1 уменьшается на ~75% (» $2T_{1/2}$)].

$$\ln(A_t - A_{t+Dt}) = -k_{obs}t + \ln(A_0 - A_{\downarrow})(1 - e^{-k_{obs}Dt})$$
(19)

2.6.1. Кинетические исследования при рН > 10

Рисунок 23 иллюстрирует уменьшение поглощения при длине волны 402 нм в реакции с соотношением [ТНРР]/[альдегид] = 19.3 при 25°С и рН ³ 9.18. На рисунке 24 представлены зависимости логарфма поглощения от времени согластно уравнению 19, и которые находятся в хорошем согласии с реакцией псевдо-первого порядка.

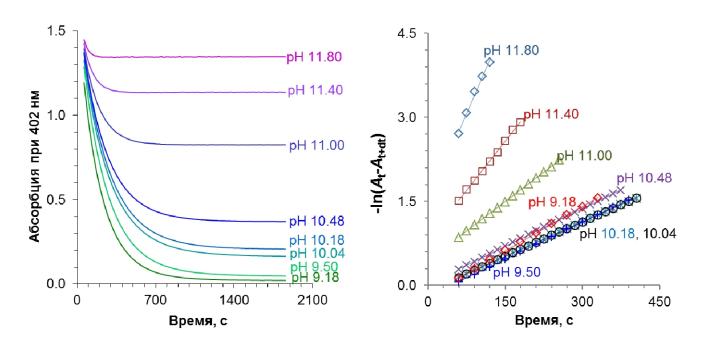


Рис. 23. Изменение абсорбции при 402 нм в реакции кониферилового альдегида (4.89 $^{\prime}$ 10⁻⁵ M) с THPP (9.43 $^{\prime}$ 10⁻⁴ M) при 25 $^{\circ}$ C и рН 3 9.18.

Рис. 24. Зависимость логарифма абсорбции при 402 нм от времени в реакции кониферилового альдегида (4.89 $^{\prime}$ 10⁻⁵ M) с ТНРР при 25°C и рН \geq 9.18 по методу Гуггенхайма.

При рН > 10 общее уравнение скорости реакции (ур. 18) может быть упрощенно, беря во внимание следующие допущения. Как было показано ранее в главе 1, фосфониевые катионы, содержащие а-НО-группу неустойчивы и могут быть зарегистрированы только в присутствии сильной кислоты. Например, фосфониевый катион (HOCH₂)₄P⁺ полностью распадается на (HOCH₂)₃P и CH₂O при pH > 6.5 с р $K_{\rm d}$ ~ 7.1 (ур. 3 и 4). Таким образом, соединения ЕН, FH, GH и КН, скорее всего, не присутствуют в реакционной смеси в значительных количествах при рН > 10 и αнуклеофильными реакциями k_3 и k_4 , а также реакциями элиминирования k_{-3} и k_{-4} , можно пренебречь. Реакция элиминирования k_{-1} также может быть исключена, поскольку депротонирование соединений ВН и СН с образованием интермедиатов В и С соответственно (схема 49) протекает, предположительно, при высоких значениях рН, при которых соединение ВН должно конвертироваться в СН. Это допущение находится в согласии с экспериментальными данными, где обратимость у-нуклеофильной реакции не регистрируется при pH < 9, тогда как с увеличением pH увеличивается и скорость обратимой реакции (рис. 23). Точное значение pK_{a1} неизвестно, но фосфониевый катион 4-HO-3-MeO- $C_6H_3CH(Me)P^+Et_3$, схожий по структуре с соединением **BH**, имеет значение р K_a равное 9.14 (схема 105, раздел 8.1). Значение р K_{a1} для **ВН** ожидается ниже, чем 9.14, из-за электроноакцепторного эффекта группы С=О и ОН-групп фосфина, но должно оставаться около 9. Таким образом, уравнение скорости реакции между альдегидом и ТНРР при рН > 10 может быть представлено в виде:

$$-\frac{d[Ald_t]}{dt} = k_1[P_t][AH_t] + k_2[P_t][A_t] - k_{-2}[C_t]$$
(20)

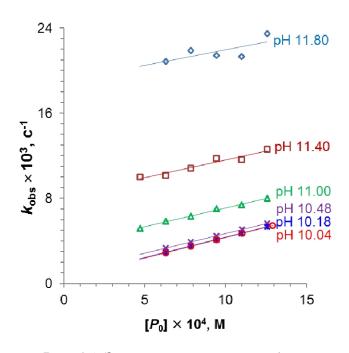
Концентрация фенольной **АН** и фенолятной **А** формы может быть выражена через суммарную концентрацию альдегида в момент t, тогда как концентрация третичного фосфина в момент времени t может быть выражена через его начальную концентрацию $[P_0]$ (ур. 21). Концентрация $[C_t]$ интермедиата **C** незначительна и зависит от концентрации соединения **CH**, которое участвует в нескольких равновесиях (схема 49) и его концентрация в момент времени t может быть рассчитана на основе констант равновесия: K_{a1} – константа диссоциации распада соединения **BH** до **CH**, K_{d1} » K_{d2} – константы диссоциации распада **DH** до **BH** и **D** до **CH** соответственно (здесь сделано дополнительное допущение, что K_{d1} » K_{d2} , поскольку ожидается, что эффект фенольной

или фенолятной формы ОН-группы ароматического кольца соединений **ВН/СН** и **DH/D** на **а**-углерод не должен быть значительным). Таким образом, уравнение 20 может быть представлено как:

$$-\frac{d[Ald_t]}{dt} = \frac{k_1[H^+] + k_2 K_{a(a)}}{K_{a(a)} + [H^+]} \frac{K_{a(p)}[P_0]}{K_{a(p)} + [H^+]} [Ald_t] - \frac{k_{-2} K_{a2} K_{a1}}{[H^+]([H^+] + K_{a1})(1 + K_{d2})} [Ald_0 - Ald_t]$$
(21)

Константа скорости реакции псевдо-первого порядка $k_{\rm obs}$ определяется как уравнение 22, где первое слагаемое представляет прямую реакцию, тогда как второе слагаемое соответствует обратной реакции. При рН \geq 10.04, $K_{\rm a(a)}$, $K_{\rm a(p)}$, $K_{\rm a1} >> [H^+]$ и уравнение 22 может быть упрощено до уравнения 23.

$$k_{obs} = \frac{k_1[H^+] + k_2 K_{a(a)}}{K_{a(a)} + [H^+]} \frac{K_{a(p)}}{K_{a(p)} + [H^+]} [P_0] + \frac{k_2 K_{a2}}{[H^+]} \frac{K_{a1}}{([H^+] + K_{a1})(1 + K_{d2})}$$
(22)


$$k_{obs} = \frac{k_1[H^+] + k_2 K_{a(a)}}{K_{a(a)}} [P_0] + \frac{k_2 K_{a2}}{[H^+](1 + K_{d2})}$$
(23)

Значения $k_{\rm obs}$ для реакции псевдо-первого порядка между альдегидом с различной начальной концентрацией ТНРР при рН ≥ 10.04 суммированы в таблице 7, и определены по методу наименьших квадратов [241] как тангенс угла наклона прямых линий согласно уравнению 19. Графическая интерпретация результатов, представленных в таблице 7, показана на рисунке 25.

Таблица 7. Константы скорости реакции псевдо-первого порядка $k_{\rm obs}$ в зависимости от $[P_0]$ при рН \geq 10.04 (25 °C) по методу Гуггенхайма

$[P_0] \cdot 10^4, M$	$k_{\rm obs}$ ' 10^3 , c ⁻¹						
[1 0] 10 , 141	pH 10.04	pH 10.18	pH 10.48	pH 11.00	pH 11.40	pH 11.80	
4.71	_	_	_	5.18 ± 0.02	10.00 ± 0.31	_	
6.28	2.86 ± 0.01	2.92 ± 0.01	3.33 ± 0.01	5.85 ± 0.02	10.16 ± 0.17	20.87 ± 1.76	
7.86	3.48 ± 0.01	3.53 ± 0.01	3.91 ± 0.01	6.30 ± 0.01	10.84 ± 0.19	21.86 ± 1.04	
9.43	4.11 ± 0.01	4.09 ± 0.01	4.48 ± 0.01	7.02 ± 0.03	11.72 ± 0.14	21.42 ± 1.21	
11.00	4.73 ± 0.01	4.75 ± 0.01	5.06 ± 0.01	7.36 ± 0.02	11.62 ± 0.14	21.32 ± 0.34	
12.57	5.44 ± 0.01	5.36 ± 0.01	5.63 ± 0.02	8.00 ± 0.02	12.61 ± 0.10	23.45 ± 0.56	

Зависимость наклона прямых, показанных на рисунке 25, от $[H^+]$ ведет к определению констант скоростей k_1 и k_2 (рис. 26). Для интервала рН 10.04—11.00, включающего 4 (рис. 26), значение $k_2 = 3.49 \pm 0.05 \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$ и соотношение $k_1/K_{\mathrm{a(a)}} = (5.1 \pm 0.8)$ ′ $10^9 \, \mathrm{M}^{-2} \, \mathrm{c}^{-1}$; последнее дает значение $k_1 = 39 \pm 6 \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$. Результаты экспериментов при рН 11.80 и 11.40 исключены из анализа, потому что ошибка измерения больше, чем при рН ≤ 11.00 .

 $\begin{bmatrix} K_{a(a)} \\ K_{a(a)$

Рис. 25. Зависимость значений $k_{\rm obs}$, полученных по методу Гуггенхайма, от $[P_0]$ в реакции кониферилового альдегида (4.89 ′ 10^{-5} M) с THPP при 25°C и pH \geq 10.04.

Рис. 26. Зависимотсь тангенса угла наклона из рисунка 25 от $[H^+]$.

Таким образом, в щелочных условиях были определены константы скоростей реакции второго порядка k_1 и k_2 реакции кониферилового альдегида и ТНРР. Показано, что **9**-нуклеофильная атака фосфина на связь C=C альдегида в фенольной форме в 10 раз быстрее, чем **4**-нуклеофильная атака на связь C=C фенолятной формы альдегида.

2.6.2. Кинетические исследования при рН ≤ 3.5

В кислых условиях ожидалось зарегистрировать α-нуклеофильную реакцию с образование соединения **EH** (схема 49). ЯМР доказательства образования соединения **EH** были представлены выше в разделе 2.4.

При рН ≤ 3.5 реакция отслеживалась по изменению абсорбции при 340 нм. Рисунок 27 иллюстрирует уменьшение абсорбции в реакционной смеси ([альдегид]/[ТНРР] = 19.3) при различных рН, тогда как рисунок 28 показывает уменьшение абсорбции при рН 3.22 в реакциях с различным соотношением [альдегид]/[ТНРР]. Можно видеть, что в течение первых 10-15 мин реакции наблюдается быстрое падение абсорбции, которое было ассоциировано с обратимой а-нуклеофильной атакой фосфина на соединение **АН** с образованием **ЕН** (схема 49).

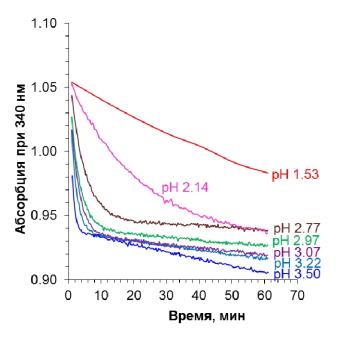


Рис. 27. Зависимость абсорбции при 340 нм от времени в реакции кониферилового альдегида (4.89 ′ 10^{-5} M) с THPP (9.43 ′ 10^{-4} M) при 25°C и pH £ 3.50.

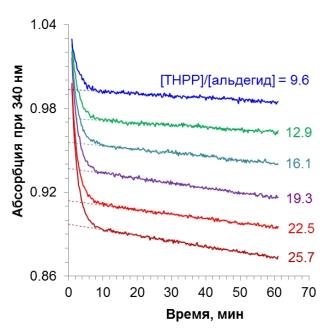


Рис. 28. Зависимость абсорбции при 340 нм от времени в реакции кониферилового альдегида (4.89 ′ 10⁻⁵ М) с различной исходной концентрацией ТНРР при 25 °C и рН 3.22.

После первоначального быстрого падения абсорбция при 340 нм медленно уменьшается, что может быть ассоциировано с у-нуклеофильной атакой фосфина на **АН**

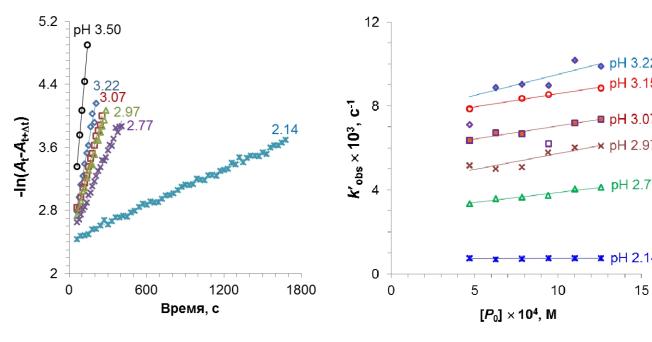
с образованием **ВН** (схема 49). В данных условиях соединение **ВН** существует как диол **DH** и/или бисфосфониевая соль **GH** (схема 49). Формирование геминальных диолов из алифатических альдегидов детально описано в литературе и не зависит от рH, хотя их образование катализируется кислотами или основаниями [242–246]. Известные значения $K_{\rm d}$ для диолов ацетальдегида и пропионаля составляют 0.7 и 1.4 соответственно [245]. Наши ЯМР исследования реакций третичных фосфинов с α , β -ненасыщенным альдегидами, описанные выше, показали, что фосфониевые катионы типа **ВН/СН** в основном существуют как диолы (альдегид/диол ~ 0.1).

Рисунок 29 иллюстрирует зависимость логарифма абсорбции от времени согласно методу Гуггенхайма (ур. 19), которые находятся в хорошем согласии с реакцией псевдопервого порядка. При рН \leq 3.5 общее уравнение взаимодействия альдегида и ТНРР (ур. 18) может быть упрощено до уравнения 24 с допущением, что концентрация фенолятных частиц (**A**, **C**, **CH**, **D**, **F**, **FH**, **K**, **KH**) пренебрежимо мала при данных условиях. Реакция элиминирования k_{-1} также может быть исключена из рассмотрения, т.к. депротонирование соединения **BH**, которое является CH-кислотой, до соединения **B** в кислых условиях маловероятно. Используя начальную концентрацию альдегида и THPP, а также принимая $[H^+] >> K_{a(p)}$, $K_{a(a)}$, уравнение 24 может быть модифицировано до уравнения 25, где наблюдаемая константа скорости реакции k_{obs} выражается уравнением 26 (K_{a4} – константа диссоциации соединения **EH**.).

$$-\frac{d[Ald_t]}{dt} = (k_1 + k_3)[P_t][AH_t] - k_{-3}[E_t]$$
(24)

$$-\frac{d[Ald_t]}{dt} = (k_1 + k_3) \frac{K_{a(p)}}{[H^+]} [P_0] [Ald_t] - k_{-3} \frac{K_{a4}}{[H^+]} [Ald_0 - Ald_t]$$
(25)

$$k_{obs}' = \frac{(k_1 + k_3)K_{a(p)}}{[H^+]}[P_0] + \frac{k_{-3}K_{a4}}{[H^+]}$$
(26)



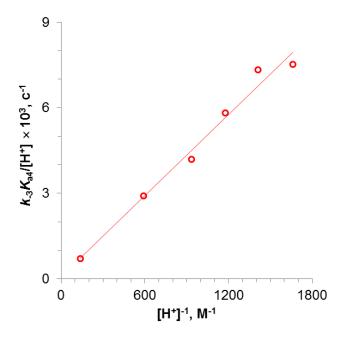

Рис. 29. Зависимость логарифма абсорбции при 340 нм от времени в реакции кониферилового альдегида (4.89 $^{\prime}$ 10⁻⁵ M) с ТНРР при 25°C и рН \leq 3.5 по методу Гуггенхайма.

Рис. 30. Зависимость значений $k'_{\rm obs}$, полученных методом Гуггенхайма, от $[P_0]$ в реакции альдегида (4.89 ′ 10^{-5} M) с THPP при 25° C и pH ≤ 3.22 .

Значения k_{obs} для реакции кониферилового альдегида с ТНРР различной концентрации при рН \leq 3.22, найденные анализом данных УФ-спектроскопии методом Гуггенхайма (ур. 19), суммированы в таблице 8. Зависимость k_{obs} от $[P_0]$ дает прямые линии (рис. 30), пересечение которых с осью Y зависит от $[H^+]^{-1}$ (рис. 31) и дает значение $k_{-3}K_{a4} = (4.7 \pm 0.3)$ ′ 10^{-6} M c⁻¹. График зависимости тангенса углов наклона прямых рисунка 33 от $[H^+]^{-1}$ (рис. 35) дает значение $(k_1+k_3)K_{a(p)} = (1.0 \pm 0.3)$ ′ 10^{-3} с⁻¹. Принимая р $K_{a(p)}$ равное 7.2, сумма констант скоростей реакции k_1+k_3 составляет (1.6 \pm 0.5) ′ 10^4 М⁻¹ с⁻¹, которая может быть полностью присвоена константе скорости второго порядка k_3 , т.к. значение k_1 , найденное ранее составляет 39 М⁻¹ с⁻¹.

Таблица 8. Значения $k_{obs}^{'}$ для реакции кониферилового альдегида с THPP при рН \leq 3.22 и различном соотношении [THPP]/[альдегид] по методу Гуггенхайма

$[P_0]$ ' 10^4 , M	k_{obs} 10 ³ , c ⁻¹					
[1 0] 10, 141	pH 2.14	pH 2.77	pH 2.97	pH 3.07	pH 3.15	pH 3.22
4.71	0.76 ± 0.02	3.35 ± 0.10	5.16 ± 0.17	6.36 ± 0.35	7.86 ± 0.46	7.11 ± 0.88
6.28	0.70 ± 0.01	3.57 ± 0.09	5.00 ± 0.22	6.71 ± 0.20	_	8.88 ± 0.25
7.86	0.74 ± 0.01	3.65 ± 0.10	5.09 ± 0.21	6.68 ± 0.24	8.37 ± 0.23	9.05 ± 0.28
9.43	0.75 ± 0.01	3.74 ± 0.07	5.78 ± 0.12	6.19 ± 0.12	8.55 ± 0.21	8.98 ± 0.42
11.00	0.75 ± 0.01	4.06 ± 0.05	6.04 ± 0.10	7.20 ± 0.35	_	10.17 ± 0.29
12.57	0.76 ± 0.01	4.12 ± 0.06	6.10 ± 0.11	7.37 ± 0.16	8.84 ± 0.21	9.88 ± 0.25

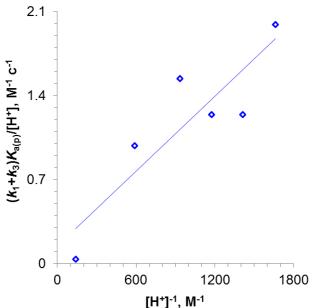


Рис. 31. Зависимость значения пересечения прямых с осью Y рисунка 30 от $[H^+]^{-1}$.

Рис. 32. Зависимость значения тангенска угла наколона прямых рисунка 30 от $[H^+]^{-1}$.

Таким образом, в кислых условиях была изучена α -нуклеофильная атака ТНРР на конифериловый альдегид и определена константа скорости реакции k_1 равная (1.6 \pm 0.5) $^{\prime}$ 10^4 M^{-1} c^{-1} . Установлено, что α -нуклеофильная атака примерно в 400 раз быстрее, чем γ -нуклеофильная атака.

2.6.3. Кинетические исследования при 5 < pH < 10

Ожидалось, что реакция кониферилового альдегида с ТНРР при $5 < \mathrm{pH} < 10$ будет более сложным, чем в кислых и основных условиях, т.к. может включать все четыре взаимодействия, показанные на схеме 49. Рисунок 33 иллюстрирует примеры УФ-спектров реакционной смеси при рН 6.89, 7.83, 8.02 и 8.35 ([ТНРР]/[альдегид] = 19.3).

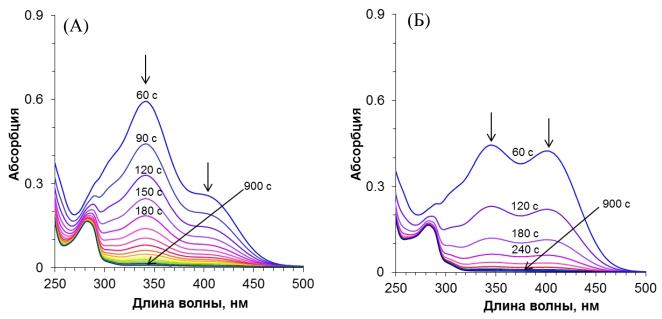
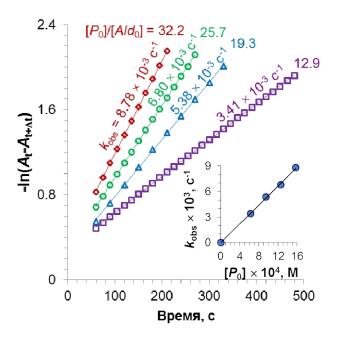


Рис. 33. Изменение УФ-спектров реакции кониферилового альдегида (4.89 $^{\prime}$ 10⁻⁵ M) с THPP (9.43 $^{\prime}$ 10⁻⁴ M) при 25°C и рН: (A) 7.53, (Б) 8.02.


На рисунке 35 показана зависимость логарифма абсорбции при 340 нм реакции при рН 6.89 и различном соотношении [ТНРР]/[альдегид] от времени по методу Гуггенхайма. Полученные прямые находятся в хорошем согласии с реакцией псевдопервого порядка по обоим компонентам. Анализ данных по длине волны 402 дает идентичные результаты.

Максимумы поглощения альдегида при 340 и 402 нм в реакции с ТНРР 6.53 \pounds рН \pounds 8.74 поллностью уменьшаются до фонового уровня за 15 мин (рис. 33). Финальные УФ-спектры реакций при 6.53 \pounds рН \pounds 9.50 (рис. 35) свидетельствуют о том, что конечными продуктами являются соединения **ВН/СН**, **GH/КН** и/или **DH/D**, продукты γ -нуклеофильной реакции (схема 49). Максимумы поглощения при 236 и 282, регистрируемые при рН < 7, а также их интенсивность хорошо совпадают с УФ-спектром соединения **LX** (схема 105), которое обсуждается в разделе 9.1. Максимумы поглощения при 258 и \sim 290 нм, наблюдаемые при рН > 9 (рис. 35), соответствуют

депротонированной форме LIX (схема 105). Если бы конечными продуктам были соединения **EH** или **FH**, тогда бы наблюдались максимумы поглощения при ~260 и ~300 нм, типичные для протонированной и депротонированной форме кониферилового спирта, соответственно [247, 248].

0.9

0.6

Абсорбция 282 nm 0.3 288-292 nm 0.0 300 200 250 350 Длина волны, нм Рис. 35. Финальные УФ-спектры реакции кониферилового альдегида (4.89 $^{\prime}$ 10⁻⁵ M) с ТНРР (9.43 ' 10⁻⁴ M) при 25 $^{\circ}$ C и различных

pH.

236 nm

258 nm

400

Рис. 34. Зависимость логарифма абсорбции при 340 нм от времени в реакции кониферилового альдегида (4.89 ' 10⁻⁵ M) при 25°C и рН 6.89 и различных соотношениях [ТНРР]/[альдегид] по методу Гуггенхайма. Вставка показывает зависимость $k_{\rm obs}$ от начальной концентрации $[P_0]$.

В таблице 9 суммированы значения $k_{\rm obs}$ для реакции кониферилового альдегида с ТНРР ([ТНРР]/[альдегид] = 19.3) при рН от 5.04 до 9.50, полученные анализом данных УФ-спектрометрии методом Гуггенхайма (ур. 19). Графическая интерпретация полученных значений в зависимости от рН представлена на рисунке 36, и включает данные аналогичной реакции при рН > 10 (таблица 7). Полученная кривая имеет два экстремума: максимум при рН ~ 8.0 и минимум при рН ~ 10.0.

Таблица 9.

Наблюдаемая константа скорости реакции псевдо-первого порядка $k_{\rm obs}$ между конифериловым альдегидом (4.89 ′ 10^{-5} М) и ТНРР (9.43 ′ 10^{-4} М) при 25 °C и различных рН по методу Гуггенхайма

pH k_{obs} ′ 10^3 , c^{-1} pH k_{obs} ′ 10^3 , c^{-1} 5.04 0.22 ± 0.01 7.83 10.84 ± 0.09 5.58 0.58 ± 0.01 8.02 11.24 ± 0.10 6.00 1.28 ± 0.01 8.35 9.01 ± 0.05 6.53 2.96 ± 0.01 8.51 7.72 ± 0.02 6.89 5.38 ± 0.04 8.74 6.68 ± 0.01 7.04 6.52 ± 0.09 9.18 5.30 ± 0.03
5.58 0.58 ± 0.01 8.02 11.24 ± 0.10 6.00 1.28 ± 0.01 8.35 9.01 ± 0.05 6.53 2.96 ± 0.01 8.51 7.72 ± 0.02 6.89 5.38 ± 0.04 8.74 6.68 ± 0.01
6.00 1.28 ± 0.01 8.35 9.01 ± 0.05 6.53 2.96 ± 0.01 8.51 7.72 ± 0.02 6.89 5.38 ± 0.04 8.74 6.68 ± 0.01
6.53 2.96 ± 0.01 8.51 7.72 ± 0.02 6.89 5.38 ± 0.04 8.74 6.68 ± 0.01
6.89 5.38 ± 0.04 8.74 6.68 ± 0.01
7.04 6.52 + 0.00 0.19 5.20 + 0.02
7.04 0.32 ± 0.09 9.18 3.30 ± 0.03
7.42 9.16 ± 0.05 9.50 4.43 ± 0.01
7.53 9.94 ± 0.01

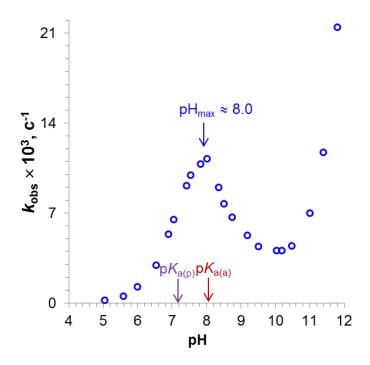


Рис. 36. Зависимость $k_{\rm obs}$, полученных по методу Гуггенхайма, для реакции альдегида (4.89 ′ 10^{-5} M) с THPP (9.43 ′ 10^{-4} M) от pH при 25°C.

Увеличение $k_{\rm obs}$ на интервале pH от 5 до 8 может быть объяснено увеличением количества третичного фосфина в реакционной смеси из-за смещения равновесия уравнения 17 в правую сторону. Уменьшение значения $k_{\rm obs}$ на интервале pH от 8 до 10 связано с увеличением количества фенолятной формы ${\bf A}$ альдегида, которая является менее активной, чем ${\bf AH}$, из-за большей электронной плотности в p-системе, что уменьшает электрофильность g-углерода альдегида. Дальнейшее увеличение $k_{\rm obs}$ от pH

10 обусловлено значительным влиянием реакции элиминирования k_{-2} (второе слагаемое уравнения 23) на суммарное значения $k_{\rm obs}$.

Таким образом, кинетические измерения взаимодействия кониферилового альдегида с ТНРР при 25°С в условиях реакции псевдо-первого порядка ([ТНРР] >> [альдегид]) с помощью УФ-спектрометрии показали, что константы скорости второго порядка k_1 и k_2 для нуклеофильной атаки фосфина на связь C=C альдегида в фенольной и фенолятной форме имеют значения $39 \pm 6 \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$ и $3.49 \pm 0.05 \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$ соответственно. Оптимальное значение рН для наиболее быстрого расходования кониферилового альдегида в реакционной смеси находится в пределах значения 8.0. Скорость нуклеофильной атаки фосфина на связь C=C фенольной формы альдегида примерно в 400 раз выше, чем атака на связь C=C; константа скорости второго порядка $k_3 = (1.6 \pm 0.5)$ ′ $10^4 \, \mathrm{M}^{-1} \, \mathrm{c}^{-1}$. Продукт a -нуклеофильной атаки находится в равновесии с исходными реагентами и медленно конвертируется в g -продукты.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 2

Таким образом, третичные фосфины кинетически предпочтительно атакуют С=О связь коричных альдегидов. Однако, продукты данного взаимодействия, (αгидроксиалкил)фосфониевые цвиттер-ионы, неустойчивы И МОГУТ быть зарегистрированы только в кислых условиях. В нейтральных и щелочных средах образуются термодинамически более стабильные продуты нуклеофильной атаки фосфинов на связь С=С, которые в водной среде участвуют в реакции самоконденсации с образованием бисфосфониевых производных. Последние устойчивы и могут быть выделены в случае коричных альдегидов лигнина, содержащих пара-ОН-группу, а в случае коричных альдегидов, не содержащих фенольных групп, претерпевают дальнейшие изменения, давая новые сопряженные альдегиды. В спиртах также кинетически предпочтительны продукты 1,2-присоединения, которые в присутствии кислоты стабилизируются связыванием а-ОН-группы в эфирную. В отсутствие кислоты коричные альдегиды лигнина образуют равновесие с продуктом 1,4-присоединения в форме полуацеталя. Чем выше диэлектрическая постоянная спирта, тем сильнее равновесие сдвинуто в сторону продуктов.

ГЛАВА 3.

Взаимодействие моно(а-гидроксиалкил)фосфинов и вторичного фосфина Ph₂PH с коричными альдегидами

После изучения и понимания взаимодействия а, b-ненасыщенных альдегидов, содержащий фенилпропаноидных фрагмент, с устойчивыми третичными фосфинами были начаты исследования реакций моно(α-гидроксиалкил)фосфинов, которые, как было показано в главе 1, могут частично или полностью распадаться на вторичный фосфин и альдегид. В текущей главе описывается взаимодействие коричных альдегидов - основных хромофоров лигнина, как со вторичным фосфином, в качестве которого был Ph₂PH, использован коммерчески доступный моно(αтак И гидроксиалкил) дифенилфосфинами. Обе реакции могут вносить вклад в процесс отбеливания. Ввиду того, что исходные фосфины нерастворимы в воде, исследования проводили в полярных органических растворителях (ДМСО и метаноле) или без растворителя.

3.1. Взаимодействие Ph₂PH с коричными альдегидами в отсутствие растворителя

Реакции гидрофосфинирования активированных олефинов вторичными фосфинами широко представлены в литературе и являются методами синтеза новых третичных фосфинов [249–265]. В отличие от реакций а,b-ненасыщенных альдегидов с третичными фосфинами, которые до наших исследований не публиковались, реакции а,b-ненасыщенных альдегидов с вторичными фосфинами были известны. Так, в 1992 г группой профессора *Suzuki K*. были опубликованы результаты по взаимодействию Ph₂PH с а,b-ненасыщенными карбонильными соединениями, в том числе и с коричным альдегидом [266, 267]. Эти реакции, которые катализируются кислотам Льюиса в растворе CH₂Cl₂, включают гидрофосфинирование как C=C, так и C=O связей (схема 50). В качестве конечных продуктов были выделены дифосфиноксиды, промежуточные соединения не идентифицировались.

$$Ph \longrightarrow O + Ph_2PH \xrightarrow{BF_3^* OEt_2 + \kappa ar. \ NbCl_5} CH_2Cl_2 \qquad Ph_2P \qquad Ph_2P \qquad O \qquad Ph_2P \qquad O \qquad Ph_2P \qquad O \qquad Ph_2P \qquad O \qquad Ph_2Ph_2 \qquad Ph_$$

Также известно, что взаимодействие коричного альдегида с фосфин-бораном $Ph_2PH \cdot BH_3$ ведет к образованию устойчивого (α -гидроксиалкил)производного (схема 51) [268].

Ph O +
$$Ph_2PH \cdot BH_3$$
 Ph OH

Cxema 51

Нами впервые установлено [269], что в отсутствии растворителя и катализаторов фосфин Ph_2PH вступает в экзотермическую реакцию с коричным альдегидом (1:1) и количественно дает третичный фосфин **XXVIa** (схема 52). Соединение **XXVIa** было выделено с выходом 82% в виде некристаллического порошка розоватого цвета и доказано с помощью ЯМР- и масс-спектрометрии, а также элементного анализа. Вещество растворимо в ацетоне, бензоле и $CHCl_3$, слаборастворимо в Et_2O . Аналогично были получены производные n-Ме- и n-МеО-коричного альдегида. Однако из-за лучшей растворимости в растворителях выходы составили 57 и 47% соответственно.

Реакция Ph_2PH с *а*-метилкоричным альдегидом требует двукратного избытка фосфина и длительного нагревания, при этом получается фосфин **XXVId** (схема 53), выход которого после выделения составил 57%. Соединение **XXVId** содержит два хиральных атома углерода и ЯМР анализ показал, что соединение является смесью четырех стереоизомеров, из которых в спектрах различимы только два диастереомера

(обозначенные здесь как **XXVId-a** и **XXVId-b**) в соотношение 20:1 ($de \sim 90\%$). Комплексы данного фосфина с палладием(II), которые будут обсуждаться в главе 10, показали, что предпочтительными являются S,S- и R,R-энантиомеры.

До публикации наших исследований по взаимодействию Ph₂PH с коричными альдегидами в 2007 г в литературе существовали примеры синтеза третичных фосфинов, содержащих альдегидную группу в боковой цепи. Так, описывается многостадийный синтез 2-(дифенилфосфино)бензальдегида из 2-бромбензальдегида через магнийорганическое соединение (схема 54) [270, 271]. Позже был предложен синтез данного фосфина из 2-бромйодбензола [272]. Было показано, что данный фосфин является очень удобным прекурсором для синтеза новых фосфиновых лигандов благодаря высокой реакционной способности альдегидной группы [273–275]. 2-(дифенилфосфино)бензальдегид является более жестким аналогом полученного нами фосфина **XXVIa**.

OH
$$OOO$$
 OOO O

Фосфин $Ph_2PCH_2CH_2CHO$ был приготовлен в многостадийном процессе (схема 55) с выходом 33% как бесцветное масло чувствительное к нагреву [276]. Похожие схемы для синтеза $Ph_2PCH_2CH_2CHO$ были реализованы и в других работах [277, 278], а также для синтеза Ph_2PCH_2CHO [279].

OEt
$$Ph_2P^+Li^ Ph_2P$$
 OEt $Ph_2P^+Li^ Ph_2P$ OEt $Ph_2P^ Ph_2P^ Ph_2P^-$

Одновременно с публикацией наших результатов по синтезу новых фосфинов, в 2007 г в печати появились публикации по энантиоселективному гидрофосфинированию а,b-ненасыщенных альдегидов в толуоле и CHCl₃ в присутствии вторичных аминов и органической кислоты [280, 281]. В данных реакциях фосфин **XXVIa** рассматривался только как интермедиат, который восстанавливался *in situ* до соответствующего спирта и выделялся как аддукт с BH₃ (схема 56). Синтез аналогичных фосфин-боранов был также описан в 2011 г, где гидрофосфинирование протекает на комплексах палладия(II) с хиральными лигандами [282].

В 2010 г были опубликованы результаты исследований по синтезу хиральных дифосфинов из акролеина и Ph₂PH в присутствии хирального комплекса палладия (схема 57) [283]. Первая стадия данного процесса включает гидрофосфинирование С=С связи, а интермедиат реакции, аналог фосфина **XXVIa**, координируется атомом палладия. Последующая реакция данного интермедиата со второй молекулой Ph₂PH дает дифосфиновый комплекс, где в качестве бидентантного лиганда выступает аналог дифосфина **IIa**, синтезированного нами по реакции Ph₂PH с коричным альдегидом в соотношении 2:1 (см схему 61).

Таким образом, увеличение числа научных работ, посвященных фосфинам с альдегидной группой в боковой цепи, свидетельствует об увеличении интереса к данному классу соединений. Предложенный нами простой одностадийный метод гидрофосфинирования коричных альдегидов позволяет получать фосфин-альдегиды с высокими выходами. Присутствие альдегидной группы в фосфинах **XXVIa-d** делает их перспективным прекурсорами для синтеза других третичных фосфинов. Некоторые примеры синтезов рассматриваются ниже.

3.2. Реакции фосфин-альдегидов по альдегидной группе

Образование полуацеталей

Фосфин **XXVIa** практически не растворим в метаноле или CD_3OD , но медленно переходит в раствор как полуацеталь **XXVIIa** (схема 58), образующийся как смесь диастереомеров (d.r. = 1.3), которые обозначены **a** и **b** соответственно. Равновесие альдегид-полуацеталь практически полностью сдвинуто в сторону полуацеталя (соотношение **XXVIIa/XXVIa** \approx 45).

Фосфин **XXVId** при растворении в CD_3OD дает полуацеталь **XXVIId**, который содержит три хиральных центра (схема 59). Положительный индукционный эффект метильной группы делает полуацеталь **XXVIId** менее устойчивым, поэтому равновесная концентрация альдегидной формы фосфина **XXVIId** в растворе выше (соотношение

XXVIId/XXVId ≈ 3), чем для фосфина **XXVIa**. Равновесное соотношение диастереомеров аналогично полуацеталю **XXVIIa** и составляет 1.3.

Схема 59

Взаимодействие с реактивом Гриньяра

Взаимодействием фосфина **XXVIa** с PhMgBr в Et_2O (г.t., аргон) был получен третичный фосфин **XXVIII** (схема 60) как смесь диастереомеров в соотношение 2:1. Основываясь на литературных данных [233] и результатах конформационного анализа, проведенного для бисфосфониевых солей (глава 2), было сделано предположение, что главным изомером является фосфин с хиральностью (S,S)/(R,R).

Реакция гидрофосфинирования

Реакция коричного альдегида с двумя эквивалентами Ph_2PH в отсутствие растворителя (аргон, r.t.) дает розовую стеклообразную массу, которая, согласно данным ЯМР $^{31}P\{^{1}H\}$ (ДМСО- d_6), состоит из дифосфина **Ha** (смесь диастереомеров, схема 61), фосфина **XXVIa** (~2%) и Ph_2PH (~5%). Дифосфин **Ha** содержит два хиральных центра и в спектрах ЯМР регистрируются два набора сигналов, принадлежащих двум диастереомерам (четыре стереоизомера); соотношение диастереомеров 2.3. Главный изомер, как следует из РСА палладиевого комплекса **LVX** (см главу 10), имеет (*S*,*S*)/(*R*,*R*) хиральность. Химические сдвиги атомов фосфора соединения **Ha** представлены в главе 1 в таблице 2, на рисунке 8 показаны спектры ЯМР $^{31}P\{^{1}H\}$ в некоторых растворителях.

Дифосфин **Па** не может быть очищен перекристаллизацией, поскольку как (а-гидроксиалкил)фосфин не устойчив в простых органических растворителях (глава 1).

3.3. Взаимодействие Ph₂PH с коричным альдегидом в ДМСО

Мониторинг реакции коричного альдегида с Ph₂PH (1:1) в растворе ДМСО-d₆ (г.t., аргон) с помощью спектроскопии ЯМР показал, что конечным продуктом реакции так же, как и реакции в отсутствие растворителя, является фосфин **XXVIa** [192]. Его формирование, однако, при комнатной температуре идет очень медленно и проходит через ряд промежуточных соединений (схема 62), подтвержденных с помощью спектроскопии ЯМР. На рисунке 37 представлены относительные концентрации фосфорсодержащих веществ, зарегистрированных в ходе мониторинга реакции в течение 14 дней (рис. 38).

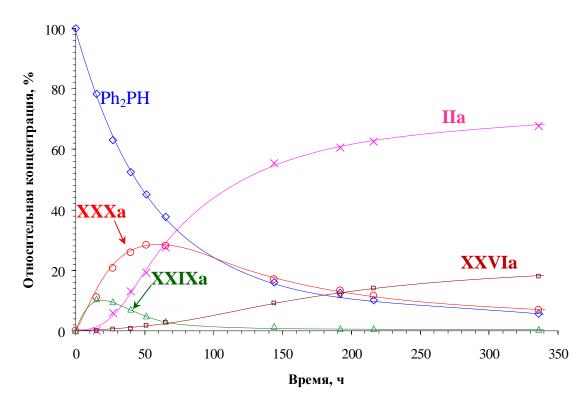


Рис. 37. Относительная концентрация фосфорсодержащих соединений в реакции коричного альдегида и Ph_2PH (1:1, ДМСО- d_6 , r.t., аргон).

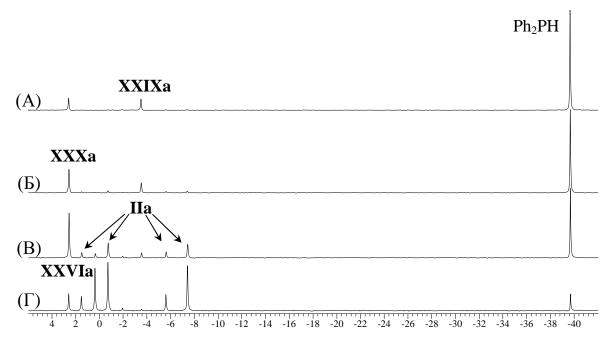


Рис. 38. Спектр ЯМР 1 H{ 31 P} реакции коричного альдегида и Ph₂PH (1:1, ДМСО-d₆, r.t., аргон), полученный через: (A) 15 ч, (Б) 27 ч, (В) 65 ч, (Г) 14 дней.

На первой стадии происходит нуклеофильная атака фосфина по связь C=O с образованием третичного моно(α -гидрокси)фосфина **XXIXa** (схема 62). Как и в случае реакций a,b-ненасыщенных альдегидов с третичными фосфинами (глава 2), атака Ph₂PH

на связь C=O кинетически более выгодна, чем атака на связь C=C. В спектре ЯМР 31 P{ 1 H} фосфин **XXIXa** регистрируется как синглет при d_P –3.5 м.д. (рис. 38). Протоны H^3 и H^2 соединения **XXIXa** взаимодействуют друг с другом с константой спинспинового взаимодействия $^3J_{HH}$ = 16.0 Γ ц, что соответствует транс-конфигурации связи C=C [231].

Максимальная относительная концентрация фосфина **XXIXa** (~10%) в реакционной смеси наблюдается в начальный момент реакции (рис. 37) и затем начинает понижаться за счет внутримолекулярных перегруппировок. Так, миграция группы ОН от а-углерода в бензильное положение ведет к образованию термодинамически более стабильного фосфина **XXXa** (схема 62, путь A). Благодаря деэкранирующему эффекту связи С=С в спектре ЯМР 31 Р{ 1 H} синглет фосфина **XXXa** сдвинут в слабое поле по сравнению с фосфином **XXIXa**, и регистрируется при d_{P} 2.6 м.д. (рис. 38). Винильные протоны H^{1} и H^{2} фосфина взаимодействуют друг с другом с константой спин-спинового взаимодействия $^{3}J_{HH}$ = 10.8 Γ ц, что подтверждает их цисположении [231].

Относительная концентрация фосфина **XXXa** в реакционной смеси достигает ~30% через 50 ч и потом начинает медленно уменьшается (рис. 37) за счет образования фосфина **XXVIa**. В начальный момент реакции его относительная концентрация остается низкой ввиду реакции гидрофосфинирования связи C=O исходным фосфином Ph₂PH с образованием дифосфина **IIa**. Данная реакция является обратимой и по мере расходования Ph₂PH концентрация фосфина **XXVIa** в реакционной смеси увеличивается (рис. 37). Фосфин **XXVIa** является конечным продуктом реакции, но его образования в данных условиях идет очень медленно; через 14 дней реакции его относительная концентрация в смеси составляет всего 18% (рис. 37).

Предположительно, образование фосфина **XXVIa** идет через интермедиат **XXXIa**, получающийся в результате внутримолекулярной миграции в фосфине **XXIXa** группы Ph₂P от а-углерода на бензильный аналогично миграции группы OH с образованием фосфина **XXXa** (схема 62). Данный енольный интермедиат был зарегистрирован и охарактеризован в метаноле, где скорость реакции значительно выше и соединение **XXXIa** может быть легко идентифицировано с помощью спектроскопии ЯМР (см ниже). Нельзя исключать также, что образование фосфина **XXVIa** в системе (по крайней мере

частично) идет за счет нуклеофильной атаки (α-гидрокси)фосфина **XXIXa** на связь C=C исходного альдегида (схема 63)

3.4. Взаимодействие Ph₂PH с коричными альдегидами в CD₃OD

Мониторинг реакции фосфина Ph_2PH с коричным и синаповым альдегидами (1:1, г.t., Ar) с помощью спектроскопии ЯМР показал, что взаимодействие в CD_3OD протекает значительно быстрее, чем в ДМСО, и, как правило, завершатся в течение 48 ч. Это вероятно связано с легкостью переноса дейтрона (или протона) в спирте. На рисунке 39 представлен ЯМР $^{31}P\{^{1}H\}$ профиль реакции Ph_2PH с коричным альдегидом. Как и в ДМСО, на начальной стадии регистрируются интермедиаты **XXIXa** и **XXXa** и следовые количества дифосфина **IIa** (схема 62), которые быстро конвертируются в полуацеталь **XXVIIa-D**, монодейтерированный в β -положении (схема 64). Как было показано выше, полуацетали формируются как смесь диастереомеров с равновесным соотношением диастереомеров 1.3. В ходе реакции синглет фосфина Ph_2PH при δ_P –39.8 медленно замещается триплетом фосфина Ph_2PD при δ_P –41.2 м.д. ($^1J_{PD}$ 33 Γ ц; pKa = 0.03 [284]) (рис. 39).

Ar = Ph

Ar = 4-HO-3,5-(MeO)₂-C₆H₂

$$Ar = Ph$$

Ar = Ph_2P

Ar =

Присоединение одного атома дейтрона было доказано масс-спектроскопией ESI(+) метанольного раствора остатка, полученного после удаления растворителя из реакции Ph_2PH с синаповым альдегидом (1:1, CD_3OD , r.t., Ar). В масс-спектре был

обнаружен главный пик при m/e 428.3, соответствующий протонированной форме полуацеталя **XXVIIe-D**, в которой молекула CD₃OD замещается на MeOH.

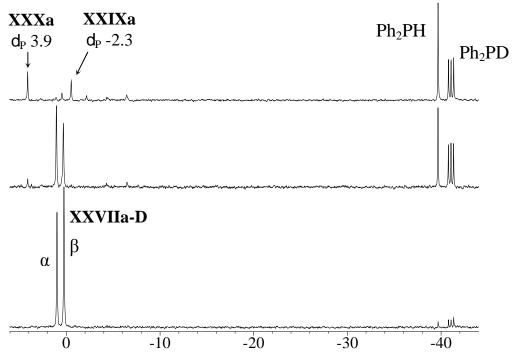


Рис. 39. Спектр ЯМР 31 Р{ 1 H} реакции Ph₂PH с коричным альдегидом в CD₃OD, полученный через: (A) 1.5 ч; (Б) 4.5 ч; (В) 48 ч.

Протоны диастереомеров альдегидной части ДВУХ недейтерированного соединения **XXVIIa** (α - и β -изомеры) формируют в спектре ЯМР ${}^{1}H\{{}^{31}P\}$ две спиновых системы Х-АВ-Ү, которые могут быть рассчитаны с использованием параметров, приведенных на рисунке 40. Значительная разница вицинальных констант спинспинового взаимодействия протонов X и Y на геминальных протонах АВ подразумевает ограничение свободного вращения в молекуле. Можно предположить, что молекула **XXVII**а формируется с наиболее предпочтительной конфигурации с объемными заместителями на максимальном удалении друг от друга. Вицинальные константы $^3J_{
m HH}$ транс-протонов (дигедральный угол $\Theta \sim 180^\circ$), как правило, больше, чем константы для гош-протонов с $\Theta \sim 60^\circ$: 8-15 Гц против 2-5 Гц соответственно [231, 232]. На рисунке 40 также представлена ожидаемая проекция Ньюмана для соединения XXVIIa по связи $C(\gamma)$ – $C(\beta)$ с (*R*)-хиральностью на атоме $C(\gamma)$, согласующаяся с данными ЯМР. Константы спин-спинового взаимодействия ${}^{3}J_{\rm PH}$ геминальных протонов A и B на атоме фосфора, не показанные на рисунке, близки по значению (~ 5.7 и ~ 6.2 Гц соответственно). Поскольку константы спин-спинового взаимодействия $^{3}J_{\rm PH}$ подчиняются уравнению

Карплуса [285, 286], можно предположить, что дигедральные углы $P-H_A$ и $P-H_B$ также близки ($\Theta \sim 60^\circ$), как показано на проекции (рис. 40). Хиральность атома $C(\alpha)$ не важна, так как она влияет на химические сдвиги, а не на форму сигналов.

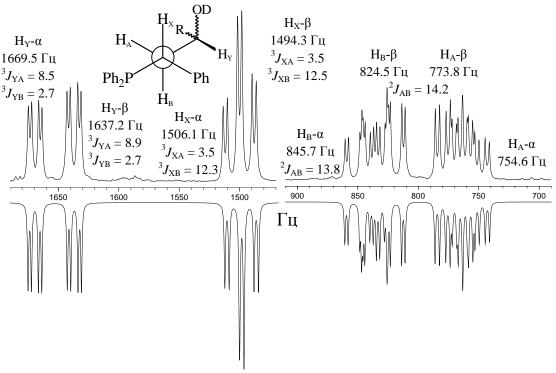


Рис. 40. Экспериментальный (сверху) и расчётный для d.r. = 1.0 (снизу) спектр ЯМР 1 H $\{{}^{31}$ P $\}$ для протонов H_X , H_Y , H_A and H_B соединения **XXVIIa** в CD_3OD ($R = OCD_3$).

Монодейтерированный полуацеталь **XXVIIa-D** имеет три хиральных атома углерода, что подразумевает возможность формирования 4 диастереомеров (4 пары энантиомеров). Анализ спектров ЯМР 1 Н и 1 Н $\{^{31}$ Р $\}$ соединения **XXVIIa-D** показал, что присоединение дейтрона является стереоселективным. Соотношение диастереомеров при атоме $C(\beta) \sim 3$. При этом две спиновых системы X-AB-Y соединения **XXVIIa** (рис. 40) трансформируются в две спиновые системы X-A-Y и две спиновые системы X-B-Y (рис. 41).

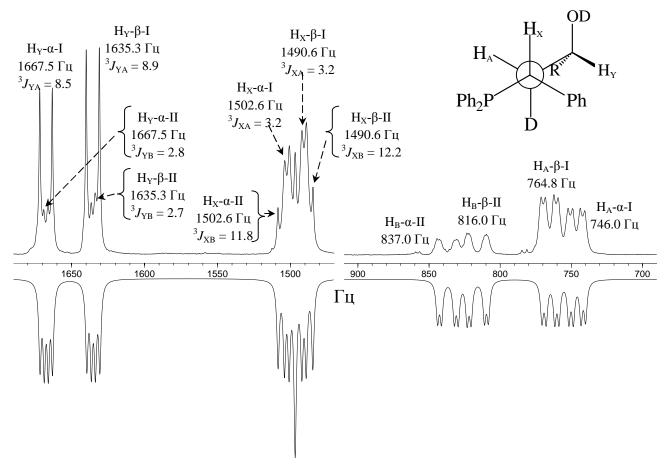
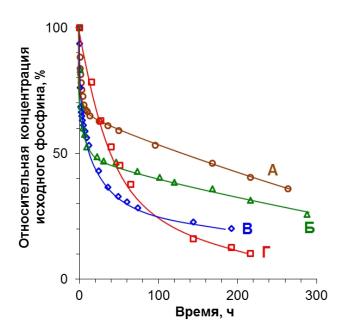


Рис. 41. Экспериментальный (сверху) и расчетный для d.r. = 1.0 (снизу) спектр ЯМР 1 H{ 31 P} протонов H_X, H_Y, H_A и H_B соединения **XXVIIa-D**, полученного в реакции Ph₂PH с коричным альдегидом (1:1, r.t., Ar) в CD₃OD (R = OCD₃).


Данные ЯМР свидетельствуют, что наиболее предпочтительные изомеры те, где присоединение дейтрона происходит на место протона H_B ($^3J_{YA} > ^3J_{XA}$), как показано на проекции Ньюмана соединения **XXVIIa-D** с (R)-хиральностью на **g**-углероде (рис. 41). Такая конфигурация соответствует (R)-хиральности атома $C(\beta)$. Таким образом, хиральность (RR)/(SS) на атомах углерода $C(\beta)$ и $C(\gamma)$ является предпочтительной. Как было показано выше на реакции коричного альдегида с гидрохлоридом ТНРР в D_2O (раздел 2.5.2, схема 45), соответствующие монодейтерированные продукты также образуются как смесь (RR)/(SS)-энантиомеров.

3.5. Взаимодействие $Ph_2PCH(OH)R$ ($R=Et, CH_2Ph, Ph$) с коричными альдегидами в ДМСО

Реакция третичных фосфинов $Ph_2PCH(OH)R$ (R = Et, CH_2Ph , Ph) с коричным альдегидом в ДМСО протекает аналогично реакции с Ph_2PH , приводя к тем же продуктам. Однако, если в случае с Ph_2PH нуклеофильная атака на карбонильный атом углерода приводит непосредственно к фосфину **XXIXa** (схема 62), то в случае с (α -гидроксиалкил)дифенилфосфинов $Ph_2PCH(OH)R$ формирование интермедиата **XXIXa** осуществляется через обменную реакцию, где в качестве промежуточного соединения выступает фосфониевая соль **XXXII**, которая, однако, не регистрируется в спектрах ЯМР (схема 65).

Ph OH
$$Ph_2P \oplus O$$
 $Ph_2P \oplus O$ $Ph_2P \oplus O$

На рисунках 42 и 43 показаны кривые расхода фосфинов Ph₂PCH(OH)R (R = Et, CH₂Ph, Ph) в реакции с коричным альдегидом (1:1, ДМСО, r.t., аргон) и изменение концентрации интермедиата **XXIXa**, продукта данной реакции. Для сравнения также представлены аналогичные кривые реакции коричного альдегида с Ph₂PH. Из представленных графиков видно, что фосфины Ph₂PCH(OH)R реагируют с коричным альдегидом быстрее, чем Ph₂PH, а также быстрее приходят к равновесию с другими интермедиатами. Это согласуется с тем фактом, что третичные фосфины более сильные нуклеофилы, чем вторичные [223].

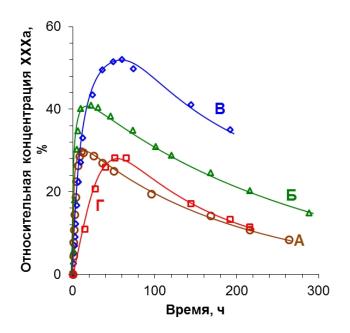

В 40 60 Время, ч

Рис. 42. Кривые расхода фосфинов в реакции с коричным альдегидом (1:1, ДМСО, r.t., Ar): A) Ph₂PCH(OH)CH₂Ph, (Б) Ph₂PCH(OH)Et, (В) Ph₂PCH(OH)Ph и (Γ) Ph₂PH.

Рис. 43. Изменение относительной концентрации интермедиата **XXIXa** в реакции коричного альдегида с фосфинами (1:1, ДМСО, r.t., Ar): (A) Ph₂PCH(OH)CH₂Ph, (Б) Ph₂PCH(OH)Et, (В) Ph₂PCH(OH)Ph и (Γ) Ph₂PH.

Скорость реакции в зависимости от радикала R уменьшается в ряду: $Ph > Et > CH_2Ph$ (рис. 42 и 43). Это означает, что в равновесной реакции, изображенной на схеме 65, бензальдегид является лучшей уходящей группой, чем пропиональдегид, который, в свою очередь, более эффективная уходящая группа, чем фенилацетальдегид. Таким образом, чем выше электрофильность альдегида, тем сильнее равновесие сдвинуто в сторону исходных реагентов. Дополнительным подтверждением этому факту служит реакция коричного альдегида с Ph_2PCH_2OH (фосфина полученного из Ph_2PH и CH_2O , наиболее электрофильного альдегида), где интермедиаты не были зарегистрированы (см главу 4).

Как и ожидалось самая высокая концентрация интермедиата **XXXa**, продукта миграции группы ОН в фосфине **XXIXa** (схема 62), также наблюдается в случае фосфина $Ph_2PCH(OH)Ph$ (рис. 44). В случае производного фенилацетальдегида, $Ph_2PCH(OH)CH_2Ph$, равновесная концентрация интермедиата **XXXa** самая низкая.

% 80 Д. А. Б. В А. А. Б. В А. О. Время, ч

Рис. 44. Изменение относительной концентрации интермедиата **ХХХа** в реакции коричного альдегида с фосфинами (1:1, ДМСО, r.t., Ar): (A) $Ph_2PCH(OH)CH_2Ph, (Б) Ph_2PCH(OH)Et, (B) \\ Ph_2PCH(OH)Ph и (Г) Ph_2PH.$

Рис. 45. Изменение относительной концентрации дифосфина **Иа** в реакции коричного альдегида с фосфинами (1:1, ДМСО, r.t., Ar): (A) Ph₂PCH(OH)CH₂Ph, (Б) Ph₂PCH(OH)Et, (В) Ph₂PCH(OH)Ph и (Г) Ph₂PH.

Во всех реакциях концентрация ХХІХа и ХХХа медленно уменьшается с образованием фосфина **XXVIa**, который реагирует с исходными фосфинами с образованием дифосфина **IIa** (схема 66). При этом концентрация **IIa** не зависит от природы исходного фосфина (рис. 45), так как лимитирующей стадией является образование фосфина XXVIa, которое происходит медленнее, чем гидрофосфинирование связи С=О. Именно поэтому скорость накопления фосфина **XXVIa** в реакционной массе зависит от природы радикала R в исходном фосфине и уменьшается в ряду: CH₂Ph > Et > Ph (рис. 46). Чем более электрофилен альдегид, тем сильнее равновесие, представленное на схеме 66, сдвинуто влево в сторону образования фосфина **XXVIa**. В случае Ph₂PH образование фосфина **XXVIa** и дифосфина **IIa** протекает быстрее из-за отсутствия конкурирующих реакций с альдегидом (рис. 45 и 46).

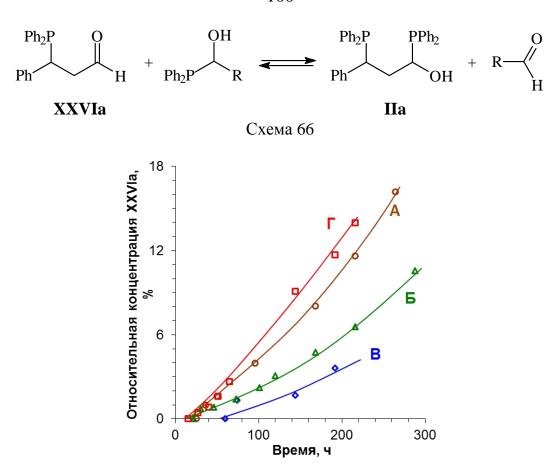


Рис. 46. Изменение относительной концентрации фосфина **XXVIa** в реакции коричного альдегида с фосфинами (1:1, ДМСО, r.t., Ar): (A) $Ph_2PCH(OH)CH_2Ph$, (Б) $Ph_2PCH(OH)Et$, (В) $Ph_2PCH(OH)Ph$ и (Г) Ph_2PH .

Реакция синапового альдегида с $Ph_2PCH(OH)Ph$ в ДМСО протекает аналогично реакции с коричным альдегидом. Таким образом, наличие n-OH группы не влияет на продукты реакции коричных альдегидов с моно(a-гидрокси)фосфинов в отличие от реакция с третичными фосфинами в воде.

3.6. Взаимодействие $Ph_2PCH(OH)R$ ($R = Et, CH_2Ph, Ph$) с коричным альдегидом в CD_3OD

Было установлено [192], что реакции как вторичных фосфинов, так и третичных моно(α -гидроксиалкил)фосфинов, в спиртах протекают значительно быстрее, чем в апротонном ДМСО. На рисунке 47 представлены спектры ЯМР ³¹Р{ 1 H}, полученные в ходе реакции коричного альдегида с $Ph_2PCH(OH)Ph$ (1:1) в метаноле при комнатной

температуре в атмосфере аргона. Реакция завершается в течение 1 ч, образованием полуацеталя **XXVIIa** как смеси диастереомеров (см выше).

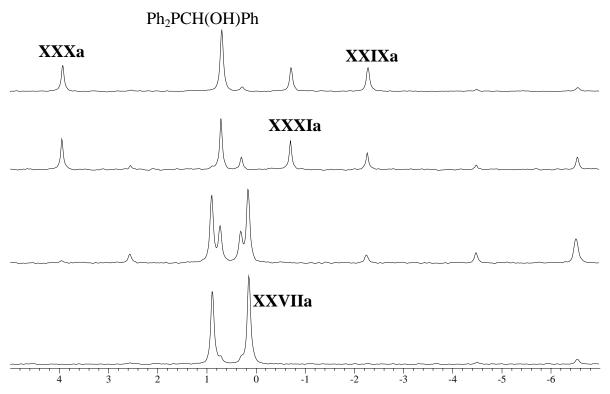


Рис. 47. Спектр ЯМР 31 Р{ 1 H} реакции коричного альдегида с Ph $_{2}$ PCH(OH)Ph (1:1, Ar, r.t., MeOH) через: (A) 8 мин, (Б) 11 мин, (В) 20 мин, (Г) 50 мин.

Эксперимент ${}^{1}\text{H}-{}^{31}\text{P}\{{}^{1}\text{H}\}$ HMQC, проведенный через 10 мин после начала реакции в растворе CD₃OD (рис. 48), подтвердил, что в системе на первой стадии происходит обменная реакция с образованием интермедиата **XXIXa**. Также в реакционной смеси регистрируется фосфин **XXXa**. Новый ${}^{31}\text{P}\{{}^{1}\text{H}\}$ синглет при d_{P} –0.7 м.д., который не наблюдался в растворе ДМСО, коррелирует в спектре ЯМР ${}^{1}\text{H}$ с протонами, химические сдвиги и мультиплетность которых согласуется со структурой енольного интермедиата **XXXIa** (схема 62). Так, винильные протоны видны при d_{H} 4.10 и 5.02 м.д. как д.д. и д.д.д. (${}^{4}J_{PH}=6.8, {}^{3}J_{PH}=7.1, {}^{3}J_{HH}=9.1$ Γ Ц) соответственно. Значение константы спинспинового взаимодействия ${}^{3}J_{HH}$, как и в случае интермедиата **XXXa**, подразумевает цисконфигурацию двойной связи.

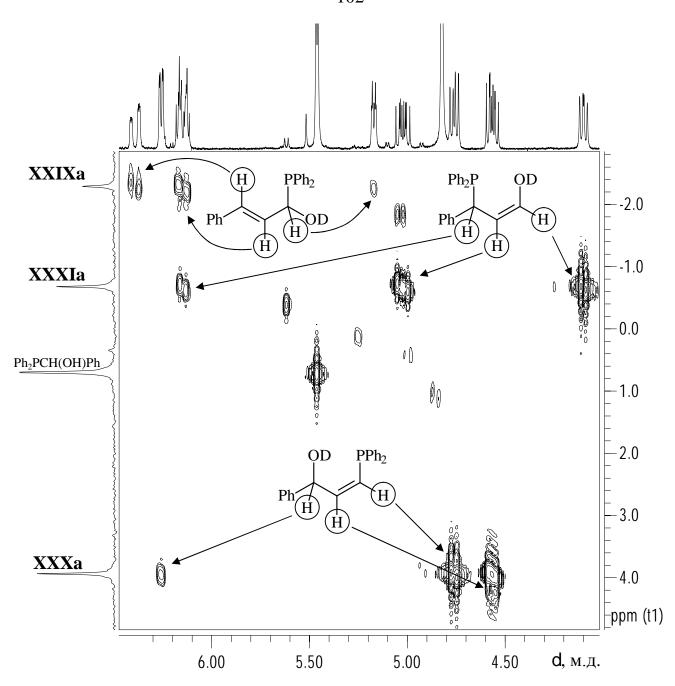


Рис. 48. Эксперимент ${}^{1}\text{H}-{}^{31}\text{P}\{{}^{1}\text{H}\}$ HMQC реакции коричного альдегида с $\text{Ph}_{2}\text{PCH}(\text{OH})\text{Ph}$ (1:1, Ar, r.t., CD₃OD), проведенный через ~ 10 мин.

Регистрация интермедиата **XXXIa** становится возможной ввиду высокой скорости реакции, в результате чего в смеси успевает накопиться достаточное его количество.

На рисунке 49 представлены кривые расхода фосфинов в реакции с коричным альдегидом в одинаковых условиях (1:1, CD_3OD , r.t., Ar). Реакция с $Ph_2PCH(OH)Et$ протекает аналогично реакции с $Ph_2PCH(OH)Ph$, рассмотренной выше. Реакция с Ph_2PCH_2OH протекает несколько иначе и будет обсуждаться в следующей главе. Реакционность моно(а-гидроксиалкил)фосфинов уменьшается в ряду $Ph_2PCH(OH)Et$ >

 $Ph_2PCH(OH)Ph > Ph_2PCH(OH)H$ согласуется с их нуклеофильностью. Значительно более низкая скорость реакции в случае Ph_2PH также соответствует общему ряду убыванию нуклеофильности $R_3P > R_2PH$ [171, 223].

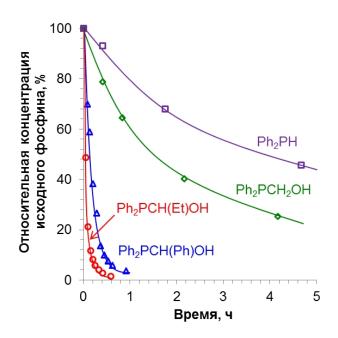


Рис. 49. Расход фосфина в реакции с коричным альдегидом в CD₃OD (1:1, r.t., Ar).

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 3

Таким образом, нами было показано, что вторичный фосфин Ph₂PH, как и третичные фосфины, в реакциях с коричными альдегидами дает продукты 1,4-присоединения с разрушением первоначального сопряжения. Продуктами являются новые третичные фосфины, содержащие альдегидную группу в боковой цепи и являющимися удобными прекурсорами для синтеза новых фосфиновых лигандов. Их формирование идет через неустойчивые продукты 1,2-присоединения, которые являются кинетически более выгодными. Третичные фосфины, содержащие одну а-ОНгруппу, реагируют аналогично Ph₂PH с образованием тех же интермедиатов и продуктов.

ГЛАВА 4.

Взаимодействие (гидроксиметил)фосфинов Ph₂PCH₂OH, PhP(CH₂OH)₂, (HOCH₂)₃P с коричными альдегидами

Три(гидроксиметил)фосфин ($HOCH_2$)₃P является эффективым отбеливающим агентом механической пульпы. Его взаимодействие с а,b-непредельными альдегидами представляет особый интерес в наших исследованиях, поскольку наиболее близко соответствует условиям промышленного отбеливания механической пульпы. В данной главе приводятся результаты исследований с участием Ph_2PCH_2OH , $PhP(CH_2OH)_2$ и ($HOCH_2$)₃P, и обсуждается влияние количества гидроксиметильных групп у атома фосфора на продукты реакций с коричными альдегидами.

4.1. Взаимодействие Ph₂PCH₂OH с коричным альдегидом

Реакция Ph_2PCH_2OH с коричным альдегидом в MeOH протекает медленнее, чем с другими моно(α -гидроксиалкил)дифенилфосфинов, но быстрее, чем с Ph_2PH (раздел 3.6, рис. 49). Фосфорсодержащим продуктом реакции, как и в случае Ph_2PH и других моно(α -гидроксиалкил)дифенилфосфинов, является полуацеталь **XXVIIa** (схема 67). Существенным отличием, однако, является то, что интермедиатов **XXIX**, **XXX** и **XXXI** (схема 62) в реакции с Ph_2PCH_2OH не наблюдалось. Высокая электрофильность формальдегида, вероятно, полностью сдвигает равновесие обменной реакции в строну исходных реагентов (схема 65), и образование фосфина, скорее всего, идет непосредственно через атаку на связь C=C коричного альдегида (схема 67).

Реакция Ph_2PCH_2OH с коричным альдегидом в ДМСО- d_6 протекает, как и ожидалось, значительно медленнее, чем в метаноле [192]. В ходе реакции синглет исходного фосфина (d_P -14.7 м.д.) замещается двумя синглетами при d_P 0.4 и -20.0 м.д.

Данные экспериментов ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY и ${}^{1}\text{H}$ - ${}^{31}\text{P}\{{}^{1}\text{H}\}$ HMQC показали, что синглеты принадлежат фосфину **XXVIa** и фосфорсодержащему полуацеталю **XXXIII** (схема 68). Последний является продуктом захвата молекулы формальдегида, образующегося по схеме 67, исходным фосфином. Фосфины данного типа синтезированы по реакции формальдегида и $P(\text{CH}_{2}\text{OH})_{3}$ и описаны в литературе [145, 166, 287–289]. Через 22 дня реакции интегрирование сигналов в спектре ЯМР ${}^{31}\text{P}\{{}^{1}\text{H}\}$ показало, что фосфины **XXVIa** и **XXXIII** образуются с выходом ~20% (на исходный фосфин).

4.2. Взаимодействие PhP(CH₂OH)₂ с коричными альдегидами в соотношение 1:1 в MeOH/CD₃OD

Установлено [290], что реакция коричного или синапового альдегида с бис(гидроксиметил)фенилфосфином PhP(CH₂OH)₂ в соотношении 1:1 в растворе CD₃OD (г.t., Ar) ведет к образованию монодейтерированного 1,3-оксафосфоринана **XXXV** в качестве основного продукта (схема 69). Первая стадия его образования, как и в случае с Ph₂PCH₂OH, включает нуклеофильную атаку фосфина на C=C связь коричного альдегида с образованием нового монодейтерированного третичного фосфина **XXXIV**, свободная гидроксиметил группа которого внутримолекулярно атакует C=O связь, давая циклический полуацеталь (схема 69). В реакции с коричным альдегидом сигнал исходного фосфина практически полностью исчезает из спектров в течение 24 ч, и в области третичных фосфинов появляются четыре новых синглета (рис. 50), принадлежащие диастереомерам оксафосфоринана **XXXV** и обозначенных для удобства **A**, **B**, **C** и **D**.

Ph. Ph. Ph. QD

Ar.
$$Ar = Ph$$
By Ar. $Ar = Ph$
By Ar. $Ar = 4-HO-3,5-(MeO)_2-C_6H_2$

Ph. Ph. Ph. QD

Ar. $Ar = Ph$
By Ar. $Ar = Ph$
Cycle $Ar = 4-HO-3,5-(MeO)_2-C_6H_2$

Ar

Схема 69

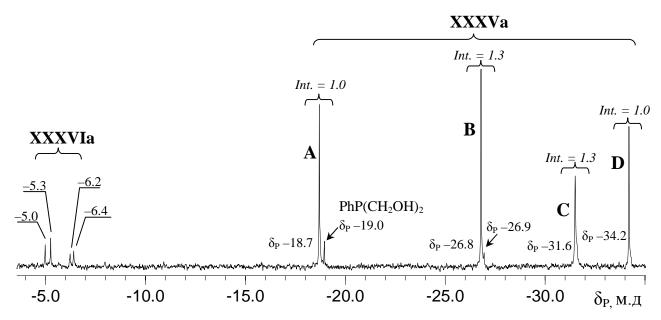


Рис. 50. Спектр ЯМР 31 Р $\{^{1}$ Н $\}$ реакции коричного альдегида с PhP(CH $_{2}$ OH) $_{2}$ в CD $_{3}$ OD (1:1, r.t., Ar), полученный через 48 ч.

Аналогичная реакция $PhP(CH_2OH)_2$ с синаповым альдегидом протекает медленнее, чем с коричным альдегидом, но также дает четыре новых синглета в спектре ЯМР 31 Р 1 Н 1 (рис. 51), которые, однако, в этом случае имеют ко-сигналы (интенсивность ~25% от основного сигнала).

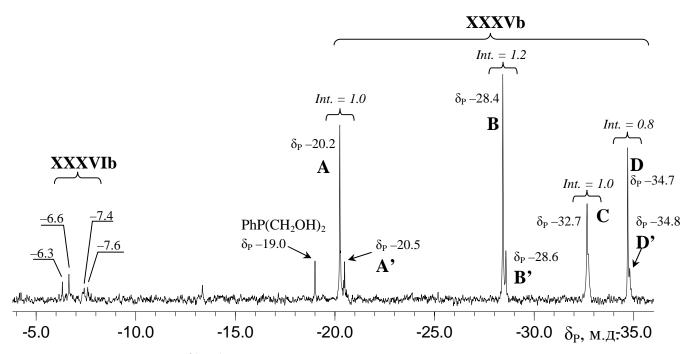


Рис. 51. Спектр ЯМР 31 Р{ 1 H} реакции синапового альдегида с PhP(CH₂OH)₂ в CD₃OD (1:1, r.t., Ar), полученный через 7 дней.

Оксафосфоринан **XXXV** содержит четыре хиральных центра, что теоретически может реализоваться в 16 стереоизомеров или 8 энантиомерных пар, которые различаются спектрами ЯМР. Но поскольку хиральность атома C5 имеет минимальный эффект на химический сдвиг атома фосфора, то в спектре ЯМР 31 Р{ 1 H} регистрируются только четыре диастереомера, связанных с различной хиральностью атома Р1, C6 и C4.

В таблицах 10 и 11 представлены химические сдвиги и константы спин-спинового взаимодействия протонов оксафосфоринанового кольца для соединений **XXXVa** и **XXXVb** соответственно, идентифицированные по двухмерному эксперименту ¹H{³¹P}– ³¹P{¹H} HMQC. Из полученных данных можно видеть, что анизохронность протонов CH₂ выражен очень сильно и константы спин-спинового взаимодействия на фосфоре отличаются в среднем в 5 раз, что свидетельствует об отсутствии свободного вращения, и согласуется с цикличной структурой конечного продукта.

Таблица 10. Некоторые данные спектроскопии ЯМР 1 Н для диастереомеров соединения **XXXVa** в $^{\rm CD_2OD}$

CD_3OD							
Изомер	CH(OD)	PCH_2O		PCH(Ph)	CHD		
$oldsymbol{A}$	5.45 (d)	4.92 (dd)	4.36 (dd)	3.89 (br d)	1.80 (m)		
	$^{3}J_{\mathrm{HH}}2.3$	$^{2}J_{\mathrm{PH}}$ 20.4	$^{2}J_{\mathrm{PH}}$ 3.5	$^2J_{\mathrm{PH}}$ ~9 $^{\mathrm{a}}$	$^{3}J_{\mathrm{PH}}$ 5.2		
		$^2J_{ m HH}$	14.5				
			0.56				
В	4.83 ^б	4.84 (dd)	4.48 (dd)	3.58 (br d)	1.91 (br s)		
			$^{2}J_{\mathrm{PH}}\ 20.0$	$^{2}J_{\mathrm{PH}}$ 9.2			
		$^2J_{ m HH}$	14.7	$^{3}J_{\rm HH}~2.3$			
	$\Delta = 0.36$						
С	5.01 (br s)	4.47 (dd)	4.14 (dd)	3.31 ^r	2.20 (br d)		
	$^3J_{ m HH}~2.3$ ^B	$^{2}J_{\mathrm{PH}}$ 21.5	$^{2}J_{\mathrm{PH}}$ 5.3		$^{3}J_{\mathrm{PH}}$ 19.8		
$^{2}J_{ m HH}$ 12.5							
$\Delta = 0.33$							
D	5.35 (d)	4.66 (dd)	3.99 (dd)	3.73 (br d)	2.10 (br d)		
	$^3J_{ m HH}~2.1^{ m ~B}$		$^{2}J_{\mathrm{PH}}$ 18.5	$^{2}J_{\mathrm{PH}}~8.4$	$^{3}J_{\mathrm{PH}}$ 19.4		
		$^{2}J_{\rm HH}$ 11.9		$^{3}J_{\rm HH}2.0^{\rm B}$			
$\Delta = 0.67$							

^а Более точное значение не может быть определено. ⁶ Перекрыт синглетом CD_3OD . ^в Значение из спектра ЯМР ${}^{1}H\{{}^{31}P\}$. ${}^{\Gamma}$ Перекрыт мультиплетом CD_3OD .

Таблица 11. Некоторые данные спектроскопии ЯМР 1 Н для диастереомеров соединения **XXXVb** в CD_2OD

CD ₃ OD								
Изомер	CH(OD)	PCH_2O		PCH(Ph)	CHD			
A	5.44 (d)	4.90 (dd)	4.34 (dd)	3.79 (dd) ^a	1.76 (m)			
	$^{3}J_{\rm HH}~2.3$	$^{2}J_{\mathrm{PH}}20.5$		$^2J_{\mathrm{PH}}$ ~11 6	$^{3}J_{\rm PH}$ 5.7			
		$^2J_{ m HH}$	14.5	$^{3}J_{ m HH}~2.9^{\ m B}$				
			0.56					
В	$4.80 (br s)^{ \Gamma}$	4.82 (dd) ^r	4.46 (dd)	3.50 (dd) ^д	1.87 (br s)			
		$^2J_{\mathrm{PH}}$ ~3 6	$^2J_{ m PH}~20.2$	$^2J_{\mathrm{PH}}$ ~11 6				
		$^2J_{ m HH}$	14.7	$^{3}J_{\mathrm{HH}}~2.8$				
	D = 0.36							
C	5.00 (br s) ^e	4.47 (dd)	4.18 (dd)	3.23 (dd) **	2.21 (br d)			
	$^3J_{ m HH}~2.5$ $^{ m B}$	$^{2}J_{\mathrm{PH}}$ 21.1	$^{2}J_{\mathrm{PH}}$ 5.5	$^{2}J_{\mathrm{PH}}$ 8.6	$^{3}J_{\mathrm{PH}}\ 20.1$			
		$^2J_{ m HH}$	12.5	$^{3}J_{\rm HH}~2.8$				
D = 0.29								
D	5.37 (d)	4.69 (dd)	4.00 (dd)	3.62 ³	2.12 (br d)			
	$^{3}J_{ m HH}~2.1$ $^{ m B}$	$^{2}J_{\mathrm{PH}}$ 6.2	$^{2}J_{\mathrm{PH}}$ 18.1		$^{3}J_{\mathrm{PH}}~20.6$			
$^{2}J_{ m HH}$ 11.9								
D = 0.69								

 $^{^{2}}$ 3 J_{HH} для минорного сигнала ~13.8 Гц и 2 J_{PH} ~ 11 Гц. 6 Более точное значение не может быть определено. В Значение из спектра ЯМР 1 $H\{^{31}$ $P\}$. $^{\Gamma}$ Перекрыт сигналами 2 CD $_{3}$ OD и 2 P $_{4}$ P $_{5}$ P $_{7}$ P $_{7}$ P $_{7}$ P $_{8}$ P $_{7}$ P $_{8}$ P $_{7}$ P $_{8}$ P $_{9}$ P

В спектрах ЯМР ¹Н или ¹Н{³¹Р} соединения **XXXVa** и **XXXVb**, содержащие четыре хиральных цента, присутствуют только четыре сигнала протона H5 (рис. 52), что свидетельствует о наличие только четырех диастереомеров (из восьми возможных). Таким образом, присоединение дейтрона, либо образование хиральных центров на атомах Р1 или С4 протекает стереоспецифично. Геометрия атома углерода С6 в данном случае не рассматривается, т.к. нуклеофильная атака фосфина на связь C=C равновероятна с обеих сторон планарного α , β -ненасыщенного альдегида и ведет к равному количеству (R) и (S) центров. Основываясь на литературных данных [218, 285, 286, 291–298] и данных спектроскопии ЯМР, диастереомеры **A**, **B**, **C** и **D** соединений **XXXVa** и **XXXVb** присвоены структурам, представленными на схеме 70 слева. Во всех случаях на атомах С5 и С6 зарегистрирована только (RS)/(SR) хиральность. Для простоты на схеме для всех диастереомеров показан только один энантиомер с (S) хиральностью на атоме фосфора.

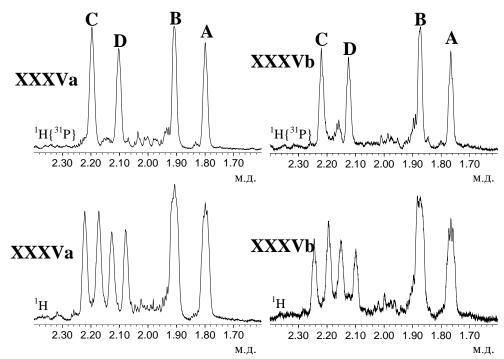
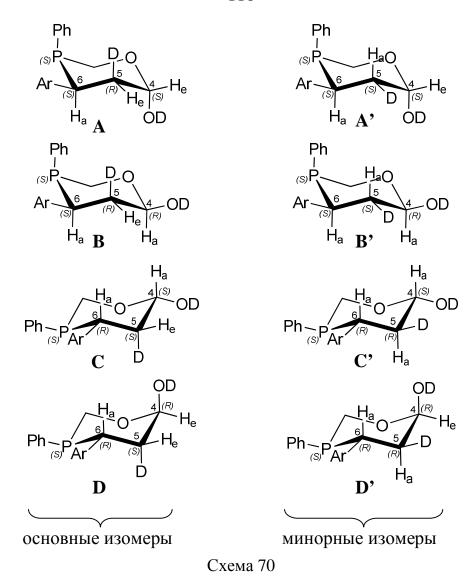



Рис. 52. Сигналы протонов H5 соединений **XXXVa** (слева) и **XXXVb** (справа) в спектре $\text{ЯМР}^{1}\text{H}\{^{31}\text{P}\}$ (сверху) и ^{1}H (снизу).

Доказательство предложенных структур **A–D** основано на том, что в фосфоринанах ориентация заместителя на атоме фосфора имеет сильный эффект на химические сдвиги и значения констант спин-спинового взаимодействия $^2J_{PC}$ для атома углерода C5. Аксиальная ориентация дает резонансы $^{13}C\{^1H\}$ с $^2J_{PC}\sim 0$ Гц, которые сдвинуты в сильное поле по отношению к сигналам с экваториально-ориентированным заместителем, и дающим значения $^2J_{PC}$ 5-8 Гц [291–294]. Данные двухмерного эксперимента ЯМР $^1H\{^{31}P\}_{-}^{13}C\{^1H\}$ HSQC для соединения **XXXVa** (рис. 53) показывают, что протон H5 изомеров **A** и **B** коррелирует с сигналом углерода C5, который не расщепляется на атоме фосфора ($^2J_{PC}$ » 0), и виден как триплет при d_C 30.8 и 33.7 м.д. с $^1J_{CD}$ = 19.7 Гц соответственно. Атомы C5 изомеров **C** и **D** сдвинуты в слабое поле и видны, соответственно, как дублет триплетов при d_C 40.1 м.д. ($^2J_{PC}\sim 7$, $^1J_{CD}$ 19.7 Гц) и как мультиплет при d_C 38.9 м.д., который, вероятно, имеет те же значения $^2J_{PC}$ и

 $^{1}J_{\text{CD}}$, но ввиду высокого уровня шумов они не проявляются (рис. 53). Таким образом, Рһгруппа на атоме фосфора должна быть аксиальной в случае **A** и **B**, и экваториальной в случае **C** и **D** (схема 70).

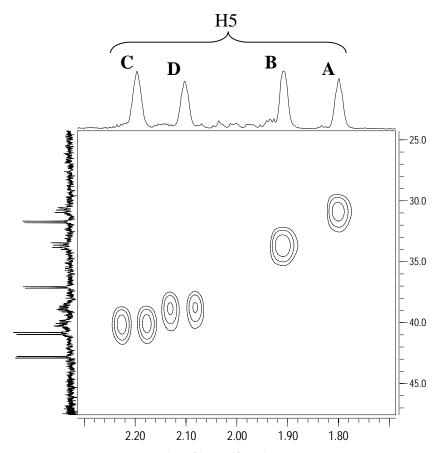


Рис. 53. Часть двумерного спектра ${}^{1}H\{{}^{31}P\}-{}^{13}C\{{}^{1}H\}$ HSQC для соединения **XXXVa** в CD₃OD.

Сигнал протона H5 соединений **XXXVa-C** и **XXXVa-D** при d_H 2.20 и 2.10 м.д. дает значение ${}^3J_{PH}$ равное 19.8 и 19.4 Гц, тогда как в случае **XXXVa-A** и **XXXVa-B** протон H5 виден, соответственно, при d_H 1.80 м.д. как острый мультиплет с ${}^3J_{PH}$ = 5.2 Гц и при d_H 1.91 м.д. как уширенный синглет (таблица 10, рис. 52). Аналогичные особенности наблюдаются и для **XXXVb** (таблица 11, рис. 52). Для фосфоринанов с известной геометрией значения ${}^3J_{PH}$ » 20 Гц, как правило, наблюдаются для экваториальных протонов, когда дигедральный угол P- C- C- H_{eq} ~180°; для аксиальных протонов, ${}^3J_{PH}$ ~0-3 Гц [285, 286, 295–298]. Это свидетельствует, что протон H5 изомеров **C** и **D** находится в экваториальной позиции (схема 70), тогда как для изомеров **A** и **B** данные менее однозначны, поскольку значение ${}^3J_{PH}$, хотя и в ~4 раза меньше, чем для **C** и **D**, оно не находится в требуемом интервале 0-3 Гц. Аксиальный заместитель на атоме фосфора, как в случае **A** и **B**, может уменьшать значения ${}^3J_{PH}$ для экваториальных

протонов [295–298], и, таким образом, для **XXXVa** и **XXXVb** низкие значения $^3J_{\text{PH}}$ могут быть связаны с аксиальной Ph-группой на атоме фосфора, а не аксиальным протоном H5. Аксиальная Ph-группа может экранировать как углерод C5, так и протон H5 изомеров **A** и **B**. Анализ спектров ЯМР, основанный на значениях $^3J_{\text{HH}}$ (см ниже) подтверждает, что протон H5 является экваториальным во всех изомерах (схема 70).

Особенностью данных ЯМР ¹Н, представленных в таблицах 10 и 11, является то, что значения констант $^3J_{\rm HH}$ для основных изомеров, как соединения **XXXVa**, так и **ХХХVb**, менее 3 Гц. Это означает, что аксиально-аксиальные константы спинспинового взаимодействия между протонами отсутствуют, поскольку они, как правило, больше, чем константы спин-спинового взаимодействия между аксиальными и экваториальными, а также между экваториальными протонами [231, 232]. Подобная ориентация протонов без аксиального-аксиального взаимодействия может быть найдена как для диастереомеров с (RS)/(SR) хиральностью (схема 70), так и для конформеров минорных изомеров с (RR)/(SS) хиральностью атомов C5 и C6 (схема 70). Поэтому идентификация изомеров могла бы быть, в целом, сложной задачей. К счастью, стереоселективность присоединения дейтрона в случае XXXVb ниже, чем в случае **XXXVa**, после циклизации фосфина **XXXIV** (схема 69), четыре дополнительных диастереомера с противоположной хиральностью атома С5 (А', В', С' и D', см правую половину схемы 70) регистрируются в спектре $\text{ЯМР}^{31}\text{P}\{^{1}\text{H}\}$ как ко-сигналы у основных сигналов (рис. 51). При проведении реакции в обычном метаноле ко-сигналы не регистрируются.

В двухмерном эксперименте ${}^{1}H\{{}^{31}P\}{}^{-31}P\{{}^{1}H\}$ НМQС, ко-сигналы коррелируют с теми же протонами что и основные ${}^{31}P\{{}^{1}H\}$ сигналы за исключением сигнала протона Н5 (рис. 54). Интегрирование в спектре ЯМР ${}^{1}H\{{}^{31}P\}$ соединения **ХХХVb** дает соотношение диастереомеров (d.r.) ~ 4:1.

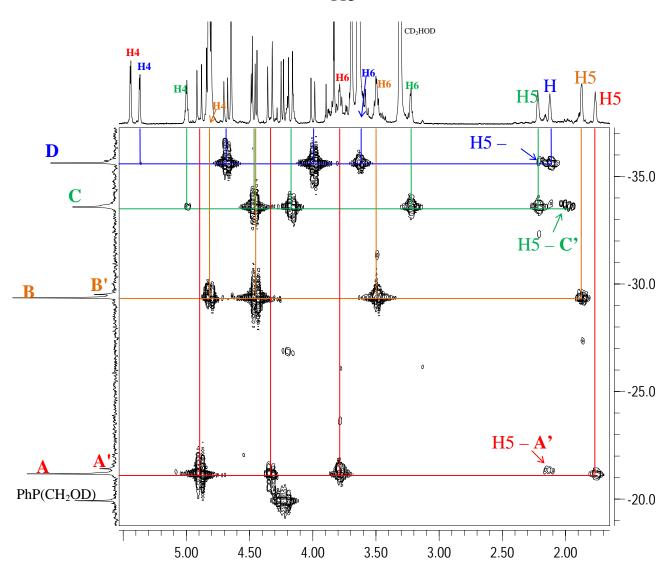


Рис. 54. Часть двумерного спектра ${}^{1}H\{{}^{31}P\}-{}^{31}P\{{}^{1}H\}$ HMQC реакции синапового альдегида с $PhP(CH_2OH)_2$ (1:1, r.t., Ar) в CD_3OD .

Изомер С идентифицируется легче всех: протоны Н4 и Н6 основного диастереомера, **XXXVb-C**, видны в спектре ЯМР 1 H{ 31 P} как дублеты со значениями 3 $J_{\rm HH}$ равными 2.5 и 2.8 Гц соответственно, тогда как побочных изомер **XXXVb-C'** дает соответствующие значения 3 $J_{\rm HH}$ равными 9.0 и 13.4 Гц (рис. 55), что подразумевает аксиальное-аксиальное сочетание в **C'** (схема 70). Таким образом, протоны Н4 и Н6 изомера **C** (как для соединения **XXXVa**, так и для **XXXVb**) являются аксиальными, а протон Н5 — экваториальным (схема 70). Это согласуется с выводом основанном на значениях 3 $J_{\rm PH}$ (см выше). Атомы углерода С6 и С5 изомера **C** имеют хиральность (R) и (S) соответственно, или (S) и (R) для другого энантиомера.

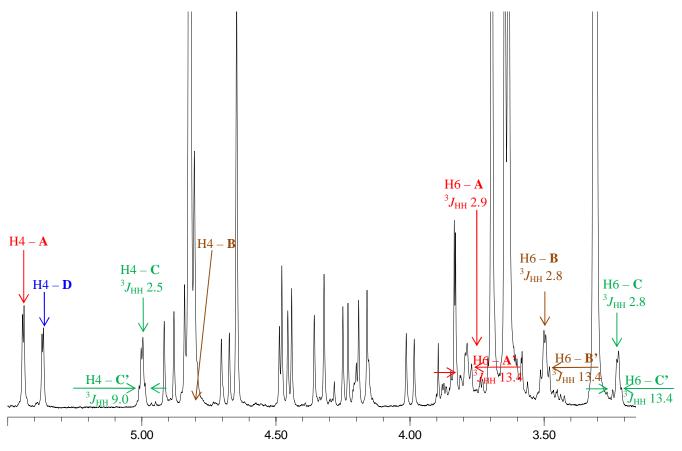


Рис. 55. Часть спектра ЯМР 1 H $\{{}^{31}$ P $\}$ реакции синапового альдегида с PhP(CH $_{2}$ OH) $_{2}$ (1:1, r.t., Ar) в CD $_{3}$ OD.

В изомерах А и В протон Н5 также ориентирован экваториально, поскольку присутствует аксиальное-аксиальное сочетания $^{3}J_{\rm HH}$ равное 13.4 Гц для протона Н6 побочных диастереомеров А' и В' соединения ХХХVb (рис. 55). Можно заключить, что изомеры А и В отличаются только ориентацией ОД-группы (схема 70). Сигнал протона H4 (d_H 5.44 м.д., $^3J_{HH}$ 2.3 Γ ц) соединения **XXXVb-A** не имеет ко-сигнала побочного диастереомера XXXVb-A' с более высокой константой спин-спинового взаимодействия $^{3}J_{\rm HH}$ (рис. 55), что свидетельствует о том, что изменение хиральности атома углерода С5 не ведет к появлению аксиально-аксиального сочетания между протонами Н5 и Н4. Это означает, что протон Н4 в изомере А должен быть экваториальным (схема 70). Сигнал протона H4 изомера XXXVb-B, к сожалению, скрыт интенсивным сигналом растворителя (рис. 55) и не может участвовать в конформационном анализе, но, скорее всего, ко-синал с аксиально-аксиальным сочетанием присутствует, что согласуется с аксиальной ориентацией протона Н4 в изомере В. В заключении, изомеры А и В (SSRS)/(RRSR)(SSRR)/(RRSS)являются диастереомерами cхиральностью соответственно, как показано на схеме 70. Они также являются аномерами (см ниже).

Подобно **C**, изомер **D** имеет Ph-группу и протон H5 в экваториальных положениях. Сигнал протона H4 соединения **XXXVb-D**, также как в **XXXVb-A**, не содержит ко-сигнал побочного изомера **D'** (рис. 55), что указывает, что протон H4 изомера **D** является экваториальным. Форма сигнала протона H6 соединения **XXXVb-D** недоступна для наблюдения (таблица 11), но можно с высокой долей вероятности утверждать, что хиральность углеродов C6 и C5 идентична той, что наблюдается у **A**, **B** и **C**, и протон H6 должен быть аксиальным. Таким образом, соединения **C** и **D** являются аномерами с хиральностью (*SRSS*)/(*RSRR*) и (*SRSR*)/(*RSRS*) соответственно (схема 70).

Существует параллель между соединениями **XXXV** и моносахаридами. В водном растворе D-глюкоза существует практически полностью как внутримолекулярный полуацеталь (> 99%), образуя шестичленное пиранозное кольцо [299]. Нуклеофильная атака C5-OH-группы на связь C=O генерирует хиральный центр, где полуацетальный гидроксид может быть аксиальными или экваториальным, давая **a**- или **b**-аномер соответственно (схема 71). В водном растворе **b**-аномер доминирует над **a**-аномером (63 vs. 37%) [299]. Подобно этому изомеры **B** и **C** соединений **XXXVa/b** с экваториально расположенными полуацетальным гидроксидом доминируют над изомерами **A** и **D** (~56 vs. 44%).

Для соединения **XXXVa** соотношение диастереомеров определяется только аномерным соотношением: A/D = B/C = (A+B)/(C+D) = 1.0 и B/A = C/D = 1.3 (рис. 50). Это означает, что образование **A** и **B** с хиральностью (*SSR*) на атомах P1, C6 и C5 [и (*RRS*) для энантиомеров] и образование **C** и **D** с хиральностью (*SRS*)/(*RSR*) протекает по идентичным механизмам. В случае **XXXVb** изомеры **A** и **B** с аксиальной Ph-группой на атоме фосфора несколько более предпочтительны: A/D = B/C = (A+B)/(C+D) = B/A = C/D = 1.2 (рис. 51). Это указывает на то, что природа арильной группы влияет на стереоселективность. В случае изомеров **C** и **D** фенильное кольцо на фосфоре и

арильная группа у атома С6 находятся в экваториальном положении, и в случае **XXXVa** между ними, вероятно, отсутствует стерическое взаимодействие, тогда как в **XXXVb**, содержащего МеО-группы, это взаимодействие может присутствовать, сдвигая равновесие в сторону изомеров **A** и **B** с аксиальной Ph-группой.

Две пары 31 P{ 1 H} сигналов низкой интенсивности около d_P –6 м.д. в реакции с коричным альдегидом (рис. 50) и d_P –7 м.д. в реакции с синаповым альдегидом (рис. 51) предположительно являются межмолекулярными полуацеталями **XXXVIa** и **XXXVIb** соответственно (схема 69). Как и в случае **XXXV**, они образуются как смесь четырех диастереомеров. Также как в реакции Ph_2PCH_2OH с коричным и синаповым альдегидами, $^{31}P\{^{1}H\}$ сигналы соединений **XXXVIa** и **XXXVIb** сдвинуты в слабое поле относительно исходного $PhP(CH_2OH)_2$ (на 13.3 и 12.0 м.д. соответственно). Различие в 0.2–0.3 м.д. между сигналами в каждой паре идентично известным значениям для диастереомеров полуацеталей (см раздел 2.2). Соотношение диастереомеров в каждой паре соединения **XXXVIa** равно ~1.3, что идентично соотношению в случае **XXVIIa** (раздел 3.2).

4.3. Первичные продукты взаимодействия $(HOCH_2)_3P$ с коричным альдегидом в $MeOH/CD_3OD$

Исследование взаимодействия коричного альдегида и (HOCH₂)₃P (THP) в соотношении 1:1 в МеОН (аргон, r.t.) показало, что на первой стадии, как и в случае PhP(CH₂OH)₂, образуются соответствующие производные 1,3-оксафосфоринана **XXXVII** и следовые количества полуацеталя **XXXVII** (рис. 56A). Оксафосфоринаны **XXXVII** были идентифицированы как монодейтерированные продукты при проведении реакции в CD₃OD (схема 72).

Схема 72

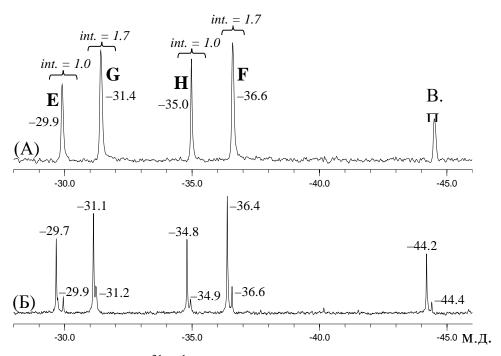


Рис. 56. Часть спектра ЯМР 31 Р{ 1 H} реакции коричного альдегида с ТНР (1:3, Ar, r.t.): (A) в МеОН через 3 ч (121 МГц), (Б) в CD₃OD через 4 ч (161 МГц).

Соединение **XXXVII** формируется как смесь четырех основных изомеров (обозначенные **E**, **F**, **G** и **H**), структуры которых представлены на схеме 73. В основном они идентичны структурам изомеров соединения **XXXV** (схема 70), за исключение того, что **E** и **F** (аналоги **A** и **B**) предположительно имеют D-связь между CH_2OD -группой и кислородом кольца (см ниже). В MeOH $^{31}P\{^{1}H\}$ сигналы недейтерированных изомеров являются синглетами (рис. 56A), тогда как в CD_3OD каждый имеет ко-сигнал (рис. 56Б), присвоенные соответствующим изомерам с противоположной хиральностью атома C5. Интегрирование в спектре $SMP^{-1}H\{^{31}P\}$ дает соотношение диастереомеров ~2-3. Таким образом, стереоселективность присоединения дейтрона ниже в реакции с $SMP^{-1}H\{^{31}P\}$ соотношение диастереомеров соединения **XXXVII** определяется только соотношением аномеров: **E/H** = **F/G** = (**E+F**)/(**G+H**) = 1.0 и **F/E** = **G/H** = 1.7 (рис. 56). Интересно, что соотношение между b- и а-аномерами (**F**, **G** и **E**, **H** соответственно) выше для **XXXVII** (63 *vs.* 37%), чем для **XXXVa**.

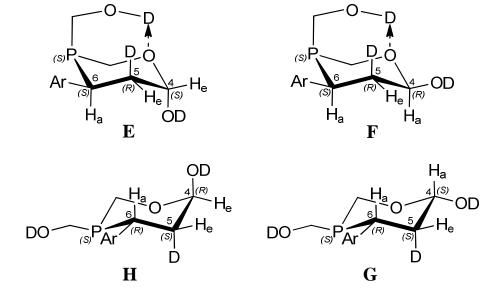


Схема 73

Назначение H-сигналов диастереомерам соединения **XXXVII** (таблица 12) основано на данных ${}^{1}\text{H}-{}^{31}\text{P}\{{}^{1}\text{H}\}$ HMQC эксперимента. Самым большим различием между соединениями **XXXVII** и **XXXVa** является то, что ${}^{31}\text{P}\{{}^{1}\text{H}\}$ -сигналы изомеров **E** и **F** в CD₃OD сдвинуты в сильное поле на 11.0 и 9.6 м.д. соответственно по отношению к сигналам изомеров **A** и **B** соединения **XXXVa**. В противоположность этому ${}^{31}\text{P}\{{}^{1}\text{H}\}$ химические сдвиги изомеров **G** и **H** практические идентичны сдвигам изомеров **C** и **D** соединения **XXXVa** (отличие в 0.5 и 0.6 м.д. соответственно). Ввиду этого последовательность '**ABCD**' (рис. 50 и 51) соответствует последовательности '**EGHF**', а не ожидаемой '**EFGH**' (рис. 56).

Таблица 12. Некоторые данные спектроскопии ЯМР 1 Н для диастереомеров соединения **XXXVII** в CD $_3$ OD.

Изомер	CH(OD)	PC.	H_2O		H_2 OD	PCH(Ph)	CHD
E	5.41 (d)	4.68 (ddd) ^a	3.93 (dd)	4.46	3.67 (ddd) ⁶	3.61 в	1.87 (br s)
	$^{3}J_{\rm HH}~2.2$	$^2J_{\rm PH}~16.7$	$^{2}J_{\mathrm{PH}}$ 5.0	$^{2}J_{\mathrm{PH}}$ 4.7	$^{2}J_{\mathrm{PH}}$ 12.7		
		$^2 \! J_{ m HH}$	14.2	$^2 J_{ m H}$	н 12.2		
		D = 0.75		D = 0.79			
F	_ r	4.43 (dd)	4.20 (ddd) ⁶	4.40 (dd)	3.60 (ddd) ⁶	3.36 (br d) ^A	2.00 e
		$^{2}J_{\mathrm{PH}}$ 6.1	$^{2}J_{\mathrm{PH}}$ 16.3	$^{2}J_{\mathrm{PH}}$ 4.5	$^{2}J_{\mathrm{PH}}$ 13.0	$^2J_{\rm PH}$ ~5.5 *	
		$^2 \! J_{ m HH}$	14.3	$^{2}J_{\mathrm{HH}}$ 12.0		$^{3}J_{\rm HH}~3.0$	
		D=	0.22	D = 0.80			
G	4.86 (br d) ³	4.37 (dd)	4.10 (dd)	~3	3.80 ^и	3.11 (dd) ^k	2.09 (br d)
	$^{3}J_{\rm HH}~2.6$	$^{2}J_{\mathrm{PH}}21.0$	$^{2}J_{\mathrm{PH}}4.8$	_	$^{2}J_{\mathrm{PH}}$ 14.3	$^2 \! J_{ m PH} 7.7$	$^{3}J_{\mathrm{PH}}$ 17.7
		$^2J_{ m HH}$	12.6	$^{2}J_{\mathrm{HH}}$ 13.3		$^{3}J_{ m HH}~2.7$	
		D = 0.27		D = 0.007			
<u> </u>	5.24 (d)	4.62 (dd)	3.98 (dd)	~3	3.81 ^и	3.54 ^л	2.01 ^M
	$^{3}J_{\rm HH}~2.5$	$^2J_{ m PH}5.7$	$^{2}J_{\mathrm{PH}}$ 18.3	_	$^{2}J_{\mathrm{PH}}$ 13.6	$^{2}J_{\mathrm{PH}}$ 8.1	
		$^2J_{ m HH}$	12.2	$^{2}J_{\mathrm{HH}}$ 13.2		$^{3}J_{\rm HH}3.3$	
		D=	0.64	D=	0.005		

^a Дополнительное сочетание $J_{\rm HH}=1.9~\Gamma$ ц. ^b Дополнительное сочетание $J_{\rm HH}\sim1.5~\Gamma$ ц. ^b Перекрывается с сигналом изомера ${\bf F}$ при ${\bf d}_{\rm H}$ 3.60. ^c Химический сдвиг неизвестен; сигнал, вероятно, спрятан синглетом CD₃OD при ${\bf d}_{\rm H}$ 4.82. ${\bf d}_{\rm HH}$ для минорного сигнала = 12.5 ${\bf r}$ ц и ${\bf d}_{\rm HH}$ = ${\bf r}$ 0.5 ${\bf r}$ ц. ${\bf d}_{\rm HH}$ 0 Перекрывается с соответствующим сигналом изомера ${\bf d}_{\rm HH}$ 1, предположительно уширенный синглет. ${\bf d}_{\rm HH}$ 2 Более точное значение не может быть определено. ${\bf d}_{\rm HH}$ 3 для минорного сигнала = 9.3 ${\bf r}$ ц. ${\bf d}_{\rm HH}$ 4 См текст. ${\bf d}_{\rm HH}$ 4 для минорного сигнала = 13.5 ${\bf r}$ ц и ${\bf d}_{\rm HH}$ 4 для минорного сигнала = 13.3 ${\bf r}$ ц и ${\bf d}_{\rm HH}$ 4 в 6.9 ${\bf r}$ ц. ${\bf d}_{\rm HH}$ 4 Перекрывается с соответствующим сигналом изомера ${\bf r}$ 5, предположительно уширенный дублет.

Интересно, что протоны CH_2OD -группы изомеров **G** и **H** видны в спектре ЯМР $^1H\{^{31}P\}$ как синглеты при d_H 3.80 и 3.81 м.д. соответственно, тогда как те же протоны изомеров **E** и **F** (также как CH_2 протоны кольца) имеют значительную анизохронность и расщепляются на атоме фосфора по разному (таблица 12). В изомерах **G** и **H** экваториальная ориентация CH_2OD -группы имеет возможность свободного вращения, тогда как в изомерах **E** и **F** аксиальная ориентация CH_2OD -группы, предположительно, ведет к D-связи с кислородом кольца. В данном случае образуется еще один шестичленный цикл, в котором протоны CH_2 ЯМР-неэквивалентны (схема 73). Другим свидетельством D-связи является то, что $^{31}P\{^1H\}$ синглеты изомеров **E** и **F** смещены в сильное поле на ~10 м.д. по отношению к соответствующим изомерам **A** и **B** соединения **XXXVa** (рис. 50 и 56), что согласуется с более высокой электронной плотностью на атоме фосфора ввиду частичной ионизации CH_2OD -группы.

4.4. Конечные продукты взаимодействия $(HOCH_2)_3P$ с коричным альдегидом в MeOH

При проведении реакции между коричным альдегидом и ТНР в соотношение 1:1 было отмечено, что не весь ТНР прореагировал, а в спектре ЯМР 31 Р{ 1 H} появились дополнительные сигналы, что было связано с замещением второй СН $_{2}$ ОН-группы в 1,3-оксафосфоринане **XXXVII**. На рисунке 57 представлен ЯМР 31 Р{ 1 H} профиль реакции коричного альдегида с ТНР (3:1, r.t., Ar) в МеОН. На первой стадии, как и ожидалось, образуется 1,3-оксафосфоринан **XXXVII**, который участвует в ряде последующих реакций. Конечным продуктом является фосфорсодержащее соединение, которое дает сигналы в спектре ЯМР 31 Р{ 1 H} в области фосфиноксидов (рис. 57E).

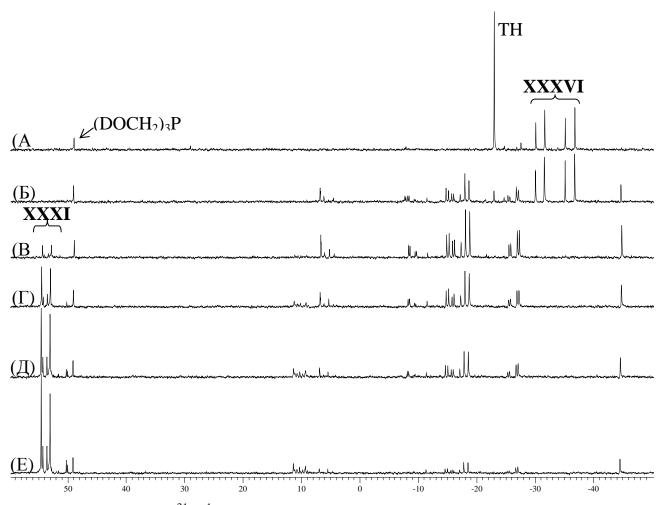


Рис. 57. Спектр ЯМР ³¹Р{ ¹H} реакции ТНР с коричным альдегидом (1:3, MeOH, Ar, r.t.) через: (A) 30 мин, (Б) 3 ч, (В) 23 ч, (Г) 3 дня, (Д) 6 дней, (Е) 13 дней.

Анализ конечного продукта при помощи двумерных методов спектроскопии ЯМР, таких как ¹H-¹H COSY, ¹H-³¹P{ ¹H } HMQC, ¹H-¹³C{ ¹H } HMBC и ¹H-¹³C{ ¹H } HSQC, показал, что им является фосфиноксид **XXXIX** (схема 74). Механизм образования соединение **XXXIX** пока остается неясным, но, вероятно, осуществляется по внутримолекулярной окислительно-восстановительной реакции с окислением атома фосфора и восстановлением одной альдегидной группы до спиртовой. Возможность данного типа окислительно-восстановительной реакции была ранее продемонстрирована на восстановление бензальдегидов до спиртов в воде с участием (НОСН₂CH₂)₃P (глава 1).

Схема 74; КА – коричный альдегид

Соединение **XXXIX** содержит три хиральных центра и образуется как смесь 8 стереоизомеров, из которых только 4 диастереомера различимы в спектрах ЯМР. Формирование соединения **XXXIX** протекает стереоселективно, однако в настоящий момент распределение стереоизомеров неизвестно.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 4

Ди- и три(гидроксиметил)фосфины, как и моно(а-гидроксиалкил)фосфины, в реакциях с коричными альдегидами дают новые третичные фосфины, продукты 1,4-присоединения, которые в растворе существуют в форме 1,3-оксафосфоринанов. Данные продукты способны присоединять еще одну молекулу коричного альдегида с образованием в метанольном растворе стабильных фосфиноксидов. Изученные реакции демонстрируют возможные процессы с участием (НОСН₂)₃P, протекающие с разрушением сопряжения в основных хромофорах лигнина при производстве бумаги.

ГЛАВА 5.

Взаимодействие (HOCH₂CH₂)₃P с а,b-ненасыщенными кетонами, содержащих фенилпропаноидный скелет

В отличие от а,b-ненасыщенных альдегидов, реакции третичных фосфинов с а,b-ненасыщенными кетонами известны в литературе и являются инструментом органического синтеза. На схеме 75 представлены некоторые реакции с участием ненасыщенных кетонов, катализируемые фосфинами. Во всех случаях фосфин атакует С=С связь, генерируя карбанион. Последующая атака его на исходный олефин дает после элиминирования фосфина продукт димеризации [схема 75, путь А; реакция Раухута-Курриера (Rauhut-Currier)] [300, 301]. В присутствии альдегида карбанион атакует связь С=О, давая продукт 1,2-присоединения [схема 75, путь Б; реакция Морита-Байлиса-Хильмана (Morita-Baylis-Hillman)] [302–304]. Карбанион также может быть использован, чтобы генерировать нуклеофилы, которые реагируют с олефином, давая продукты с новой С–О [305] или С–С связью [306] (схема 75, путь В).

Известно, а, b-ненасыщенные однако, что кетоны, содержащие фенилпропаноидный отличаются по реакционности скелет, OT простых Так. бензилиденацетон, ближайший ненасышенных кетонов. аналог коричного

альдегида, в MeOH не дает соответствующего метокси продукта (схема 75, путь C) [305], а дивинил кетон – 5-фенил-1,4-диен-3-он – не участвует в димеризации по связи Ph- C=C (схема 75, путь A) [307].

5.1. Взаимодействие $(HOCH_2CH_2CH_2)_3P$ с 4-HO-бензилиденацетоном в воде и ацетоне

Чтобы сравнить реакционность альдегидов лигнина с ненасыщенными кетонами, была изучена реакция 4-НО-бензилиденацетона с THPP в D_2O (1:1, г.t., Ar). Установлено [226], что в реакции быстро образуется дейтерированный фосфониевый цвиттер-ион **XL-D**₅, продукт γ -нуклеофильной атаки фосфина на C=C связь, который, вероятно, находиться в равновесии с фосфониевым гидоксидом (схема 76). В спектре ЯМР ³¹Р{ ¹H} был зарегистрирован один синглет при d_P 37.8 м.д. В спектре ЯМР ¹H был зарегистрирован только один дублет при d_H 4.17 м.д., соответствующий протону H2 ($^2J_{PH}$ 14.6 Γ ц). Протоны H1 и CH₃ были замещены дейтронами. В противоположность цвиттер-ионам **VII**, полученных из α , β -ненасыщенных альдегидов (схема 33), соединение **XL-D**₅ стабильно и не подвергается димеризации. Масс-спектр ES+ остатка, полученного после удаления растворителя, подтвердил образование соединения **XL-D**₅.

$$R_{3}P^{\bigoplus}D$$
 CD_{3} $DO^{\bigoplus}R_{3}P^{\bigoplus}D$ CD_{3} $CXEMA 76$

Как и в случае с альдегидами лигнина, реакция 4-НО-бензилиденацетона с ТНРР в ацетоне (1:1, r.t., Ar) генерирует, хотя и значительно медленнее, желтый осадок. Его анализ с помощью ЯМР- и масс-спектрометрии подтвердил образование цвиттер-иона **XL** (схема 77).

$$R_3P^{\oplus}$$

HO

 R_3P^{\oplus}
 R_3P^{\oplus}

5.2. Взаимодействие (HOCH₂CH₂CH₂)₃P с бензилиденацетонами в CD₃OD

Реакция ТНРР с 3,4-(MeO)₂-бензилиденацетоном в метаноле (1:1, r.t., Ar) не показала образование каких-либо продуктов. Однако при проведении реакции в CD₃OD в спектре ЯМР 1 Н был зарегистрирован быстрый (~ 20 мин) Н/D-обмен протонов Н1 и СН₃ в исходном кетоне (схема 78). Протон Н2 замещается заметно медленнее (в течение 4 дней), давая дейтерированный кетон **XLI-D₅**, который был подтвержден массспектрометрией.

Схема 78

Наблюдаемый Н/D-обмен, вероятно, протекает через атаку фосфина на С=С связь и генерацию на первой стадии карбаниона, который присоединяет дейтрон от растворителя и генерирует сильное основание СД₃О⁻. Его присутствие в растворе запускает обменные процессы.

Наиболее ярко отличие от коричных альдегидов наблюдается в реакции 3,4- $(MeO)_2$ -бензилиденацетона с гидрохлоридом THPP (1:1, r.t. Ar) в CD_3OD . В условиях реакции протоны СН₃ опять быстро (~ 30 мин) замещаются на дейтроны, давая кетон **XLI-D₃**, который участвует в дальнейших реакциях (схема 79). Спектр ЯМР 31 Р{ 1 H}, полученный через 30 мин (рис. 58A), показал фосфониевый катион $[DO(CH_2)_3]_3P^+D$ (t, d_P 19.5, ${}^{1}J_{PD}$ 78 Γ ц) и три новых синглета в области фосфониевых соединений (d_{P} 43.6, 38.4 и 37.6 м.д.). Анализ спектров ЯМР 1 Н показал, что сигнал при d_{\triangleright} 43.6 м.д. принадлежит фосфониевой соли **XLII**, продукту α-нуклеофильной атаки (схема 79). Максимальная относительная концентрация соединения **XLII** (~20%) наблюдается через 1 ч реакции (рис. 59).

$$Ar$$
 CD_3 + R_3P + DCI
 Ar
 Ar
 PR_3
 $CVENTO 70$
 AR
 AR
 AR
 PR_3
 $CVENTO 70$

Схема 79

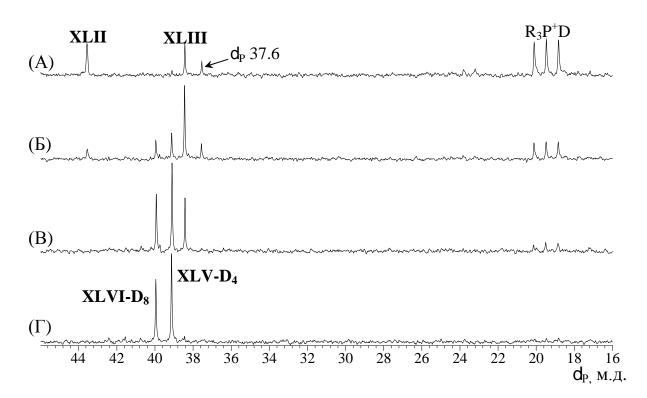


Рис. 58 Спектр ЯМР 31 Р{ 1 H} реакции 3,4-(MeO)₂-бензилиденацетона с гидрохлоридом ТНРР (1:1, r.t. Ar) в CD₃OD через: (A) 30 мин, (Б) 5 ч, (В) 24 ч, (Г) 72 ч.

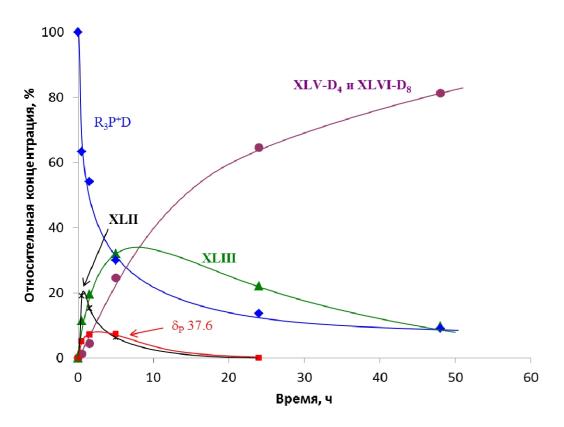


Рис. 59. Относительная концентрация фосфорсодержащих соединений в ходе реакции 3,4-(MeO)₂-бензилиденацетона с гидрохлоридом THPP (1:1, r.t. Ar) в CD₃OD.

Соединение **XLII** исчезает из реакции и сигнал d_P 38.4 м.д. становиться более интенсивным, достигая максимальной концентрации ~35% через 8 ч (рис. 59). Анализ спектров ЯМР ¹Н показал, что данный сигнал принадлежит енолу **XLIII** (схема 80). Аналогичный енольный интермедиат был зарегистрирован в реакции коричного альдегида с Ph₂PCH(OH)Ph в MeOH, где он предположительно формируются через миграцию фосфина от α-углерода к γ-углероду. Поскольку ЯМР ³¹P{¹H} профиль этих двух реакций схожи, можно предположить, что и в случае реакции с кетонами формирование енола **XLIII** происходит через миграцию THPP в соединении **XLII** (схема 80). В этом случае сигнал d_P 37.6 м.д. (рис. 59), который не был идентифицирован в спектре ЯМР ¹Н ввиду низкой интенсивности и перекрытия с другими сигналами, может быть ассоциирован с интермедиатом **XLIV** (схема 80).

$$Ar \xrightarrow{OD} \stackrel{\oplus}{PR_3} \longrightarrow Ar \xrightarrow{H^2} \stackrel{CD_3}{OD} \longrightarrow Ar \xrightarrow{H^2} \stackrel{H^2}{H^1} \stackrel{CD_3}{CD_3}$$

$$XLIV \qquad XLII \qquad XLIII$$

$$Cxema 80$$

Формирования интермедиата **XLIII** возможно также через карбокатион, который уже содержит енольную часть, с последующей атакой фосфина на γ-углерод (схема 81, путь A). Также возможно, что нуклеофильная атака ТНРР на C=C связь генерируют карбанион, который быстро конвертируется в более стабильный енолят (схема 81, путь Б).

$$Ar \xrightarrow{D^{\oplus}} Ar \xrightarrow{QD} CD_{3}$$

$$Ar \xrightarrow{QD} CD_{3}$$

$$Ar \xrightarrow{QD} CD_{3}$$

$$Ar \xrightarrow{R_{3}P^{\oplus}} CD_{3}$$

$$Ar$$

В ходе реакции енол **XLIII** медленно трансформируется в кетон **XLV-D₄** (d_P 39.1 м.д.), монодейтерированный в β -позиции (схема 82). При данных условиях кетон **XLV-D₄** находится в равновесии с полукеталем **XLVI-D₈**, который регистрируется в спектре ЯМР ³¹Р{ 1 H} при d_P 39.9 м.д. (рис. 59). Соотношение **XLV-D₄**: **XLVI-D₈** = 3:2 и не меняется в ходе реакции.

$$R_3P^{\bigoplus}$$
 OD
 $Ar \xrightarrow{H^2}_{H^1}$ CD₃
 R_3P^{\bigoplus} OCD₃
 $Ar \xrightarrow{H^2}_{H^1}$ OD
 CD_3
 $XLV-D_4$
 $Cxema~82$

Та же реакции кетона с гидрохлоридом ТНРР в MeOH дает кетон **XLV** (схема 83), подтвержденный с помощью масс-спектрометрии ESI+ и спектрометрии ЯМР в D_2O . Синтез подобных фосфониевых солей описан в литературе [305, 308].

Ar
$$H_{A}$$
 H_{A} H

Интересно, что полукетали **LII** и **LII-D**₈ формируется как смесь двух стереоизомеров (энантиомеров), что подразумевает стереоспецифичность нуклеофильной атаки спиртом карбонильной группы. В случае соответствующих полуацетелей образуется смесь 4 стереоизомеров (две энантиомерные пары) с различными химическими сдвигами 1 H и 31 P{ 1 H}.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 5

Таким образом, реакционность бензилиденацетонов отличается от реакционности коричных альдегидов. В водной среде с третичными фосфинами гидроксибензилиденацетон образует устойчивый монофосфониевый цвиттер-ион, тогда

как коричные альдегиды лигнина дают бисфосфониевый цвиттер-ион. В метаноле в присутствии HCl бензилиденацетоны в реакции с $(HOCH_2CH_2CH_2)_3P$ дают продукт 1,4-присоединения, тогда как в коричные альдегиды генерируют продукт 1,2-присоединения.

ГЛАВА 6.

Взаимодействие $(HOCH_2CH_2CH_2)_3P$ и $(HOCH_2)_3P$ с коричными кислотами и их метиловыми эфирами

Взаимодействие а,b-ненасыщенных кислот с третичными фосфинами достаточно хорошо изучено и задокументировано [309–322]. Оно протекает через нуклеофильную атаку фосфина на связь C=C с образованием фосфобетаинов. Известно, что $(HOCH_2)_3P$ взаимодействует с акриловой и кротновой кислотами с образованием соотвествующих фосфобетаинов $(HOCH_2)_3P^+CH(R)CH_2CO_2^-$ (R = H или Me) [323]. Данные фосфобетаины использются в биохимии для поперечной сшивки полипептидов [324–326] и формирования наночастиц [327–330].

Наш интерес к реакциям фосфинов с коричными кислотами был обусловлен тем, что они являются промежуточными звеньями биосинтеза лигнина. Взаимодействие коричных кислот с (HOCH₂CH₂CH₂)₃P или (HOCH₂)₃P в процессе отбеливания может вести к расходованию фосфинов, поэтому было необходимо сравнить реакционность а,b-ненасыщенных кислот по отношению к а,b-ненасыщенным альдегидам и изучить продукты взаимодействия.

6.1. Взаимодействие (HOCH₂CH₂CH₂)₃Р с коричными кислотами

Установлено [331], что в ацетоне (HOCH₂CH₂CH₂)₃Р (THPP) с коричными кислотами вступает в реакции нуклеофильного присоединения и дает фосфониевые соли строения **XLVII** (схема 84) (1:1, г.t., Ar, 24 ч). Все соединения после выделения и очистки являются гигроскопичными белыми веществами, стабильными на воздухе. Все вещества доказаны с помощью элементного анализа, ЯМР- и масс-спектроскопии. Следует отметить, что все вещества соосождаются с примесью кислотно-основного аддукта фосфина и кислоты, который, однако, при растворении в спиртах или воде переходит в основное соединение **XLVII**.

OH + (HOCH₂CH₂CH₂)₃P
$$\xrightarrow{\text{aueToH, r. t.}}$$
 (HOCH₂CH₂CH₂)₃P $\xrightarrow{\text{OO}}$ Ar = (**a**) Ph, (**b**) 2-HOC₆H₄, (**c**) 3-HOC₆H₄, (**d**) 4-HOC₆H₄, (**e**) 3,4-(MeO)₂C₆H₃, (**f**) 4-OH-3-MeO-C₆H₃, (**g**) 3,4-(HO)₂C₆H₃,

(**h**) 4-HO-3,5-(MeO)₂C₆H₂

Схема 84

Реакции ТНРР и коричных кислот в CD₃OD ([THPP] = [кислота] = 0.1 M, г.t., Ar) дает монодейтерированные продукты **XLVII-D** (схема 85). Все реакции были отслежены с помощью 1 H и 31 P{ 1 H} ЯМР спектроскопии. Было найдено, что реакционность кислот в зависимости от природы арильной группы уменьшается в ряду 2-HOC₆H₄ > 3-HOC₆H₄ > Ph > 3,4-(MeO)₂C₆H₃ > 4-HO-3-MeOC₆H₃ > 3,4-(HO)₂C₆H₃ » 4-HO-3,5-(MeO)₂C₆H₂ » 4-HOC₆H₄ (рис. 60). Введение одного атома дейтерия доказано масс-спектрометрией и является стереоселективным с соотношением диастереомеров (d.r.) в большинстве случаев ~ 2, исключение составляет производное 2-OH-коричной кислоты, где d.r. ~ 5.

Схема 85

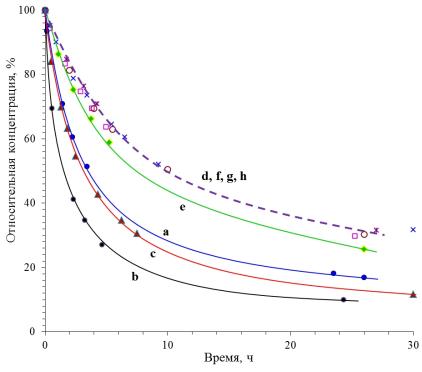


Рис. 60. Относительная концентрация коричных кислот в реакции с THPP (1:1, r.t., Ar, CD_3OD) во времени согласно интегрированию в спектрах ЯМР 1 H.

Анализ спектров ЯМР ¹Н соединения **XLVIIa-D** показал, что (RR)/(SS) хиральность является предпочтительной. В спектре ЯМР ¹Н α - и β -протоны регистрируются как две трехспиновые системы (рис. 61, сверху), обозначенных здесь МВХ и МАХ (где X — атом фосфора), и которые могут быть рассчитаны с использованием параметров: для МВХ $^3J_{\rm MB}=4.9$, $^2J_{\rm XM}=15.2$, $^3J_{\rm XB}=11.9$, для МАХ $^3J_{\rm MA}=9.3$, $^2J_{\rm XM}=15.0$, $^3J_{\rm XA}=11.6$ (рис. 61, снизу). На схеме 86 приведены вероятные проекции Ньюмана для соединения **XLVIIa-D** по связи C(a)-C(b) с объемными группами, расположенными на максимальном удалении. Во всех случаях показан только изомер с (R)-хиральностью у атома C(b). Данная конфигурация подтверждается литературными данными по PCA аналогичных продуктов [314–316]. В спектрах ЯМР преобладает изомер с малой константой спин-спинового взаимодействия $^3J_{\rm HH}=4.9$ Гц, т.е. протоны находятся в гош-позиции, что соответствует (RR)- и (SS)-хиральности на атомах C(a) и C(b).

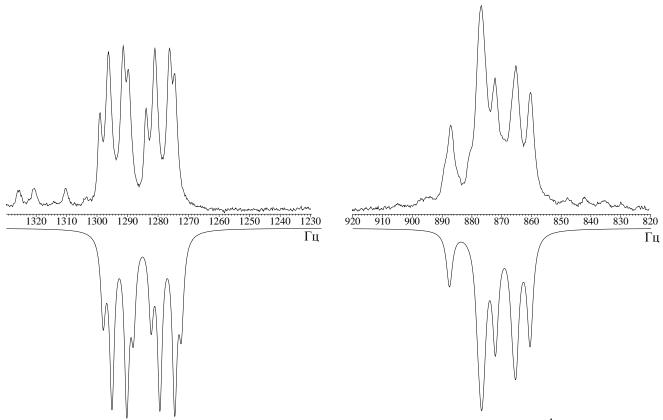


Рис. 61. Экспериментальный (сверху) и расчетный (снизу) спектр ЯМР 1 Н для α - и β - протонов соединения **XLVIIa-D** в CD₃OD.

$$H_{\rm B}$$
 CO_2^{Θ} D $H_{\rm M}$ CO_2^{Θ} R_3P^{\oplus} Ph $H_{\rm A}$ $(RR)/(SS)$ -изомеры $(RS)/(SR)$ -изомеры $(RS)/(SR)$ -изомеры

Реакционность а- и b-метилкоричных кислот к ТНРР значительно падает по сравнению с коричной кислотой, что обусловлено положительным \$-эффектом СН₃-группы, которая понижает электрофильность двойной связи, и стерическим эффектом. Так, в реакции ТНРР и а-метилкоричной кислоты (1:1) в CD₃OD соответствующая фосфониевая соль (схема 87) была найдена с выходом 70% при нагревании при 60 °C в течение 7 дней. В случае b-метилкоричной кислоты нагревание при 60 °C в течение 11 дней дает соответствующий продукт с выходом лишь 35%.

XLVII-D

Схема 87

6.2. Взаимодействие (НОСН₂)₃Р с коричными кислотами

Реакция (HOCH₂)₃P (THP) с коричными кислотами в ацетоне (1:1, аргон) также ведет к образованию соответствующих фосфониевых цвиттер-ионов **XLVIII** (схема 88), но требует более жестких условий: нагревание при 60 °C в течение 2 дней [332]. Данные соединения были доказаны с помощью ЯМР- и масс-спектрометрия. В спектрах ЯМР 1 H и 1 H{ 31 P} соединения дают сложные спиновые системы, характеристики которых приведены в таблице 13. Результаты элементного анализа были неудовлетворительными в связи с тем, что соединения не поддаются перекристаллизации из-за побочных реакций в растворе ввиду мобильности групп CH₂OH (см ниже).

$$(\mathbf{a}) \text{ Ph, } (\mathbf{b}) \text{ 4-HO-C}_{6}H_{4}, (\mathbf{c}) \text{ 2-HO-C}_{6}H_{4}$$

$$(HOCH_{2})_{3}P_{X}^{\bigoplus} \Theta_{O}$$

$$Ar_{H_{M}} H_{R} H_{S}$$

$$Ar_{H_{M}} H_{R} H_{S}$$

$$\mathbf{XLVIII} \qquad \mathbf{XLIX}$$

Схема 88

Таблица 13. Данные спектроскопии ЯМР 1 Н и расчетные параметры (спиновая система MRSX, где X – атома фосфора) для α - и β -протонов соединений **XLVIIIa-с** в D_2O и в CD_3OD , а также данные для соединений **XLIXa-c** в CD_3OD (300.13 Γ ц = 1 м. д.)

№	Продудет	d _H , Гц			. ^	<i>J</i> , Гц					
	Продукт -	H_{M}	H_R	H_{S}	$\Delta_{ m RS}$	RS	MR	MS	XM	XR	XS
$\overline{eD_2O}$											
1	XLVIIIa	1320.2	941.8	921.9	19.9	16.5	9.0	4.9	15.4	10.0	14.5
3	XLVIIIb	1295.3	921.0	903.9	17.1	16.5	9.1	5.0	15.0	10.0	14.5
4	XLVIIIc	1360.0	936.0	909.2	26.8	16.0	6.2	8.9	15.2	11.0	13.9
в CD	$_3OD$										
5	XLVIIIa	1311.1	917.4	908.7	8.7	16.9	5.0	7.5	15.2	19.0	12.5
6	XLVIIIb	1281.0	898.5	889.5	9.0	17.0	5.4	7.0	14.8	20.3	11.8
7	XLVIIIc	1344.0	972.8	864.3	108.5	16.9	7.9	6.7	15.3	12.8	19.5
8	XLIXa	1127.3	866.5	848.1	18.4	15.8	4.2	11.5	6.3	6.0	6.5
9	XLIXa-D	1125.4	_	843.3	_	_	_	11.2	6.3	_	6.8
10	XLIXb	1100.0	849.1	821.8	27.3	15.5	4.5	11.2	6.6	5.9	6.8
11	XLIXc	1222.3	870.5	866.1	4.4	16.0	11.6	3.7	7.3	7.8	7.4

В водном растворе производного коричной кислоты в спектрах ЯМР доминирует цвиттер-ион **XLVIIIa** (d_P 30.6 м.д.), соединение **XLIXa** (d_P -7.6 м.д.) обнаружено в незначительной концентрации — соотношение **XLVIIIa/XLIXa** \approx 10. В метаноле цвиттер-ион **XLVIIIa** менее стабилен и в спектрах доминирует третичный фосфин **XLIXa** (**XLVIIIa/XLIXa** \approx 0.25). Однако наличие ОН-групп увеличивает стабильность фосфониевых цвиттер-ионов. В случае производных 4-ОН- и 2-ОН-коричных кислот соотношение цвиттер-иона и фосфина **XLVIII/XLIX** в метаноле увеличивается до 0.75 и 1.64 соответственно. Производное 2-ОН-коричной кислоты наиболее стабильно, что вероятно обусловлено взаимодействием фосфониевого катиона с *орто*-ОН группой.

Реакция ТНР с коричной кислотой в CD_3OD (1:1, Ar, 60°C) ведет к образованию монодейтерированных продуктов (схема 89), доказанных с помощью ЯМР- и масс-спектрометрией. Через 6 дней реакции в растворе были обнаружены соединения **XLVIIIa-D** и **XLIXa-D** с ЯМР выходам 53 и 5% соответственно.

$$\begin{array}{c} \text{DOCH}_2)_3P_X^{\bigoplus} & \ominus_{\text{O}} \\ \text{Ph} & & \\ \text{A} & \text{O} \end{array} \\ + (\text{DOCH}_2)_3P & & \\ \hline \\ \text{CD}_3\text{OD} & & \\ \text{Ph} & & \\ \hline \\ \text{NLVIIIa-D} & & \\ \text{Cxema 89} & & \\ \end{array}$$

Присоединение дейтрона в соединениях **XLVIIIa-D** и **XLIXa-D**, в отличие от аналогичных реакций с THPP, происходит стереоспецифично. На рисунках 62 и 63 представлены экспериментальные и расчетные спектры ЯМР 1 H{ 31 P} для протонов A, B, M, R и S соединений **XLIXa** и **XLIXa-D** соответственно. Спектр соединения **XLIXa-D** не содержит сигнала и констант спин-спинового взаимодействия протона H_R (таблица 13, № 9). Единственное вицинальное взаимодействие 11.2 Гц указывает, что протоны М и S находятся в транс-положение по отношению друг к другу с дигедральным углом Θ ~180°, как показано на рисунке 64. Эта конфигурация соответствует энантиомерам с (R,S)- и (S,R)-хиральностью. Такая же стереоселективность наблюдалась в реакции THP с R,R-ненасыщенными альдегидами. В противоположность этому производные коричных кислоты и THPP предпочтительно дают (R,R)- и (S,S)-изомеры.

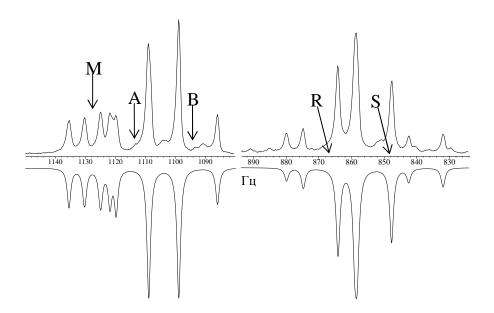


Рис. 62. Экспериментальный (сверху) и расчетный (снизу) спектр ЯМР 1 H $\{^{31}$ P $\}$ протонов A, B, M, R, S соединения **XLIXa** в CD $_{3}$ OD.

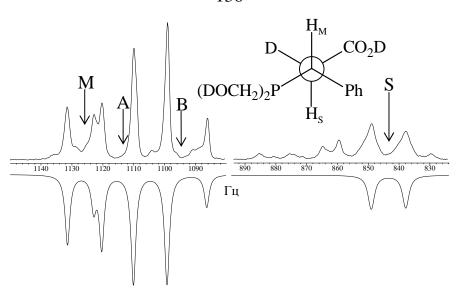


Рис. 63. Экспериментальный (сверху) и расчетный (снизу) спектр ЯМР 1 H $\{^{31}$ P $\}$ протонов A, B, M, S соединения **XLIXa-D** в CD₃OD.

6.3. Взаимодействие (НОСН₂СН₂СН₂)₃Р с метиловыми эфирами коричных кислот

Подобно а,b-ненасыщенным кетонам эфиры а,b-ненасыщенных кислот участвуют в реакциях, представленных на схеме 75 (глава 5). В литературе также описано взаимодействие водорастворимого фосфина (*m*-NaSO₃-C₆H₄)₃P с акриловыми эфирами в воде с образованием фосфобетаинов (схема 90), тогда как в присутствии HCl образуются фосфониевые хлориды [309]. Сообщается также, что (HOCH₂)₃P взаимодействует с метил акрилатом в апротонных растворителях с замещением всех трех HOCH₂-групп и окислением атома фосфора с образованием O=P(CH₂CH₂CO₂Me)₃ [333].

$$Ar_3P$$
 + CO_2R H_2O Ar_3P^{\bigoplus} CO_2^{\bigoplus} CO_2^{\bigoplus} CO_2 CO_2

Нами установлено, что подобно реакции THPP с 3,4-(MeO)₂-бензилиденацетоном в CD₃OD, рассмотренной в главе 5, добавление THPP (1 экв.) к раствору метил 3,4-

диметоксициннамата (1:1, r.t., Ar) в CD₃OD ведет к H/D обмену α - и β -протонов, а также замещению OCH₃-группы на OCD₃. В результате образуется дейтерированный эфир **L**- **D**₅ (схема 91), доказанный с помощью ЯМР- и масс-спектрометрии.

OCH₃
OCD₃

$$OCD_3$$
 OCD_3
 OCD_3

Реакция метил циннамата с гидрохлоридом THPP в CD₃OD при комнатной температуре протекает крайне медленно. Нагревание реакции при 60° C в течение 14 дней ведет к расходованию 65% первоначального эфира с образование двух фосфониевых солей **LI-D₁** и **LI-D₄** в соотношение 1:1 (схема 92), дающих один синглет в спектре ЯМР 31 Р{ 1 Н} при δ_{P} 39.5 м.д. Соединения **LI-D₁** и **LI-D₄** имеют два хиральных центра и формируются не стереоселективно (d.r. = 1). Спектры ЯМР 1 Н соединений **LI-D₁** и **LI-D₄** идентичны ввиду незначительного эффекта эфирной группы на химические сдвиги. Образование соединения **LI-D₄** подтверждается появлением сигнала МеОН в спектре ЯМР 1 Н и масс-спектрометрией ESI остатка, полученного после удаления растворителя, где были зарегистрированы два пика при m/e 372.2 (100%) и 375.2 (50%) соответствующие **LI-D₁** и **LI-D₄**.

OCH₃

$$Ph \longrightarrow O + R_3P + HCl \longrightarrow Cl^{\Theta} R_3P^{\oplus} OCH_3 \longrightarrow Cl^{\Theta} R_3P^{\oplus} OCD_3$$

$$Eli-D_1 \longrightarrow Li-D_4$$

Схема 92

В чистом ацетоне реакции между ТНРР и эфирами коричных кислот зарегистрировано не было. Однако при проведении реакции ТНРР с метил циннаматом (1:1, r.t., Ar) в водном ацетоне был выделен цвиттер-ион **XLVIIa**, доказанный с помощью ЯМР- и масс-спектроскопии, а также элементного анализа. Образование

цвиттер-иона **XLVIIa** в данной реакции проходит через фосфониевый гидроксид **LIIa** (схема 93), что подтверждается реакцией в смеси дейтерированных растворителей (ацетон- d_6/D_2O 1:1 v/v, r.t., Ar), где образуется смесь фосфониевых цвиттер-ионов **XLVIIa-D₁₋₃** с ЯМР выходом 90% за 24 ч (схема 94).

OCH₃
OCH₃
OH^{$$\Theta$$} R₃P $\overset{\Theta}{\longrightarrow}$ OCH₃
Ph
OCH₃
R₃P $\overset{\Theta}{\longrightarrow}$ OCH₃
Ph
OCH₃
R₄P $\overset{\Theta}{\longrightarrow}$ OCH₃
Ph
OCH₃
R₄P $\overset{\Theta}{\longrightarrow}$ OCH₃
Ph
OCH₃
R₄P $\overset{\Theta}{\longrightarrow}$ OCH₃
Ph
OCH₃
CXEMA 93

OCH₃

$$Ar \rightarrow O$$

$$OD^{\Theta} R_{3}P^{\Theta} \rightarrow OCH_{3}$$

$$Ar \rightarrow O$$

Реакция ТНРР с метил 4-гидроксициннаматом в смеси дейтерированных растворителей (ацетон- d_6/D_2O 1:1 v/v, r.t., Ar) протекает медленнее, чем реакция с метил циннаматом. Присутствие фенольной группы в системе нейтрализует OD^- анион интермедиата $LIIb-D_1$, образующего на первой стадии, и ведет к формированию цвиттер-иона $LIIIb-D_1$ (схема 95). Относительная концентрация $LIIIb-D_1$ достигает ~60% через ~5 ч. Образование конечных продуктов $XLVIIb-D_{1-3}$ также происходит медленнее, чем $XLVIIa-D_{1-3}$.

Схема 95

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 6

Таким образом, третичные фосфины (HOCH₂CH₂CH₂)₃P и (HOCH₂)₃P взаимодействуют с коричными кислотами с образованием цвиттер-ионов, продуктов 1,4-присоединения. Реакционность коричных кислот в метаноле зависит как от заместителей при связи C=C, так и в фенильном кольце. Метиловые эфиры коричных кислот значительно менее реакционные по отношению фосфина (HOCH₂CH₂CH₂)₃P, чем коричные альдегиды, кислоты и бензилиденацетоны. В органических растворителях в присутствии воды продуктами взаимодействия метиловых эфиров с (HOCH₂CH₂CH₂)₃P являются цвиттер-ионы аналогичные продуктам реакции фосфина с коричными кислотами.

ГЛАВА 7.

Взаимодействие третичных фосфинов с *п*-бензохинонами

Взаимодействие между хинонами и фосфорсодержащими соединениями в апротонных растворителях достаточно широко изучено. Так, сообщается, что реакция *п*-бензохинона с Ph₃P в бензоле ведет к образованию цвиттер-иона **LIVa** (схема 96), чья структура была постулирована основываясь на данных ИК- и УФ-спектроскопии [334]. Исследования с помощью ЭПР показало участие радикалов в формировании соединения **LIVa** [335]. Химия, представленная на схеме 96, наблюдалась и для 2-метоксикарбонил-*п*-бензохинона [336] и 2,6-ди-*трет*-бутил-*п*-бензохинона [337]. Также сообщается о реакциях 2,5-дихлоро- или 2,3,5,6-тетрахлоро-*п*-бензохинона (хлоранил) с третичными фосфина, в которых фосфин атакует как атом кислорода (с образование P- O аддукта), так и связь C- Cl с образованием фосфониевого хлорида [334, 338–340].

Схема 96

LIVa

Интересно, что в реакции бензохинонов и триалкилфосфитов (RO)₃P продуктами являются фосфаты [341]. В случае (PhO)₃Р и *n*-бензохинона (после обработки водой) были получены гидрохинон И (PhO)₃PO [341]. Существуют публикации взаимодействие *п*-бензохинонов и с другими классами фосфорорганических соединений [342–346]. В 2002 г был опубликован обзор, посвященный взаимодействию о-хинонов с фосфорсодержащими соединениями [347]. Сообщается также, что комбинация Ph₃P и nорганического бензохинонов способна катализировать некоторые реакции элементоорганического синтеза [348, 349].

Поскольку бензохиноны являются как α,β-ненасыщенными карбонильными соединениями, так и хромофорами лигнина, было необходимо изучить их реакции с

некоторыми третичными фосфинами, включая ТНРР, и полностью охарактеризовать продукты этого взаимодействия, т.к. литературные данные, как правило, не содержали ЯМР информации.

7.1. Взаимодействие третичных фосфинов с *n*-бензохинонами в органических растворителях

Реакцией n-бензохинона с Ph_3P , Me_3P , Et_3P и Ph_2PMe в бензоле (1:1, r.t., Ar) были выделены цвиттер-ионы **LIVa-d** с выходами 90-97% (схема 97). Все соединения охарактеризованы с помощью ЯМР- и масс-спектрометрии, а также элементного анализа [350].

O LIVa
$$R = R' = Ph$$

$$+ R_2R'P \xrightarrow{PhH, r.t., Ar} PhH, r.t., Ar$$

$$- DH$$
LIVa $R = R' = Ph$

$$- LIVb R = R' = Me$$

$$- LIVc R = R' = Et$$

$$- LIVd R = Ph, R' = Me$$

Схема 97

Соединение **LIVa** было подтверждено рентгеноструктурным анализом кристалла, полученного из насыщенного метанольного раствора. Молекулярная структура соединения **LIVa** представлена на рисунке 64, наиболее важные геометрические параметры даны в таблице 14. Атом фосфора проявляет нормальную тетраэдрическую конфигурацию с углами C-P-C в пределах $106.5\text{-}114.6^{\circ}$. Фенолятная связь C2-O1 короче, чем фенольная C5-O2. Соединение кристаллизуется с молекулой растворителя в кристаллической ячейке. Молекула MeOH сильно связана водородными связями с фенолятным кислородом O1 (H3o...O1 = 1.52 Å). Протон фенольной группы также межмолекулярно связан с растворителем (H2o...O3 = 1.84 Å). Полученная молекулярная структура и ее характеристики является первым примером структуры соединений данного типа.

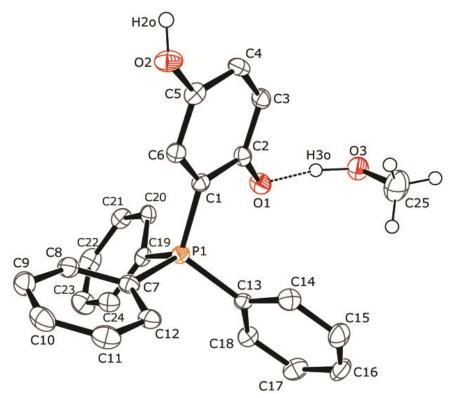


Рис. 64. Диаграмма ORTEP соединения **LIVa**; атомы H не показаны.

Таблица 14. Избранные длины связей и углы для соединения **LIVXa**

Связь	Длина (Å)	Связь	Угол (град)
P(1)-C(1)	1.772(3)	C(1)-P(1)-C(7)	106.51(14)
P(1)-C(7)	1.814(3)	C(1)-P(1)-C(13)	111.21(14)
P(1)-C(13)	1.812(3)	C(1)-P(1)-C(19)	114.57(14)
P(1)-C(19)	1.806(3)	P(1)-C(1)-C(2)	115.9(2)
C(2)-O(1)	1.308(3)	C(1)-C(2)-O(1)	119.7(3)
C(5)-O(2)	1.393(3)	O(2)- $H(2o)$ ···O(3)	178.0(7)
O(2)- $H(20)$	0.87(3)	O(3)- $H(3o)$ ··· $O(1)$	165(4)
$H(2o)\cdots O(3)$	1.84(3)		
H(3o)···O(1)	1.52(4)		

В случае Et_3P основной продукт реакции с n-бензохиноном содержит побочный продукт LV (~10%; схема 98), структура которого согласуется с данными двухмерной спектроскопии ЯМР (${}^{1}H-{}^{1}H$ COSY, ${}^{1}H-{}^{31}P\{{}^{1}H\}$ HMQC, ${}^{1}H-{}^{13}C\{{}^{1}H\}$ HSQC и ${}^{1}H-{}^{13}C\{{}^{1}H\}$ HMBC). Интересно, что масс-спектр ESI(+) метанольного раствора смеси LIVc/LV дает только один пик m/e 227.0, который может соответствовать как протонированной форме LIVc (расчетная m/e 226.6).

Для образования бисцвиттер-иона **LV** требуется конденсация между **LIVc** и бензохиноном с образованием интермедиата **LVI** (схема 98). Последующая нуклеофильная атака фосфина Et_3P в *орто*-положение хиноновой части будет давать соединение **LV**. В литературе известны примеры конденсации хинонов и гидрохинонов, инициируемые основанием или светом, с образованием димерных продуктов [351–353]. Данный путь подразумевает атаку фосфина на стерически затрудненный атом углерода, и природа фосфина должна играть существенную роль на этот процесс.

В полярный растворителях, таких как ацетон и ДМСО, реакция Et_3P с *п*-бензохиноном протекает аналогично реакции в бензоле с образованием соединения **LIVc**. Однако количество побочного продукта **LV** уменьшается до 2-3%.

(HOCH₂CH₂CH₂)₃P (THPP) не растворим в бензоле. Взаимодействие THPP с n-бензохиноном в ацетоне (1:1, Ar, r.t) ведет к образованию цвиттер-иона **LIVe** в виде желтого твердого вещества с выходом 86% (схема 99). Структура соединения подтверждена с помощью спектроскопии ЯМР, масс-спектроскопии и элементным анализом. Соединение **LIVe** хорошо растворимо в воде и в растворе D_2O дает синглет в спектре ЯМР $^{31}P\{^{1}H\}$ при d_P 28.9 м.д.

O LIVe
$$R = H$$

$$P^{+}[(CH_{2})_{3}OH]_{3}$$

$$EIVe R = MeO$$

$$O \rightarrow P^{+}[(CH_{2})_{3}OH]_{3}$$

$$O \rightarrow P^{+}[(CH_{2})_{3}OH]_{3}$$

Схема 99

Реакция метокси-*п*-бензохинона с ТНРР в ацетоне ведет к цвиттер-иону **LIVf** с выходом 81% (схема 99). Данные спектроскопии ЯМР показывают, что ОМе-группа находиться в пара-положение относительно фосфониевого центра. Структура соединения была подтверждена РСА бесцветного кристалла, полученного медленной диффузией эфира в метанольный раствор цвиттер-иона. Молекулярная структура представлена на рисунке 65, избранные геометрические параметры даны в таблице 15. Фенолятная связь C2-O1 короче, чем фенольная C5- О3 или эфирная C4- О2. Интересно, что фенолятный атом кислорода О1 достаточно сильно связан водородными связями с гидроксильными водородами своей и соседней ТНРР. Так, в межмолекулярной О4- Н40...О1 и во внутримолекулярной О5- Н5о...О1 связях расстояния Н...О1 составляют 1.75 и 1.89 Å соответственно. Более слабые междумолекулярные связи найдены в связях О4...Н60 и О5...Н30 (1.91 и 2.11 Å соответственно). Ковалентные связи О- Н в ТНРР группе составляют 0.81- 0.86 Å, в фенольной – 0.71 Å.

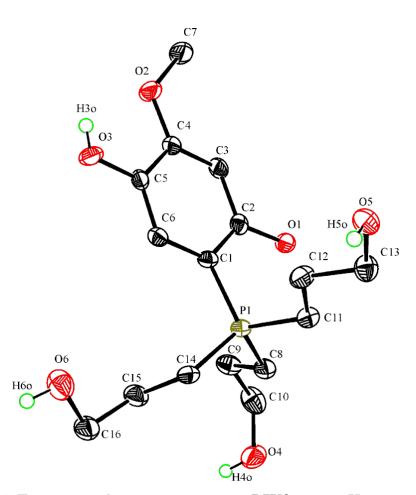


Рис. 65. Диаграмма ORTEP соединения **LIVf**; атомы H не показаны

Избранные длины связей и углы для соединения **LXf**

Таблица 15.

Связь	Длина (Å)	Связь	Угол (град)
P(1)-C(1)	1.780(3)	C(1)-P(1)-C(8)	116.11(12)
P(1)-C(8)	1.807(3)	C(1)-P(1)-C(11)	109.94(12)
P(1)-C(11)	1.798(3)	C(1)-P(1)-C(14)	109.26(13)
P(1)-C(14)	1.808(3)	P(1)-C(1)-C(2)	116.0(2)
C(2)-O(1)	1.317(3)	C(1)-C(2)-O(1)	121.5(3)
C(4)-O(2)	1.351(3)	O(3)- $H(3o)$ ··· $O(2)$	117(3)
C(5)-O(3)	1.373(3)	O(3)- $H(3o)$ ··· $O(5)$	154(3)
O(3)-H(3o)	0.72(3)	O(4)- $H(4o)$ ··· $O(1)$	175(4)
O(5)-H(5o)	0.80(3)	O(5)- $H(5o)$ ··· $O(1)$	172(3)
O(4)-H(4o)	0.86(4)		
$H(3o)\cdots O(2)$	2.25(3)		
$H(3o)\cdots O(5)$	2.11(3)		
$H(4o)\cdots O(1)$	1.75(4)		
H(5o)···O(1)	1.89(3)		

Дурохинон и 2,5-ди-трет-бутил-1,4-бензохинон не реагируют с ТНРР при данных условиях, предположительно из-за стерического эффекта заместителей.

7.2. Взаимодействие третичных фосфинов с n-бензохинонами в D_2O

Реакция Et_3P с n-бензохиноном может протекать в водной среде. Добавление Et_3P (нерастворимого в воде) к суспензии n-бензохинона в D_2O (1:1, r.t., Ar) немедленно дает темно-зеленый раствор, который через 5 мин становится слабо-коричневым. В спектре ЯМР $^{31}P\{^1H\}$ реакционной массы были зарегистрированы несколько фосфорсодержащих продукта: **LIVc** (96%), **LV** (~ 2%) и фосфиноксид Et_3PO (~ 2%). Образование последнего, вероятно, связано с параллельным окислением Et_3P бензохиноном.

Реакция ТНРР с n-бензохиноном в D_2 О дает два продукта: цвиттер-ион **LIVe** (85%) и фосфиноксид ТНРРО (15%). При смешении реагентов раствор немедленно становится зеленым, однако через 5 мин приобретает слабо-желтую окраску.

Интересной особенностью поведения соединений **LIVc** и **LIVe** в растворе D_2O является медленный обмен протона, находящегося в положение орто по отношению к атому фосфора, на дейтрон (схема 100). Так, нагрев раствора **LIVe** в D_2O при 90 °C

ведет к медленному исчезновению сигнала при d_H 6.64 м.д., а дублет дублетов при d_H 7.04 м.д. протона в *пара*-положении трансформируется в дублет. Масс-спектр ESI(+) остатка, полученного после удаления D_2O , показал единственный пик при m/e 318.1, соответствующий монодейтерированному продукту **LIVe-D**. H/D-обмен может быть объяснен механизмом, представленным на схеме 100, и который включает локализацию отрицательного заряда на *орто*-углероде через илидный интермедиат с последующим формированием нестабильного фосфониевого дейтероксида (OD⁻). Последний ведет к образованию **LIVe-D**.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 7

Таким образом, *пара*-бензохиноны в реакции с третичными фосфинами как в воде, так и в органических растворителях, разрушают сопряжение и образуют устойчивые цвиттер-ионы — продукты 1,4-присоединения. Данные реакции могут вносить один из основных вкладов в процессе переработки древесины в бумагу, поскольку *пара*-бензохиноны, содержащие МеО-группы, являются продуктам биодеградации лигнина и имеют интенсивную желтую окраску.

ГЛАВА 8.

Взаимодействие бензиловых и коричных спиртов с третичными фосфинами

В разделе 1.5 было показано, что $(HOCH_2CH_2CH_2)_3P$ в водной среде способен бензиловых восстанавливать бензальдегиды ДО спиртов. Однако случае орто-ОН-группу, бензальдегидов лигнина, содержащих пара-ИЛИ продукты восстановления более реакционный по отношению к исходному фосфину, чем бензальдегиды, и поэтому не могут быть выделены. Это привело нас к изучению взаимодействия третичных фосфинов с бензиловыми спиртами, являющимися продуктами биодеградации лигнина и способными выступать в роли ловушек фосфинов, уменьшая их эффективность в процессе отбеливания.

Примеры реакций спиртов с фосфинами описаны в литературе и всегда протекают в присутствии сильной кислоты и в органическом растворителе. Первое упоминание о подобных реакциях относятся к 1871 и 1888 г, в которых РН₃ в присутствии НІ взаимодействует со спиртами, давая четвертичную фосфониевую соль (ур. 27) [354, 355]. Кипячение гидрогалогенида третичного фосфина со спиртом в бензоле или ТГФ ведет к образованию фосфониевых солей со средними и высокими выходами (ур. 28) [356]. Аналогичная реакция, но только в CH₃CN и CHCl₃, была применена к ароматическим спиртам $ArCH_2OH$, где $Ar = n-NMe_2-C_6H_4$ или 2-тиофен [357]. Реакция [Ph₃PH] ⁺Br со спиртами в отсутствие растворителя при 160 °C [358], а также реакция Рh₃Р с алкиловыми, аллиловыми и бензиловыми спиртами в СF₃СООН [359] или HCl [360], ведет к образованию четвертичных фосфониевых солей с высокими выходами. Все эти реакции рассматриваются как одностадийный синтез фосфониевых солей из спиртов, поскольку до этого их получение основывалось на реакциях фосфинов с галогенсодержащими органическими молекулами третичных синтезированными из соответствующих спиртов и НХ.

$$PH_4I + 4ROH \longrightarrow R_4P^+I + 4H_2O$$
 (27)

$$[R_3PH]^+Br^- + R'OH \longrightarrow [R_3PR']^+Br^- + H_2O$$
 (28)

8.1. Взаимодействие третичных фосфинов с гидроксибензиловыми спиртами

Нами установлено [361], что четвертичные фосфониевые соли могут быть легко получены с высокими выходами по реакции третичных фосфинов с бензиловыми спиртами, содержащих *n*- или *o*-ОН группу, в водной среде в отсутствии кислоты. Нагревание при 90 °C смеси сиреневого спирта с (HOCH₂CH₂CH₂)₃P (THPP) в воде (1:1, Ar) ведет к образованию цвиттер-иона **LVIa** (схема 101), подтвержденного с помощью ЯМР- и масс-спектрометрии

$$\begin{array}{c} \text{MeO} \\ \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{HO} \\ \text{I-VIa} \\ \end{array} \\ \begin{array}{c} \text{MeO} \\ \text{HeO} \\ \text{P[(CH_2)_3OH]_3} \\ \text{OMe} \\ \\ \text{I-VIa} \\ \end{array}$$

Схема 101

Для того чтобы оценить влияние заместителей в ароматическом кольце и у бензильного атома углерода, а также положение ОН группы, на скорость реакции с ТНРР, сиреневый, ванильный, α-метилванильный, 2-, 3-, 4-гидроксибензиловые спирты были тестированы в стандартных условиях (1:1, H₂O, Ar, 90 °C). Изменение относительной концентрации ТНРР в реакционной массе было отслежено с помощью спектроскопии ЯМР ³¹Р{ ¹H} и представлено на рисунке 66. Самая высокая скорость реакции наблюдалась в случае α-метилванильного спирта, где 97% расход исходного ТНРР осуществлялся в течение 2 ч. Ванильный и сиреневый спирты менее реакционные, чем α-метилванильный спирт, и в их случае 97% расход ТНРР был достигнут через 6 и 8 ч соответственно. Отсутствие МеО групп в ароматическом кольце уменьшает скорость реакции еще больше. Так, в случае 4-гидроксибензилового спирта 88% расход ТНРР достигался только через 12 ч (рис. 66). Положение ОН группы в ароматическом кольце имеет самое сильное влияние на реакционность спирта. В случае 2-гидроксибензилового спирта скорость реакции с ТНРР самая низкая (50% расход за 12 ч), тогда как в случае 3-гидроксибензилового спирта реакции не наблюдалось во все.

Рис. 66. Зависимость концентрации ТНРР от времени в реакции с бензиловыми спиртами (1:1, H_2O , 90 °C, Ar).

Взаимодействие фосфинов с бензиловыми спиртам лигнина в водной среде протекает, вероятно, через хинонметиды (схема 102), нуклеофильная атака фосфина на которые ведет к образованию цвиттер-иона. Тот факт, что 3-гидроксибензиловый спирт, а также бензиловые спирты, не содержащие n- или o-OH группы, не вступает в реакцию, подтверждает данную схему, поскольку образование хинонметида невозможно. Ряд активности, рассмотренный выше, также подтверждает данную схему (электронодонорные заместители увеличивают стабильность хинонметидов). Полученный ряд реакционности подтверждается литературными данными по влиянию стабильность хинонметидов [362–364]. Предложенная подтверждается работами по синтезу фосфониевого цвиттер-иона из хлорметилфенола 4-OH-3,5-*t*-Bu₂(C₆H₂)CH₂Cl и *n*-Bu₃P [230].

HO CXEMA 102
$$+R_3P$$
 \rightarrow PR_3

Нами показано, что в отличие от ароматических альдегидов, которые в водной среде взаимодействуют только с ТНРР, бензиловые спирты, содержащие n-ОН группу, взаимодействуют и с другими третичными фосфинами, давая соответствующий цвиттер-ион **LVI** (схема 103), находящегося в равновесии с фосфониевым гидроксидом. Обработка раствора эквимолярным количеством соляной кислоты ведет к образованию фосфониевых хлоридов **LVII** (схема 103), которые были выделены с выходами 56-97% (таблица 16) в виде белых, твердых, гигроскопичных, но удобных в работе, веществ. Все они были доказаны с помощью спектроскопии ЯМР 1 H, 13 C{ 1 H} и 31 P{ 1 H}, массспектроскопии ESI(+) и элементного анализа.

$$\begin{array}{c} X \\ OH \\ +R_2RP \\ -H_2O \end{array} \qquad \begin{array}{c} \bigoplus \\ PR'R_2 \\ \hline \\ HO \end{array} \qquad \begin{array}{c} X \\ PR'R_2 \\ \hline \\ HO \end{array} \qquad \begin{array}{c} \bigoplus \\ PR'R_2 \\ \hline \\ \\ CI^{\Theta} \end{array}$$

Таблица 16. Выход хлоридов **LVII** в реакции бензиловых спиртов с третичными фосфинами (1:1, $H_2O, 90$ °C, Ar)

	X	Y	R	R¢	Выход, %
LVIIb	OMe	Н	Et	Et	84
LVIIc	Н	Н	Et	Et	75
LVIId	OMe	OMe	Et	Et	61
LVIIe	OMe	Н	Me	Me	89
LVIIf	OMe	Н	<i>n</i> -Pr	<i>n</i> -Pr	57
LVIIg	OMe	Н	<i>i</i> -Pr	<i>i</i> -Pr	68
LVIIh	OMe	Н	(CH ₂) ₃ OH	$(CH_2)_3OH$	56
LVIIi	OMe	Н	Me	Ph	96
LVIIj	OMe	Н	Ph	Me	65

В ходе наших исследований, кристаллизацией из насыщенного раствора в ДМСО, был получен бесцветный кристалл соединения **LVIIb**, который был проанализирован с помощью РСА. Молекулярная структура соединения представлена на рисунке 67. В таблице 17 приведены некоторые геометрические параметры молекулы. Атом фосфора образует классическую тетраэдрическую систему с углами С-Р-С в пределах 106.35—112.07°. Атом водорода фенольной группу связан водородными связями с атомами хлора и кислородом МеО группы: в О···Н····С1 и О···Н····О связях, расстояние О···Н равно 0.70Å, тогда как расстояния Н····С1 и Н····О составляют 2.47 и 2.38 Å соответственно.

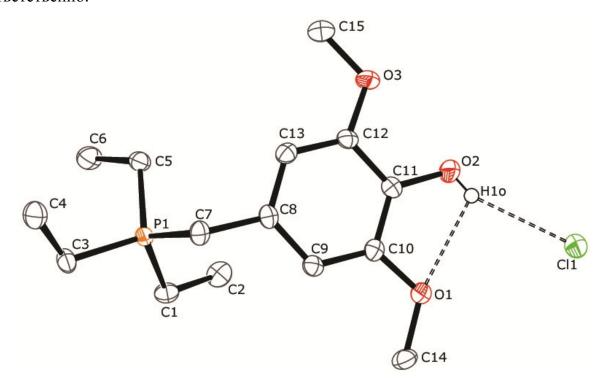


Рис. 67. Диаграмма ORTEP соединения **LVIIb**; атомы H не показаны.

Таблица 17. Избранные длины связей и углы для соединения **LVIIb**

Связь	Длина (Å)	Связь	Угол (град)
C(1)-P(1)	1.794(2)	C(1)-P(1)-C(7)	112.07(12)
C(3)-P(1)	1.796(2)	C(3)-P(1)-C(7)	107.37(12)
C(5)-P(1)	1.798(3)	C(5)-P(1)-C(7)	109.43(11)
C(7)-P(1)	1.804(2)	C(8)-C(7)-P(1)	115.51(16)
C(11)-O(2)	1.361(3)	C(11)-O(2)-H(10)	115(2)
O(2)- $H(10)$	0.70(3)	O(2)- $H(1o)$ ···Cl (1)	158(3)
$H(1o)\cdots Cl(1)$	2.47(3)	O(2)- $H(1o)$ ··· $O(1)$	110(3)
$H(1o)\cdots O(1)$	2.38(3)		

Аналогично монофосфинам в реакции с гидроксибензиловыми спиртами вступают и дифосфины. Так, в реакции ванильного спирта с $Et_2PCH_2CH_2PEt_2$ (2:1, H_2O , 90°C, Ar), с последующей обработкой HCl, был выделен водорастворимый бисфосфониевый дихлорид с выходом 96% (схема 104), который был доказан с помощью спектроскопии ЯМР- и масс-спектроскопии и элементного анализа.

Схема 104

Для наших кинетических исследований взаимодействия ТНРР с α , β ненасыщенными альдегидами, которые обсуждались в главе 2, было необходимо
оценить влияние фосфониевой группы на кислотность фенольной ОН группы.
Поскольку определить значения pK_a непосредственно для производных ТНРР не
представляется возможным ввиду сложности работы с этими крайне гигроскопичными
веществами, была получена фосфониевая соль **LX** по реакции α -метилванильного
спирта с Et_3P в стандартных условиях (1:1, H_2O , 90°C, Ar) с последующей обработкой
HCl с выходом 86% в виде белого твердого вещества (схема 105).

MeO

HO

$$Et_3P^{\bigoplus}$$
 HO
 Et_3P^{\bigoplus}
 HO
 Et_3P^{\bigoplus}
 HO
 Et_3P^{\bigoplus}
 HO
 Et_3P^{\bigoplus}
 HO
 Et_3P^{\bigoplus}
 $Et_$

Значение р K_a фенольного гидроксида соединения **LX** было получено по стандартной методике УФ/рН титрования. На рисунке 68 представлены кривые поглощения раствора соединения **LX** с начальной концентрацией 5.01 ′ 10^{-5} М в зависимости от рН. При рН 6.00 максимумы абсорбции для протонированной формы **LX**

видны при 206, 234 и 282 нм. Увеличение рН ведет к депротонированию с образованием цвиттер-иона **LIX** с максимумами поглощения при 214, 256 и 296 нм и тремя изобестическими точками при 224, 242 и 282 нм (рис. 68). Стандартный анализ полученных данных при 256 нм по уравнению Хендерсона-Хасселбаха [220–222] дает значение pK_a равное 9.14 \pm 0.02. Как и ожидалось, присутствие фосфониевой группы значительно увеличивает кислотность фенольной ОН группы, значение pK_a для α -метилванильного спирта в тех же условиях составляет 9.83 [219]. Влияние фосфониевой группы на кислотность фенола оценено впервые.

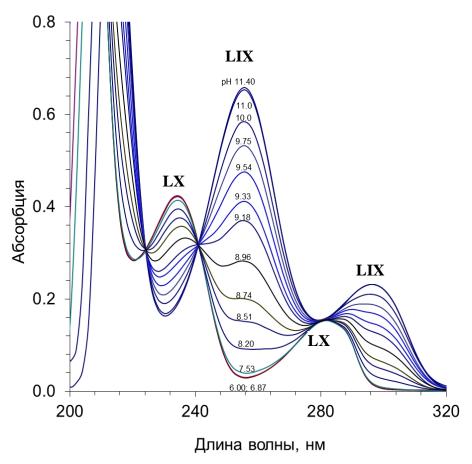


Рис. 68. Зависимость УФ-спектров поглощения буферных растворов соединения **LX** от рН при 25°C; начальная концентрация [**LX**] = $5.01 \cdot 10^{-5}$ M.

8.2. Взаимодействие $(HOCH_2)_3$ Р и $(HOCH_2)_4$ РС с гидроксибензиловыми спиртами

Интересно, что $(HOCH_2)_3P$, в отличие от THPP, не взаимодействует с бензиловыми спиртами лигнина. Однако его фосфониевая соль $(HOCH_2)_4PC1$ (THPC) реагирует с бензиловыми спиртами с замещением всех четырех $HOCH_2$ групп. Так, в реакции THPC с ванильным спиртом (1:5, H_2O , Ar, $90^{\circ}C$) была получена фосфониевая

соль **LXI** (схема 106), охарактеризованная с помощью ЯМР- и масс-спектрометрии. Схожая реакция описана в литературе, но включает в себя взаимодействие ТНРС с 4- НО-бензил хлоридом в диоксане в присутствии Et_3N [365, 366]. Продукты реакции $[(3,5(алкил)_2-4-OH-C_6H_2-CH_2)_4P]Cl$ применяются в качестве антиоксидантов в производстве полипропилена.

Схема 106

Предложенный метод синтеза фосфониевых солей из $(HOCH_2)_4PCl$ и гидроксибензиловых спиртов является более экологичным в сравнение с патентованным методом синтеза из бензил хлоридов в диоксане.

8.3. Взаимодействие третичных фосфинов с коричными спиртами

Выше было показано, что бензиловые спирты, содержащиеся в массе лигнина, могут взаимодействовать с третичными фосфинами, замещая бензильную ОН-группу. Коричные спирты, являющиеся продуктами ферментного восстановления а,b-ненасыщенных альдегидов и непосредственными предшественниками лигнина, содержат аллильную ОН-группу, и было интересно проследить, будет ли она замещаться на третичный фосфин, что было бы удобным методом синтеза фосфорорганический соединений содержащих непредельную С=С связь. Эти исследования были проведены на коммерчески доступных коричном и конифериловом спиртах.

Найдено, что фосфин Et_3P в реакции с конифериловым спиртом (1:1, H_2O , Ar, $90^{\circ}C$) атакует двойную C=C связь, а не атом углерода при аллильном гидроксиде, с образованием цвиттер-иона **LXIIa**, который находится в равновесии с фосфониевым гидроксидом (схема 107). После обработки реакционный массы раствором HCl, была выделена фосфониевая соль **LXIIIa** с выходом 45% (схема 107), и которая была

охарактеризована с помощью элементного анализа, ЯМР- и масс-спектрометрии. Синтез фосфониевых солей, содержащих спиртовую группу в боковой цепи, типа $[R_3P(CH_2)_2OH]X$ описан в литературе и осуществляется либо по реакции галогензамещенных спиртов (например, хлоргидрин) с третичными фосфинами, где также не происходит замещение ОН группы [367, 368], либо по реакции с оксиранами [369].

$$\begin{array}{c} \text{MeO} \\ \text{HO} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{MeO} \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{HO} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Et}_{3}P \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text{Cl} \bigoplus \\ \text{OH} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \bigoplus \\ \text$$

Схема 107

Аналогично в реакцию с конифериловым спиртом вступает и ТНРР, давая цвиттер-ион **LXIIb** (схема 108). Продукт был охарактеризован с помощью 31 P{ 1 H} ЯМРи и масс-спектрометрии.

MeO OH + [HO(CH₂)₃]₃P
$$\stackrel{\text{[HO(CH2)3]3P}}{\longrightarrow}$$
 OH LXIIb

Схема 108

В отличие от кониферилового спирта, содержащего n-OH группу, коричный спирт не вступает в реакцию с THPP (1:1, H_2O или D_2O , 90°C, Ar).

Таким образом, было установлено, что также как и в случае бензиловых спиртов, наличие *n*-ОН группы в ароматическом кольце оказывает решающее значение на реакционность коричных спиртов. Реакции, типа показанной на схеме 108, ведут к разрушению сопряжения и могут вносить свой вклад в процесс отбеливания механической пульпы.

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 8

Таким образом, нами установлено что бензиловые и коричные спирты лигнина вступают в реакцию с третичными фосфинами в водной среде с образованием новых фосфониевых цвиттер-ионов с высокими выходами. Бензиловые и коричные спирты, не содержащие фенольной группы в *пара*- или *орто*-положении, не взаимодействуют с третичными фосфинами. Три(гидроксиметил)фосфин (HOCH₂)₃P в тех же условиях не взаимодействует с бензиловыми спиртами лигнина, но его фосфониевая соль (HOCH₂)₄PCl способна замещать все четыре CH₂OH-группы на бензиловые. Реакции данного типа могут вносить вклад в отбеливание механической пульпы.

ГЛАВА 9.

Взаимодействие (HOCH₂)₃P, (HOCH₂)₄PCl и [HOCH(Me)]₄PCl с серосодержащими солями натрия. Синергизм системы (HOCH₂)₃P/Na₂S₂O₄

В бумажной промышленности в качестве отбеливающего агента часто используется дитионит натрия $Na_2S_2O_4$, который является сильным восстановителем и используется в органическом синтезе [370–383]. Эксперименты, проведенные в Институте бумаги и пульпы в Канаде, выявили значительный синергетический эффект комбинации (HOCH₂)₃P (THP) и $Na_2S_2O_4$ для отбеливания пульпы при механической обработке древесины. Это привело нас к изучению взаимодействия THP и THPC с исходной солью $Na_2S_2O_4$, а также соединениями $NaHSO_3$ и $Na_2S_2O_3$, которые являются продуктами ее распада в водной среде [384–387], для выявления причин наблюдаемого синергетического эффекта.

Взаимодействие с Na₂S₂O₄

Взаимодействие ТНР и $Na_2S_2O_4$ (1:1, r.t., Ar) было изучено с помощью спектроскопии ЯМР в растворе D_2O . Было установлено [388], что на первой стадии в реакционной смеси образуется вторичный фосфин (DOCH₂)₂PD (BHP-d₁), который регистрируется в спектре ЯМР $^{31}P\{^{1}H\}$ как триплет при δ_P - 58.9 м.д. ($^{1}J_{PD}$ 33 Γ ц) (рис. 69A). Через 48 ч в спектре ЯМР $^{31}P\{^{1}H\}$ был обнаружен пентет при δ_P - 127.5 м.д. ($^{1}J_{PD}$ 32 Γ ц), соответствующий бисдейтерированному первичному фосфину DOCH₂PD₂ (МНР-d₂) (рис. 69Б). В малых количествах также были обнаружены другие фосфорсодержащие вещества: фосфиноксид ТНРО, три(гидроксиметил)фосфинсульфид (ТНРS) и ди(гидроксиметил)фосфиноксид (ВНРО-d₁). В следовых количествах рядом с основным сигналом найдены синглет (DOCH₂)₂PH (ВНР) при δ_P - 57.3 м.д. и триплет монодейтерированного моно(гидроксиметил)фосфина DOCH₂P(D)H (МНР-d₁) при δ_P - 126.4 м.д. (рис. 69Б). Двукратный и трехкратный избыток $Na_2S_2O_4$ дает те же продукты реакции.

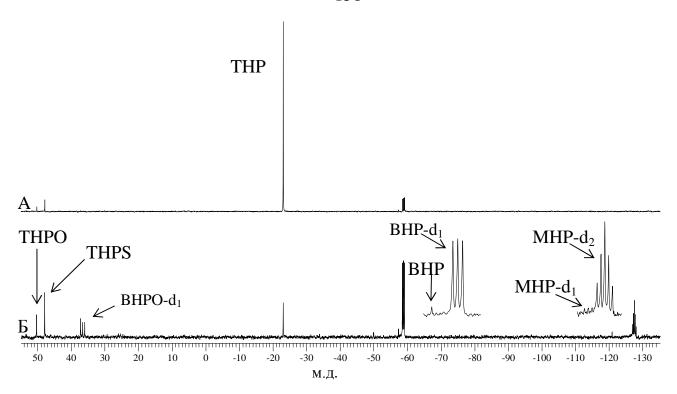


Рис. 69. Спектр ЯМР 31 Р{ 1 H} реакции ТНР с Na₂S₂O₄ (1:1, D₂O, Ar) через: (A) 40 мин; (Б) 48 ч.

Сигналы протонов CH_2 натриевых солей (гидроксиметил)сульфоната (DOCH $_2$ SO $_3$ Na) и (гидроксиметил)сульфината (DOCH $_2$ SO $_2$ Na) найдены в соотношении 1:1 как синглеты при δ_H 4.42 и 3.87 м.д. соответственно. Равная концентрация этих солей согласуется со стехиометрией известной реакции, представленной в уравнение 29 [389], где формальдегид является продуктом распада THP. Уравнение 30 показывает суммарный процесс взаимодействия THP и $Na_2S_2O_2$ в D_2O в атмосфере аргона.

$$Na_2S_2O_4 + 2 CH_2O + H_2O \longrightarrow HOCH_2SO_2Na + HOCH_2SO_3Na$$
 (29)
 $2 (DOCH_2)_3P + Na_2S_2O_4 + D_2O \longrightarrow 2 (DOCH_2)_2PD + DOCH_2SO_3Na + DOCH_2SO_2Na$ (30)
 $BHP-d_1$

Соль $HOCH_2SO_2Na$, известная под названием «ронгалит», имеет промышленное значение и используется, в частности, для отбеливания лигнина [390–392]. Ронгалит имеет большое синтетическое применение и легко вступает в реакции с α , β - ненасыщенными карбонильными соединениями, разрушая сопряжение [393]. Вторичный фосфин ВНР, являющийся также продуктом указанной реакции 30, был впервые охарактеризован в наших работах. Как вторичный фосфин, он также может взаимодействовать с карбонильной группой и участвовать в процессе отбеливания

(глава 3). В дополнение к этому, вторичные фосфины при окислении генерируют вторичные фосфиноксиды, которые активны по отношению к карбонильной группе, в отличие от третичных фосфиноксидов [190, 394–398].

Взаимодействие с NaHSO₃

Исследование побочных реакций показало, что $NaHSO_3$ взаимодействуют с THP аналогично $Na_2S_2O_4$ (D_2O , 1:1, Ar, r.t.) давая $BHP-d_1$ и $DOCH_2SO_3Na$ (ур. 31). Использование избытка $NaHSO_3$ в реакции с THP ведет к образованию пятивалентных фосфорсодержащих продуктов (схема 109).

$$(HOCH2)3P + NaHSO3 \xrightarrow{D_2O} (DOCH2)2PD + DOCH2SO3Na$$

$$(HOCH2)3P + NaHSO3 \xrightarrow{} (DOCH2)3PO + (DOCH2)3PS + (DOCH2)2P(O)OD + DOCH2SO3Na$$

$$(NaGitoria)$$

$$Cxema 109$$

На примере реакции [HOCH(Me)]₄PCl и избытка NaHSO₃ (1:4, D₂O, Ar, r.t.) была продемонстрирована возможность одностадийного синтеза водорастворимых производных фосфиновой кислоты, в частности, [DOCH(Me)]₂P(O)OD (схема 110) [177].

$$[MeCH(OH)]_4PCI \xrightarrow{+ \text{NaHSO}_3} [MeCH(OH)]_2PD \xrightarrow{[O]} [MeCH(OH)]_2PO \xrightarrow{O} [MeCH(OH)]$$

В спектре ЯМР 31 Р{ 1 H} реакции, полученном через 30 мин, наблюдаются два триплета одинаковой интенсивности при 1 G 50.1 и 48.3 м.д. с константой спинспинового взаимодействия 1 J_{PD} = 72 Гц (рис. 70A), которые были присвоены двум диастереомерам дейтерированного бис(α -гидроксиэтил)фосфиноксида [DO(Me)CH] $_{2}$ P(O)D (ВНЕРО- $_{1}$). Значение константы спин-спинового взаимодействия 1 J_{PD} совпадает с раннее найденным для оксида [DOCH $_{2}$] $_{2}$ P(O)D. Образование ВНЕРО- $_{1}$ подтверждается и спектроскопией ЯМР 1 H и 1 H{ 31 P}.

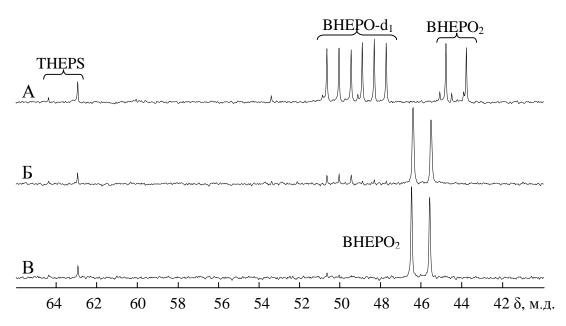


Рис. 70. Спектр ЯМР 31 Р{ 1 H} реакции хлорида [HOCH(Me)]₄PCl и NaHSO₃ (1:4, Ar, D₂O, r. t.) полученный через: (A) 30 мин; (Б) 1 день; (В) 2 дня.

В течение одного дня триплеты медленно замещаются двумя синглетами одинаковой интенсивности, которые первоначально наблюдаются при **d**_P 44.8 и 43.8 м.д. (рис. 70А), но через два дня смещаются в слабое поле на ~ 2 м.д. (рис. 70Б и В). Через два дня наблюдаются только эти два синглета вместе с сигналами низкой интенсивности при d_P 64.4 и 62.9 м.д., ассоциированных с сульфидом [HOCH(Me)]₃PS THEPS (см ниже). Поскольку у новых синглетов отсутствует константа спин-спинового взаимодействия ${}^{1}J_{\rm PD}$, они были присвоены производному фосфиновой кислоты $[DO(Me)CH]_2P(O)OD$ (BHEPO₂), продукту окисления вторичного фосфиноксида ВНЕРО-d₁. Соотношение интенсивности сигналов 1:1 свидетельствует о наличии только двух хиральных углеродных центров. Данные ЯМР ¹Н (см ниже) также согласуются с уходом двух альдегидных фрагментов от хлорида [НОСН(Ме)]4РС1, и конечное соотношение DO(Me)C(H)SO₃Na : BHEPO₂ составляет 2:1. Данное соединение получено впервые его образование осуществляется через анаэробное окисление промежуточного вторичного фосфина и вторичного фосфиноксида [DOCH(Me)]₂P(O)D (схема 110).

В литературе описывается синтез бис(гидроксиметил)фосфиновой кислоты из (HOCH₂)₄PCl кипячением с щелочью или карбонатом натрия [181], а также нагреванием гипофосфита натрия с параформом с последующей обработкой продукта кислотой [399].

Взаимодействие с $Na_2S_2O_3$

Установлено, что взаимодействием ($HOCH_2$)₄PCl и ($HOCH_2$)₃P с $Na_2S_2O_3$ (1:1, D_2O , Ar, r.t.) можно получить сульфид ($HOCH_2$)₃PS (THPS) с количественным выходом за 2 ч (ур. 32 и 33).

$$(HOCH2)4PCl + Na2S2O3 \longrightarrow (HOCH2)3PS + HOCH2SO3Na$$
 (32)

$$(HOCH2)3P + Na2S2O3 \longrightarrow (HOCH2)3PS + Na2SO3$$
(33)

В реакции хлорида [HOCH(Me)]₄PCl с Na₂S₂O₃ в D₂O (1:1, Ar, r.t.) 31 P{ 1 H} сигналы исходного хлорида в течение 15 мин замещаются двумя синглетами при d_P 64.4 и 62.9 м.д., наблюдаемые в соотношение 1:3.5 (см также рис. 70). Данные синглеты присвоены сульфиду [HOCH(Me)]₃PS, образующемуся согласно уравнению 34. Соотношение диастереомеров (*RRR*)/(*SSS*) и [(*RRS*)/(*RSS*), (*RSS*)/(*SRR*), (*RSR*)/(*SRS*)] близко к теоретическому для трех идентичных хиральных центров 1:3.

$$[DO(Me)CH]_4PCl + Na_2S_2O_3 \xrightarrow{D_2O} [DO(Me)CH]_3PS + DO(Me)C(H)SO_3Na + NaCl (34)$$

$$THEPS$$

ЗАКЛЮЧЕНИЕ К ГЛАВЕ 9

Таким образом, комбинация нового и классического отбеливающих агентов, $(HOCH_2)_3P-Na_2S_2O_4$, компоненты которой сами по себе являются отбеливающими агентами, может генерировать вторичные отбеливатели – $(HOCH_2)_2PH$ и ронгалит. Синергетический эффект при использовании данной комбинации в процессе отбеливания, вероятно, связан с большей стабильностью вторичных отбеливателей. Ронгалит значительно менее чувствителен к кислороду, чем $Na_2S_2O_4$, а окисление вторичного фосфина, в отличие от исходного $(HOCH_2)_3P$, не ведет к его деактивации, поскольку вторичные фосфиноксиды способны давать продукты 1,2-присоединеия с карбонильными соединениями и 1,4-присоединения с активированными олефинами. Комбинация $(HOCH_2)_3P-Na_2S_2O_4$ была применена в Канаде на заводе Kruger Publication Papers Inc. (Trois-Rivières, Québec) и использовалась в течение одного года, что

позволило компании съэкономить около 250 тыс. долларов. Однако, долгосрочное использование новой комбинации отбеливателей столкнулось с риском серьезного влияния на здоровье персонала, поскольку в процессе использования комбинации $(HOCH_2)_3P-Na_2S_2O_4$ не редко в воздухе рабочей зоны ощущался «чесночный» запах. Анализ воздуха показал наличие газа РН₃ в следовых количествах. Его образование, вероятно, обусловлено дальнейшим распадом моно(гидроксиметил)фосфина HOCH₂PH₂, который был зарегистрирован в водном растворе, до PH₃ под действием $(HOCH_2)_3P-Na_2S_2O_4$ В настоящий момент применение комбинации $Na_2S_2O_4$. приостановлено до устранения риска здоровью.

ГЛАВА 10.

Комплексы палладия(ІІ) с новыми фосфинами. Синтез новых олигофосфинов

10.1. Комплексы палладия(II) с фосфином Ph₂PCH(Ph)CH(Me)CHO и дифосфином Ph₂PCH(Ph)CH₂CH(OH)PPh₂

Получение комплексов палладия с продуктами взаимодействия коричных альдегидов и Ph_2PH было важно в рамках изучения стереоселективности реакций, представленных на схемах 53 и 61.

В метаноле фосфин **XXVId** взаимодействуют с $PdCl_2(PhCN)_2$ (2:1, r.t., Ar) с образованием желтых кристаллов комплекса **LXIV** с выходом 66% после 18 ч реакции (схема 111) [400].

$$\begin{array}{c} \text{OMe} \\ \text{Ph} \\ \text{P} \\ \text{Ph} \end{array} \begin{array}{c} \text{Ph} \\ \text{Ph} \text{Ph} \\ \text{Ph$$

XXVId

LXIV-a (S,S/R,R и R,R/S,S-энантиомеры) **LXIV-b** (S,S/S,S и R,R/R,R-энантиомеры)

Схема 111

Данные РСА показали, что палладий несет комбинацию фосфинов только с хиральностью S,S/R,R, что подразумевает, что комплекс **LXIV** образуется как энантиомер **LXIV-а** (т.е. комбинации S,S/S,S или R,R/R,R отсутствуют). Относительная простота спектров ЯМР также подтверждает образование только одного диастереомера. Спектр ЯМР 31 Р{ 1 H} комплекса **LXIV-а** в $CD_{2}Cl_{2}$, полученный через 10 мин, показал главный сигнал при d_{P} 25.2 м.д. Комплекс **LXIV-а** не устойчив и медленно рацемизируется в течение двух дней; синглет второго диастереомера **LXIV-b** виден в спектре ЯМР 31 Р{ 1 H} при d_{P} 25.4 м.д.

Молекулярная структура комплекса **LXIV-a** (рис. 71) показывает стандартную

квадратичную координацию центрального атома палладия со средними длинами связей Pd–Cl и Pd–P равными 2.31 и 2.33 Å соответственно (таблица 18). Найденные значения для углов P-Pd-Cl 85.46-86.84° и 93.16-94.54° свидетельствуют о незначительном искажении квадратичной геометрии комплекса. Кристаллографические параметры комплекса находятся в пределах, известных для других транс-бисфосфиновых комплексов палладия(II) [401–407].

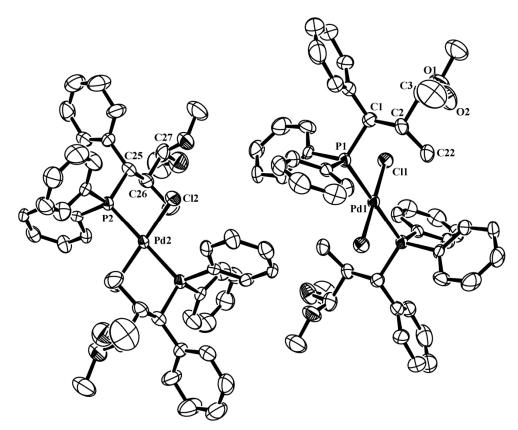


Рис. 71. Диаграмма ORTEP комплекса **LXIV-а**; атомы H не показаны.

Таблица 18. Избранные длины связей и углы для соединения **LXIV-а**

Связь	Длина (Å)	Связь	Угол (град)
P(1)-Pd(1)	2.3207(17)	P(1)-Pd(1)-P(1*)	180.00(11)
Cl(1)-Pd(1)	2.3126(16)	P(1)-Pd(1)-Cl(1)	94.54(6)
C(1)-P(1)	1.864(6)	C(1)-P(1)-Pd(1)	114.1(2)
C(2)- $C(22)$	1.530(9)		
C(3)-O(1)	1.392(8)	P(2)-Pd(2)-P(2*)	180.00(7)
C(3)-O(2)	1.423(8)	P(1)-Pd(1)-Cl(1)	93.17(6)
P(2)- $Pd(2)$	2.3286(18)	C(25)-P(2)-Pd(2)	113.2(2)
Cl(2)-Pd(2)	2.3022(17)		
C(1)-P(1)	1.861(6)		

Реакция $PdCl_2(PhCN)_2$ с дифосфином **Па** в метаноле (1:1, r.t., Ar) ведет к образованию комплекса палладия **LXV** (схема 112) [269]. В спектре ЯМР ³¹Р{¹H} реакционной смеси, полученном через 30 мин, были зарегистрированы два набора сигналов, соответствующие двум диастереомерам с соотношением 3:1. Разная растворимость диастереомеров в метаноле позволяет получать кристаллы комплекса **LXV** с различным диастереоселективным выходом. Так, после 16 ч реакции комплекс был выделен с общим выходом 80% и *de* ~50%. Уменьшение времени кристаллизации до 4 ч уменьшает общий выход до 50%, но дает более высокое значение *de* ~90%.

LXV- α (*S,S*- и *R,R*-энантиомеры)

LXV- β (*S*,*R*- и *R*,*S*-энантиомеры)

Схема 112

РСА кристаллов комплекса LXV с высоким значением de показал (рис. 72, таблица 19), что соединение кристаллизуется как смесь диастереомеров преимущественно с хиральностью S,S и R,R у атомов углерода C(1) и C(3), и небольшой фракцией (~5%) изомеров S,R- и R,S. Атом палладия находится в плоско-квадратной координации, и длины связей Pd-P и Pd-Cl близки к соответствующим связям для аналогичного комплекса с 1,3-бис(дифенилфосфино)пропаном, PdCl₂(dppp) [408], хотя угол P-Pd-P в комплексе LXV (96.43°) больше на 6°, чем углов в комплексе с dppp. Углы C(1)-P(1)-Pd(1) и C(3)-P(2)-Pd(1) также примерно на 5° больше, чем известные углы для PdCl₂(dppp).

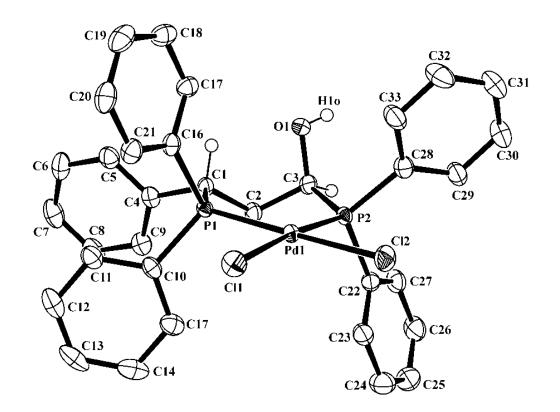


Рис. 72. Диаграмма ORTEP комплекса **LXV-α** (*S*,*S*-диастереомер); атомы H не показаны.

Таблица 19. Избранные длины связей и углы для соединения **LXV-**α

Связь	Длина (Å)	Связь	Угол (град)
P(1)-Pd(1)	2.2599(14)	P(1)-Pd(1)-P(2)	96.43(5)
P(2)- $Pd(1)$	2.2423(14)	P(1)-Pd(1)-Cl(1)	87.35(5)
Cl(1)-Pd(1)	2.3519(16)	P(2)-Pd(1)-Cl(2)	86.24(5)
Cl(1)-Pd(1)	2.3625(13)	Cl(1)-Pd(1)-Cl(2)	90.15(5)
C(1)-P(1)	1.862(5)	C(1)-P(1)-Pd(1)	120.15(15)
C(3)-P(2)	1.845(5)	C(3)-P(2)-Pd(1)	117.41(15)
C(3)-O(1)	1.408(6)	C(1)-P(1)-C(10)	103.6(2)
		C(1)-P(1)-C(16)	104.5(2)
		O(1)-C(3)-P(2)	111.0(3)

10.2. Синтез и характеристика водорастворимых олигофосфинов, содержащие этановые мостики между атомами фосфора

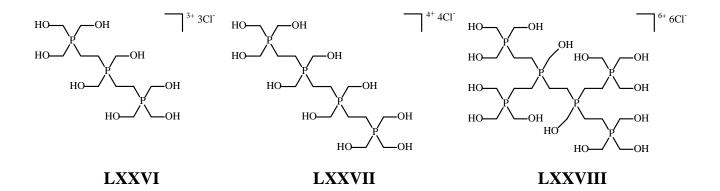
В поисках новых отбеливающих реагентов для бумажного производства было найдено, что бис[ди(гидроксиметил)фосфин]этан (HOCH $_2$) $_2$ PCH $_2$ CH $_2$ P(CH $_2$ OH) $_2$ является

более эффективным агентом, чем $(HOCH_2)_3P$. Было предложено, что соединения с большим числом атомов фосфора должны проявить большую отбеливающую активность. Поэтому одним из направлений исследования был синтез новых водорастворимых олигофосфинов. Результатом стало выделение и идентификация большого числа новых производных фосфора.

Общий синтетический метод для синтеза олигофосфинов состоит из катализируемого основаниями или радикалами гидрофосфинирования соединений фосфора, содержащих винильные или аллильные группы [409–414]. Реакция коммерчески доступных 1,2-бис(фосфино)этана $H_2PCH_2CH_2PH_2$ и диэтилвинилфосфоната $CH_2=CH-P(O)(OEt)_2$ в сухом Et_2O в присутствии основания t-BuOK (0°C, аргон) ведет к образованию четырех фосфорсодержащих соединений [415].

Соотношение продуктов зависит от соотношения исходных реагентов. При эквимолярном соотношении образуется смесь из LXVI и LXVII с ЯМР выходом 45 и 30% соответственно. При помощи дистилляции соединение LXVI было выделено в виде бесцветного масла с выходом 19%. При исходном соотношении реагентов 1:2 реакция протекает с относительно высокой селективностью, и соединение LXVII было выделено с высоким выходом (88%). Реакция в соотношение 1:3 является чрезвычайно неселективной, давая смесь LXVII (ЯМР выход 28%), LXVIII (50%) и LXIX (22%). Попытки разделить смесь дистилляцией были не успешными, поэтому соединение LXVIII не было получено в чистом виде. Соединение LXIX, в виде желтого масла, было получено селективно в реакции с соотношением исходных компонентов 1:5.

Соединения **LXVI–LXIX** были охарактеризованы с помощью спектроскопии ЯМР 31 P{ 1 H} и 1 H.


Восстановлением фосфонатных групп соединений **LXVI**, **LXVII** и **LXIX** при помощи **Li**AlH₄ в эфире в атмосфере аргона были получены три олигофосфина **LXX**— **LXXII** с выходом 50, 45 и 40% соответственно. Соединения **LXX** и **LXXI** представляют собой бесцветные масла, соединение **LXXII** — белое твердое вещество. Все соединения были охарактеризованы с помощью спектроскопии ЯМР ³¹Р{¹H} и ¹H.

Реакция эфирного раствора фосфина **LXX** или **LXXI** с водным CH_2O при комнатной температуре в атмосфере аргона, согласно спектроскопии $SMP^{31}P\{^1H\}$, *in situ* количественно дает водорастворимый (гидроксиметил)трифосфин (**LXXIII**) и (гидроксиметил)тетрафосфин (**LXXIV**) [416]. После удаления воды соединения **LXXIII** и **LXXIV** представляют собой бесцветную вязкую массу. К сожалению, дальнейшие манипуляции с ними для подтверждения его структуры с помощью спектроскопии SMP^1H и SC^1H показали, что в растворе SD_2O или SD_2O они относительно быстро окисляются с выделение водорода. Этот окислительно-восстановительный процесс с участием воды обсуждался в главе 1, посвященной устойчивости водорастворимых фосфинов в водных растворах.

Окисление трифосфина **LXXIII**, используя H_2O_2 , ведет к образованию трифосфинтриоксида **LXXV**, который был выделен с количественным выходом в виде

белого твердого вещества. Строение соединения **LXXV** подтверждено данными элементного анализа, ЯМР- и масс-спектроскопии.

Реакция фосфинов **LXX–LXXII** с избытком формальдегида в воде в присутствии HCl количественно генерирует фосфониевые соли **LXXVI–LXXVIII**, которые могут быть перекристаллизованы из смеси MeOH– H_2O . Соединения являются белыми, высоко гигроскопичными, стабильными по отношению к кислороду, очень хорошо растворимые в воде и в ДМСО. Все соединения были доказаны с помощью элементного анализа, ЯМР- и масс-спектрометрии. В спектрах ЯМР 31 P{ 1 H} соединения **LXXVII** и **LXXVIII** образуют сложные спиновые системы: AA'XX' (рис. 73) и AA'X $_2$ X $_2$ ' (рис. 74) соответственно.

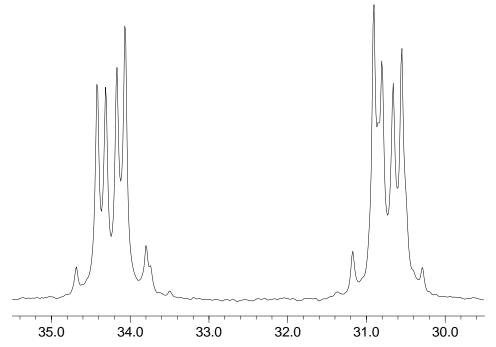
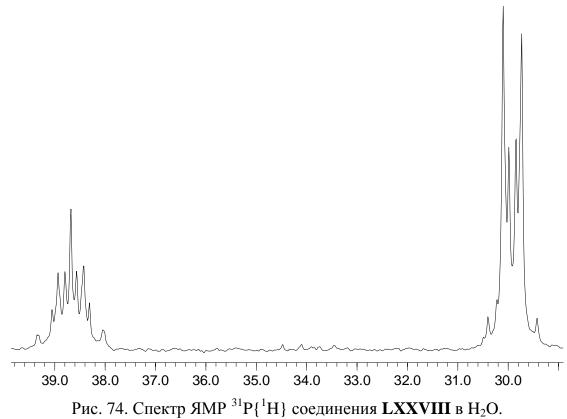



Рис. 73. Спектр ЯМР 31 Р{ 1 H} соединения **LXXVII** в ДМСО- 4 6.

Попытки вырастить качественные кристаллы соединений **LXXVI–LXXVIII** для

РСА были безуспешны. Однако нам удалось получить и охарактеризовать кристалл простейшего аналога данных соединений, а именно [(HOCH₂)₃PCH₂CH₂P(CH₂OH)₃]Cl₂ [417–419]. РСА показал ожидаемую молекулярную структуру (рис. 75). Расстояние между С-атомами этанового мостика 1.534(4) Å (таблица 20), а Р-С длины находятся в пределах, известных для гидроксиметил фосфорных соединений [420]. Атомы фосфора показали тетраэдральную координацию с С-Р-С углами в пределах 108.61-111.45°. Хлорид анионы связаны водородными связями с атомами водорода гидроксиметильных групп: в связях О···Н···Сl, расстояния О···Н находятся в пределах 0.82 – 0.91 Å, а расстояния Н···Сl в пределах 2.17 – 2.23 Å, что подразумевает достаточно сильные водородные связи [421, 422].

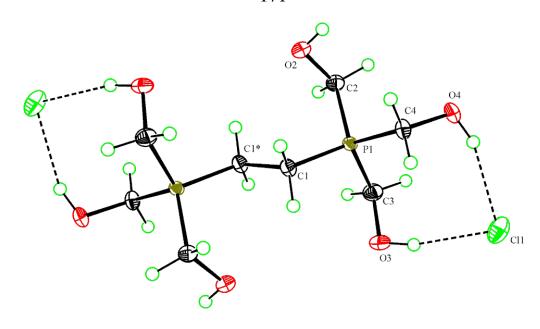


Рис. 75. Диаграмма ORTEP соединения $[(HOCH_2)_3PCH_2CH_2P(CH_2OH)_3]Cl_2$.

 $\label{eq:20} \mbox{ Таблица 20.}$ Избранные длины связей и углы для соединения [(HOCH2)3PCH2CH2P(CH2OH)3]Cl2

Связь	Длина (Å)	Связь	Угол (град)
C(1)*-C(1)	1.534(4)	C(1)*-C(1)-P(1)	112.61(19)
C(1)-P(1)	1.796(2)	O(2)-C(2)-P(1)	108.81(15)
C(2)-P(1)	1.815(2)	O(3)-C(3)-P(1)	111.24(16)
C(3)-P(1)	1.823(2)	O(4)-C(4)-P(1)	109.81(15)
C(4)-P(1)	1.818(2)	C(1)-P(1)-C(2)	109.27(11)
C(2)-O(2)	1.411(3)	C(1)-P(1)-C(4)	108.61(10)
O(2)-H(2)	0.82(3)	C(1)-P(1)-C(3)	109.71(11)
O(3)-H(3)	0.91(3)	C(4)-P(1)-C(3)	111.45(11)
O(4)-H(4)	0.88(3)	O(2)-H(2)Cl(1)	169(3)
H(2)Cl(1)	2.23(3)	O(3)-H(3)Cl(1)	167(3)
H(3)Cl(1)	2.17(3)	O(4)-H(4)Cl(1)	160(3)
H(4)Cl(1)	2.23(3)		

IV. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1. Синтез и очистка исходных препаратов

Органические растворители очищали по известным методикам [423, 424], перегоняли и хранили под аргоном.

Этиленгликоль перемешивали в течение 2 дней в атмосфере аргона при 50°C и перегоняли при пониженном давлении, хранили под аргоном.

s-BuOH перемешивали в течение 4 ч в атмосфере аргона при кипячении и перегоняли, хранили под аргоном.

Дейтерированные растворители $CDCl_3$, CD_2Cl_2 , CD_3OD , $(CD_3)_2CDOD$, $(CD_3)_2SO$, $(CD)_3CO$, D_2O – коммерческие продукты (Cambridge Isotope Laboratories) – использовали без дополнительной очистки.

Дистиллированную воду и $\mathbf{D_2O}$ перед использованием перемешивали в течение 4 ч в атмосфере аргона.

Бензальдегиды: вератровый (3,4-диметоксибензальдегид), сиреневый (4-гидрокси-3,4-диметоксибензальдегид), 4-X-C₆H₄CHO (X = H, CN, I, Br, Cl, F, Me и MeO), 3-X-C₆H₄CHO (X = OH и MeO), 2-X-C₆H₄CHO (X = Me и MeO), 2,4,6-X₃-C₆H₂CHO (X = Me и MeO), 2,6-дихлорбензальдегид и 3,5-диметилбензальдегид – коммерческие продукты (Aldrich) – очищали перегонкой при пониженном давлении или перекристаллизовывали, хранили под аргоном.

Ванильный, **а-метилванильный**, **конифериловый** (4-гидрокси-3-метоксикоричный спирт) и **коричный спирт**, а также **3,4-диметоксиацетофенон** – коммерческие продукты (Aldrich) – использовали без дополнительной очистки.

Сиреневый (3,5-диметокси-4-гидроксибензиловый спирт), **4-**, **3-** и **2- гидроксибензиловые спирты** – коммерческие продукты (Lancaster) – использовали без дополнительной очистки.

Коричный, **гидрокоричный** и **\alpha-метилкоричный альдегиды** — коммерческий продукт (Aldrich) — очищали перегонкой в вакууме и хранили под аргоном при ~ 0 °C.

4-Метилкоричный, **4-метоксикоричный** и **3,4-диметоксикоричный альдегиды** были приготовлены конденсацией ацетальдегида (Aldrich) с 4-

метилбензальдегидом (Eastman), 4-метоксибензальдегидом (Aldrich) и 3,4диметоксибензальдегидом (Aldrich) соответственно.

4-Гидроксибезилиденацетон – коммерческий продукт (Aldrich) – использовали без дополнительной очистки.

3,4-Диметоксибензилиденацетон получали конденсацией 3,4диметоксибензальдегида с цетоном.

Синаповый альдегид (3,5-диметокси-4-гидроксикоричный альдегид) и **конифериловый альдегид** (4-гидрокси-3-метоксикоричный альдегид)— коммерческие продукты (Aldrich) — очищали перекристаллизацией из Et_2O , хранили при ~ 0 °C.

Кумаровый альдегид (4-гидроксикоричный альдегид) получали по методике [425].

Все **коричные кислоты** – коммерческие продукты (Aldrich) – использовали без дополнительной очистки.

Все метиловые эфиры коричных кислот получали взаимодейсвием коричных кислот с метанолом в присутсвии основания. Очищали перегонкой в вакууме.

п-Бензохинон – коммерческий продукт (Aldrich) – очищали перекристаллизацией из бензола.

2,5-Ди-*трет***-бутил-** и **2,3,5,6-тетраметил-***n***-бензохинон** (дурохинон) – коммерческие продукты (Aldrich) – использовали без дополнительной очистки.

Метокси-*n***-бензохинон** получали из метокси-*n***-**гидрохинона по методике [426]. **Фосфин РН**₃ (для электроники) использовали без очистки.

Трис(гидроксиметил)фосфин (НОСН₂)₃Р (ТНР) получали по методике [123].

Тетракис(гидроксиметил)фосфоний хлорид [(HOCH₂)₄P]Cl (THPC) получали из $100\,$ мл 80%-го раствора (предоставленного Rhodia Consumer Specialities) удалением воды при пониженном давлении и перекристаллизацией остатка из i-PrOH. Полученный осадок сушили в течение одного дня в вакууме. Подтверждали с помощью элементного анализа, ЯМР- и масс-спектрометрии.

Трис(3-гидроксипропил)фосфин (ТНРР) (масло, чистота 85%), Et_3P , Ph_3P , Me_2PPh , $MePPh_2$, i- Pr_3P , n- Pr_3P , n- Bu_3P , $Et_2P(CH_2)_2PEt_2$, Ph_2PH , (c- $C_6H_{11})_2PH$ и (c- $C_6H_{11})_3P$ – коммерческие продукты (Strem) – использовали без дополнительной очистки.

 Me_3P (1.0 M раствор в толуоле), p- Tol_3P , Et_2PPh , CH_2 = $CHP(O)(OEt)_2$ – коммерческие продукты (Aldrich) – использовали без дополнительной очистки.

Трис(3-гидроксипропил)фосфин гидрохлорид $[(HOCH_2CH_2CH_2)_3PH]^+Cl^-$ получали добавлением 37%-го раствора HCl (Fisher) к водному раствору THPP (1:1). Отгонкой растворителя при пониженном давлении получали бесцветное масло.

Гидроксиметилдифенилфосфин Ph₂PCH₂OH получали по методике [184], очищали растиранием в смеси гексан/CHCl₃ (6:1).

Дигидроксиметилфенилфосфин PhP(CH_2OH)₂ получали по методике [183]. ($NCCH_2CH_2$)₃**P** получали по методике [427].

 $Na[Ph_2P(m-SO_3-C_6H_4)]$ получали по методике [428].

1,2-Бис(фосфино)этан $H_2PCH_2CH_2PH_2$ получали по реакции Арбузова [429] с использованием триэтилфосфита [P(OEt)₃, Aldrich] и 1,2-дибромэтана (Aldrich) с последующим восстановлением с использованием LiAlH₄ (Aldrich).

Дихлорид палладия $PdCl_2$ – коммерческий продукт (Colonial Metals, Inc.) – использовали без дополнительной очистки.

Комплекс палладия(II) *танс*-PdCl₂(PhCN)₂ получали по методике [430].

трет-BuOK, $Na_2B_4O_7 \times 10H_2O$ – коммерческие продукты (Aldrich) – использовали без дополнительной очистки.

 ${
m CH_2O}$ (37%-й раствор в воде), ${
m H_2O_2}$ (30%-й раствор в воде), ${
m Na_2S_2O_4}$ (81%), ${
m Na_2S_2O_3}$, ${
m Na_2SO_3}$, ${
m NaHSO_3}$, ${
m KH_2PO_4}$, ${
m K_2HPO_4}$, ${
m Na_2HPO_4}$, ${
m NaHCO_3}$, ${
m Na_2CO_3}$, ${
m NaOH}$, ${
m HCI}$ (37%-й раствор в воде), **лимонная кислота** – коммерческие продукты (Fisher Scientific) – использовали без дополнительной очистки.

2. Оборудование

Все манипуляции с веществами чувствительными к кислороду и/или влаге проводили в гловбоксе в атмосфере аргона, либо в токе аргона в стеклянной посуде типа Schlenk.

ЯМР-спектры получали на спектрометре Bruker AV300 (300 МГц для 1 H; 121 МГц для 31 P{ 1 H}; 75 МГц для 13 C{ 1 H}) и Bruker AV400 (400 МГц для 1 H; 161 МГц для 31 P{ 1 H}; 100 МГц для 13 C{ 1 H}; 61 МГц для 2 D) при 300 К относительно внешних стандартов SiMe₄ и 85%-ого водного раствора H_{3} PO₄. br = уширенный (broad), s = синглет (singlet), d = дублет (doublet), t = триплет (triplet), p = пентет (pentet) и m = мультиплет (multiplet).

Элементный анализ проводился на анализаторе Carlo Erba 1108.

Рентгеноструктурный анализ соединений проводился на дифрактометре Bruker X8 APEX при 173 (±0.1) К с использованием графитового монохроматора с Мо Ка излучением (0.71073 Å). Данные были собраны и интегрированы с использованием программного обеспечения Bruker SAINT [431] и скорректированы на абсорбционные эффекты с использованием техники мультисканирования (SADABS) [432]. Данные скорректированы на поляризационный эффект и эффект Лоренца. Структуры были получены прямыми методами [433].

Масс-спектры низкого разрешения снимали на спектрометре Bruker Esquire, оборудованном системой электроспрей, с положительной полярностью ионов в интервале 60-1000 *м/е*. Спектрометр Bruker Biflex MALDI-TOF использовали в некоторых случаях.

ГЖХ-анализ содержания бензилового спирта проводила на хроматографе Hewlett Packard GC 5890, оснащенный детектором ДИП и двумя капиллярными колонками (HP OV17). Газ-носитель – гелий.

УФ-спектры снимали на диодном спектрометре HP 8452A Diode-Array в кварцевой кювете (1 см).

рН измерения проводили на рН-метре Accumet XL15 Benchtop с использование стеклянного электрода.

3. Описание синтеза новых соединений, их анализ и реакции

К главе 1

Исследование стабильности фосфинов (HOCH₂)₃P (THP) и (HOCH₂CH₂CH₂)₃P (THPP), а также фосфониевой соли (HOCH₂)₄PCI (THPC) в буферных растворах. Деионизированную воду кипятили под аргоном в течение 1 ч, и затем охлаждали под давлением аргона в течение ночи при перемешивании. Буферные растворы с рН 6.0, 7.0, 7.5, 7.8 и 8.0 готовили по стандартным рецептурам из KH_2PO_4 и NaOH. Растворы с рН 6.9 и 7.4 готовили из KH_2PO_4 и Na₂HPO₄. Растворы с рН 3.9, 5.0, 5.6 и 6.5 готовили из Na_2HPO_4 и лимонной кислоты. Растворы с рН 8.3 и 9.5 готовили из $Na_2B_4O_7 \times 0H_2O$ и водных HCl и NaOH соответственно. Раствор с рН 10.0 готовили из

 $NaHCO_3$ и Na_2CO_3 , а раствор с pH 11.0 готовили из K_2HPO_4 и NaOH. Все буферные растворы готовили в токе аргона.

В гловбоксе взвешивали фосфин ТНР (20.0 мг, 0.16 ммол) или ТНРР (33.7 мг, 0.16 ммол) в стеклянном стаканчике на 30 мл, снабженным септой. Вне гловбокса добавляли к каждому образцу свежеприготовленный и насыщенный аргоном буферный раствор. Для фосфина ТНР использовали 20 мл раствора с рН 3.9, 6.0, 8.0, 11.0 ([THP] $_0$ = 0.008 М) и 17 мл раствора с рН 5.0, 6.5, 6.9, 7.8, 8.3, 9.5, 10.0 ([THP] $_0$ = 0.009 М). Для фосфина ТНРР использовали 20 мл раствора во всех случаях ([THPP] $_0$ =0.009 М). Каждый раствор перемешивали магнитной мешалкой с доступом к воздуху. Периодически отбирали образец (~0.7 мл) в ЯМР-ампулу для спектров ЯМР 31 Р{ 1 Н}. Аналогичную процедуру использовали для растворов ТНР или ТНРР в 0.10 н. НС1 или 0.10 н NаОН.

Стабильность хлорида ($HOCH_2$)₄PCl изучали аналогично с использованием 23.8 мг соли в 10 мл буферного раствора.

Синтез соединения [HO(Me)CH]₄PCI (THEPC). PH₃ барботировали в течение 1.5 ч через раствор ацетальдегида (23 г) в воде (100 мл) насыщенной аргоном, с добавлением по каплям HCl (37%, 52 мл). После удаления воды, остаток перекристаллизовывали из ЕtOH. Продукт, белое твердое вещество, отфильтровывали и сушили при пониженном давлении в течение ночи. Выход составил ~80%. Найдено, %: С 39.3; Н 7.8. $C_8H_{20}ClO_4P$. Вычислено, %: С 38.95; Н 8.17. Данные ЯМР $^{31}P\{^1H\}$ обсуждены в главе 1. 1H ЯМР (D_2O): δ 5.16 (m, 4H, C*H*), 1.78 (dd, $^3J_{HH}$ = 7.1, $^3J_{PH}$ = 14.3, 12H, CH_3).

ЯМР исследование реакции ТНЕРС с Na₂SO₃ (1:1) или Et₃N (1:1). Хлорид ТНЕРС (30 мг, 0.12 ммол) добавляли при перемешивании и в атмосфере аргона к раствору Na₂SO₃ (15.4 мг, 0.12 ммол) или Et₃N (12.3 мг, 0.12 ммол) в D₂O, насыщенной аргоном (~ 1.5 мл). Часть реакционной смеси (~ 0.7 мл) помещали в ЯМР ампулу типа Ј-Young и периодически снимали спектры ЯМР при комнатной температуре. Реакции со стехиометрией, отличной от 1:1, исследовались аналогично. В спектрах были зарегистрированы новые фосфорсодержащие соединения THEP, ВНЕР-d₁ и МНЕР-d₂, данные ЯМР 31 P{ 1 H} которых обсуждены в главе 1. В спектре ЯМР 1 H (D₂O) протоны СН фосфинов ТНЕР и ВНЕР-d₁ дают широкий мультиплет при $\delta_{\rm H}$ 4.69–4.43 м.д. и дублет

квартетов при $\delta_{\rm H}$ 4.38 м.д. ($^3J_{\rm HH}=7.3$ и $^2J_{\rm PH}=1.9$), который присвоен одному из диастереомеров фосфина ТНЕР. Протоны CH_3 обоих фосфинов дают широкий мультиплет при $\delta_{\rm H}$ 1.60–1.40 м.д.

Синтез соединения $Ph_2PCH(OH)Et$ (Ib). Свежеперегнанный, свободный от кислорода пропиональдегид (0.36 мл, 0.50 ммол) добавляли при комнатной температуре под аргоном и при перемешивании к Ph_2PH (0.88 мл, 0.50 ммол). Через 15 мин количественно получали продукт как белое твердое вещество. Найдено, %: С 73.51; Н 7.03. $C_{15}H_{17}OP$. Вычислено, %: С 73.76; Н 7.01. $^{31}P\{^{1}H\}$ ЯМР (ДМСО- d_6): δ -6.8 (s). ^{1}H ЯМР (ДМСО- d_6): δ 7.61–7.27 (m, 10H, Ph), 5.09 (br s, 1H, OH), 4.36 (t, $^{3}J_{HH}$ = 6.0, 1H, CH(OH)), 1.45 (dp, $^{3}J_{HH}$ = $^{3}J_{PH}$ = 7.2, 2H, CH_2), 0.95 (t, $^{3}J_{HH}$ = 7.2, 3H, CH_3). $^{13}C\{^{1}H\}$ ЯМР (ДМСО- d_6): δ 137.5 (d, $^{1}J_{PC}$ = 13.9, C_{ipso} в PhP), 137.2 (d, $^{1}J_{PC}$ = 15.2, C'_{ipso} -P), 133.6 (d, $^{2}J_{PC}$ = 18.9, o-C в PhP), 133.3 (d, $^{2}J_{PC}$ = 17.2, o-C в Ph'P), 128.6 (s, p-C в PhP), 128.3 (d, $^{3}J_{PC}$ = 6.8, m-C в PhP), 128.2 (s, p-C в Ph'P), 128.0 (d, $^{3}J_{PC}$ = 6.3, m-C в Ph'P), 72.4 (d, $^{1}J_{PC}$ = 4.6, CHOH), 27.7 (d, $^{2}J_{PC}$ = 23.5, CH_2), 10.7 (d, $^{3}J_{PC}$ = 12.3, CH_3).

Синтез соединения Ph₂PCH(OH)CH₂Ph (Ic). Процедура аналогична той, что описана выше для **Ib**. Найдено, %: С 78.3; Н 6.25. С₂₀H₁₉OP. Вычислено, %: С 78.40; Н 6.25. 31 P{ 1 H} ЯМР (ДМСО- 4 6): δ –5.7 (s). 1 H ЯМР (ДМСО- 4 6): δ 7.66–7.12 (m, 15H, Ph), 5.30 (br s, 1H, O*H*), 4.70 (d, 3 *J*_{HH} = 6.2, 1H, C*H*(OH)), 2.81-2.66 (m, 2H, C*H*₂). 13 C{ 1 H} ЯМР (ДМСО- 4 6): δ 139.4 (d, 3 *J*_{PC} = 12.0, C_{ipso} в PhCH₂), 137.2 (d, 1 *J*_{PC} = 14.4, C_{ipso} в PhP), 136.9 (d, 1 *J*_{PC} = 15.4, C_{ipso} -P), 133.6 (d, 2 *J*_{PC} = 18.8, o-C в PhP), 133.4 (d, 2 *J*_{PC} = 17.3, o-C в Ph'P), 129.1 (s), 128.8 (s, p-C в PhP), 128.4 (d, 3 *J*_{PC} = 6.9, m-C в PhP), 128.3 (s, p-C в Ph'P), 127.8 (s), 125.5 (s, p-C в PhC), 72.4 (d, 1 *J*_{PC} = 6.5, CHOH), 40.8 (d, 2 *J*_{PC} = 26.0, CH₂).

Синтез соединения Ph₂PCH(OH)Ph (Id). Процедура аналогична той, что описана выше для **Ib**. Найдено, %: С 78.1; Н 5.8. С₁₉H₁₇OP. Вычислено, %: С 78.26; Н 5.86. ³¹P{¹H} ЯМР (ДМСО-d₆): δ 0.7 (s). ¹H ЯМР (ДМСО-d₆): δ 7.68–7.08 (m, 15H, Ph), 6.00 (br s, 1H, O*H*), 5.57 (d, ² J_{PH} = 2.1, 1H, C*H*(OH)). ¹³C{¹H} ЯМР (ДМСО-d₆): δ 142.5 (d, ² J_{PC} = 14.1, C_{ipso} в PhCH₂), 136.8 (d, ¹ J_{PC} = 17.4, C_{ipso} в PhP), 136.4 (d, ¹ J_{PC} = 13.7, C'_{ipso} -P), 133.7 (d, ² J_{PC} = 18.8, o-C в PhP), 133.2 (d, ² J_{PC} = 17.4, o-C в Ph'P), 128.5 (s, p-C в PhP), 128.0 (d,

 $^{3}J_{PC} = 6.2$, m-C B PhP), 128.4 (s, p-C B Ph'P), 127.9 (d, $^{3}J_{PC} = 6.9$, m-C B Ph'P), 127.4 (s), 127.1 (d, $^{3}J_{PC} = 6.7$, o-C B PhC), 126.7 (d, $^{5}J_{PC} = 1.9$, p-C B PhC), 74.4 (d, $^{1}J_{PC} = 3.7$, CHOH).

Синтез соединения (*c*-C₆H₁₁)₂PCH(OH)Ph (Ie). Процедура аналогична той, что описана выше для Ib. Найдено, %: С 74.95; Н 9.50. С₁₉H₂₉OP. Вычислено, %: С 74.95; Н 9.61. ³¹P{¹H} ЯМР (ДМСО-d₆): δ 16.8 (s). ¹H ЯМР (ДМСО-d₆): δ 7.38–7.13 (m, 5H, Ph), 5.38 (dd, ³ J_{PH} » 6.5, ³ J_{HH} = 4.1, 1H, OH), 5.12 (d, ³ J_{HH} = 4.1, 1H, CH(OH)), 1.78-0.96 (m, 22H, C₆ H_{11}).

Исследование стабильности моно(а-гидроксиалкил)фосфинов в органических растворителях. В гловбоксе растворяли соответствующий фосфин (0.05 ммол) в 1 мл растворителя. Порцию раствора (~ 0.7 мл) помещали в аргоне в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР 31 Р{ 1 H}.

Исследование реакции Ph_2PH с бензальдегидами в MeOH. В гловбоксе добавляли Ph_2PH (18.6 мг, 0.1 ммол) к раствору альдегида (0.1 ммол) в MeOH (1 мл). Порцию раствора (~ 0.7 мл) помещали в аргоне в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР $^{31}P\{^{1}H\}$.

Восстановление вератрового альдегида фосфином ТНРР в воде. Вератровый альдегид (100 мг, 0.60 ммол) добавляли под аргоном в раствор ТНРР (163 мг, 0.78 ммол, полагая 100% чистоту) в воде (3.5 мл). Реакционную смесь перемешивали в течение 72 ч при 90°С и экстрагировали Et_2O (4 х 4 мл). Эфирные слои сушили над Na_2SO_4 . Вератровый спирт выделяли с помощью колоночной хроматографии (силикагель, 230-400 меш) с использованием смеси Et_2O -петролейный эфир (3:1) в качестве элюента. После удаления растворителя в вакууме получали бесцветную жидкость, **3,4-(MeO)**₂- $C_6H_3CH_2OH$. Выход 87 мг (86% на исходный альдегид). ¹H ЯМР (CDCl₃): δ 6.94-6.80 (m, 3H, C_6H_3), 4.61 (s, 2H, CH_2), 3.88 (s, 3H, OCH_3), 3.87 (s, 3H, OCH_3), 2.70 (br s, 1H, OH).

Реакцией в D_2 О получали вератровый спирт, монодейтерированный в бензильном положении, **3,4-(MeO)₂-C₆H₃CH(D)OH**. ²D ЯМР (CHCl₃): δ 4.61 (d, ² J_{HD} = 1.8); ²D{¹H} δ 4.61 (s); ¹H ЯМР (CDCl₃): δ 6.96-6.83 (m, 3H, C₆ H_3), 4.61 (t, ² J_{HD} = 1.8, 1H, CHD), 3.90 (s, 3H, OC H_3), 3.89 (s, 3H, OC H_3).

Восстановление других бензальдегидов проводили аналогично.

- **2-MeOC₆H₄CH₂OH** (72 мг, 86%). ¹H ЯМР (CDCl₃): δ 7.30-7.22 (m, 2H), 6.96-6.83 (m, 2H), 4.66 (s, 2H, CH₂), 3.83 (s, 3H, OCH₃), 2.59 (br s, 1H, O*H*).
- **3-MeOC₆H₄CH₂OH** (67 мг, 81%). ¹H ЯМР (CDCl₃): δ 7.27-7.20 (m, 1H), 6.91-6.77 (m, 3H), 4.58 (s, 2H, C*H*₂), 3.76 (s, 3H, OC*H*₃), 2.67 (br s, 1H, O*H*).
- **4-MeOC₆H₄CH₂OH** (68 MΓ, 82%). ¹H ЯМР (CDCl₃): δ 7.28-7.21 (m, 2H, *o-H*), 6.89-6.82 (m, 2H, *m-H*), 4.55 (s, 2H, C*H*₂), 3.77 (s, 3H, OC*H*₃), 2.29 (br s, 1H, O*H*).
- **2,4,6-(MeO)**₃**C**₆**H**₂**CH**₂**OH** (60 мг, 50%). ¹H ЯМР (CDCl₃): δ 6.12 (s, 2H, C₆H₂), 4.69 (s, 2H, CH₂), 3.81 (s, 6H, *o*-OCH₃), 3.80 (s, 3H, *p*-OCH₃), 2.16 (br s, 1H, OH).
- **4-IC₆H₄CH₂OH** (109 MΓ, 77%). ¹H ЯМР (CDCl₃): δ 7.70-7.64 (m, 2H, o-H), 7.13-7.06 (m, 2H, m-H), 4.63 (s, 2H, CH_2) 1.65 (br s, 1H, OH).
- **4-BrC₆H₄CH₂OH** (93 MΓ, 83%). ¹H ЯМР (CDCl₃): δ 7.51-7.43 (m, 2H, *o-H*), 7.27-7.19 (m, 2H, *m-H*), 4.64 (s, 2H, C*H*₂), 1.70 (br s, 1H, O*H*).
- **4-ClC₆H₄CH₂OH** (73 мг, 85%). ¹H ЯМР (CDCl₃): δ 7.35-7.26 (m, 4H, C₆H₄), 4.66 (s, 2H, CH₂), 1.65 (br s, 1H, O*H*).
- **2,6-Cl₂C₆H₃OH** (90 мг, 85%). ¹H ЯМР (CDCl₃): δ 7.34-7.13 (m, 3H, C₆H₃), 4.95 (s, 2H, CH₂), 2.01 (br s, 1H, O*H*).
- **4-FC₆H₄CH₂OH** (49 MΓ, 64%). ¹H ЯМР (CDCl₃): δ 7.31-7.22 (m, 2H, o-H), 7.05-6.94 (m, 2H, m-H), 4.57 (s, 2H, CH_2), 2.53 (br s, 1H, OH).
- **2-MeC₆H₄CH₂OH** (61 мг, 83%). ¹H ЯМР (CDCl₃): δ 7.37-7.31 (m, 1H, *o-H*), 7.24-7.14 (m, 3H, *m* и *p-H*), 4.69 (s, 2H, C*H*₂), 2.35 (s, 3H, C*H*₃), 1.56 (br s, 1H, O*H*).
- **4-MeC₆H₄CH₂OH** (55 MΓ, 75%). ¹H ЯМР (CDCl₃): δ 7.25 (d, ³ J_{HH} = 8, 2H, o-H), 7.16 (d, ³ J_{HH} = 8, 2H, m-H), 4.64 (s, 2H, CH_2), 2.34 (s, 3H, CH_3), 1.55 (br s, 1H, OH).
- **3,5-Me₂C₆H₃CH₂OH** (53 MΓ, 65%). ¹H ЯМР (CDCl₃): δ 6.97 (s, 2H, *o-H*), 6.93 (s, 1H, *p-H*), 4.59 (s, 2H, C*H*₂), 2.32 (s, 6H, C*H*₃), 1.97 (s, 1H, O*H*).
- **3-HOC₆H₄CH₂OH** (61 MΓ, 82%). ¹H ЯМР (CD₃OD): δ 7.18-7.11 (m, 1H), 6.84-6.78 (m, 2H), 6.72-6.66 (m, 1H), 4.53 (s, 2H, C*H*₂).
- **PhCH₂OH** (58 мг, 89%) определяли с помощью ГЖХ эфирного раствора, полученного после экстрагирования реакционной смеси.
- Реакция вератрового альдегида с $(HOCH_2)_3P$, Et_3P и $Ph_2(m\text{-NaSO}_3C_6H_4)P$ проводили аналогично процедуре, примененной для THPP.

Восстановление 3,4-диметоксиацетофенона фосфином ТНРР в воде. Реакцию проводил по процедуре аналогичной той, что использовалась для восстановления бензальдегидов. Выход спирта 3,4-(MeO)₂-C₆H₃CH(CH₃)OH 3 мг (3%). ¹H ЯМР (CDCl₃): δ 6.96-6.78 (m, 3H, C₆H₃), 4.84 (q, ³J_{HH} = 6, 1H, CH), 3.88 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 1.47 (d, ³J_{HH} = 6, 3H, CH₃).

Реакция гидрокоричного альдегида с ТНРР в воде. Реакцию проводил по процедуре аналогичной той, что использовалась для восстановления бензальдегидов. Выход **5-фенил-2-(бензил)-2-пентаналя** (44 мг, 59%). ¹H ЯМР (CDCl₃): δ 9.45 (s, 1H, CHO), 7.34-7.08 (m, 10H, C₆H₅), 6.62 (t, ³J_{HH} = 7, 1H, C=CH), 3.59 (s, 2H, PhCH₂C=C), 2.81-2.68 (m, 4H, PhCH₂CH₂) [434].

ЯМР исследование реакции **ТНРР** с вератровым альдегидом. Растворяли ТНРР (30 мг, 0.144 ммол) и альдегид (23.9 мг, 0.144 ммол) в D_2O (1.75 мл). Смесь перемешивали при комнатной температуре в течение 1 ч до полного растворения альдегида. Часть реакционной смеси (~ 0.7 мл) помещали в ЯМР ампулу типа J-Young и нагревали до 90°C. Спектры ЯМР снимали периодически при комнатной температуре.

ЯМР исследование реакции гидрохлорида ТНРР с вератровым альдегидом. Проводили аналогично процедуре, описанной выше, с использованием гидрохлорида ТНРР (20 мг, 0.082 ммол) и альдегида (13.6 мг, 0.082 ммол). После перемешивания в течение 1 ч при комнатной температуре, в спектре ЯМР 31 Р{ 1 H} был найден дейтерохлорид ТНРР при δ 17.0 м.д. (t, $^{1}J_{PD}=75$) и фосфониевая соль **IV** (схема 25) при δ 37.9 м.д. (s). ЯМР 1 H для **IV**: δ 7.18-7.09 (m, 3H, $C_{6}H_{3}$), 5.84 (d, $^{2}J_{PH}=4$, 1H, PCH), 3.91 (s, 3H, OC H_{3}), 3.90 (s, 3H, OC H_{3}), 3.66 (t, $^{3}J_{HH}=6$, 6H, C H_{2} OH), 2.37-2.23 (m, 6H, PC H_{2}), 1.85-1.70 (m, 6H, PCH $_{2}$ CH $_{2}$)]. Затем реакционную массу нагревали в течение 24 ч при 90 °C, изменений в спектрах ЯМР не наблюдали. После удаления растворителя остаток анализировали с помощью масс-спектрометрии ESI (МеОН): были найдены катион соли **IV** [M/e 375.3 (100%, [M] $^{+}$); расч. 375.4] и протонированная форма ТНРР [M/e 209.2 (30%, [M+H] $^{+}$); расч. 209.2].

К главе 2

Синтез бисцвиттер-иона Va. Фосфин Et₃P (60 мг, 0.51 ммол) добавляли под аргоном к суспензии синапового альдегида (100 мг, 0.48 ммол) в воде (5 мл). Реакционную смесь перемешивали в течение 3 дней при комнатной температуре (или 3 ч при 50° C), контролируя полноту реакции с помощью спектрометрии ЯМР 31 P{ 1 H}. удаления воды получали электростатический остаток темного цвета, содержащего бисцвиттер-ион **Va** и ~ 5% фосфин оксида. $^{31}P\{^{1}H\}$ ЯМР ($D_{2}O$): δ 43.1 (d, $^{4}J_{PP} = 3$, P^{1}), 40.6 (d, $^{4}J_{PP} = 3$, P^{2}). ^{1}H ^{1}H ^{1}H ^{2}H ^{2}H ^{3}H ^{3}H ^{4}H ^{3}H ^{4}H ^{4}H ^{5}H 5 1H, H^{12}), 6.45 (s, 2H, $H^{8,8'}$), 6.09 (s, 1H, $H^{12'}$), 3.98 [br pseudo t, ${}^2J_{\rm PH}$ » ${}^3J_{\rm HH}$ » 13, 1H, H^4], 3.80 (s, 3H, OCH_3^{13}), 3.53 (s, 6H, $OCH_3^{9,9}$), 3.36 [br pseudo t, $^2J_{PH}$ » $^3J_{HH}$ » 14, 1H, H^6], 3.19 (br m, 1H, H^5 , перекрывается с $OCH_3^{13'}$), 3.17 (s, 3H, $OCH_3^{13'}$), 2.48 (br m, 1H, H^5), 2.36-2.01 (m, 12H, PC H_2), 1.22-0.91 (m, 18H, PC H_2 C H_3). ¹³C{¹H} ЯМР (D₂O): δ 197.0 (s, C^{1}), 162.9 (d, ${}^{3}J_{PC} = 6.1$, C^{3}), 158.8 (s, C^{10}), 150.8 (s, $C^{9,9}$), 150.7 (d, ${}^{4}J_{PC} = 2.3$, C^{13}), 150.6 (d, $^{4}J_{PC} = 2.3, C^{13}$, 144.5 (s, C^{14}), 118.5 (d, $^{2}J_{PC} = 6.1, C^{2}$), 114.6 (s, C^{7}), 113.5 (d, $^{2}J_{PC} = 5.4$, C^{11}), 111.9 (br s, $C^{8,8'}$), 111.1 (d, ${}^{3}J_{PC} = 6.1$, $C^{12'}$), 104.3 (d, ${}^{3}J_{PC} = 3.1$, C^{12}), 56.8 (s, OCH₃¹³), 55.9 (s, OCH₃^{9,9'}), 55.5 (s, OCH₃^{13'}), 36.7 (dd, ${}^{1}J_{PC} = 45.1$, ${}^{3}J_{PC} = 13.0$, C^{6}), 28.8 (dd, ${}^{1}J_{PC} = 13.0$), C^{6} 45.9, ${}^{3}J_{PC} = 13.8$, C^{4}), 24.6 (s, C^{5}), 12.0 (d, ${}^{1}J_{PC} = 45.9$, $P^{1}CH_{2}CH_{3}$), 10.7 (d, ${}^{1}J_{PC} = 46.7$, $P^2CH_2CH_3$), 5.5 (d, $^2J_{PC}=6.1$, $P^1CH_2CH_3$), 4.9 (d, $^2J_{PC}=5.4$, $P^2CH_2CH_3$). Macc-спектр ESI (H_2O) : дикатион протонированной формы **Va** [м/2e 318.3 (100%, [**Va** + 2H]²⁺), расч. 318.7] и катион протонированной формы монофосфониевой соли [м/e 517.4 (65%, [\mathbf{Va} – $\mathrm{Et_3P + H]}^+$), pacy. 517.2].

Синтез бисцвиттер-иона Vb. Соединение синтезировали по процедуре, описанной выше для Va с использованием кумарового альдегида (90 мг, 0.61 ммол) и Et_3P (76 мг, 0.64 ммол). ${}^{31}P\{{}^{1}H\}$ ЯМР (D_2O): δ 43.0 (d, ${}^{4}J_{PP}=3$, P^1), 39.5 (d, ${}^{4}J_{PP}=3$, P^2). ${}^{1}H$ ЯМР (D_2O): δ 9.33 (s, 1H, H^1), 7.69 (s, 1H, H^3), 6.74 (d, ${}^{3}J_{HH}=8.8$, 2H, $H^{8,8'}$), 6.38 (d, ${}^{3}J_{HH}=8.8$, 2H, $H^{9,9'}$), 7.20- 6.00 (br m, 4H, $H^{12,12',13,13'}$), 3.94 [br pseudo t, ${}^{2}J_{PH}$ » ${}^{3}J_{HH}$ » 14, 1H, H^4], 3.26 [br pseudo t, ${}^{2}J_{PH}$ » ${}^{3}J_{HH}$ » 14, 1H, H^6], 3.03 (br m, 1H, H^5), 2.37 (br m, 1H, H^5 '), 2.28- 1.94 (m, 12H, ${}^{1,2}CH_2$), 1.18- 0.88 (m, 18H, ${}^{1,2}CH_2CH_3$). ${}^{13}C\{{}^{1}H\}$ ЯМР (D_2O ; 75 Γ II): δ 197.9 (s, C^1), 174.5 (s, C^{10}), 167.1 (d, ${}^{5}J_{PC}=1.7$, C^{14}), 162.8 (d, ${}^{3}J_{PC}=6.3$, C^3), 134.8 (s, $C^{8,8'}$), 133.7 (br s, $C^{12'}$), 127.5 (br s, C^{12}), 121.1 (d, ${}^{2}J_{PC}=5.7$, C^2), 120.3 (s, $C^{9,9'}$), 119.9 (s, $C^{13,13'}$), 118.2 (s, C^7), 113.2 (d, ${}^{2}J_{PC}=5.7$, C^{11}), 35.5 (dd, ${}^{1}J_{PC}=44.8$, ${}^{3}J_{PC}=13.2$, C^6), 28.4 (dd, ${}^{1}J_{PC}=44.8$, ${}^{3}J_{PC}=13.2$, C^6), 28.4 (dd, ${}^{1}J_{PC}=44.8$, ${}^{3}J_{PC}=13.2$, C^6), 28.4 (dd, ${}^{1}J_{PC}=44.8$, ${}^{3}J_{PC}=13.2$, ${}^{2}J_{PC}=13.2$, ${}$

45.4, ${}^3J_{PC} = 14.4$, C^4), 24.4 (s, C^5), 11.8 (d, ${}^1J_{PC} = 46.0$, $P^1CH_2CH_3$), 10.4 (d, ${}^1J_{PC} = 47.1$, $P^2CH_2CH_3$), 5.3 (d, ${}^2J_{PC} = 5.7$, $P^1CH_2CH_3$), 5.0 (d, ${}^2J_{PC} = 5.2$, $P^2CH_2CH_3$). Масс-спектр ESI (MeOH): м/e 515.2 (11%), [**Vb** + H]⁺, расч. 515.3; м/e 397.1 (100%), [**Vb** – Et₃P + H]⁺, расч. 397.2.

Синтез бисцвиттер-иона Vc. Соединение синтезировали по процедуре, описанной выше для **Va** с использованием кониферилового альдегида (200 мг, 1.12 ммол) и Et_3P (140 мг, 1.19 ммол). Продукт представляет собой смесь *a*- и *b*- атропоизомеров. Масс-спектр ESI (H_2O): *м/е* 457.3 (100%), [$Vc - Et_3P + H$]⁺, расч. 457.2.

Vc-b. 31 P{ 1 H} ЯМР (D₂O): δ 44.6 (s, P^{1}), 41.8 (s, P^{2}). 1 H ЯМР (D₂O): δ 9.30 (s, 1H, H^{1}), 7.66 (s, 1H, H^{3} , перекрывается с H^{3} -а), 6.74 (H^{8} ' и H^{12} , перекрывается с H^{8} '-а и H^{13} '-а), 6.43 (d, $^{3}J_{HH}$ = 8.4, 1H, H^{9} '), 6.36 (s, 1H, H^{8}), 6.21 (d, 1H, H^{13} ' перекрывается с H^{12} -а), 6.07 (br d, $^{3}J_{HH}$ = 6.7, 1H, H^{12} '), 3.94 [br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 13, 1H, H^{4}], 3.76 (s, 3H, OC H_{3}^{13}), 3.42 (s, 3H, OC H_{3}^{9}), 3.23 [br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 14, 1H, H^{6}], 3.04 (br m, 1H, H^{5}), 2.38 (br m, 1H, H^{5} '), 2.27-1.99 (m, 12H, H^{12} C H_{2} C H_{3}), 1.18-0.88 (m, 18H, H^{12} C H_{2} C H_{3}). 13°C{ H^{1} H} ЯМР (D₂O): δ 197.4 (s, H^{1} C H_{2} C H_{3} C H_{3} C, 166.7 (s, H^{1} C H_{3} C H_{3} C, 169. 151.3 (s, H^{1} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3} C H_{3} C H_{3} C, 160.8 (s, H^{1} C H_{3}

13.0, C^6), 28.6 (dd, ${}^{1}J_{PC} = 44.4$, ${}^{3}J_{PC} = 14.5$, C^4), 24.7 (s, C^5), 12.0 (d, ${}^{1}J_{PC} = 46.7$, $P^{1}CH_{2}CH_{3}$), 10.4 (d, ${}^{1}J_{PC} = 48.2$, $P^{2}CH_{2}CH_{3}$), 5.4 (d, ${}^{2}J_{PC} = 5.4$, $P^{1}CH_{2}CH_{3}$), 4.9 (d, ${}^{2}J_{PC} = 5.4$, $P^{2}CH_{2}CH_{3}$).

Синтез бисцвиттер-иона Vd. Соединение синтезировали по процедуре, описанной выше для Va за исключением того, что Me₃P добавляли как 1.0 M раствор в толуоле (500 mi, 0.5 ммол). Смесь перемешивали в течение 5 дней при комнатной температуре. 31 P{ 1 H} ЯМР (D₂O): δ 31.9 (d, $^{4}J_{PP}=3$, P^{1}), 30.8 (d, $^{4}J_{PP}=3$, P^{2}). 1 H ЯМР (D₂O): δ 9.21 (s, 1H, H^{1}), 7.57 (s, 1H, H^{3}), 6.55 (s, 1H, H^{12}), 6.38 (s, 2H, $H^{8.8}$), 6.02 (s, 1H, H^{12}), 3.83 (br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 13, 1H, H^{4} , перекрывается с ОС H_{3}^{13}), 3.79 (s, 3H, ОС H_{3}^{13}), 3.54 (s, 6H, ОС $H_{3}^{9.9}$), 3.39 [br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 14, 1H, H^{6}], 3.21 (s, 3H, ОС H_{3}^{13}), 3.11 (br m, 1H, H^{5}), 2.52 (br m, 1H, H^{5}), 1.82 (d, $^{2}J_{PH}=13.7$, 9H, CH_{3} P 1), 1.70 (d, $^{2}J_{PH}=13.8$, 9H, CH_{3} P 2). 13 C{ 1 H} ЯМР (D₂O): δ 196.6 (s, C^{1}), 162.2 (d, $^{3}J_{PC}=6.1$, C^{3}), 158.1 (s, C^{10}), 150.8 (s, $C^{9.9}$), 150.6 (d, $^{4}J_{PC}=2.3$, C^{13}), 150.1 (s, C^{13}), 143.1 (br s, C^{14}), 119.3 (d, $^{2}J_{PC}=6.1$, C^{2}), 114.8 (s, C^{7}), 114.7 (d, $^{2}J_{PC}=3.1$, C^{11}), 111.4 (br s, $C^{8.8}$), 111.0 (d, $^{3}J_{PC}=4.9$, C^{122}), 103.3 (s, C^{12}), 56.8 (s, OCH $_{3}^{13}$), 55.9 (s, OCH $_{3}^{9.9}$), 55.7 (s, OCH $_{3}^{13}$), 38.8 (dd, $^{1}J_{PC}=50.8$, $^{3}J_{PC}=14.5$, C^{6}), 32.0 (dd, $^{1}J_{PC}=50.4$, $^{3}J_{PC}=15.3$, C^{4}), 23.4 (s, C^{5}), 7.8 (d, $^{1}J_{PC}=50.8$, $^{1}CH_{3}$), 6.1 (d, $^{1}J_{PC}=54.3$, $^{1}CH_{3}$). Macc-cnektp ESI MS (H $_{2}$ O): M/e 475.3 (65%), [IXd — Me $_{3}$ P + H $_{1}^{+}$), pacu. 475.2.

Синтез бисцвиттер-иона Ve. Соединение синтезировали по процедуре, описанной выше для Va с использованием [HO(CH₂)₃]₃P (100 мг, 0.48 ммол, полагая 100% чистоту). 31 P{ 1 H} ЯМР (D₂O): δ 40.4 (d, 4 J_{PP} = 3, 1), 38.1 (d, 4 J_{PP} = 3, 2). 1 H ЯМР (D₂O; 300 МГц): δ 9.37 (s, 1H, 1), 7.77 (s, 1H, 3), 6.65 (s, 1H, 12), 6.48 (s, 2H, 1 8.6), 6.15 (s, 1H, 12 1), 4.12 [br pseudo t, 2 J_{PH} » 3 J_{HH} » 13, 1H, 4 H, 3.80 (s, 3H, OCH₃13), 3.57 [t, 3 J_{HH} = 5.3, 12H, CH₂OH, перекрывается с OCH₃9.9, 3.54 (s, 6H, OCH₃9.9, 3.49 [br pseudo t, 2 J_{PH} » 3 J_{HH} » 14, 1H, 4 H, 3.25 (br m, 1H, 4 H, 3.18 (s, 3H, OCH₃1313), 2.58 (br m, 1H, 4 1), 2.49-2.14 (m, 12H, P^{1,2}CH₂CH₂), 1.82-1.35 [m, 12H, P^{1,2}CH₂CH₂). 13 C{ 1 H} ЯМР (D₂O; 75 Гц): δ 197.1 (s, 2 Cl), 163.2 (d, 3 J_{PC} = 6.3, 2 Cl), 151.6 (d, 4 J_{PC} = 1.7, 2 Cl), 151.4 (s, 2 Cl), 150.8 (s, 2 9.9), 147.7 (s, 2 Cl), 118.3 (d, 2 J_{PC} = 5.7, 2 Cl), 114.9 (s, 2 Cl), 111.9 (br s, 2 8.8), 111.4 (d, 3 J_{PC} = 6.3, 2 Cl), 110.9 (d, 2 J_{PC} = 5.7, 2 Cl), 104.6 (d, 3 J_{PC} = 3.1, 2 Cl), 61.1 (d, 3 J_{PC} = 16.7, 2 CH₂OH), 60.8 (d, 3 J_{PC} = 17.2, 2 2CH₂OH), 56.9 (s, OCH₃131), 56.0 (s, OCH₃9.9), 55.6 (s, OCH₃131), 37.7 (dd, 1 J_{PC} = 45.4, 3 J_{PC} = 13.2, 2 Cl), 29.8 (dd, 1 J_{PC} = 46.6, 3 J_{PC} = 14.4, 2 4), 24.6 (s, OCH₃131), 37.7 (dd, 1 J_{PC} = 45.4, 3 J_{PC} = 13.2, 2 Cl), 29.8 (dd, 1 J_{PC} = 46.6, 3 J_{PC} = 14.4, 2 4), 24.6 (s,

 C^5), 24.2 (d, ${}^2J_{PC} = 4.0$, $P^1CH_2CH_2$), 23.7 (d, ${}^2J_{PC} = 4.0$, $P^2CH_2CH_2$), 16.0 (d, ${}^1J_{PC} = 46.6$, P^1CH_2), 14.7 (d, ${}^1J_{PC} = 47.7$, P^2CH_2). Масс-спектр (MALDI): m/e 815.5 (5%), [Ve + H]⁺, расч. 815.4; m/e 607.5 (100%), [Ve – R₃P + H]⁺, расч. 607.3.

Синтез бисцвиттер-иона Vf. Соединение синтезировали по процедуре, описанной выше для \mathbf{Va} , но реакционную смесь перемешивали 8 ч. $^{31}P\{^{1}H\}$ ЯМР: δ 29.4 (s, P^1), 27.4 (s, P^2). ¹H Π MP: δ 9.19 (s, 1H, H^1), 7.79 (t, $^3J_{\rm HH} = 7.4$, 1H, p-H 1 B 1 P), 7.68 (t, $^3J_{\rm HH} = 7.4$), 1 PH 2 = 7.5, 1H, p-H в P^2), 7.66-7.51 (m, 8H, o- и m-H в $P^{1,2}$), 7.57 (s, 1H, H^3), 6.23 (s, 2H, $H^{8,8}$), 5.94 (s, 1H, H^{12}), 5.39 (s, 1H, H^{12}), 3.85 [br pseudo t, ${}^2J_{\rm PH}$ » ${}^3J_{\rm HH}$ » 13, 1H, H^4], 3.48 [br pseudo t, ${}^{2}J_{PH}$ » ${}^{3}J_{HH}$ » 14, 1H, H^{6}], 3.41 (s, 6H, OC $H_{3}^{9,9'}$), 3.26 (s, 3H, OC $H_{3}^{13'}$), 3.17 (br m, 1H, H^5), 3.14 (s, 3H, OC H_3^{13}), 2.30 (d, $^2J_{PH} = 13.9$, 3H, H_3CP^1), 2.06 (d, $^2J_{PH} = 13.5$, 3H, $H_3\text{CP}^2$), 2.01 (br m, 1H, $H^{5'}$), 1.93 (d, $^2J_{\text{PH}} = 13.6$, 6H, $H_3\text{C'P}^{1,2}$). $^{13}\text{C}\{^1\text{H}\}$ 9MP: δ 196.5 (s, C^{1}), 162.6 (d, ${}^{3}J_{PC} = 6.9$, C^{3}), 158.2 (s, C^{10}), 150.7 (s, $C^{9,9}$), 150.3 (s, $C^{13,13}$), 144.6 (s, C^{14}), 135.0 (перекрывающиеся дублеты p-C в $P^{1,2}$), 131.9 (d, ${}^3J_{PC} = 9.2$, m-C), 130.6 (d, ${}^3J_{PC} =$ 9.2, m-C), 130.2 (d, ${}^{2}J_{PC} = 12.2$, o-C), 129.8 (d, ${}^{2}J_{PC} = 11.5$, o-C), 119.7 (d, ${}^{1}J_{PC} = 81.8$, ipso-C- P^{1}), 118.7 (d, ${}^{2}J_{PC} = 5.4$, C^{2}), 117.7 (d, ${}^{1}J_{PC} = 81.8$, $ipso-C-P^{2}$), 114.8 (d, ${}^{4}J_{PC} = 1.5$, C^{7}), 112.6 (s, C^{11}), 111.3 (br s, $C^{8,8'}$), 111.2 (d, ${}^{3}J_{PC} = 5.4$, $C^{12'}$), 103.1 (s, C^{12}), 56.0 (s, OCH₃^{13'}), 55.8 (s, $OCH_3^{8,8}$ и OCH_3^{13}), 40.6 (dd, $^1J_{PC} = 48.2$, $^3J_{PC} = 15.3$, C^6), 34.3 (dd, $^1J_{PC} = 50.5$, $^3J_{PC} = 16.1$, C^4), 23.6 (s, C^5), 5.9 (d, $^1J_{PC} = 52.0$, H_3CP^1), 5.7 (d, $^1J_{PC} = 55.8$, H_3CP^2), 5.6 (d, $^1J_{PC} = 53.5$, $H_3C'P^1$), 3.9 (d, ${}^1J_{PC} = 56.6$, $H_3C'P^2$). Macc-спектр ESI (H_2O): M/e 537.2 (100%), [Vf – $Me_2PhP + H]^+$, pacy. 537.2; m/e 139.0 (80%), $[Me_2PhP + H]^+$, pacy. 139.1.

Синтез бисцвиттер-иона Vg. Соединение синтезировали по процедуре, описанной выше для Va. 31 P{ 1 H} ЯМР: δ 37.4 (s, P^{1}), 36.2 (s, P^{2}). 1 H ЯМР: δ 9.16 (s, 1H, H^{1}), 6.19 (s, 2H, $H^{8,8}$), 6.00 (s, 1H, H^{12}), 5.08 (s, 1H, H^{12}), 3.77 [br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 13, 1H, H^{4}], 3.39 (br t, 1H, H^{6} перекрывается с ОС $H_{3}^{9,9}$), 3.41 (s, 6H, ОС $H_{3}^{9,9}$), 3.15 (s, 6H, ОС $H_{3}^{13,13}$), 3.19 (br m, 1H, H^{5}), 2.81–2.00 (m, 8H, $P^{1,2}$ C H_{2}), 1.81 (br m, 1H, H^{5}), 1.13–0.90 (m, 12H, $P^{1,2}$ C H_{2} C H_{3}). 13 C{ 1 H} ЯМР: δ 197.8 (s, C^{1}), 163.9 (d, $^{3}J_{PC}$ = 6.3, C^{3}), 159.9 (s, C^{10}), 151.9 (s, $C^{9,9}$), 151.0 (s, C^{13}), 150.8 (s, C^{13}), 143.4 (s, C^{14}), 136.5 (d, $^{4}J_{PC}$ = 3.0, ^{p-}C в P^{1}), 136.3 (d, $^{4}J_{PC}$ = 3.0, ^{p-}C в P^{2}), 134.1 (d, $^{3}J_{PC}$ = 7.9, ^{m-}C в P^{1}), 133.0 (d, $^{3}J_{PC}$ = 8.1, ^{m-}C в P^{2}), 131.5 (d, $^{2}J_{PC}$ = 11.8, ^{o-}C), 131.4 (d, $^{2}J_{PC}$ = 11.5, ^{o-}C), 119.3 (d, $^{2}J_{PC}$ = 5.6, C^{2}), 117.8 (d, $^{1}J_{PC}$ = 76.5, $^{i}pso-C-P^{1}$), 116.1 (s, C^{7}), 115.8 (d, $^{1}J_{PC}$ = 76.7, $^{i}pso-C-P^{2}$), 115.4 (s, C^{11}), 112.6 (br s,

 $C^{8,8'}$), 111.9 (d, ${}^{3}J_{PC} = 5.9$, $C^{12'}$), 104.1 (d, ${}^{3}J_{PC} = 2.8$, C^{12}), 57.1 (s, OCH₃^{9,9'}), 57.0 (s, OCH₃^{13'}), 56.9 (s, OCH₃¹³), 38.9 (dd, ${}^{1}J_{PC} = 44.8$, ${}^{3}J_{PC} = 14.2$, C^{6}), 34.6 (dd, ${}^{1}J_{PC} = 46.2$, ${}^{3}J_{PC} = 14.7$, C^{4}), 25.7 (s, C^{5}), 13.4 (d, ${}^{1}J_{PC} = 49.0$, $P^{1}CH_{2}$ '), 12.4 (d, ${}^{1}J_{PC} = 45.9$, $P^{1}CH_{2}$), 11.6 (d, ${}^{1}J_{PC} = 45.9$, $P^{2}CH_{2}$), 10.5 (d, ${}^{1}J_{PC} = 52.0$, $P^{2}CH_{2}$ '), 7.1 (d, ${}^{2}J_{PC} = 5.8$, $P^{1}CH_{2}CH_{3}$ '), 6.9 (d, ${}^{2}J_{PC} = 5.5$, $P^{1}CH_{2}CH_{3}$), 6.2 (d, ${}^{2}J_{PC} = 4.9$, $P^{2}CH_{2}CH_{3}$), 5.9 (d, ${}^{2}J_{PC} = 4.9$, $P^{2}CH_{2}CH_{3}$ '). Macc-спектр ESI (H₂O): M/e 565.3 (100%), [**Vg** – Et₂PhP + H]⁺, pacy. 565.2; M/e 167.0 (53%), [Et₂PhP + H]⁺, pacy. 167.1.

Синтез бисфосфониевого дихлорида VIa. Соединение получали добавлением HCl (0.18 мл, 10%-й раствор) к раствору соединения Va, полученному как описано выше. После удаления воды желтый остаток сушили в вакууме в течение ночи и перекристаллизовывали из СНСІ₃. Выход ~100 мг (60%). Найдено, %: С 57.35; Н 7.84. $C_{34}H_{54}Cl_2O_7P_2$. Вычислено, %: С 57.71; Н 7.69. ³¹P{ ¹H} ЯМР: δ 45.0 (s, P^1), 42.5 (s, P^2). ¹H ЯМР: δ 9.63 (s, 1H, H^1), 7.96 (s, 1H, H^3), 6.70 (s, 1H, H^{12}), 6.47 (s, 2H, $H^{8,8'}$), 6.21 (s, 1H, $H^{12'}$), 3.98 [br pseudo t, ${}^2J_{\rm PH}$ » ${}^3J_{\rm HH}$ » 13, 1H, H^4], 3.92 (s, 3H, CH_3O^{13}), 3.72 (s, 6H, CH_3O^9), 3.52 [br pseudo t, ${}^{2}J_{PH}$ » ${}^{3}J_{HH}$ » 14, 1H, H^{6}], 3.41 (s, 3H, $CH_{3}O^{13}$), 3.12 (br m, 1H, H^{5}), 2.70 (br m, 1H, $H^{5'}$), 2.58–2.34 (m, 6H, $P^{1}CH_{2}CH_{3}$), 2.27 (dq, $^{2}J_{PH} = 12.6$, $^{3}J_{HH} = 7.6$, 6H, $P^{2}CH_{2}CH_{3}$), 1.29 (dt, ${}^{3}J_{PH} = 18.5$, ${}^{3}J_{HH} = 7.5$, 9H, $P^{1}CH_{2}CH_{3}$), 1.09 (dt, ${}^{3}J_{PH} = 18.0$, ${}^{3}J_{HH} = 7.7$, 9H, $P^2CH_2CH_3$). $^{13}C\{^1H\}$ ЯМР (75 Гц): δ 199.0 (s, C^1), 162.1 (d, $^3J_{PC} = 7.5$, C^3), 148.7 (d, $^4J_{PC} = 7.5$). = 2.9, C^{13}), 148.3 (d, ${}^{4}J_{PC}$ = 2.3, C^{13}), 147.6 (s, C^{9}), 139.5 (s, C^{10}), 135.3 (d, ${}^{5}J_{PC}$ = 3.4, C^{14}), 126.5 (d, ${}^{2}J_{PC} = 5.7$, C^{2}), 123.8 (d, ${}^{4}J_{PC} = 1.1$, C^{7}), 119.8 (d, ${}^{2}J_{PC} = 5.7$, C^{11}), 109.6 (d, ${}^{3}J_{PC} = 5.7$) 5.7, $C^{12'}$), 108.8 (s, $C^{8,8'}$), 102.8 (d, ${}^{3}J_{PC} = 2.3$, C^{12}), 56 (s, $CH_{3}O^{13}$), 56.2 (s, $CH_{3}O^{9}$), 55.6 (s, CH_3O^{13}), 36.4 (dd, ${}^{1}J_{PC} = 44.5$, ${}^{3}J_{PC} = 12.9$, C^6), 28.6 (dd, ${}^{1}J_{PC} = 46.0$, ${}^{3}J_{PC} = 13.8$, C^4), 24.4 (s, C^{5}), 12.3 (d, ${}^{1}J_{PC} = 46.0$, $P^{1}CH_{2}$), 10.7 (d, ${}^{1}J_{PC} = 46.6$, $P^{2}CH_{2}$), 5.8 (d, ${}^{2}J_{PC} = 5.7$, $P^{1}CH_{2}CH_{3}$), 5.1 (d, ${}^{2}J_{PC} = 5.7$, $P^{2}CH_{2}CH_{3}$).

Синтез бисфосфониевого дихлорида VIb. Соединение синтезировали по процедуре, описанной выше для VIa, за исключением того, что продукт нерастворим в CHCl₃ и желтый остаток из реакции растирали с горячим *i*-PrOH. Полученную желтую суспензию отфильтровывали, промывали *i*-PrOH (2 x 2 мл) и сушили в вакууме в течение ночи. Выход 125 мг (67%). Найдено, %: С 61.03; Н 7.87. $C_{30}H_{46}Cl_2O_3P_2$. Вычислено, %: С 61.33; Н 7.89. $^{31}P\{^{1}H\}$ ЯМР: δ 45.0 (s, P^{1}), 42.3 (s, P^{2}). ^{1}H ЯМР: δ 9.60 (s,

1H, H^1), 7.99 (s, 1H, H^3), 7.34 (br s, 1H, H^{12}), 7.00 (br s, 1H, H^{13}), 6.93 (d, ${}^3J_{\rm HH} = 8.7$, 2H, H^8), 6.81 (d, ${}^3J_{\rm HH} = 8.7$, 2H, H^9), 6.70 (br s, 1H, H^{12}), 6.41 (br s, 1H, H^{13}), 3.92 [br pseudo t, ${}^2J_{\rm PH}$ » ${}^3J_{\rm HH}$ » 13, 1H, H^4], 3.48 [br pseudo t, ${}^2J_{\rm PH}$ » ${}^3J_{\rm HH}$ » 13, 1H, H^6], 3.06 (br m, 1H, H^5), 2.53 (br m, 1H, H^5), 2.33–2.12 (m, 6H, P¹CH₂CH₃), 2.21 (dq, 6H, ${}^2J_{\rm PH} = 12.5$, ${}^3J_{\rm HH} = 7.7$, P²CH₂CH₃), 1.20 (dt, ${}^2J_{\rm PH} = 18.4$, ${}^3J_{\rm HH} = 7.7$, 9H, P¹CH₂CH₃), 1.09 (dt, ${}^2J_{\rm PH} = 18.0$, ${}^3J_{\rm HH} = 7.7$, 9H, P²CH₂CH₃). 13 C{¹H} 9MP: δ 200.2 (s, C^1), 163.3 (d, ${}^3J_{\rm PC} = 7.6$, C^3), 161.0 (s, C^{10}), 158.3 (s, C^{14}), 135.1 (br s, C^{12}), 133.9 (s, $C^{8.8}$), 129.1 (br s, C^{12}), 128.3 (d, ${}^2J_{\rm PC} = 6.1$, C^2), 125.9 (d, ${}^4J_{\rm PC} = 3.1$, C^7), 120.9 (d, ${}^2J_{\rm PC} = 6.1$, C^{11}), 118.2 (s, $C^{13,13}$), 117.6 (s, $C^{9,9}$), 36.5 (dd, ${}^1J_{\rm PC} = 44.4$, ${}^3J_{\rm PC} = 13.8$, C^6), 29.5 (dd, ${}^1J_{\rm PC} = 45.9$, ${}^3J_{\rm PC} = 13.8$, C^4), 25.5 (s, C^5), 13.3 (d, ${}^1J_{\rm PC} = 45.9$, P¹CH₂CH₃), 11.8 (d, ${}^1J_{\rm PC} = 47.4$, P²CH₂CH₃), 6.8 (d, ${}^2J_{\rm PC} = 6.1$, P¹CH₂CH₃), 6.3 (d, ${}^2J_{\rm PC} = 6.1$, P²CH₂CH₃).

Синтез бисфосфониевого дихлорида VIc (а- и b-атропоизомеры). Соединение синтезировали по процедуре, описанной выше для **VIb**. Выход 305 мг (83%). Найдено, %: С 59.73; Н 7.95. $C_{32}H_{50}Cl_2O_5P_2$. Вычислено, %: С 59.35; Н 7.78.

VIc-a. ³¹P{¹H} 3MP: δ 45.1 (s, P^1), 42.3 (s, P^2). ¹H 3MP: δ 9.61 (s, 1H, H^1), 7.94 (s, 1H, H^3), 7.04 (d, ³ J_{HH} = 8.2, 1H, $H^{13'}$), 6.99 (br pseudo d, ³ J_{HH} = 8.2, 1H, $H^{12'}$), 6.77 (d, ³ J_{HH} = 8.3, 1H, H^9), 6.73 (s, 1H, H^8), 6.57 (d, ³ J_{HH} = 8.3, 1H, H^8), 6.49 (s, 1H, H^{12}), 4.01 [br pseudo t, ² J_{PH} » ³ J_{HH} » 13, 1H, H^4], 3.77 (s, 3H, OCH₃⁹), 3.54 [br pseudo t, ² J_{PH} » ³ J_{HH} » 13, 1H, H^6], 3.45 (s, 3H, OCH₃¹³), 3.11 (br m, 1H, H^5), 2.59 (br m, 1H, H^5), 2.53-2.32 (m, 6H, P¹CH₂CH₃), 2.32-2.17 (m, 6H, P²CH₂CH₃), 1.25 (dt, ² J_{PH} = 18.4, ³ J_{HH} = 7.5, 9H, P¹CH₂CH₃), 1.11 (dt, ² J_{PH} = 18.1, ³ J_{HH} = 7.6, 9H, P²CH₂CH₃). ¹³C{¹H} 3MP: δ 199.0 (s, C^1), 161.9 (d, ³ J_{PC} = 7.6, C^3), 150.0 (s, C^{10}), 148.4 (d, ⁴ J_{PC} = 1.5, C^{13}), 147.7 (s, C^9), 146.4 (d, ⁴ J_{PC} = 3.1, C^{14}), 126.3 (d, ² J_{PC} = 6.1, C^2), 125.8 (s, C^8), 124.9 (s, C^7), 120.6 (d, ² J_{PC} = 5.4, C^{11}), 119.4 (d, ⁴ J_{PC} = 3.8, $C^{12'}$), 116.5 (d, ⁴ J_{PC} = 2.3, $C^{13'}$), 115.9 (s, C^9), 115.5 (d, ³ J_{PC} = 5.4, C^{11}), 114.2 (s, C^8), 56.0 (s, OCH₃⁹), 55.3 (s, OCH₃¹³), 35.7 (dd, ¹ J_{PC} = 45.9, P¹CH₂CH₃), 10.5 (d, ¹ J_{PC} = 47.4, P²CH₂CH₃), 5.6 (d, ² J_{PC} = 5.4, P¹CH₂CH₃), 5.0 (d, ² J_{PC} = 5.4, P¹CH₂CH₃), 5.0 (d, ² J_{PC} = 5.4, P²CH₂CH₃), 5.0 (d, ² J_{PC} = 5.4, P²CH₂CH₃).

VIc-b. ³¹P{¹H} ЯМР: δ 44.9 (s, P^1), 42.4 (s, P^2). ¹H ЯМР: δ 9.61 (s, 1H, H^1), 8.00 (s, 1H, H^3), 6.92 (s, 1H, H^{12}), 6.77 (d, $^3J_{\rm HH} = 8.2$, 1H, H^9), 6.73 (s, 1H, H^8), 6.53 (d, $^3J_{\rm HH} = 8.2$, 1H, H^8), 6.36 (d, $^3J_{\rm HH} = 7.9$, 1H, H^{13}), 6.31 (br pseudo d, $^3J_{\rm HH} = 7.9$, 1H, H^{12}), 3.95 (br pseudo t, $^2J_{\rm PH}$ » $^3J_{\rm HH}$ » 13, 1H, H^4 , перекрывается с OC H_3^{13}), 3.91 (s, 3H, OC H_3^{13}), 3.79 (s,

3H, OC H_3^9), 3.52 [br pseudo t, ${}^2J_{\text{PH}} \gg {}^3J_{\text{HH}} \gg 13$, 1H, H^6], 3.03 (br m, 1H, H^5), 2.64 (br m, 1H, H^5), 2.51- 2.32 (m, 6H, $P^1CH_2CH_3$), 2.32- 2.17 (m, 6H, $P^2CH_2CH_3$), 1.26 (dt, ${}^2J_{\text{PH}} = 18.4$, ${}^3J_{\text{HH}} = 7.5$, 9H, $P^1CH_2CH_3$), 1.11 (dt, ${}^2J_{\text{PH}} = 18.1$, ${}^3J_{\text{HH}} = 7.6$, 9H, $P^2CH_2CH_3$). ${}^{13}C\{{}^{1}H\}$ 9MP: δ 198.9 (s, C^1), 162.1 (d, ${}^3J_{\text{PC}} = 6.9$, C^3), 149.7 (s, C^{10}), 148.7 (s, C^{13}), 147.9 (s, C^9), 146.7 (s, C^{14}), 127.2 (d, ${}^2J_{\text{PC}} = 6.1$, C^2), 126.0 (s, C^{12}), 125.1 (s, C^8), 125.0 (s, C^7), 120.0 (d, ${}^2J_{\text{PC}} = 5.4$, C^{11}), 116.4 (s, C^{13}), 115.7 (s, C^9), 114.2 (s, C^8), 109.4 (s, C^{12}), 56.5 (s, OCH_3^{13}), 56.1 (s, OCH_3^9), 35.9 (dd, ${}^1J_{\text{PC}} = 44.4$, ${}^3J_{\text{PC}} = 13.0$, C^6), 28.4 (dd, ${}^1J_{\text{PC}} = 45.9$, ${}^3J_{\text{PC}} = 13.8$, C^4), 24.3 (s, C^5), 12.2 (d, ${}^1J_{\text{PC}} = 45.9$, $P^1CH_2CH_3$), 10.6 (d, ${}^1J_{\text{PC}} = 47.4$, $P^2CH_2CH_3$), 5.7 (d, ${}^2J_{\text{PC}} = 5.4$, $P^1CH_2CH_3$), 5.0 (d, ${}^2J_{\text{PC}} = 5.4$, $P^2CH_2CH_3$).

Синтез бисфосфониевого дихлорида VId. Соединение синтезировали по процедуре, описанной выше для VIb. Продут перекристаллизовывали из EtOH и сушили в вакууме при 80-90°C в течение 2 ч. Выход 105 мг (70%). Найдено, %: С 53.60; H, 6.91. $C_{28}H_{42}Cl_2O_7P_2$. Вычислено, %: С 53.94; Н 6.79. $^{31}P\{^1H\}$ ЯМР: δ 32.7 (s, P^1), 31.6 (s, P^2). 1H ЯМР: δ 9.55 (s, 1H, H^1), 7.90 (d, J = 1.7, 1H, H^3), 6.58 (s, 1H, H^{12}), 6.40 (s, 2H, $H^{8.8}$), 6.02 (s, 1H, H^{12}), 3.91 (br pseudo t, ${}^{2}J_{PH} \gg {}^{3}J_{HH} \gg 12$, 1H, H^{4}), 3.77 (s, 3H, OC H_{3}^{13}), 3.71 (s, 6H, $OCH_3^{9,9'}$), 3.57 [m, 1H, H^6], 3.45 (s, 3H, $OCH_3^{13'}$), 2.91 (br m, 1H, H^5), 2.74 (br m, 1H, H^5), 2.07 (d, ${}^2J_{\rm PH}=13.9$, 9H, CH_3P^1), 1.78 (d, ${}^2J_{\rm PH}=13.9$, 9H, CH_3P^2). ${}^{13}C\{{}^1H\}$ ЯМР: δ 198.2 (s, C^{1}), 160.9 (d, ${}^{3}J_{PC} = 8.4$, C^{3}), 148.6 (d, ${}^{4}J_{PC} = 3.1$, C^{13}), 148.1 (d, ${}^{4}J_{PC} = 3.1$, C^{13}), 147.5 (s, $C^{9,9}$), 138.8 (s, C^{10}), 135.0 (d, ${}^{5}J_{PC} = 3.8$, C^{14}), 127.6 (d, ${}^{2}J_{PC} = 6.1$, C^{2}), 123.8 (d, ${}^{4}J_{PC} = 1.5$, C^7), 119.9 (d, ${}^2J_{PC} = 6.1$, C^{11}), 109.3 (d, ${}^3J_{PC} = 5.4$, C^{12}), 107.8 (s, $C^{8,8}$), 102.2 (d, ${}^3J_{PC} = 3.8$, C^{12}), 56.6 (s, OCH₃¹³), 56.0 (s, OCH₃^{9,9}), 55.5 (s, OCH₃¹³), 38.4 (dd, ${}^{1}J_{PC} = 49.7, {}^{3}J_{PC} = 14.5,$ C^6), 31.4 (dd, ${}^{1}J_{PC} = 53.5$, ${}^{3}J_{PC} = 15.3$, C^4), 23.6 (d, ${}^{2}J_{PC} = 3.1$, C^5), 8.3 (d, ${}^{1}J_{PC} = 53.5$, $P^{1}CH_{3}$), 6.0 (d, ${}^{1}J_{PC} = 53.5$, $P^{2}CH_{3}$). Масс-спектр ESI (MeOH): M/e 587.2 (100%), [VId – Cl] ${}^{+}$, расч. 587.2; m/e 475.2 (54%), [VId – 2Cl –Me₃P – H]⁺, pacy. 475.2; m/2e 276.2 (20%), [VId – 2Cl]²⁺, расч. 276.6.

Синтез бисфосфониевого дихлорида VIe. Соединение синтезировали по процедуре, описанной выше для VIa. Очистка соединения из CHCl₃ невозможна ввиду нерастворимости, а их спиртов невозможна из-за очень хорошей растворимости. $^{31}P\{^{1}H\}$ ЯМР: δ 40.8 (s, P^{1}), 38.3 (s, P^{2}). ^{1}H ЯМР: δ 9.57 (s, 1H, H^{1}), 7.90 (s, 1H, H^{3}), 6.69 (s, 1H, H^{12}), 6.36 (s, 2H, $H^{8,8}$), 6.20 (s, 1H, H^{12}), 3.95 [br pseudo t, $^{2}J_{PH}$ » $^{3}J_{HH}$ » 13, 1H, H^{4}], 3.85 (s,

3H, OC H_3^{13}), 3.63-3.50 (m, 12H, C H_2 OH), 3.64 (s, 6H, OC $H_3^{9,9'}$), (br pseudo t, H^6 перекрывается с C H_2 OH), 3.07 (br m, 1H, H^5), 3.35 (s, 3H, OC $H_3^{13'}$), 2.77 (br m, 1H, H^5 '), 2.59-2.20 (m, 12H, P^{1,2}C H_2 CH₂), 1.82-1.38 (m, 12H, P^{1,2}C H_2 CH₂). 13 C{ 1 H} ЯМР: δ 200.2 (s, C^{1}), 163.5 (d, $^{3}J_{PC} = 7.6$, C^{3}), 150.2 (d, $^{4}J_{PC} = 3.1$, C^{13}), 149.7 (d, $^{4}J_{PC} = 2.3$, $C^{13'}$), 149.0 (s, $C^{9,9'}$), 140.9 (s, C^{10}), 136.9 (d, $^{5}J_{PC} = 7.6$, C^{14}), 127.4 (d, $^{2}J_{PC} = 6.1$, C^{2}), 125.0 (s, C^{7}), 120.8 (d, $^{2}J_{PC} = 6.1$, C^{11}), 110.9 (d, $^{3}J_{PC} = 6.9$, $C^{12'}$), 110.1 (s, $C^{8,8'}$), 104.2 (s, C^{12}), 62.3 ([d, $^{3}J_{PC} = 16.8$, $P^{1}\sim CH_2$ OH), 62.0 (d, $^{3}J_{PC} = 16.8$, $P^{2}\sim CH_2$ OH), 58.1 (s, OCH $_3^{13}$), 57.5 (s, OCH $_3^{9,9'}$), 56.9 (s, OCH $_3^{13'}$), 38.4 (dd, $^{1}J_{PC} = 44.8$, $^{3}J_{PC} = 13.4$, C^{6}), 31.1 (dd, $^{1}J_{PC} = 46.7$, $^{3}J_{PC} = 15.3$, C^{4}), 25.3 (s, C^{5}), 25.7 (d, $^{2}J_{PC} = 3.8$, P^{1} CH $_2$ CH $_2$), 25.1 (d, $^{2}J_{PC} = 3.8$, P^{2} CH $_2$ CH $_2$), 17.4 (d, $^{1}J_{PC} = 46.7$, $P^{1}CH_2$), 15.9 (d, $^{1}J_{PC} = 47.4$, $P^{2}CH_2$). Macc-chekth ESI (MeOH): M/2e 408.2 (35%), [VIe – 2CI] $^{2+}$, pacy. 408.7; M/e 607.2 (42%), [VIe – 2CI – (HOCH $_2$ CH $_2$ CH $_2$), J^{1+} , pacy. 607.3; M/e 851.3 (15%), [VIe – CI] $^{+}$, pacy. 851.4; M/e 209.1 (100%), [{(CH $_2$) $_3$ OH} $_3$ P + H] $^{+}$, pacy. 209.1).

Синтез бисфосфониевого дихлорида VIf. Соединение неочищенный желтый порошок по процедуре, описанной для VIa. Очистка невозможна ввиду распада соединения в CHCl₃. 31 P{ 1 H} ЯМР: δ 30.1 (s, P^{1}), 28.7 (s, P^{2}). 1 H ЯМР: δ 9.52 (s, 1H, H^1), 7.89-7.55 (m, 10H, C_6H_5 B $P^{1,2}$), 7.84 (s, 1H, H^3), 6.21 (s, 2H, $H^{8,8'}$), 5.93 (s, 1H, $H^{12'}$), 5.40 (s, 1H, H^{12}), 3.85 [br pseudo t, $^2J_{\rm PH}$ » $^3J_{\rm HH}$ » 13, 1H, H^4], 3.65 [br pseudo t, $^2J_{\rm PH}$ $J_{HH} > 14$, 1H, H^6], 3.57 (s, 6H, OC $H_3^{9,9}$), 3.33 (s, 3H, OC H_3^{13}), 3.30 (s, 3H, OC H_3^{13}), 3.12 (br m, 1H, H^5), 2.50 (d, $^2J_{\rm PH}=13.9$, 3H, $H_3{\rm CP}^1$), 2.23 (br m, 1H, $H^{5'}$, перекрывается с 13.6, 3H, H_3 C'P²). ¹³C{¹H} 9MP: δ 198.2 (s, C^1), 161.7 (d, $^3J_{PC} = 7.6$, C^3), 148.0 (d, $^4J_{PC} =$ 2.3, C^{13}), 147.9 (d, ${}^{4}J_{PC} = 3.1$, C^{13}), 147.4 (s, $C^{9,9}$), 139.0 (s, C^{10}), 135.4 (d, ${}^{4}J_{PC} = 3.1$, p-C), 135.3 (d, ${}^{4}J_{PC} = 3.1, p-C$), 135.1 (d, ${}^{3}J_{PC} = 3.8, C^{14}$), 132.0 (d, ${}^{3}J_{PC} = 9.9, m-C$), 130.7 (d, ${}^{3}J_{PC} = 9.9, m-C$) 9.9, m-C), 130.4 (d, ${}^{2}J_{PC} = 12.2$, o-C), 129.9 (d, ${}^{2}J_{PC} = 12.2$, o-C), 126.7 (d, ${}^{2}J_{PC} = 6.1$, C^{2}), 123.8 (d, ${}^{4}J_{PC} = 2.3$, C^{7}), 119.8 [d, ${}^{1}J_{PC} = 82.6$, C_{ipso} -P¹), 119.1 (d, ${}^{2}J_{PC} = 6.1$, C^{11}), 117.1 d, ${}^{1}J_{PC}$ = 84.1, C_{ipso} -P²), 109.4 (d, ${}^{3}J_{PC}$ = 6.1, C^{12}), 108.0 (s, $C^{8,8}$), 102.0 (d, ${}^{3}J_{PC}$ = 4.6, C^{12}), 56.1 (s, $OCH_3^{8,8'}$), 56.0 (s, $OCH_3^{12'}$), 55.5 (s, OCH_3^{12}), 40.1 (dd, $^1J_{PC} = 47.4$, $^3J_{PC} = 13.8$, C^6), 34.0 (dd, ${}^{1}J_{PC} = 51.2$, ${}^{3}J_{PC} = 14.6$, C^{4}), 23.7 (s, C^{5}), 6.3 (d, ${}^{1}J_{PC} = 53.5$, $H_{3}CP^{1}$), 5.7 (d, ${}^{1}J_{PC} = 55.1$, $H_3C'P^1$), 5.0 (d, ${}^1J_{PC} = 52.8$, H_3CP^2), 4.2 (d, ${}^1J_{PC} = 56.6$, $H_3C'P^2$). Масс-спектр ESI (MeOH):

м/e 537.4 (100%), [**VIf** – 2Cl – Me₂PhP – H]⁺, расч. 537.2; м/e 711.4 (22%), [**VIf** – Cl]⁺, расч. 711.2; м/e 139.0 (30%), [Me₂PhP + H]⁺, расч. 139.1.

бисфосфониевого дихлорида VIg. Соединение получали неочищенный желтый порошок по процедуре, описанной для VIa. Очистка невозможна ввиду распада соединения в CHCl₃. 31 P{ 1 H} ЯМР: δ 37.9 (s, P^{1}), 37.0 (s, P^{2}). 1 H ЯМР: δ 9.52 (s, 1H, H^1), 7.88–7.50 (m, 10H, C_6H_5), 7.80 (s, 1H, H^3), 6.17 (s, 2H, $H^{8,8}$), 6.12 (s, 1H, $H^{12'}$), 5.17 (s, 1H, H^{12}), 3.79 [br pseudo t, ${}^{2}J_{PH} \gg {}^{3}J_{HH} \gg 13$, 1H, H^{4}], 3.58 (s, 6H, OC $H_{3}^{9,9'}$), 3.57 (1H, H^6 перекрывается с $OCH_3^{9,9}$), 3.38 (s, 3H, OCH_3^{13}), 3.22 (s, 3H, OCH_3^{13}), 3.14 (br m, 1H, H^5), 3.08–2.25 (m, 8H, $P^{1,2}CH_2$), 2.12 (br m, 1H, $H^{5'}$), 1.28–1.03 (m, 12H, $P^{1,2}CH_2CH_3$). ¹³C{¹H} 9MP: δ 199.7 (s, C^1), 163.3 (d, $^3J_{PC} = 7.9$, C^3), 149.3 (d, $^4J_{PC} = 2.3$, $C^{13'}$), 148.9 (d, ${}^4J_{PC} = 3.0$, C^{13}), 148.6 (s, $C^{9,9'}$), 140.4 (s, C^{10}), 136.6 (d, ${}^4J_{PC} = 2.2$, p-C B P^1), 136.5 (d, ${}^{4}J_{PC} = 2.3$, p-C B P^{2}), 136.4 (d, ${}^{5}J_{PC} = 3.3$, C^{14}), 134.2 (d, ${}^{3}J_{PC} = 8.2$, m-C B P^{1}), 133.2 $(d, {}^{3}J_{PC} = 8.4, m-C \text{ B P}^{2}), 131.8 (d, {}^{2}J_{PC} = 11.8, o-C \text{ B P}^{1}), 131.4 (d, {}^{2}J_{PC} = 11.5, o-C \text{ B P}^{2}),$ 127.4 (d, ${}^{2}J_{PC} = 6.1$, C^{2}), 125.0 (d, ${}^{3}J_{PC} = 1.7$, C^{7}), 120.0 (d, ${}^{2}J_{PC} = 6.3$, C^{11}), 117.4 (d, ${}^{1}J_{PC} = 6.3$) 77.7, C_{ipso} -P¹), 116.1 (s, C^7), 115.3 (d, ${}^{1}J_{PC} = 77.4$, C_{ipso} -P²), 110.5 (d, ${}^{3}J_{PC} = 5.9$, C^{12}), 109.3 $(s, C^{8,8'})$, 103.5 $(d, {}^{3}J_{PC} = 3.4, C^{12})$, 57.4 $(s, OCH_{3}^{9,9'})$, 57.1 $(s, OCH_{3}^{13'})$, 56.9 (s, OCH_{3}^{13}) , 38.9 $(dd, {}^{1}J_{PC} = 44.2, {}^{3}J_{PC} = 13.7, C^{6}), 34.5 (dd, {}^{1}J_{PC} = 46.5, {}^{3}J_{PC} = 14.3, C^{4}), 25.2 (s, C^{5}), 13.5 (d, C^{6})$ $^{1}J_{PC} = 47.8, P^{1}CH_{2}$), 12.5 (d, $^{1}J_{PC} = 45.8, P^{1}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 10.6 (d, $^{1}J_{PC} = 45.8, P^{1}CH_{2}$), 10.6 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 10.6 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 10.6 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.4 (d, $^{1}J_{PC} = 46.3, P^{2}CH_{2}$), 11.5 (d, $^{1}J_{PC} = 46.3, P$ 51.3, P^2CH_2 '), 7.2 (d, $^2J_{PC} = 5.6$, $P^1CH_2CH_3$ '), 7.1 (d, $^2J_{PC} = 5.4$, $P^1CH_2CH_3$), 6.2 (d, $^2J_{PC} = 4.9$, $P^2CH_2CH_3$), 6.0 (d, $^2J_{PC}=4.9$, $P^2CH_2CH_3$ '). Macc-спектр ESI (H₂O): m/2e 366.3 (100%), $[\mathbf{VIg} - 2\mathbf{Cl}]^{2+}$, pacu. 366.7; M/e 565.2 (62%), $[\mathbf{VIg} - 2\mathbf{Cl} - \mathbf{Et}_2\mathbf{PhP} - \mathbf{H}]^+$, pacu. 565.2; M/e767.1 (32%), [**VIg** – Cl]⁺, расч. 767.3; м/е 183.0 (20%), [Et₂PhPO + H]⁺, расч. 183.1; м/е 167.0 (20%), $[Et_2PhP + H]^+$), pacy. 167.1.

ЯМР исследование реакции **Et₃P** с синаповым альдегидом. Фосфин Et₃P (17.6 мг, 0.15 ммол) добавляли в аргоне к суспензии альдегида (31 мг, 0.15 ммол) в D₂O (~ 2 мл). После растворения веществ (~ 10 мин), часть раствора (~ 0.7 мл) переносили в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. ¹H ЯМР (D₂O) для **VIIIa**: δ 6.60 (d, ⁴ J_{PH} = 3.0, 2H, C₆ H_2), 4.88 (s, 1H, CH(OD)₂), 3.78 (s, 6H, OC H_3), 3.67 (d, ² J_{PH} = 15.4, 1H, PCH), 2.27- 2.10 (m, 6H, PC H_2), 1.24- 1.06 (m, 9H, PC H_2 C H_3).

ЯМР исследование реакции *i*-Pr₃P с синаповым альдегидом. Применяли процедуру, описанную выше для Et_3P с использованием *i*-Pr₃P (8 мг, 0.05 ммол) и альдегида (10 мг, 0.05 ммол). Фосфин полностью не растворился. Для **VIIIh**: ${}^{31}P\{{}^{1}H\}$ ЯМР (D₂O): δ 41.3 (s). ${}^{1}H$ ЯМР: δ 6.73 (d, ${}^{4}J_{PH}=1.7$, 2H, C_6H_2), 4.81 (s, 1H, $CH(OD)_2$, перекрывается с HOD), 3.95 [d, ${}^{2}J_{PH}=15.7$, 1H, PCH(Ph)], 3.84 (s, 6H, OC H_3), 2.98-2.80 (m, 3H, PCH), 1.47-1.27 (m, 18H, C H_3). ${}^{13}C\{{}^{1}H\}$ ЯМР: δ 89.3 (d, ${}^{3}J_{PC}=15$, $CH(OD)_2$), 58.0 (s, OC H_3), 36.1 (d, ${}^{1}J_{PC}=40$, PCH(Ph)), 22.0 (d, ${}^{1}J_{PC}=40$, PCH), 17.8 и 17.7 (два d, ${}^{2}J_{PC}=4$, CH_3). Для **VIIh**. ${}^{31}P\{{}^{1}H\}$ ЯМР: δ 42.3 s. ${}^{1}H$ ЯМР: δ 9.58 (br s, 1H, CHO), 4.52 [br d, ${}^{2}J_{PH}=14.4$, 1H, PCH(Ph)].

ЯМР исследование реакции Ph_2PMe с синаповым альдегидом. Применяли процедуру, описанную выше с использованием Ph_2PMe (10 мг, 0.05 ммол) и альдегида (10 мг, 0.05 ммол). Фосфин полностью не растворился. Для **VIIIi**: $^{31}P\{^{1}H\}$ ЯМР (D_2O): δ 26.1 (s). ^{1}H ЯМР: δ 7.96-7.52 (m, 10H, C_6H_5), 6.32 (d, $^{4}J_{PH}$ = 2.3, 2H, C_6H_2), 4.85 (s, 1H, $CH(OD)_2$), 4.52 [d, $^{2}J_{PH}$ = 15.8, 1H, PCH], 3.62 (s, 6H, OCH_3), 2.33 (d, $^{2}J_{PH}$ = 13.4, 3H, PCH_3). Для **VIIi**: $^{31}P\{^{1}H\}$ ЯМР (D_2O): δ 26.7 (s).

Рентгеноструктурный анализ бисфосфониевого дихлорида VId. Желтые призматические кристаллы соединения VId EtOH H_2O (0.25 ′ 0.25 ′ 0.35 мм) получали кристаллизацией из насыщенного раствора соединения VId в EtOH. Данные собирались до максимального значения $2q = 50.5^{\circ}$ с расстоянием между кристаллом и детектором 35.98 мм. Из 25943 собранных отражений 6455 являются независимыми ($R_{\rm int}=0.047$). Минимальный максимальный коэффициент пропускания 0.8080.924 соответственно. Кристаллы моноклинные: пространственная группа P 2₁/n (#14), a = 10.186(1) Å, b = 31.887(3) Å, c = 11.314(1) Å, V = 3593.4(6) Å³, Z = 4, $r_{\text{pacy}} = 1.271$ г/см³. F(000) = 1464.00, m = 3.17 см⁻¹, R1 (I > 2s(I)) = 0.046, wR2 = 0.106, где w = $1/[s^2(F_0^2)+(0.0369P)^2+2.7123P]$, где $P=(F_0^2+2F_c^2)/3$. Все ОН-протоны соединения выявлены из разностного синтеза и уточнены изотропно. Все другие атомы водорода помещены в расчетные позиции, но не уточнены.

ЯМР исследование реакции синапового альдегида с фосфинами (1:1) в спиртах. Фосфин (0.15 ммол; Et_3P 22 μ л, n- Bu_3P 37 μ л, i- Pr_3P 29 μ л, Me_2PPh 21 μ л,

МеРРh₂ 28 μл, THPP 31.0 мг) добавляли в атмосфере аргона к раствору альдегида (31.0 мг, 0.15 ммол) в спирте (1 г). Часть раствора (~ 0.7 мл) помещали в ЯМР ампулу типа J-Young и периодически снимали спектры ЯМР 31 Р{ 1 H} (см. текст).

В случае $(c-C_6H_{11})_3$ Р и $(NCCH_2CH_2)_3$ Р были использованы другие концентрации ввиду их низкой растворимости: $(c-C_6H_{11})_3$ Р 13.5 мг (0.05 ммол) и альдегид 10.0 мг (0.05 ммол); $(NCCH_2CH_2)_3$ Р 13.9 мг (0.07 ммол) и альдегид 15.0 мг (0.07 ммол).

Синтез соединения XIa. Раствор (HOCH₂CH₂CH₂)₃P (100 мг, 0.48 ммол, полагая 100% чистоту) в ацетоне (1.5 мл) добавляли к раствору кониферилового альдегида (86 мг, 0.48 ммол) в ацетоне (1.5 мл). Реакционная масса перемешивалась в течение 3 ч при комнатной температуре. Продукт, желтое твердое вещество, отфильтровали и сушили при пониженном давлении в течение ночи. Выход 140 мг (70%). Найдено, %: С 59.3; Н 8.4. $C_{19}H_{31}O_6P$. Вычислено, %: С 59.06; Н 8.09. Масс-спектр ESI (H_2O): *м/е* 387.3 (80%) $[M+H]^+$, 405.3 (100%) $[M+H_2O+H]^+$; M_{pacy} 386.4.

Синтез соединения XIb. Использовали процедуру, описанную выше, с применением синапового альдегида (100 мг, 0.48 ммол). Выход 140 мг (70%). Найдено, %: С 57.3; Н 8.1. С₂₀H₃₃O₇P. Вычислено, %: С 57.68; Н 7.99. Масс-спектр ESI (H₂O): м/e 417.3 (40%) [M + H] $^+$, 435.3 (100%) [M + H₂O + H] $^+$; \textit{M}_{pacy} 416.4.

ЯМР исследование реакции гидрохлорида ТНРР с конифериловым альдегидом в D_2O . Альдегид (17.8 мг, 0.1 ммол) добавляли к раствору гидрохлорида ТНРР (24.4 мг, 0.1 ммол) в D_2O (~ 1.5 мл). Смесь перемешивали при комнатной температуре в течение 10 мин, помещали пробу (~ 0.7 мл) в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР в течение 48 ч. ¹Н ЯМР для **ХПа**: d 5.44 (ddd, $^2J_{PH}$ = 4.6, $^3J_{HH}$ = 7.7, $^4J_{HH}$ = 1.0, a-H), 6.21 (ddd, $^2J_{PH}$ = 4.2, $^3J_{HH}$ = 7.7, $^3J_{HH}$ = 15.8, g-H).

ЯМР исследование реакции гидрохлорида ТНРР с конифериловым альдегидом в ${\bf CD_3OD}$. Проводили аналогично процедуре, описанной выше для реакции с конифериловым альдегидом в ${\bf D_2O}$.

Фосфониевая соль **XIIa**. ³¹P{¹H} ЯМР: δ 37.1 (s). ¹H ЯМР: δ 5.18 (ddd, ² $J_{PH} = 5.6$, ³ $J_{HH} = 7.2$, ⁴ $J_{HH} = 1.2$, a-H), 6.01 (ddd, ² $J_{PH} = 4.0$, ³ $J_{HH} = 7.4$, ³ $J_{HH} = 15.7$, b-H), ~6.7 (предположительно dd, перекрыт сигналом соответствующего протона соединения **XIIIa**, g-H).

Фосфониевая соль **XIIIa**. ³¹P{¹H} ЯМР: δ 37.6 (s). ¹H ЯМР: δ 4.86 (dd, ² J_{PH} » ³ J_{HH} = 8.7, a-H), 5.95 (ddd, ² J_{PH} = 4.4, ³ J_{HH} = 8.7, ³ J_{HH} = 15.6, b-H), 6.73 (dd, ² J_{PH} = 4.0, ³ J_{HH} = 15.6, g-H).

ЯМР исследование реакции гидрохлорида ТНРР с синаповым альдегидом в СD₃OD. Проводили аналогично процедуре, описанной выше для реакции с конифериловым альдегидом.

Фосфониевая соль **XIIb**. ³¹P{ 1 H} ЯМР: δ 37.1 (s). 1 H ЯМР: δ 5.18 (m, a-H,), 6.06 (m, b-H), ~6.7 (m, g-H). Низкая интенсивность сигналов не позволяет определить J.

Фосфониевая соль **XIIIb**. ³¹P{¹H} ЯМР: δ 37.6 (s). ¹H ЯМР: δ 4.86 (dd, ² J_{PH} » ³ J_{HH} = 8.7, a-H), 5.95 (ddd, ² J_{PH} = 4.6, ³ J_{HH} = 8.9, ³ J_{HH} = 15.7, b-H), 6.72 (dd, ² J_{PH} = 3.9, ³ J_{HH} = 15.7, g-H).

Конденсация коричного альдегида в присутствии THPP в H_2O . Коричный альдегид (300 мг, 2.27 ммол) добавляли к раствору THPP (473 мг, 2.27 ммол, полагая 100% чистоту) в воде (15 мл). Реакционную смесь перемешивали при комнатной температуре в течение 48 ч. Полученную желтую суспензию экстрагировали Et_2O (6 $^{\prime}$ 10 мл), эфирные слои сушили над Na_2SO_4 . Органические продукты разделяли на метровой колонке из силикагеля (60 меш) с использование n-пентана/ Et_2O (4/1 v/v) в качестве элюента.

2-бензил-5-фенилпента-2,4-диеналь (**XIV**) перекристаллизовывали из пентана. Выход 82 мг (29%, желтое, твердое вещество). Найдено, %: С 87.36; Н 6.59. С₁₈Н₁₆О. Вычислено, %: С 87.06; Н 6.49. 1 Н ЯМР (CDCl₃): δ 9.57 (s, 1H, CHO), 7.52-7.00 (m, 13H, Ph и CH=CH-CH=C) 3.83 (s, 2H, CH₂). Масс-спектр АРСІ (МеОН): *м/е* 249.2 (100%) [М + H] $^{+}$, расч. 249.3. Соединение **XIV** известно [435, 436], но охарактеризовано только с помощью масс-спектрометрии.

5-фенил-2-(фенилметилен)-4-пентаналь (**XV**) перекристаллизовывали из пентана. Выход 58 мг (21%, желтое, твердое вещество). Найдено, %: С 86.83; Н 6.56. $C_{18}H_{16}O$.

Вычислено, %: С 87.06; Н 6.49. ¹Н ЯМР (CDCl₃): δ 9.67 (s, 1H, C*H*O), 7.60-7.16 (m, 11H, Ph и C*H*=C), 6.46-6.26 (m, 2H, C*H*=C*H*), 3.46 (d, ³ J_{HH} = 5.1, 2H, C*H*₂). Масс-спектр APCI (MeOH): $M/e = 249.2 (100\%) [\text{M} + \text{H}]^+$. Данное соединение ранее было получено в виде светло-желтого вязкого масла и охарактеризовано только как производное 2,4-динитрофенилгидрозона [437].

Аналогичная реакция была проведена в D_2O . Продукты выделены, как описано выше.

Соединение **XIV-D**₅. ¹H ЯМР (CDCl₃): δ 9.57 (s, 1H, CHO), 7.52-7.16 (m, 10H, Ph). ²D ЯМР (CHCl₃): δ 7.31, 7.20, 7.11 (перекрывающиеся синглеты, CD=CD-CD=C), 3.83 (s, CD₂). Масс-спектр ESI (MeOH): M/e 276.1 (100%) [M + Na]⁺, расч. 276.1.

Соединение **XV-D**₅. ¹H ЯМР (CDCl₃): δ 9.67 (s, 1H, C*H*O), 7.61-7.18 (m, 10H, Ph). ²D ЯМР (CHCl₃): δ 7.47 (s, C*D*=C), 6.46 (s, PhC*D*=CD), 6.36 (s, PhCD=C*D*), 3.44 (s, C*D*₂). Масс-спектр ESI (MeOH): м/e 276.1 (100%) [M + Na]⁺.

ЯМР ³¹**P**{¹**H**} исследование реакции THPP с коричным альдегидом в **H**₂**O**. В гловбоксе добавляли коричный альдегид (28 мг, 0.21 ммол) к раствору THPP (44 мг, 0.21 ммол) в **H**₂**O** (~ 2 мл). Реакционную массу перемешивали в течение 5 мин при комнатной температуре. Часть полученной желтой суспензии (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР 31 P{ 1 H}.

ЯМР исследование реакции коричного альдегида с гидрохлоридом ТНРР (1:1) в D_2O . Альдегид (6.7 мг, 0.05 ммол) добавляли к раствору гидрохлорида ТНРР (12.2 мг, 0.05 ммол) в D_2O (~ 1 мл). Реакционную смесь перемешивали при комнатной температуре в течение 10 мин. Часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и отслеживали с помощью спектроскопии ЯМР в течение 40 дней. Найдено:

Фосфониевая соль **XX**. 31 P{ 1 H} ЯМР: δ 37.5 (s). 1 H ЯМР: δ 7.59- 7.38 (m, Ph), 7.01 (dd, 1H, ${}^{3}J_{\rm HH} = 15.8$, ${}^{4}J_{\rm PH} = 4.3$, CH=CH-CH), 6.38 (ddd, 1H, ${}^{3}J_{\rm HH} = 15.8$, ${}^{3}J_{\rm HH} = 7.5$, ${}^{3}J_{\rm PH} = 4.2$, CH=CH-CH), 5.49 (ddd, 1H, ${}^{3}J_{\rm HH} = 7.4$, ${}^{4}J_{\rm HH} = 0.8$, ${}^{2}J_{\rm PH} = 4.4$, CH), 3.68 (t, ${}^{3}J_{\rm HH} = 6.0$, CH_{2} OH), 2.44- 2.33 (m, 6H, PC H_{2}), 1.97- 1.83 (m, 6H, PC H_{2} CH $_{2}$). Сигналы CH $_{2}$ -протонов и Рh-групп перекрываются с соответствующими сигналами исходных реагентов и соединений **XXII-D**₁ и **XXIII-D**₁. 13 C{ 1 H} ЯМР: δ 137.8 (d, ${}^{3}J_{\rm PC} = 12$, PhCH=CH), 136.4 (d, ${}^{4}J_{\rm PC} = 3$, $C_{\rm ipso}$), 130.7 (s, p-C), 130.5 (s, m-C), 128.4 (d, ${}^{5}J_{\rm PC} = 1$, o-C), 121.7 (d, ${}^{2}J_{\rm PC} = 2$,

PhCH=*C*H), 68.3 (d, ${}^{1}J_{PC}$ = 63, P*C*H), 62.5 (d, ${}^{3}J_{PC}$ = 16, *C*H₂OH), 25.1 (d, ${}^{2}J_{PC}$ = 5, PCH₂*C*H₂), 14.7 (d, ${}^{1}J_{PC}$ = 46, P*C*H₂).

Бисфосфониевая соль **XXII-D₁**. 31 P{ 1 H} ЯМР: δ 39.1 (d, $^{4}J_{PP} = 4$, $PC(H)Ph)) и 38.6 (d, <math>^{4}J_{PP} = 4$, PCH(OD)). 1 H ЯМР: δ 4.35 (d, $^{3}J_{HH} = 11.9$, CH(OD)), 4.26 (pseudo d, $^{2}J_{PH} = 15.4$, CH(Ph)), 2.46 (m, CHD, перекрыт мультиплетом PCH_2). $^{13}C\{^{1}$ H} ЯМР: δ 131.8 (d, $^{4}J_{PC} = 2$, m-C), 131.6 (d, $^{5}J_{PC} = 3$, p-C), 131.0 (br s, o-C), 130.6 (d, $^{2}J_{PC} = 6$, C_{ipso}), 62.9 (dd, $^{1}J_{PC} = 61$, $^{3}J_{PC} = 13$, PCH(OD)), 62.2 (d, $^{3}J_{PC} = 16$, CH_2OD), 36.3 (dd, $^{1}J_{PC} = 46$, $^{3}J_{PC} = 13$, PCH(Ph)), 31.0 (br s, CHD), 25.0 (d, $^{2}J_{PC} = 4$, PCH_2CH_2), 24.9 (d, $^{2}J_{PC} = 4$, PCH_2CH_2), 15.8 (d, $^{1}J_{PC} = 48$, PCH_2), 14.5 (d, $^{1}J_{PC} = 46$, PCH_2).

Фосфониевая соль **XXIII-D₁**. 31 P{ 1 H} ЯМР: δ 38.3 (s). 1 H ЯМР: δ 4.84 (d, 1H, $^{3}J_{HH}$ = 8.6, $CH(OD)_{2}$), 3.94 (dd, 1H, $^{2}J_{PH}$ = 15.5, $^{3}J_{HH}$ = 2.5, CH(Ph)), 2.12 (ddd, 1H, $^{3}J_{PH}$ = 8.0, $^{3}J_{HH}$ = 8.5, $^{3}J_{HH}$ = 2.5, CH(Ph)).

ЯМР исследование реакции коричного альдегида с гидрохлоридом ТНРР (1:2) в $\mathbf{D_2O}$. Альдегид (11.6 мг, 0.085 ммол) добавляли к раствору гидрохлорида ТНРР (42 мг, 0.170 ммол) в $\mathbf{D_2O}$ (~ 1.5 мл). Реакцию отслеживали с помощью спектроскопии ЯМР в течение 40 дней. После удаления воды в вакууме получали бесцветный, аморфный остаток. $^2\mathbf{D}$ и $^2\mathbf{D}\{^1\mathbf{H}\}$ ЯМР ($\mathbf{H_2O}$): δ 2.61 (br s, \mathbf{CDH}). Масс-спектр ESI ($\mathbf{H_2O}$): $\mathbf{M/e}$ 586.2 (100% [XXII- $\mathbf{D_1}$ -Cl]⁺, расч. 586.3), 360.3 (100% [XXIII- $\mathbf{D_1}$ -Cl]⁺, расч. 360.2), 342.2 (63% [XXI- $\mathbf{D_1}$ -Cl]⁺, расч. 342.2), 209.0 (58% [THPP + \mathbf{H}]⁺, расч. 209.2).

Та же реакция была проведена в H_2O , но смесь нагревали при $90^{\circ}C$ в течение 2 ч. После удаления воды остаток анализировали с помощью масс-спектрометрии ESI (H_2O): $\emph{м/e}$ 359.3 (100% [XXIII-Cl]⁺, расч. 359.2), 341.3 (56% [XXI-Cl]⁺, расч. 341.2), 209.1 (34% [THPP + H]⁺). Спектр ЯМР ¹Н соединения XXII аналогичен спектру соединения XXVII- $\mathbf{D_1}$ (см выше), за исключение того, что второй метиленовый протон виден как уширенный триплет при δ 2.66, а сигнал протона CH(Ph) виден как дублет псевдо дублетов при δ 4.25 ($^2J_{PH}$ = 13.5, $^3J_{HH}$ = 11.8).

ЯМР исследование реакции гидрохлорида ТНРР с коричным альдегидом в **CD₃OD.** В гловбоксе добавляли гидрохлорид ТНРР (22 мг, 0.09 ммол, полагая 100% чистоту) к раствору коричного альдегида (11 µл, 0.09 ммол) в CD₃OD (1.1 мл). Часть

раствора (~0.7 мл) помещали под аргоном в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР.

Фосфониевая соль **XXIV**. ¹H ЯМР: d 7.02 (dd, ⁴ $J_{\rm PH}$ = 4.1, ³ $J_{\rm HH}$ = 15.8, H3), 6.42 (ddd, ³ $J_{\rm PH}$ = 4.0, ³ $J_{\rm HH}$ = 15.8, ³ $J_{\rm HH}$ = 6.9, H2), 5.45 (ddd, ² $J_{\rm PH}$ » 6.8, ⁴ $J_{\rm HH}$ = 1.3, H1).

Фосфониевая соль **XXV**. ¹H ЯМР: d 7.06 (dd, ${}^4J_{\rm PH}=4.1, {}^3J_{\rm HH}=15.8, \, {\rm H3}$), 6.31 (ddd, ${}^3J_{\rm PH}=4.3, {}^3J_{\rm HH}=15.8, {}^3J_{\rm HH}=8.4, \, {\rm H2}$), 5.14 (ddd, ${}^2J_{\rm PH}$ » 8.5, ${}^4J_{\rm HH}=0.9, \, {\rm H1}$).

Конденсация 3,4-диметоксикоричного альдегида и ацетона в присутствии ТНРР. Проводили аналогично процедуре, описанной выше. Смесь мешали в течение 20 ч. В качестве элюента использовали Et_2O . Выход 6-(3,4-диметоксифенил)-3,5-гексадиен-2-она 153 мг (66%, желтое твердое вещество). ЯМР ¹H (CDCl₃): δ 7.28 (dd, 1H, CH=CHCO, ${}^3J_{\rm HH}=15.5$, ${}^3J_{\rm HH}=15.5$), 7.06-6.99 (m, 2H, M- и O-H), 6.93-6.70 (m, 3H, ArCH=CH и O-H), 6.23 (d, 1H, CH=CHCO, ${}^3J_{\rm HH}=15.4$), 3.93 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 2.31 (s, 3H, CH₃).

Общая методика исследования кинетики взаимодействия кониферилового альдегида с ТНРР с помощью УФ-спектрометрии. Буферные растворы были приготовлены в аргоне по стандартным рецептурам: рН 6.0, 7.0, 7.5, 7.8, 8.0 из KH_2PO_4 и NaOH; рН 6.9, 7.4 из KH_2PO_4 и Na_2HPO_4 ; рН 3.9, 5.0, 5.6, 6.5 из Na_2HPO_4 и Na_2HPO_4 и NaOH; рН 8.3, 9.5 из $Na_2B_4O_7 \rtimes 0H_2O$ и HCl или NaOH; рН 10.0 из $NaHCO_3$ и Na_2CO_3 ; рН 11.0 из K_2HPO_4 и NaOH.

Буферный раствор кониферилового альдегида (5.86 ′ 10⁻⁵ М) и ТНРР (9.43 ′ 10⁻³ М) готовили в токе аргона. Также под аргоном помещали 5 мл раствора альдегида в стеклянную колбу типа Shlenk, соединенную с УФ-ячейкой. Добавляли 0.6 мл раствора ТНРР и 0.4 мл буферного раствора. Начальная концентрация альдегида и ТНРР, в данном случае, составляет 4.89 ′ 10⁻⁵ М и 9.43 ′ 10⁻⁴ М соответственно. Помещали УФ-ячейку в спектрометр, термостатируемый при температуре 25 °C. Начальный УФ-спектр снимали через 60 с после добавления раствора ТНРР, последующие спектры снимали каждые 15, 30 или 60 с в зависимости от условий.

К главе 3

Синтез фосфина Ph₂PCH(Ph)CH₂CHO (XXVIa). В гловбоксе добавляли по каплям фосфин Ph_2PH (0.88 мл, 0.50 ммол) к коричному альдегиду (0.66 мл, 0.53 ммол) при перемешивании и комнатной температуре. Через 15 мин реакционную массу подвергали короткому нагреванию при 50°C. Полученное твердое розовое вещество растирали с Et₂O (~6 мл), фильтровали, промывали один раз Et₂O и сушили в вакууме. Выход 1.30 г (82%). Найдено, %: С 79.44; Н 6.25. С21Н19ОР. Вычислено, %: С 79.23; Н 6.02. ${}^{31}P\{{}^{1}H\}$ 9MP: δ 0.50 (s). ${}^{1}H$ 9MP: δ 9.57 (br s, 1H, CHO), 7.67–7.62 (m, 2H), 7.46– 7.41 (m, 3H), 7.23–7.10 (m, 10H), 4.10 (ddd, ${}^{2}J_{PH} = 5.4$, ${}^{3}J_{HH} = 11.1$, ${}^{3}J_{HH} = 3.4$, 1H, PCH), $3.04 \text{ (dddd, }^{3}J_{PH} = 5.4, ^{2}J_{HH} = 17.4, ^{3}J_{HH} = 11.1, ^{3}J_{HH} = 1.9, 1H, CH_{A}H_{B}), 2.69 \text{ (dddd, }^{3}J_{PH} = 1.9, 1H, CH_{A}H_{B})$ 7.3, ${}^{2}J_{HH} = 17.4$, ${}^{3}J_{HH} = 3.3$, ${}^{3}J_{HH} = 0.9$, 1H, $CH_{A}H_{B}$). ${}^{13}C\{{}^{1}H\}$ MMP: δ 200.5 (d, ${}^{3}J_{PC} = 12.3$, CHO), 139.9 (d, ${}^2J_{PC} = 8.5$, C_{ipso} -CH), 135.9 (d, ${}^1J_{PC} = 14.7$, C_{ipso} -P), 135.6 (d, ${}^1J_{PC} = 16.2$, C'_{inso} -P), 134.1 (d, ${}^2J_{PC}$ = 20.9, o-C B PhP), 133.1 (d, ${}^2J_{PC}$ = 18.3, o-C B Ph'P), 129.7 (s, p-C B PhP), 128.9 (d, ${}^{3}J_{PC} = 7.4$, m-C B PhP), 128.8 (d, ${}^{3}J_{PC} = 7.4$, m-C B Ph'P), 128.6 (s, p-C B Ph'P), 128.5 (s, m-C B PhC), 128.0 (d, ${}^{3}J_{PC} = 6.8$, o-C PhC), 126.6 (d, ${}^{5}J_{PC} = 2.1$, p-C B PhC), 47.2 (d, ${}^2J_{PC} = 20.1$, CH_2), 38.8 (d, ${}^1J_{PC} = 13.9$, PhCH). Macc-спектр APCI (MeOH): м/е $319.2 (100\%) [M + H]^+$, расч. 319.1.

Синтез фосфина $Ph_2PCH(p-Tol)CH_2CHO$ (XXVIb). Использовали процедуру, описанную выше для XXVIa. Выход 0.95 г (57%). Найдено, %: С 79.50; Н 6.45. С₂₂H₂₁OP. Вычислено, %: С 79.50; Н 6.37. ³¹P{¹H} ЯМР: δ 0.0 (s). ¹H ЯМР: δ 9.55 (m, 1H, CHO), 7.67–7.60 (m, 2H), 7.45–7.39 (m, 3H), 7.24–7.13 (m, 5H), 7.10 (d, ³ J_{HH} = 7.7, 2H), 7.02 (d, ³ J_{HH} = 7.7, 2H), 4.07 (ddd, ² J_{PH} = 5.5, ³ J_{HH} = 11.1, ³ J_{HH} = 3.4, 1H, PCH), 2.99 (dddd,

 $^{3}J_{PH} = 5.5$, $^{2}J_{HH} = 17.3$, $^{3}J_{HH} = 11.1$, $^{3}J_{HH} = 2.0$, 1H, C $H_{A}H_{B}$), 2.66 (dddd, $^{3}J_{PH} = 7.1$, $^{2}J_{HH} = 17.3$, $^{3}J_{HH} = 3.4$, $^{3}J_{HH} = 0.8$, 1H, C $H_{A}H_{B}$), 2.28 (s, 3H, C H_{3}). $^{13}C\{^{1}H\}$ ЯМР: δ 200.7 (d, $^{3}J_{PC} = 12.3$, CHO), 136.7 (d, $^{2}J_{PC} = 8.7$, C_{ipso} -CH), 136.2 (d, $^{5}J_{PC} = 2.4$, p-C в PhC), 136.1 (d, $^{1}J_{PC} = 14.5$, C_{ipso} -P), 135.9 (d, $^{1}J_{PC} = 16.3$, C'_{ipso} -P), 134.1 (d, $^{2}J_{PC} = 20.8$, o-C в PhP), 133.1 (d, $^{2}J_{PC} = 18.2$, o-C в Ph'P), 129.7 (s, p-C в PhP), 129.2 (s, m-C в PhC), 128.8 (s), 128.7 (s, o-C в PhC), 128.6 (s, p-C в Ph'P), 128.0 (d, $J_{PC} = 6.7$), 47.3 (d, $^{2}J_{PC} = 20.1$, CH_{2}), 38.3 (d, $^{1}J_{PC} = 13.7$, PhCH), 21.0 (s, CH_{3}).

Синтез фосфина Ph₂PCH(p-OMe-C₆H₄)CH₂CHO (XXVIc). Использовали процедуру, описанную выше для XXVIa. Выход 0.82 г (47%). Найдено, %: С 76.14; Н 6.18. С₂₂H₂₁O₂P. Вычислено, %: С 75.85; Н 6.08. ³¹P{¹H} ЯМР: δ –0.2 (s). ¹H ЯМР: δ 9.56 (br s, 1H, CHO), 7.66–7.59 (m, 2H), 7.45–7.39 (m, 3H), 7.24–7.13 (m, 5H), 7.13–7.08 (m, 2H), 6.78–6.72 (m, 2H), 4.05 (ddd, ${}^2J_{\text{PH}}$ = 5.4, ${}^3J_{\text{HH}}$ = 11.2, ${}^3J_{\text{HH}}$ = 3.4, 1H, PCH), 3.76 (s, 3H, OCH₃), 2.97 (dddd, ${}^3J_{\text{PH}}$ = 5.5, ${}^2J_{\text{HH}}$ = 17.3, ${}^3J_{\text{HH}}$ = 11.2, ${}^3J_{\text{HH}}$ = 1.9, 1H, CH_AH_B), 2.65 (pseudo ddd, ${}^3J_{\text{PH}}$ = 6.6, ${}^2J_{\text{HH}}$ = 17.3, ${}^3J_{\text{HH}}$ = 2.9, 1H, CH_AH_B). 13 C{ 1 H} ЯМР: δ 200.7 (d, ${}^3J_{\text{PC}}$ = 12.3, CHO), 158.3 (d, ${}^5J_{\text{PC}}$ = 2.2, MeO-C), 136.1 (d, ${}^1J_{\text{PC}}$ = 14.4, C_{ipso} -P), 135.8 (d, ${}^1J_{\text{PC}}$ = 16.2, C'_{ipso} -P), 134.1 (d, ${}^2J_{\text{PC}}$ = 20.7, o-C в PhP), 133.1 (d, ${}^2J_{\text{PC}}$ = 18.0, o-C в Ph'P), 55.2 (s, OCH₃), 47.4 (d, ${}^2J_{\text{PC}}$ = 20.7, CH₂), 37.9 (d, ${}^1J_{\text{PC}}$ = 13.9, PhCH).

Синтез фосфина $Ph_2PCH(Ph)CH(Me)CHO$ (XXVId). Нагревали смесь Ph_2PH (0.88 мл, 0.50 ммол) и а-метилкоричного альдегида (1.40 мл, 1.0 ммол) при 60 °C в течение 72 ч. Избыток альдегида отгоняли при ~90°C и пониженном давлении (~0.1 торр). Остатки альдегида удаляли растворением остатка в Et_2O (5 мл) и выдерживанием в течение 2 дней при -20°C. Белое твердое вещество отфильтровывали и сушили в вакууме. Выход 0.95 г (57%). Найдено, %: С 79.71; Н 6.57. $C_{22}H_{21}OP$. Вычислено, %: С 79.50; Н 6.37.

XXVId-a (*S*,*S*- и *R*,*R*-энантиомеры). 31 P{ 1 H} ЯМР: δ - 8.6 (s). 1 H ЯМР: δ 9.97 (br s, 1H, CHO), 7.75–7.68 (m, 2H), 7.46–7.40 (m, 3H), 7.23–7.08 (m, 10H), 3.84 (dd, $^{3}J_{HH} = 5.7$, $^{2}J_{PH} = 4.7$, 1H, PCH), 2.79 (m, 1H, MeCH), 1.07 (d, $^{3}J_{HH} = 6.9$, 3H, CH₃). 13 C{ 1 H} ЯМР: δ 203.6 (d, $^{3}J_{PC} = 10.9$, CHO), 138.2 (d, $^{2}J_{PC} = 8.5$, C_{ipso} -CH), 136.3 (d, $^{1}J_{PC} = 14.9$, C_{ipso} -P), 135.9 (d, $^{1}J_{PC} = 13.5$, C'_{ipso} -P), 134.2 (d, $^{2}J_{PC} = 21.2$, o-C в PhP), 133.2 (d, $^{2}J_{PC} = 19.1$, o-C в Ph'P), 129.7 (s, p-C в PhP), 129.6 (d, $^{3}J_{PC} = 8.4$, m-C в PhP), 128.8 (d, $^{3}J_{PC} = 7.4$, m-C в

Ph'P), 128.5 (s, p-C в Ph'P), 128.4 (s, m-C в PhC), 127.9 (d, ${}^{3}J_{PC} = 7.1$, o-C в PhC), 126.8 (d, ${}^{5}J_{PC} = 1.4$, p-C в PhC), 49.1 (d, ${}^{2}J_{PC} = 13.9$, MeCH), 48.0 (d, ${}^{1}J_{PC} = 17.0$, PCH), 13.5 (d, ${}^{3}J_{PC} = 7.6$, CH₃).

XXVId-b (*S*,*R*- и *R*,*S*-энантиомеры). 31 P{ 1 H} ЯМР: δ - 8.2 (s). 1 H ЯМР: δ 9.51 (m, 1H, CHO), 7.68–7.64 (m, 2H), 7.52–7.46 (m, 3H), 7.38–7.23 (m, 10H), 4.25 (pseudo t, $^{3}J_{HH}$ = 4.5, $^{2}J_{PH}$ » 4.9, 1H, PC*H*), 2.54 (m, 1H, MeC*H*), 1.20 (d, $^{3}J_{HH}$ = 6.9, 3H, C*H*₃). 13 C{ 1 H} ЯМР: δ 203.6 (d, $^{3}J_{PC}$ = 10.9, *C*HO), 48.1 (d, $^{2}J_{PC}$ = 15.8, Me*C*H), 44.7 (d, $^{1}J_{PC}$ = 14.2, P*C*H), 10.8 (d, $^{3}J_{PC}$ = 9.6, *C*H₃). Другие сигналы 13 C{ 1 H} не могут быть определены.

Синтез полуацетеля Ph₂PCH(Ph)CH₂CH(OD)OCD₃ (XXVIIa). Фосфин **XXVIa** нерастворим в MeOH или CD₃OD, но медленно растворяется, переходя в полуацеталь **XXVIIa**, формирующийся как смесь диастереомеров (**a** и **b**) с d.r., меняющимся с 0.7 (через 90 мин) до 1.3 (через 5 дней).

XXVIIa-a. 31 P{ 1 H} ЯМР (CD₃OD): δ 0.1 (s). 1 H ЯМР (CD₃OD): δ 4.09 [ddd, 1H, ${}^{3}J_{HH}$ = 8.9, ${}^{3}J_{HH}$ = 2.7, ${}^{4}J_{PH}$ = 0.8, CH(OD)], 3.73 (ddd, 1H, ${}^{3}J_{HH}$ = 12.0, ${}^{3}J_{HH}$ = 3.4, ${}^{2}J_{PH}$ = 6.7, PhCH), 2.17–1.83 (m, 2H, CH₂, перекрывается с соответствующими протонами другого изомера).

XXVIIa-b. ${}^{31}P\{{}^{1}H\}$ ЯМР (CD₃OD): δ 0.9 (s). ${}^{1}H$ ЯМР (CD₃OD): δ 4.17 [ddd, 1H, ${}^{3}J_{HH}$ = 8.9, ${}^{3}J_{HH}$ = 2.7, ${}^{4}J_{PH}$ = 0.8, CH(OD)], 3.76 (ddd, 1H, ${}^{3}J_{HH}$ = 12.0, ${}^{3}J_{HH}$ = 3.4, ${}^{2}J_{PH}$ = 6.7, PhCH), 2.17–1.83 (m, 2H, CH₂, перекрывается с соответствующими протонами другого изомера).

Синтез полуацетеля $Ph_2PCH(Ph)CH(Me)CH(OD)OCD_3$ (XXVIId). Растворяли фосфин $Ph_2PCH(Ph)CH(Me)CHO$ (33.2 мг, 0.1 ммол) в CD_3OD (1 г). Периодически снимали спектры ЯМР в течение 4 дней. Было зарегистрировано равновесие между исходным фосфином XXVIId и полуацеталем XXVIId (1:3). Полуацеталь XXVIId образуется как диастереомеров (\mathbf{a} и \mathbf{b}) с \mathbf{d} . г 1.3.

XXVIId-α. ³¹P{¹H} ЯМР (CD₃OD): δ –5.3 (s). ¹H ЯМР (CD₃OD): δ 4.05 [d, 1H, ³ J_{HH} = 4.8, CH(OD)], 3.82 (dd, 1H, ³ J_{HH} = $^2J_{PH}$ = 6.8, PhCH), 2.22 (m, 1H, MeCH), 0.99 (d. 3H, $^3J_{HH}$ = 6.9, C H_3).

XXVIId-β. ³¹P{¹H} ЯМР (CD₃OD): δ –3.3 (s). ¹H ЯМР (CD₃OD): δ 4.17 [dd, 1H, ³ J_{HH} = 3.2, ² J_{PH} » 1, CH(OD)], 3.82 (dd, 1H, ³ J_{HH} = 9.2, ² J_{PH} = 5.9, PhCH), 2.29 (m, 1H, MeCH), 0.96 (d, 3H, ³ J_{HH} = 7.0, CH₃).

Синтез фосфина $Ph_2PCH(Ph)CH_2CHPh(OH)$ (XXVIII). К свежеприготовленному раствору фосфина $Ph_2PCH(Ph)CH_2CHO$ (0.50 г, 1.57 ммол) в Et_2O (40 мл) добавляли по каплям PhMrBr (получали по реакции магния 0.047 г и PhBr 0.22 мл в Et_2O 4 мл). Реакционную массу выдерживали в течение 2 ч и добавляли 2 мл дегазированной воды. Отделяли эфирные слои и сушили над Na_2SO_4 . После удаления Et_2O получали пенообразный остаток, который перекристаллизовывали из гексана (~ 10 мл). Полученный белый осадок сушили в вакууме в течение ночи. Выход 0.37 г (~60%). Найдено, %: С 81.2; Н 6.4. $C_{27}H_{25}OP$. Вычислено, %: С 81.8; Н 6.4. Масс-спектр APCI (MeOH): Me 413.3 (100%) $[M+O+H]^+$, 397.3 (30%) $[M+H]^+$, 395.4 (60%) $[M+O-H_2O+H]^+$; M_{pacq} 396.2.

Главный стереоизомер. $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ 1.1 (s). ^{1}H ЯМР (CDCl₃): δ 4.43 [dd, 1H, CH(OH), $^{3}J_{HH} = 10.0$, $^{3}J_{HH} = 4.4$], 3.09 (ddd, 1H, PhCH, $^{3}J_{HH} = 12.1$, $^{2}J_{PH} = 6.1$, $^{3}J_{HH} = 2.8$), 2.51 (m, 1H, CH_AH_B), 2.17 (m, CH_AH_B). $^{13}C\{^{1}H\}$ ЯМР (CDCl₃): δ 73.0 [d, CH(OH), $^{3}J_{PC} = 13$], 41.6 (d, PhCH, $^{1}J_{PC} = 13$), 41.5 (d, CH₂, $^{2}J_{PC} = 21$).

Побочный стереоизомер. $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ –0.2 (s). ^{1}H ЯМР (CDCl₃): δ 4.46 [dd, 1H, CH(OH), $^{3}J_{HH}=12.0$, $^{3}J_{HH}=2.7$], 4.00 (m, 1H, PhCH), 2.23-2.11 (m, CH₂, 2H; перекрывается с протонами CH_AH_B главного изомера). $^{13}C\{^{1}H\}$ ЯМР (CDCl₃): δ 71.4 [d, CH(OH), $^{3}J_{PC}=12$], 42.3 (d, CH₂, $^{2}J_{PC}=21$), 41.4 (d, PhCH, $^{1}J_{PC}=12$).

Синтез дифосфина $Ph_2PCH(Ph)CH_2CH(OH)PPh_2$ (**IIa**). По каплям и при перемешивании добавляли коричный альдегид (0.38 мл, 0.30 ммол) к Ph_2PH (1.10 мл, 0.63 ммол). Полученную вязкую массу нагревали до 60°С и перемешивали в течение 15 мин. Получали стеклообразную массу розового цвета, содержащую, согласно спектрометрии ЯМР $^{31}P\{^{1}H\}$, дифосфин **IIa** (93%) как смесь стереоизомеров и небольшие количества (~7%) исходного фосфина и монофосфина **XXVIa**.

Па-α (*S*,*S*- и *R*,*R*-энантиомеры). ¹H ЯМР (ДМСО-d₆): δ 7.60–7.01 (m, 23H, Ph), 6.92 (d, ${}^{3}J_{\text{HH}} = 7.7$, 2H, *o-H* в PhC), 5.45 (pseudo t, ${}^{3}J_{\text{PH}} = 6.7$, ${}^{3}J_{\text{HH}} = 6.8$, 1H, O*H*), 4.07–3.94 (m, 2H, C*H*Ph и C*H*(OH)), 1.91–1.68 (m, 2H, C*H*₂). ¹³C{¹H} ЯМР (ДМСО-d₆): δ 138.9 (d, ${}^{2}J_{\text{PC}} =$

9.0, $C_{\rm ipso}$ -CH), 137.1 (d, $^1J_{\rm PC}=16.0$, $C_{\rm ipso}$ -P), 136.9 (d, $^1J_{\rm PC}=15.4$, $C_{\rm ipso}$ -P), 136.4 (d, $^1J_{\rm PC}=16.9$, $C_{\rm ipso}$ -P), 136.3 (d, $^1J_{\rm PC}=13.7$, $C_{\rm ipso}$ -P), 133.7 (d, $^2J_{\rm PC}=19.2$, o-C в PhP), 133.5 (d, $^2J_{\rm PC}=20.0$, o-C в PhP), 132.9 (d, $^2J_{\rm PC}=21.2$, o-C в PhP), 132.7 (d, $^2J_{\rm PC}=19.1$, o-C в PhP), 129.2 (d, $^3J_{\rm PC}=7.6$, o-C в PhC), 129.0 (d, $^4J_{\rm PC}=7.6$, m-C в PhC), 126.1 (d, $^5J_{\rm PC}=1.8$, p-C в PhC), 68.2 (dd, $^1J_{\rm PC}=11.2$, $^3J_{\rm PC}=3.8$, CH(OH)), 39.3 (dd, PCH), 37.7 (dd, $^2J_{\rm PC}=20.5$, $^2J_{\rm PC}=26.1$, CH₂). Другие сигналы 13 C{ 1 H} не могут быть идентифицированы (даже с помощью HMQC и HMBC), из-за перекрытия с другими сигналами.

Па-β (*S*,*R*- и *R*,*S*-энантиомеры). ¹Н ЯМР (ДМСО-d₆): δ 7.60–7.01 (m, 25H, Ph, перекрывается с Ph-протонами изомера **Па-**α), 5.04 (pseudo t, ${}^{3}J_{PH} = 5.0$, ${}^{3}J_{HH} = 6.1$, 1H, O*H*), 4.14 (m, 1H, C*H*(OH)), 3.88 (m, 1H, C*H*Ph), 2.08 (m, 1H, C*H*_AH_B), 1.84 (m, 1H, CH_AH_B, перекрывается с CH₂-протонами изомера **Па-**α). ¹³C{ ¹H} ЯМР (ДМСО-d₆): δ 140.9 (d, ${}^{2}J_{PC} = 8.1$, C_{ipso} -CH), 134.6 (d, ${}^{2}J_{PC} = 19.0$, *o-C* в PhP), 133.6 (d, ${}^{2}J_{PC} = 16.5$, *o-C* в PhP), 133.1 (d, ${}^{2}J_{PC} = 19.4$, *o-C* в PhP), 133.0 (d, ${}^{2}J_{PC} = 17.5$, *o-C* в PhP), 126.1 (*p-C* в Ph₂PCH(OH), перекрывается с сигналом *p-*С изомера **Па-**α), 69.1 (dd, ${}^{1}J_{PC} = 12.1$, ${}^{3}J_{PC} = 11.4$, *C*H(OH)), 40.7 (dd, ${}^{1}J_{PC} = 13.5$, ${}^{3}J_{PC} = 11.0$, *C*HPh), 39.0 (dd, *C*H₂). Другие сигналы 13 C{ ¹H} не могут быть идентифицированы (даже с помощью HMQC и HMBC), из-за перекрытия с другими сигналами.

ЯМР исследование реакции Ph_2PH или моно(а-гидроксиалкил)дифенилфосфинов с коричным или синаповым альдегидом. Соответствующий фосфин (0.1 ммол) добавляли в аргоне к раствору альдегида (0.1 ммол) в ДМСО/ДМСО- d_6 или MeOH/CD $_3$ OD (1 мл), часть раствора помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. В ДМСО- d_6 было зарегистрировано образование интермедиатов **XXIXa** и **XXXa**.

Фосфин **XXIXa**. 31 P{ 1 H} ЯМР (ДМСО- 4 G): δ –3.5 (s). 1 H ЯМР (ДМСО- 4 G): δ 6.43 (dd, 1H, ${}^{3}J_{HH}$ = 16.0, ${}^{4}J_{PH}$ = 3.3, PhC*H*), 6.19 (ddd, 1H, ${}^{3}J_{HH}$ = 16.0, ${}^{3}J_{HH}$ = 5.9, ${}^{3}J_{PH}$ = 4.6, PhCH=C*H*), 5.73 [br s, 1H, CH(O*H*)], 5.21 [br d, ${}^{3}J_{HH}$ = 5.9, 1H, C*H*(OH)].

Фосфин **XXXa**. ³¹P{¹H} ЯМР (ДМСО-d₆): δ 2.6 (s). ¹H ЯМР (ДМСО-d₆): δ 6.23 [br d, ³ J_{HH} = 6.2, 1H, СH(ОН)], 4.78 (dd, 1H, ³ J_{HH} = 10.8, ² J_{PH} = 6.5, PCH), 4.48 (ddd, 1H, ³ J_{HH} = 10.8, ³ J_{HH} = 6.2, ³ J_{PH} = 6.6, PCH=CH).

К главе 4

ЯМР исследование реакции Ph_2PCH_2OH с коричным альдегидом в MeOH или ДМСО- d_6 . В гловбоксе растворяли альдегид (12.6 µл, 0.10 ммол) и Ph_2PCH_2OH (21.6 мг, 0.1 ммол) в MeOH или ДМСО- d_6 . Часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. В МеOH было зарегистрировано образование полуацеталя **XXVIIa**, а в ДМСО- d_6 образование фосфинов **XXVII** и **XXXIII**.

Фосфин **XXXIII**. ³¹P{¹H} ЯМР (ДМСО-d₆): δ –20.0 (s). ¹H ЯМР (ДМСО-d₆): δ 6.45 (t, 1H, ³ J_{HH} = 7.9, OH), 4.67 (d, 2H, ³ J_{HH} = 7.9, O-C H_2), 4.27 (d, 2H, ² J_{PH} = 5.0, P-C H_2).

ЯМР исследование реакции PhP(CH₂OH)₂ и коричного альдегида в **MeOH** или **CD₃OD** в соотношение 1:1. Проводили аналогично процедуре, описанной выше для реакции с Ph₂PCH₂OH. ЯМР-характеристики продуктов описаны в главе 4.

ЯМР исследование реакции (НОСН₂)₃Р и коричного альдегида в МеОН или СD₃OD в соотношение 1:1. Проводили аналогично процедуре, описанной выше для реакции с Ph₂PCH₂OH. ЯМР-характеристики продуктов описаны в главе 4.

ЯМР исследование реакции (HOCH₂)₃Р и коричного альдегида в МеОН или CD₃OD в соотношение 1:3. Проводили аналогично процедуре, описанной выше для реакции с Ph_2PCH_2OH . Соединение **XXXIX** в спектрах ЯМР регистрируется как смесь четырех диастереомеров. Так, в спектре ЯМР $^{31}P\{^{1}H\}$ видны четыре синглета при d_P 54.6, 54.3, 53.6 и 53.0 м.д. в соотношении 3.9:1.3:1.0:2.5 (рис. 57). Сигналы протонов в спектрах ЯМР ^{1}H и $^{1}H\{^{31}P\}$, а также сигналы углеродов в спектре ЯМР $^{13}C\{^{1}H\}$, для изомеров перекрываются, что затрудняет их соотнесение с соответствующим диастереомером. Наиболее полно был идентифицирован изомер соединения **XXXIX**, имеющий самые интенсивные сигналы (d_P 54.6 м.д.). Нумерация углеродов представлена на схеме 74.

Изомер d_P 54.6. ¹H ЯМР (CD₃OD): δ 3.79 (dd, 1H, C7H, ³ J_{HH} = 2.9, ³ J_{HH} 8.7), 3.69 (dd, 1H, C4 H_A H_B, ² J_{HH} = 13.8, ² J_{PH} = 4.8), 3.54 (m, 1H, C3H), 3.50 (m, 1H, C1 H_A H_B), 3.36 (m, 1H, C5H), 3.34 (dd, 1H, C4 H_A H_B, ² J_{HH} = 13.8), 3.25 (m, 1H, C1 H_A H_B), 3.10 (s, 3H, OCH₃) 3.00 (s, 3H, OCH₃), 2.31 (m, 2H, C2 H_2), 2.01 (m, 1H, C6 H_A H_B), 1.74 (m, 1H,

C6H_A H_B). ¹³C{¹H} 9MP (CD₃OD): δ 103.65 (d, ³ J_{PC} = 13.5, C7), 59.90 (d, ³ J_{PC} = 13.1, C1), 56.44 (d, ¹ J_{PC} = 83.8, C4), 54.31 (s, OCH₃), 52.46 (s, OCH₃), 40.72 (d, ¹ J_{PC} = 57.8, C3), 40.27 (d, ¹ J_{PC} = 58.9, C5), 33.1 (s, C2), 32.5 (d, ² J_{PC} = 2.1, C6).

Изомер d_P 53.0. ¹H ЯМР (CD₃OD): δ 3.23 (s, 3H, OCH₃) 3.22 (s, 3H, OCH₃). ¹³C{¹H} ЯМР (CD₃OD): δ 104.11 (d, ³ J_{PC} = 13.0, C7), 60.01 (d, ³ J_{PC} ~ 12.5, C1), 58.15 (d, ¹ J_{PC} = 83.8, C4), 54.28 (s, OCH₃), 53.37 (s, OCH₃), 40.81 (d, ¹ J_{PC} = 57.5, C5), 40.72 (d, ¹ J_{PC} = 57.8, C3), 33.1 (s, C6); сигнал углерода C2 не был определен.

К главе 5

ЯМР исследование реакции 4-НО-бензилиденацетона с ТНРР в D_2O . В гловбоксе добавляли 4-НО-бензилиденацетон (19 мг, 0.12 ммол) к раствору ТНРР (25 мг, 0.12 ммол, предполагая 100% чистоту) в D_2O (1 мл). Часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. Было зарегистрировано образование цвиттер-иона **XL-D**₅, ЯМР-характеристики которого обсуждаются в главе 5.

ЯМР исследование реакции **THPP** с **3,4-(MeO)**₂-бензилиденацетоном в **CD**₃**OD**. Проводили аналогично процедуре, описанной выше. В спектрах ЯМР ¹Н было зарегистрировано образование **XLVI-D**₈. Через 24 ч отгоняли растворитель, а остаток анализировали с помощью масс-спектрометрии EI (MeOH): m/e 211 (75%, [M]) и 193 (100%, $[M-CD_3]$), $M_{\text{расч.}} = 211.1$.

ЯМР исследование реакции гидрохлорида ТНРР с 3,4-(MeO)₂-бензилиденацетоном в CD_3OD . В гловбоксе добавляли 3,4-(MeO)₂-бензилиденацетон (10 мг, 0.05 ммол) к раствору гидрохлорида ТНРР (12 мг, 0.05 ммол) в CD_3OD (1.1 мл). Часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. $^{31}P\{^{1}H\}$ ЯМР-характеристики интермедиатов и продуктов реакции обсуждаются в главе 5.

Синтез цвиттер-иона XLV. В гловбоксе растворяли ТНРР (100 мг, 0.48 ммол) и 4-НО-бензилиденацетон (77 мг, 0.48 ммол) в ацетоне (1.5 мл), и оставляли перемешиваться в течение 24 ч. Выпавший желтый осадок отфильтровывали, промывали ацетоном (2 ′ 2 мл), и сушили в вакууме в течение ночи. Выход ~100 мг

(~70%). Найдено, %: С 61.2; Н 8.4. С₁₉H₃₁O₅P. Вычислено, %: С 61.61; Н 8.43. ³¹P{¹H} ЯМР (D₂O): δ 37.8 (s). ¹H ЯМР (D₂O): δ 4.22 (1H, PhC*H*), 3.20 (1H, один из С*H*₂-протонов), 2.23 (s, 3H, CH₃). В спектре ЯМР ¹H протекают H/D-обменные процессы. Масс-спектр ESI (MeCN): *м/е* 371.3 (100%) [*M* + H]⁺, расч. 370.3.

К главе 6

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH(Ph)CH₂CO₂⁻ (XLVIIa). В гловбоксе растворяли THPP (70 мг, 0.34 ммол, полагая 100% чистоту) и коричную кислоту (50 мг, 0.34 ммол) в ацетоне (3 мл), раствор выдерживали при комнатной температуре в течение 24 ч. Белый осадок отфильтровывали, промывали ацетоном (~ 1 мл) и сушили в вакууме. Выход 82 мг (68%). Найдено, %: С 60.3; Н 8.1. $C_{18}H_{29}O_5P$. Вычислено, %: С 60.66; Н 8.20. $^{31}P\{^{1}H\}$ ЯМР (D₂O): δ 38.3 (s). ^{1}H ЯМР (D₂O): δ 7.58- 7.43 (m, 5H, C₆H₅), 4.23 (ddd, 1H, PCH, $^{2}J_{PH}$ = 15.2, $^{3}J_{HH}$ = 11.2, $^{3}J_{HH}$ = 4.6), 3.67 (t, 6H, CH₂OH, $^{3}J_{HH}$ = 6.0), 3.16- 2.91 (m, 2H, CH₂CO₂), 2.34 (dt, 6H, PCH₂, $^{2}J_{PH}$ = 12.7, $^{3}J_{HH}$ = 8.5), 1.89- 1.65 m (6H, PCH₂CH₂). $^{13}C\{^{1}H\}$ ЯМР (D₂O): δ 177.6 (d, CO₂, $^{3}J_{PC}$ = 16), 133.3 (d, *ipso-C*, $^{2}J_{PC}$ = 6), 131.0 (d, *m-C*, $^{4}J_{PC}$ = 2), 130.6 (d, *p-C*, $^{5}J_{PC}$ = 3), 130.3 (d, *o-C*, $^{3}J_{PC}$ = 5), 62.4 (d, CH₂OH, $^{3}J_{PC}$ = 17), 37.7 (d, PCH, $^{1}J_{PC}$ = 44), 37.0 (s, CH₂CO₂), 25.1 (d, PCH₂CH₂, $^{2}J_{PC}$ = 4), 15.7 (d, PCH₂, $^{1}J_{PC}$ = 48). Масс-спектр ESI (MeOH): M/e 209.0 (5%) [THPP + H]⁺, 357.1 (100%) [M + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH(2-HOC₆H₄)CH₂CO₂⁻ (XLVIIb). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 150 мг (84%). Найдено, %: С 58.4; Н 7.7. С₁₈H₂₉O₆P. Вычислено, %: С 58.06; Н 7.85. ³¹P{¹H} ЯМР (D₂O): δ 39.3 (s). ¹H ЯМР (D₂O): δ 7.38-7.27 (m, 2H), 7.07-6.95 (m, 2H), 4.60 (br t, 1H, PCH), 3.60 (t, 6H, CH₂OH, ³J_{HH} = 6.0), 3.14-2.87 (m, 2H, CH₂CO₂), 2.32 (dt, 6H, PCH₂, ²J_{PH} = 12.9, ³J_{HH} = 8.2), 1.84-1.61 (m, 6H, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 177.9 (d, CO₂, ³J_{PC} = 15), 155.9 (d, o-C-OH, ³J_{PC} = 5), 131.6 (d, p-C, ⁵J_{PC} = 2), 130.7 (br s), 122.6 (d, J_{PC} = 1), 120.4 (d, *ipso*-C, ²J_{PC} = 5), 117.4 (d, J_{PC} = 2), 62.5 (d, CH₂OH, ³J_{PC} = 17), 36.6 (s, CH₂CO₂), 31.2 (br s, PCH), 25.1 (d, PCH₂CH₂, ²J_{PC} = 4), 16.1 (d, PCH₂, ¹J_{PC} = 48). Масс-спектр ESI (MeOH): M/e 209.2 (10%) [THPP + H]⁺, 373.3 (100%) [M + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH(3-HOC₆H₄)CH₂CO₂⁻ (XLVIIc). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 152 мг (85%). Найдено, %: С 57.7; Н 7.5. $C_{18}H_{29}O_6P$. Вычислено, %: С 58.06; Н 7.85. $^{31}P\{^1H\}$ ЯМР (D₂O): δ 38.3 (s). ^{1}H ЯМР (D₂O): δ 7.30 (t, 1H, $^{3}J_{HH}$ = 7.8), 6.96- 6.81 (m, 3H), 4.11 (ddd, 1H, PCH, $^{2}J_{PH}$ = 15.2, $^{3}J_{HH}$ = 11.0, $^{3}J_{HH}$ = 4.6), 3.59 (t, H, CH₂OH, $^{3}J_{HH}$ = 6.0), 3.06- 2.81 (m, 2H, CH₂CO₂), 2.25 (dt, 6H, PCH₂, $^{2}J_{PH}$ = 12.5, $^{3}J_{HH}$ = 8.3), 1.79- 1.54 (m, 6H, PCH₂CH₂). $^{13}C\{^{1}H\}$ ЯМР (D₂O): δ 177.2 (d, CO₂, $^{3}J_{PC}$ = 16), 157.9 (d, *m*-C-OH, $^{4}J_{PC}$ = 2), 134.9 (d, *ipso-C*, $^{2}J_{PC}$ = 5), 132.4 (d, *m*-C, $^{4}J_{PC}$ = 2), 122.2 (d, *o*-C, $^{3}J_{PC}$ = 5), 117.5 (d, *p*-C, $^{5}J_{PC}$ = 3), 117.1 (d, *o*-C, $^{3}J_{PC}$ = 5), 62.3 (d, CH₂OH, $^{3}J_{PC}$ = 17), 37.5 (d, PCH, $^{1}J_{PC}$ = 44), 36.7 (s, CH₂CO₂), 25.1 (d, PCH₂CH₂, $^{2}J_{PC}$ = 4), 15.7 (d, PCH₂, $^{1}J_{PC}$ = 48). Macc-спектр ESI (MeOH): *м/e* 209.2 (9%) [THPP + H]⁺, 373.3 (100%) [*M* + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH(4-HOC₆H₄)CH₂CO₂⁻ (XLVIId). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 147 мг (83%). Найдено, %: С 58.4; Н 7.5. С₁₈H₂₉O₆P. Вычислено, %: С 58.06; Н 7.85. ³¹P{¹H} ЯМР (D₂O): δ 38.1 (s). ¹H ЯМР (D₂O): δ 7.30 (m, 2H), 6.96 (m, 2H), 4.14 (ddd, 1H, PCH, ²J_{PH} = 5.3, ³J_{HH} = 11.0, ³J_{HH} = 4.6), 3.64 (t, 6H, CH₂OH, ³J_{HH} = 6.0), 3.07- 2.84 (m, 2H, CH₂CO₂), 2.28 (dt, 6H, PCH₂, ²J_{PH} = 12.7, ³J_{HH} = 8.3), 1.85- 1.61 (m, 6H, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 177.3 (d, CO₂, ³J_{PC} = 16), 157.7 (d, p-C-OH, ⁵J_{PC} = 3), 131.7 (d, o-C, ³J_{PC} = 4), 124.4 (d, *ipso-C*, ²J_{PC} = 6), 117.7 (s, m-C), 62.3 (d, CH₂OH, ³J_{PC} = 17), 37.0 (s, CH₂CO₂), 36.9 (d, PCH, ¹J_{PC} = 44), 25.1 (d, PCH₂CH₂, ²J_{PC} = 4), 15.7 (d, PCH₂, ¹J_{PC} = 48). Масс-спектр ESI (MeOH): M/e 209.1 (52%) [THPP + H]⁺, 373.3 (100%) [M + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH[3,4-(MeO)₂C₆H₃]CH₂CO₂⁻ (XLVIIe). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 135 мг (68%). Найдено, %: С 57.3; Н 8.4. С₂₀H₃₃O₇P. Вычислено, %: С 57.68; Н 7.99. ³¹P{¹H} ЯМР (D₂O): δ 38.1 (s). ¹H ЯМР (D₂O): δ 7.09- 6.96 (m, 3H, C₆H₃), 4.16 (ddd, 1H, PCH, ²J_{PH} = 15.0, ³J_{HH} = 10.8, ³J_{HH} = 4.6), 3.88 (s, 3H, CH₃O), 3.83 (s, 3H, CH₃O), 3.62 (t, 6H, CH₂OH, ³J_{HH} = 6.0), 3.09- 2.83 (m, 2H, CH₂CO₂), 2.29 (dt, 6H, PCH₂, ²J_{PH} = 12.3, ³J_{HH} = 8.3), 1.82- 1.59 (m, 6H, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 177.5 (d, CO₂, ³J_{PC} = 16), 150.1 (d, *p*-C-OMe и *m*-C-OMe, ³J_{PC} = 2), 125.8 (d, *ipso*-C, ²J_{PC} = 6), 123.2 (d, *o*-C, ³J_{PC} = 5), 113.8 (d, *m*-C, ⁴J_{PC} = 2), 113.6 (d, *o*-C, ³J_{PC} = 5), 62.3 (d, CH₂OH, ³J_{PC} = 17), 57.2 (s, OCH₃), 57.1 (s,

OCH₃), 37.4 (d, PCH, ${}^{1}J_{PC} = 43$), 37.1 (s, CH₂CO₂), 25.1 (d, PCH₂CH₂, ${}^{2}J_{PC} = 4$), 15.7 (d, PCH₂, ${}^{1}J_{PC} = 48$). Macc-cnextp ESI (MeOH): M/e 209.2 (100%) [THPP + H]⁺, 417.4 (95%) [M/e + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH(4-HO-3-MeO-C₆H₃)CH₂CO₂⁻ (XLVIIf). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 90 мг (47%). Найдено, %: С 56.4; Н 7.9. С₁₉H₃₁O₇P. Вычислено, %: С 56.71; Н 7.76. ³¹P{¹H} ЯМР (D₂O): δ 38.0 (s). ¹H ЯМР (D₂O): δ 7.04- 6.88 (m, 3H, C₆H₃), 4.14 (ddd, 1H, PCH, ²J_{PH} = 15.4, ³J_{HH} = 11.0, ³J_{HH} = 4.8), 3.91 (s, 3H, CH₃O), 3.65 (t, 6H, CH₂OH, ³J_{HH} = 5.9), 3.09- 2.84 (m, 2H, CH₂CO₂), 2.32 (dt, 6H, PCH₂, ²J_{PH} = 12.3, ³J_{HH} = 8.3), 1.84- 1.61 (m, 6H, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 177.5 (d, CO₂, ³J_{PC} = 16), 149.4 (d, p-C, ⁵J_{PC} = 2), 147.0 (d, m-C-OMe, ⁴J_{PC} = 3), 125.2 (d, *ipso-C*, ²J_{PC} = 6), 123.3 (d, o-C, ³J_{PC} = 5), 117.6 (d, m-C, ⁴J_{PC} = 2), 114.3 (d, o-C, ³J_{PC} = 4), 62.4 (d, CH₂OH, ³J_{PC} = 17), 57.4 (s, OCH₃), 37.3 (d, PCH, ¹J_{PC} = 45), 37.0 (s, CH₂CO₂), 25.1 (d, PCH₂CH₂, ²J_{PC} = 5), 15.7 (d, PCH₂, ¹J_{PC} = 48). Масс-спектр ESI (MeOH-H₂O): *м/e* 209.2 (20%) [THPP + H]⁺, 403.3 (100%) [*M* + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH[3,4-(HO)₂C₆H₃]CH₂CO₂⁻ (XLVIIg). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 112 мг (60%). Найдено, %: С 54.9; Н 8.0. С₁₈H₂₉O₇P. Вычислено, % С 55.66; Н 7.53. ³¹P{¹H} ЯМР (D₂O): δ 38.0 (s). ¹H ЯМР (D₂O): δ 7.01- 6.81 (m, 3H, C₆H₃), 4.06 (ddd, 1H, PCH, ²J_{PH} = 15.0, ³J_{HH} = 10.8, ³J_{HH} = 4.8), 3.64 (t, 6H, CH₂OH, ³J_{HH} = 6.0), 3.03- 2.81 (m, 2H, CH₂CO₂), 2.29 (dt, 6H, PCH₂, ²J_{PH} = 12.7, ³J_{HH} = 8.5), 1.85- 1.60 (m, 6H, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 177.6 (d, CO₂, ³J_{PC} = 16), 146.2 (*p*-*C*-OH и *m*-*C*-OH), 125.1 (d, *ipso-C*, ²J_{PC} = 6), 122.7 (d, *o*-C, ³J_{PC} = 5), 118.2 (s, *m*-C), 117.7 (d, *o*-C, ³J_{PC} = 4), 62.3 (d, CH₂OH, ³J_{PC} = 16), 37.0 (d, PCH, ¹J_{PC} = 44), 36.9 (s, CH₂CO₂), 25.1 (d, PCH₂CH₂, ²J_{PC} = 4), 15.7 (d, PCH₂, ¹J_{PC} = 48). Масс-спектр ESI (H₂O): *м/e* 209.2 (17%) [THPP + H]⁺, 389.2 (100%) [*M* + H]⁺.

Синтез цвиттер-иона [HO(CH₂)₃]₃P⁺CH[4-HO-3,5-(MeO)₂C₆H₂]CH₂CO₂⁻ (XLVIIh). Получали аналогично процедуре, описанной выше для XLVIIa. Выход 118 мг (57%). Найдено, %: С 55.4; Н 7.3. С₂₀H₃₃O₈P. Вычислено, С 55.55; Н 7.69. ³¹P{¹H} ЯМР (D₂O): δ 38.1 (s). ¹H ЯМР (D₂O): δ 6.72 (d, 2H, C₆H₂, ⁴J_{PH} = 2.3), 4.14 (ddd, 1H, PCH, ²J_{PH} 15.2, ³J_{HH} = 11.2, ³J_{HH} = 4.6), 3.90 (s, 6H, CH₃O), 3.65 (t, 6H, CH₂OH, ³J_{HH} = 6.0), 3.10-2.86

(m, 2H, CH_2CO_2), 2.19 (dt, 6H, PCH_2 , ${}^2J_{PH} = 12.3$, ${}^3J_{HH} = 8.5$), 1.70- 1.45 (m, 6H, PCH_2CH_2). ${}^{13}C\{{}^{1}H\}$ $\mathcal{M}P$ (D₂O): δ 177.5 (d, CO_2 , ${}^3J_{PC} = 16$), 149.7 (d, m-C, ${}^4J_{PC} = 3$), 136.1 (d, p-C, ${}^5J_{PC} = 3$), 124.6 (d, ipso-C, ${}^2J_{PC} = 6$), 107.9 (s, o-C), 62.4 (d, CH_2OH , ${}^3J_{PC} = 16$), 57.9 (s, OCH_3), 37.8 (d, PCH, ${}^1J_{PC} = 44$), 36.8 (s, CH_2CO_2), 25.1 (d, PCH_2CH_2 , ${}^2J_{PC} = 5$), 15.8 (d, PCH_2 , ${}^1J_{PC} = 48$). Macc-chektre ESI (MeOH): M/e 209.2 (70%) [THPP + H]⁺, 433.4 (100%) [M + H]⁺.

ЯМР исследование реакции ТНРР с коричными кислотами в CD_3OD . В гловбоксе растворяли ТНРР (24.0 мг, 0.115 ммол) и соответствующую кислоту (0.115 ммол) в CD_3OD (1 г, 1.12 мл). Смесь перемешивали при комнатной температуре в течение 5 мин, часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР.

Реакция ТНР и коричной кислоты в ацетоне. В гловбоксе растворяли ТНР (100 мг, 0.81 ммол) и коричную кислоту (120 мг, 0.81 ммол) в ацетоне (3 мл). Смесь нагревали при 60° С в течение 2 дней. Белый, аморфный осадок отфильтровывали, промывали ацетоном (2 х 2 мл) и сушили в вакууме в течение ночи. Выход ~150 мг (~68%). Масс-спектр ESI (H_2O): катион протонированной формы соединения **XLVIIIa** [m/e 273.0 (100%, [**XLVIIIa** + H]⁺), расч. 273.1] и катион протонированной формы соединения с двумя замещенными CH_2OH -группами [m/e 391.0 (8%, [M + H]⁺), расч. 391.1]. Спектры ЯМР 1 H и 31 P{ 1 H} обсуждаются в главе 6.

(HOCH₂)₃P⁺CH(Ph)CH₂CO₂⁻ (**XLVIIIa**). ¹³C{¹H} ЯМР (D₂O): δ 177.3 (d, CO_2 , ³ J_{PC} = 10), 132.4 (d, ipso-C, ² J_{PC} = 6), 129.7 (d, m-C, ⁴ J_{PC} = 2), 129.2 (d, p-C, ⁵ J_{PC} = 2), 128.9 (d, o-C, ³ J_{PC} = 5), 51.0 (d, CH_2OH , ¹ J_{PC} = 55), 33.0 (d, PCH, ¹ J_{PC} = 36), 30.3 (s, CH_2CO_2).

Реакция ТНР и 4-гидроксикоричной кислоты в ацетоне. Проводили аналогично процедуре, описанной выше для коричной кислоты. Выход ~90 мг (~78 %). Масс-спектр ESI (H₂O): катион протонированной формы соединения **XLVIIIb** [m/e 288.9 (100%, [**XLVIIIb** + H]⁺), расч. 289.1] и катион протонированной формы соединения с двумя замещенными CH₂OH-группами [m/e 422.9 (~5%, [M + H]⁺), расч. 423.1]. 31 P{ 1 H} ЯМР (D₂O): δ 30.6 s. Спектры ЯМР 1 H обсуждаются в главе 6.

Реакция ТНР и 2-гидроксикоричной кислоты в ацетоне. Проводили аналогично процедуре, описанной выше для коричной кислоты. Выход ~95 мг (~82 %). Масс-спектр ESI (H_2O): катион протонированной формы соединения **XLVIIIc** [m/e 289.0 (100%, [**XLVIIIc** + H]⁺), расч. 289.1]. ³¹P{¹H} ЯМР (D_2O): δ 32.1 s. Спектры ЯМР ¹H обсуждаются в главе 6.

ЯМР исследование реакции **ТНР** и коричной кислоты в **CD**₃**OD**. В гловбоксе растворяли **ТНР** (15 мг, 0.12 ммол) и кислоту (18 мг, 0.12 ммол) в **CD**₃**OD** (1 мл). Часть раствора (~ 0.7 мл) помещали в **ЯМР**-ампулу типа **J**-Young. Реакционную смесь в ампуле нагревали при 60° C в течение 6 дней и периодически снимали спектры **ЯМР** при комнатной температуре. Спектры **ЯМР** ¹H и ³¹P{ ¹H} обсуждаются в главе 6.

Реакция ТНРР и метил циннамата в смеси ацетон-вода. Метил циннамат (156 мг, 0.96 ммол) добавляли в аргоне к раствору ТНРР (200 мг, 0.96 ммол) в смеси ацетонвода (6 мл, 1:1 v/v). Реакционную смесь выдерживали при комнатной температуре в течение ночи, отгоняли растворитель при пониженном давлении, остаток сушили в вакууме в течение ночи. На следующий день остаток промывали ацетоном и сушили в вакууме в течение ночи. Выход **XLVIIa** 260 мг (76%). Найдено, %: С 60.63; Н 8.00. $C_{18}H_{29}O_5P$. Вычислено, %: С 60.66; Н 8.20. $^{31}P\{^1H\}$ ЯМР (D_2O): δ 38.3 (s). ^{1}H ЯМР (D_2O): δ 7.42-7.26 (m, 5H, C_6H_5), 4.14-4.01 (m, 1H, PCH), 3.50 (t, $^{3}J_{HH}$ = 6, 6H, CH_2OH), 2.98-2.74 (m, 2H, CH_2CO_2), 2.26-2.08 (m, 6H, PCH_2), 1.71-1.48 (m, 6H, PCH_2CH_2).

ЯМР исследование реакции гидрохлорида THPP с метил циннаматом в CD_3OD . В гловбоксе добавляли метил циннамат (16 мг, 0.10 ммол) к раствору гидрохлорида THPP (24 мг, 0.10 ммол) в CD_3OD (~ 1 мл), смесь перемешивали в течение 5 мин при комнатной температуре, часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и нагревали при $60^{\circ}C$ в течение 14 дней.

Соединение {[DO(CH₂)₃]₃P⁺CH(Ph)CH(D)CO₂CH₃}Cl⁻ (**LI-D₁**) образуется как смесь диастереомеров 1:1. b-Протон виден в спектре ЯМР ¹H при $\delta_{\rm H}$ 4.38 как два дублета дублетов с ³ $J_{\rm HH}$ = 11.4 Гц для одного изомера и ³ $J_{\rm HH}$ = 3.2 Гц для другого и с ² $J_{\rm PH}$ = 15.8 Гц для всех изомеров. α -Протон для одного диастереомера виден при $\delta_{\rm H}$ 3.22 как дублетов с ³ $J_{\rm HH}$ = 3.2 с ³ $J_{\rm PH}$ = 8.5 Гц; α -протон другого диастереомера закрыт

интенсивным сигналом CH_2OD -протонов. Протоны OCH_3 регистрируются как синглет при δ_H 3.59 и перекрываются с CH_2OD -протонами.

Соединение $\{[DO(CH_2)_3]_3P^+CH(Ph)CH(D)CO_2CD_3\}Cl^-$ (**LI-D₄**) также формируются как смесь диастереомеров 1:1 с химическими сдвигами и константами спин-спинового взаимодействия для **a**- и **b**-протонов идентичными соединению **LI-D₁**.

ЯМР исследование реакции ТНРР с метил циннаматом в смеси ацетон- \mathbf{d}_6 — $\mathbf{D}_2\mathbf{O}$. В гловбоксе растворяли ТНРР (50 мг, 0.24 ммол) и метил циннамат (39 мг, 0.24 ммол) в 2.2 мл смеси ацетон- \mathbf{d}_6 — $\mathbf{D}_2\mathbf{O}$ (1/1 vv). Часть раствора (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР при комнатной температуре.

Бензильный протон цвиттер-иона **XLVIIa-D₂** в спектре ЯМР ¹Н виден как дублет при $\delta_{\rm H}$ 4.17 м.д. ($^2J_{\rm PH}=15.0~\Gamma$ ц). Бензильный протон цвиттер-иона **XLVIIa-D₁** виден как дублет дублетов при $\delta_{\rm H}$ 4.18 м.д. ($^2J_{\rm PH}=15.0$, $^3J_{\rm HH}=10.2~\Gamma$ ц), тогда как метиленовый протон регистрируется при $\delta_{\rm H}$ 2.87 м.д. как псевдо триплет, являющийся двумя перекрывающимя дублетами ($^3J_{\rm PH}\sim10~\Gamma$ ц). Соотношение **XLVIIa-D₂/ XLVIIa-D₁ ~** 2.2. Соединение **XLVIIa-D₃** не может быть идентифицировано в спектрах ЯМР ¹Н, т.к. протоны фенильного кольца и (CH₂)₃OD-групп идентичны для **XLVIIa-D₁₋₃**.

ЯМР исследование реакции ТНРР с метил 4-гидроксициннаматом в смеси ацетон-d₆–D₂O. Проводили по процедуре описанной выше для метил циннамата. Бензильный протон цвиттер-иона **XLVIIb-D₂** в спектре ЯМР ¹Н виден как дублет при $\delta_{\rm H}$ 4.10 м.д. ($^2J_{\rm PH}=14.6~\Gamma$ ц). Масс-спектр ESI водного раствора остатка после удаления растворителей: пики m/e 375.3 (100%) и 397.3 (75%) принадлежат соединению **XLVIIb-D₂**, несущему протон и Na⁺ соответственно; также был зарегистрирован пик m/e 389.3 (~10%), принадлежащий катиону **LIIb-D₂**.

К главе 7

Синтез Ph₃P⁺C₆**H₃(O**⁻)(**OH**) (**LIVa**). Раствор фосфина Ph₃P (262 мг, 1.0 ммол) и n-бензохинона (108 мг, 1.0 ммол) в бензоле (5 мл) перемешивали при комнатной температуре в течение 24 ч. Желтый осадок отфильтровывали, промывали бензолом и Et_2O , и сушили 1 ч при 80 °C в вакууме. Выход 345 мг (93%). $^{31}P\{^{1}H\}$ ЯМР (CD₃OD): δ

21.8 (s). ¹H ЯМР (CD₃OD): δ 7.80-7.59 (m, 15H, Ph), 7.03 (ddd, ³ $J_{PH} = 9.0$, ⁴ $J_{HH} = 3.0$, ⁵ $J_{PH} = 0.4$, 1H, p-H), 6.63 (dd, ⁴ $J_{PH} = 7.2$, ³ $J_{HH} = 9.0$, 1H, m-H), 6.16 (dd, ³ $J_{PH} = 15.1$, ⁴ $J_{HH} = 3.0$, 1H, o-H). Масс-спектр ESI: m/e = 371.3 [M + H]⁺; расч. 371.1.

Синтез Ме₃P⁺C₆H₃(O⁻)(OH) (LIVb). Получали аналогично процедуре, описанной для LIVa, за исключением того, что Ме₃P добавляли по каплям как 1.0 М раствор в толуоле (1 мл, 1.0 ммол). Немедленно образующуюся темно-зеленую суспензию перемешивали в течение 12 ч. Выход 174 мг (95%). ³¹P{¹H} ЯМР (CD₃OD): δ 16.1 (s). ¹H ЯМР (CD₃OD): δ 6.90 (ddd, ³ J_{PH} = 9.0, ⁴ J_{HH} = 3.0, ⁵ J_{PH} = 0.5, 1H, p-H), 6.63 (dd, ³ J_{PH} = 14.7, ⁴ J_{HH} = 3.0, 1H, o-H), 6.56 (dd, ⁴ J_{PH} = 6.9, ³ J_{HH} = 9.0, 1H, m-H), 2.03 (d, ² J_{PH} = 14.5, 9H, CH₃).

Синтез Et₃P $^+$ C₆H₃(O $^-$)(OH) (LIVc). Получали аналогично процедуре, описанной для LIVa, за исключением того, что Et₃P добавляли по каплям. Получали светло-коричневый осадок ~200 мг, состоящий из LIVc и LV (9:1).

LIVc: ${}^{31}P\{{}^{1}H\}$ 9MP (D₂O): δ 32.7 (s). ${}^{1}H$ 9MP (D₂O): δ 7.00 (dd, ${}^{3}J_{HH} = 9.0$, ${}^{4}J_{HH} = 3.0$, 1H, p-H), 6.68 (dd, ${}^{3}J_{PH} = 12.8$, ${}^{4}J_{HH} = 3.0$, 1H, o-H), 6.62 (dd, ${}^{4}J_{PH} = 6.5$, ${}^{3}J_{HH} = 9.0$, 1H, m-H), 2.44-2.32 (m, 6H, PCH₂), 1.08 (dt, ${}^{3}J_{PH} = 18.7$, ${}^{3}J_{HH} = 7.5$, 9H, CH₃). ${}^{13}C\{{}^{1}H\}$ 9MP (D₂O): δ 165.9 (d, ${}^{2}J_{PC} = 3.2$, o-C-O⁻), 147.2 (d, ${}^{3}J_{PC} = 15.1$, m-C-OH), 126.5 (d, ${}^{4}J_{PC} = 2.1$, p-C), 122.8 (d, ${}^{3}J_{PC} = 9.2$, m-C), 119.4 (d, ${}^{2}J_{PC} = 8.5$, o-C), 102.0 (d, ${}^{1}J_{PC} = 86.5$, C_{ipso}), 12.5 (d, ${}^{1}J_{PC} = 52.9$, PCH₂), 6.4 (d, ${}^{2}J_{PC} = 4.9$, CH₃).

LV: 31 P{ 1 H} ЯМР (D₂O): δ 35.4 (s) и 33.1 (s). 1 H ЯМР (D₂O): δ 7.13 (d, ${}^{3}J_{\text{HH}} = 9.0$, 1H, H_{D}), 7.08 (dd, ${}^{3}J_{\text{HH}} = 9.1$, ${}^{4}J_{\text{HH}} = 3.0$, 1H, H_{B}), 6.65 (предположительно dd, 1H, H_{C} , накладывается на сигналы o-H и m-H соединения LIVc), 6.50 (dd, ${}^{4}J_{\text{PH}} = 5.7$, ${}^{3}J_{\text{HH}} = 9.0$, 1H, H_{E}), 6.38 (dd, ${}^{3}J_{\text{PH}} = 12.9$, ${}^{4}J_{\text{HH}} = 3.0$, 1H, H_{A}), 2.31 (m, 12H, PC H_{2} , перекрывается с PC H_{2} соединения LIVc), 1.04 (m, 18H, C H_{3} , перекрывается с C H_{3} соединения LIVc). 13 C{ 1 H} ЯМР (D₂O): δ 169.8 (d, ${}^{2}J_{\text{PC}} = 3.9$, C^{10}), 168.7 (d, ${}^{2}J_{\text{PC}} = 2.3$, C^{2}), 147.6 (d, ${}^{3}J_{\text{PC}} = 15.2$, C^{7}), 145.6 (d, ${}^{2}J_{\text{PC}} = 1.8$, C^{6}), 139.1 (d, ${}^{3}J_{\text{PC}} = 9.8$, C^{5}), 127.9 (s, C^{4}), 125.6 (s, C^{12}), 119.6 (d, ${}^{3}J_{\text{PC}} = 8.6$, C^{3}), 116.9 (d, ${}^{2}J_{\text{PC}} = 10.2$, C^{8}), 101.2 (d, ${}^{1}J_{\text{PC}} = 88.0$, C^{9}), 96.4 (d, ${}^{1}J_{\text{PC}} = 87.0$, C^{1}), 14.2 (d, ${}^{1}J_{\text{PC}} = 52.9$, PCH₂), 12.5 (d, PCH₂, накладывается на сигналы PCH₂ соединения LIVc), 7.0 (d, ${}^{2}J_{\text{PC}} = 4.9$, CH₃), 6.4 (d, CH₃, накладывается на сигналы CH₃ соединения LIVc). Сигнал C^{11} не может быть присвоен со 100% уверенностью.

Синтез Ph₂MeP⁺C₆**H₃(O**⁻)(**OH**) (**LIVd**). Получали аналогично процедуре, описанной для **LXc**. Выход 135 мг (81%). 31 P{ 1 H} ЯМР (CD₃OD): δ 19.9 (s). 1 H ЯМР (CD₃OD): δ 7.78-7.60 (m, 10H, Ph), 6.99 (dd, $^{3}J_{PH} = 9.0$, $^{4}J_{HH} = 3.0$, 1H, p-H), 6.59 (dd, $^{4}J_{PH} = 7.3$, $^{3}J_{HH} = 9.0$, 1H, m-H), 6.05 (dd, $^{3}J_{PH} = 15.3$, $^{4}J_{HH} = 3.0$, 1H, o-H), 2.78 (d, $^{2}J_{PH} = 14.5$, 3H, CH₃).

Синтез [HO(CH₂)₃]₃P⁺C₆H₃(O⁻)(OH) (LIVe). Раствор n-бензохинона (52 мг, 0.48 ммол) в ацетоне (1 мл) добавляли при комнатной температуре по каплям к раствору ТНРР (100 мг, 0.48 ммол, полагая 100% чистоту) в ацетоне (3 мл). Образовавшийся слабо-желтый осадок отфильтровывали, промывали ацетоном и сушили в вакууме в течение ночи. Перекристаллизовывали из МеОН. Выход 130 мг (86%). Найдено, %: С 56.77; H, 8.26. $C_{15}H_{25}O_5P$. Вычислено, %: С 56.95; H 7.97. $^{31}P\{^1H\}$ ЯМР (D_2O): δ 28.9 (s). ^{1}H ЯМР (D_2O): δ 7.04 (dd, $^{3}J_{HH} = 8.9$, $^{4}J_{HH} = 3.0$, 1H, p-H), 6.64 (dd, $^{3}J_{PH} = 13.0$, $^{4}J_{HH} = 3.0$, 1H, o-H), 6.55 (dd, $^{4}J_{PH} = 6.6$, $^{3}J_{HH} = 8.9$, 1H, m-H), 3.57 (t, $^{3}J_{HH} = 6.1$, 6H, CH_2OH), 2.53-2.33 (m, 6H, PCH_2CH_2), 1.72-1.53 (m, 6H, PCH_2CH_2). $^{13}C\{^1H\}$ ЯМР (D_2O): δ 165.3 (d, $^{2}J_{PC} = 3.4$, o-C-O⁻), 145.8 (d, $^{3}J_{PC} = 15.5$, m-C-OH), 125.8 (s, p-C), 121.6 (d, $^{2}J_{PC} = 9.8$), 117.6 (d, $^{3}J_{PC} = 9.2$), 100.4 (d, $^{1}J_{PC} = 87.9$, C_{ipso}), 61.2 (d, $^{3}J_{PC} = 16.7$, CH_2OH), 24.0 (d, $^{2}J_{PC} = 2.9$, PCH_2CH_2), 15.3 (d, $^{1}J_{PC} = 54.0$, PCH_2CH_2). Масс-спектр ESI: m/e 316.7 [M + H]⁺; расч. 317.2.

Синтез [HO(CH₂)₃]₃P⁺C₆H₂(O⁻)(OH)(MeO) (LIVf). Получали аналогично процедуре, описанной для LIVe, и перекристаллизовывали из смеси MeOH/EtOH (1:1). Выход 135 мг (81%). Найдено, %: С 55.10; Н 7.92. С₁₆H₂₇O₆P. Вычислено, %: С 55.48; Н 7.86. 31 P{ 1 H} ЯМР (CD₃OD): δ 27.0 (s). 1 H ЯМР (CD₃OD): δ 6.56 (d, $^{3}J_{PH}$ = 12.1, 1H, o-H), 6.20 (d, $^{4}J_{PH}$ = 5.8, 1H, m-H), 3.80 (s, 3H, OCH₃), 3.61 (t, $^{3}J_{HH}$ = 6.0, 6H, CH₂OH), 2.53-2.38 (m, 6H, PCH₂CH₂), 1.76-1.61 (m, 6H, PCH₂CH₂). 13 C{ 1 H} ЯМР (D₂O): δ 168.3 (d, $^{2}J_{PC}$ = 4.0, o-C-O⁻), 155.9 (s, p-C), 135.5 (d, $^{3}J_{PC}$ = 16.1, m-C-OH), 116.9 (d, $^{2}J_{PC}$ = 10.3, o-C), 103.6 (d, $^{3}J_{PC}$ = 9.8, m-C), 89.5 (d, $^{1}J_{PC}$ = 95.4, C_{ipso}), 61.3 (d, $^{3}J_{PC}$ = 16.7, CH₂OH), 55.5 (s, OCH₃), 24.0 (d, $^{2}J_{PC}$ = 2.9, PCH₂CH₂), 15.6 (d, $^{1}J_{PC}$ = 54.6, PCH₂CH₂). Macc-спектр ESI: m/e 347.0 [M + H]⁺; pacu. 347.2.

ЯМР исследование реакции Et_3P и *n*-бензохинона в D_2O . Добавляли при перемешивании фосфин Et_3P (23.6 мг, 0.2 ммол) к суспензии *n*-бензохинона (21.6 мг, 0.2 ммол) в D_2O (1 мл). После растворения всех компонентов помещали часть раствора (\sim 0.7 мл) в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР. После 4 дней мониторинга при комнатной температуре содержимое ЯМР-ампулы нагревали при 90°C в течение 3 дней, периодически снимая спектры ЯМР при комнатной температуре.

ЯМР исследование реакции **ТНРР** и *n*-бензохинона в D_2O . Проводили аналогично процедуре, описанной выше для реакции с Et_3P .

Рентгеноструктурный анализ соединений LIVf и LIVa. Иррегулярные, бесцветные кристаллы соединения **LIVf** получали диффузией Et₂O в метанольный раствор соединения. Иглообразные, желтые кристаллы соединения **LIVa** MeOH получали кристаллизацией ИЗ насыщенного раствора MeOH. Некоторые кристаллографические таблице 21. Данные данные представлены ниже В (представленные как **LIVf/LIVa**) собирались до максимального значения $2q = 50.0^{\circ}$ с расстоянием между кристаллом и детектором 37.99/36.00 мм. Из 8999/6900 собранных отражений 2739/3530 являются независимыми ($R_{\rm int} = 0.038/0.039$). Минимальный и максимальный коэффициент пропускания 0.846/0.700 и 0.989/0.994 соответственно. Все не водородные атомы уточнены анизотропно. Все ОН-протоны соединения выявлены из разностного синтеза и уточнены изотропно. Все другие атомы водорода помещены в расчетные позиции, но не уточнены.

Таблица 21.

	LIVf	LIVa>MeOH
Эмпирическая формула	$C_{16}H_{27}O_6P$	$C_{24}H_{19}O_2P$ >C H_3OH
Размер кристалла, мм ³	0.25 ′ 0.10 ′ 0.06	0.04 ′ 0.07 ′ 0.25
Кристаллическая система	орторомбическая	орторомбическая
Пространственная группа	<i>Pna</i> 2 ₁ (#33)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (#19)
a, Å	15.8513(7)	9.708(4)
b, Å	7.4630(3)	10.245(5)
c, Å	14.8155(6)	20.533(9)
V , $\mathring{\mathbf{A}}^3$	1752.7(1)	2042(2)
Z	4	4
<i>т</i> , см ⁻¹	1.84	1.59
Всего отражений	8999	6900
Независимые отражения	2739	3530
$R_{ m int}$	0.038	0.039
Число переменных	225	271
R1 (I > 2s(I))	0.037	0.046
wR2	0.079 (все данные) ^{a}	0.086 (все данные) ^b
gof $a_{11} = 1/(a^2(E^2) + (0.1242 R)^2 + 2.8124$	1.02 (все данные)	1.01 (все данные)

 $[^]a$ $w = 1/[s^2(F_o^2) + (0.1242P)^2 + 2.8124P]$, где $P = (F_o^2 + 2F_c^2)/3$. b $w = 1/[s^2(F_o^2) + (0.0350P)^2 + 0.2934P]$, где $P = (F_o^2 + 2F_c^2)/3$.

К главе 8

Синтез 3,5- $(OMe)_2$ -4-O $^-$ -C₆H₂CH₂P $^+$ [(CH₂)₃OH]₃ (LVIa). Сиреневый спирт (98 мг, 0.48 ммол) добавляли под аргоном к раствору THPP (100 мг, 0.48 ммол) в H_2O (3 мл). Реакционную смесь нагревали при 90 °C в течение 16 ч при перемешивании, отгоняли воду в вакууме, полученный зеленоватый, аморфный остаток промывали сухим ТГФ и сушили в вакууме. Выход 140 мг (~80%). Найдено, %: С 57.18; Н 7.62. $C_{18}H_{31}O_6P$. Вычислено, %: С 57.74; H 8.35. ${}^{31}P\{{}^{1}H\}$ ЯМР: δ 34.9 (s). ${}^{1}H$ ЯМР (D₂O): δ 6.50 (d, ${}^{4}J_{PH}=2$, 2H, C_6H_2), 3.79 (s, 6H, OC H_3), 3.65 (t, $^3J_{HH} = 6$, 6H, C H_2 OH), 3.54 (d, $^2J_{PH} = 14$, 2H, PC H_2 Ar), 2.27-2.12 (m, 6H, PC H_2 CH₂), 1.82-1.66 (m, PCH₂CH₂). ¹³C{¹H} ЯМР (D₂O): δ 151.1 (d, ${}^{4}J_{PC} = 3$, m-C), 146.0 (d, ${}^{5}J_{PC} = 3$, p-C), 110.1 (d, ${}^{2}J_{PC} = 9$, C_{arom} - CH_{2}), 108.6 (d, ${}^{3}J_{PC}$ = 5, o-C), 61.0 (d, ${}^{3}J_{PC}$ = 17, CH₂OH), 56.6 (s, OCH₃), 25.6 (d, ${}^{1}J_{PC}$ = 45, PCH₂Ar), 23.5 (d, $^{2}J_{PC} = 4$, PCH₂CH₂), 14.8 (d, $^{1}J_{PC} = 49$, PCH₂CH₂). Macc-спектр ESI (H₂O): м/е 375.2 [**LVIa** + H]⁺; расч. 375.4.

Синтез [3-MeO-4-OH-C₆H₃CH₂PEt₃]Cl (LVIIb). Ванильный спирт (308 мг, 2.0 ммол) и Et_3P (0.30 мл, 2.0 ммол) помещали под аргоном в воду (8 мл), смесь нагревали при 90°C в течение 18 ч при перемешивании. Добавляли HCl (0.17 мл 37%-го водного

раствора, 2.0 ммол), отгоняли воду в вакууме. Остаток сушили в вакууме при ~50 °C в течение 1 ч и промывали ацетоном (~10 мл). Белый осадок отфильтровывали и сушили в вакууме в течение ночи. Выход 490 мг (84%). Найдено, %: С 58.2; Н 8.7. $C_{14}H_{24}O_{2}CIP$. Вычислено, %: С 57.83; Н 8.32. $^{31}P\{^{1}H\}$ ЯМР: δ 38.0 (s). ^{1}H ЯМР: δ 6.91 (d, $^{3}J_{HH}$ = 8.1, 1H, m-H), 6.87 (pseudo t, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 6.78 (d pseudo t, $^{3}J_{HH}$ = 8.1, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 3.85 (s, 3H, OC H_{3}), 3.56 (d, $^{2}J_{PH}$ = 14.0, 2H, ArC H_{2}), 2.15 (dq, $^{2}J_{PH}$ = 12.7, $^{3}J_{HH}$ = 7.6, 6H, PC H_{2} CH₃), 1.18 (dt, $^{3}J_{PH}$ = 18.3, $^{3}J_{HH}$ = 7.6, 9H, PC H_{2} CH₃). $^{13}C\{^{1}H\}$ ЯМР: δ 149.1 (d, $^{4}J_{PC}$ = 3.0, C-OMe), 146.2 (d, $^{5}J_{PC}$ = 3.6, C-OH), 124.0 (d, $^{3}J_{PC}$ = 5.3, o-C), 121.3 (d, $^{2}J_{PC}$ = 8.4, C_{ipso}), 117.3 (d, $^{4}J_{PC}$ = 3.1, m-C), 114.9 (d, $^{3}J_{PC}$ = 4.3, o-C), 57.2 (s, OCH₃), 25.6 (d, $^{1}J_{PC}$ = 45.9, ArCH₂), 12.0 (d, $^{1}J_{PC}$ = 49.0, PCH₂CH₃), 5.8 (d, $^{2}J_{PC}$ = 5.4, PCH₂CH₃). Macc-спектр ESI: m/e = 255.1 [M-Cl]⁺. M_{pacq} = 290.2.

Синтез [4-OH-C₆H₄CH₂PEt₃]Cl (LVIIc). Получали по процедуре, описанной выше для LVIIb. Выход 480 мг (75%). Найдено, %: С 60.25; Н 8.53. С₁₃H₂₂ClOP. Вычислено, %: С 59.88; Н 8.50. 31 P{ 1 H} ЯМР: δ 38.0 (s). 1 H ЯМР: δ 7.17 (br d, $^{3}J_{HH}$ = 7.9, 2H, o-H), 6.91 (d, $^{3}J_{HH}$ = 7.9, 2H, m-H), 3.54 (d, $^{2}J_{PH}$ = 14.0, 2H, ArCH₂), 2.20-2.03 (m, 6H, PCH₂CH₃), 1.17 (dt, $^{3}J_{PH}$ = 18.3, $^{3}J_{HH}$ = 7.6, 9H, PCH₂CH₃). 13 C{ 1 H} ЯМР: δ 147.1 (d, $^{5}J_{PC}$ = 3.1, C-OH), 132.7 (d, $^{3}J_{PC}$ = 4.6, o-C), 120.9 (d, $^{2}J_{PC}$ = 7.6, C_{ipso}), 117.6 (d, $^{4}J_{PC}$ = 3.1, m-C), 25.3 (d, $^{1}J_{PC}$ = 45.9, ArCH₂), 12.1 (d, $^{1}J_{PC}$ = 49.0, PCH₂CH₃), 6.0 (d, $^{2}J_{PC}$ = 6.1, PCH₂CH₃).

Синтез [3,5-(OMe)₂-4-OH-C₆H₂CH₂PEt₃]Cl (LVIId). Получали по процедуре, описанной выше для LVIIb. Выход 315 мг (61%). Найдено, %: С 55.95; Н 8.50. $C_{15}H_{26}ClO_3P$. Вычислено, %: С 56.16; Н 8.17. $^{31}P\{^1H\}$ ЯМР: δ 39.0 (s). ^{1}H ЯМР: δ 6.52 (d, $^{4}J_{PH}=2.3$, 2H, o-H), 3.83 (s, 6H, OC H_3), 3.54 (d, $^{2}J_{PH}=14.1$, 2H, ArC H_2), 2.15 (dq, $^{3}J_{HH}=7.7$, $^{2}J_{PH}=12.9$, 6H, PC H_2 CH₃), 1.19 (dt, $^{3}J_{PH}=18.2$, $^{3}J_{HH}=7.7$, 9H, PC H_2 CH₃). $^{13}C\{^1H\}$ ЯМР: δ 148.1 (d, $^{4}J_{PC}=3.2$, C-OMe), 134.1 (d, $^{5}J_{PC}=3.7$ C-OH), 119.3 (d, $^{2}J_{PC}=8.8$, C_{ipso}), 107.0 (d, $^{3}J_{PC}=4.7$, o-C), 56.3 (s, OCH₃), 25.1 (d, $^{1}J_{PC}=45.7$, ArCH₂), 11.0 (d, $^{1}J_{PC}=48.9$, PCH₂CH₃), 4.70 (d, $^{2}J_{PC}=5.4$, PCH₂CH₃).

Синтез [3-MeO-4-OH-C₆H₃CH₂PMe₃]Cl (LVIIe). Получали по процедуре, описанной выше для LVIIb за исключением того, что Me₃P добавляли как 1.0 M раствора в толуоле (2 мл, 2.0 ммол) и перемешивали 24 ч. Выход 443 мг (89%). Найдено,

%: С 53.32; Н 7.06. С₁₁Н₁₈СІО₂Р. Вычислено, %: С 53.13; Н 7.30. ³¹Р{¹H} ЯМР: δ 26.8 (s). ¹H ЯМР: δ 6.87 (d, ³ J_{HH} = 8.1, 1H, m-H), 6.83 (pseudo t, ⁴ J_{HH} » ⁴ J_{PH} » 2, 1H, o-H), 6.73 (d pseudo t, ³ J_{HH} = 8.1, ⁴ J_{HH} » ⁴ J_{PH} » 2, 1H, o-H), 3.82 (s, 3H, OC H_3), 3.53 (d, ² J_{PH} = 15.1, 2H, ArC H_2), 1.77 (d, ² J_{PH} = 14.1, 9H, PC H_3). ¹³С{¹H} ЯМР: δ 149.2 (d, ⁴ J_{PC} = 3.5, C-OC H_3), 146.3 (d, ⁵ J_{PC} = 4.0, C-OH), 124.2 (d, ³ J_{PC} = 5.6, o-C), 121.6 (d, ² J_{PC} = 9.2, C_{ipso}), 117.3 (d, ⁴ J_{PC} = 3.5, m-C), 115.0 (d, ³ J_{PC} = 4.8, o-C), 57.3 (s, OC H_3), 31.3 (d, ¹ J_{PC} = 50.3, ArCH₂), 8.2 (d, ¹ J_{PC} = 55.2, PCH₃). Масс-спектр ESI: m/e = 213.2 [M-Cl]⁺; M_{pacq} = 248.1.

Синтез [3-МеО-4-ОН-С₆H₃CH₂Pn-Pr₃]Cl (LVIIf). Получали по процедуре, описанной выше для LVIIb. Выход 379 мг (57%). Найдено, %: С 61.58; Н 9.38. $C_{17}H_{30}ClO_2$ P. Вычислено, %: С 61.34; Н 9.08. $^{31}P\{^{1}H\}$ ЯМР: δ 32.4 (s). ^{1}H ЯМР: δ 6.91 (d, $^{3}J_{HH}$ = 8.1, 1H, m-H), 6.85 (pseudo t, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 6.76 (d pseudo t, $^{3}J_{HH}$ = 8.1, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 3.85 (s, 3H, OC H_3), 3.53 (d, $^{2}J_{PH}$ = 14.0, 2H, ArC H_2), 2.12-2.01 (m, 6H, PC H_2), 1.62-1.47 (m, 6H, PC H_2 C H_2), 1.03 (dt, $^{4}J_{PH}$ = 1, $^{3}J_{HH}$ = 7.6, 9H, CH₂C H_3). $^{13}C\{^{1}H\}$ ЯМР: δ 149.3 (d, $^{4}J_{PC}$ = 3.0, C-OC H_3), 146.4 (d, $^{5}J_{PC}$ = 3.6, C-OH), 124.1 (d, $^{3}J_{PC}$ = 5.2, o-C), 121.6 (d, $^{2}J_{PC}$ = 8.7, C_{ipso}), 117.4 (d, $^{4}J_{PC}$ = 3.1, m-C), 115.0 (d, $^{3}J_{PC}$ = 4.5, o-C), 57.3 (s, OC H_3), 26.8 (d, $^{1}J_{PC}$ = 45.8, Ar CH_2), 21.0 (d, $^{1}J_{PC}$ = 47.0, PC H_2), 16.2 (d, $^{2}J_{PC}$ = 5.0, CH_2CH_3), 16.0 (d, $^{3}J_{PC}$ = 16.0, CH $_2CH_3$). Macc-спектр ESI: m/e = 297.2 [M-CI] $^+$; M_{pacq} = 332.2.

Синтез [3-МеО-4-OH-C₆H₃CH₂P*i*-Pr₃]Cl (LVIIg). Получали по процедуре, описанной выше для LVIIb. Выход 452 мг (68%). Найдено, %: С 61.58; Н 9.38. $C_{17}H_{30}ClO_2$ P. Вычислено, С: 61.34; Н 9.08. $^{31}P\{^{1}H\}$ ЯМР: δ 41.7 (s). ^{1}H ЯМР: δ 6.89 (d, $^{3}J_{HH} = 8.1$, 1H, *m-H*), 6.88 (pseudo t, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, *o-H*), 6.80 (d pseudo t, $^{3}J_{HH} = 8.1$, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, *o-H*), 3.83 (s, 3H, OC*H*₃), 3.56 (d, $^{2}J_{PH} = 13.4$, 2H, ArC*H*₂), 2.81-2.65 (m, 3H, PC*H*), 1.28 (dd, $^{3}J_{PH} = 15.9$, $^{3}J_{HH} = 7.3$, 18H, C*H*₃). $^{13}C\{^{1}H\}$ ЯМР: δ 149.2 (d, $^{4}J_{PC} = 2.2$ *C*-OCH₃), 146.5 (d, $^{5}J_{PC} = 3.0$, *C*-OH), 124.5 (d, $^{3}J_{PC} = 4.8$, *o-C*), 121.9 (d, $^{2}J_{PC} = 7.8$, C_{ipso}), 117.4 (d, $^{4}J_{PC} = 2.2$, *m-C*), 115.4 (d, $^{3}J_{PC} = 4.4$, *o-C*), 57.3 (s, OCH₃), 23.2 (d, $^{1}J_{PC} = 41.9$, ArCH₂), 21.5 (d, $^{1}J_{PC} = 41.5$, PCH), 17.2 (d, $^{2}J_{PC} = 3.5$, CH₃). Macc-спектр ESI: M/e = 297.2 [*M*-Cl]⁺; $M_{pacq} = 332.2$.

Синтез {3-МеО-4-OH-C₆H₃CH₂P[(CH₂)₃OH]₃}Cl (LVIIh). Получали по процедуре, описанной выше для LVIIb. Выход 427 мг (56%). Найдено, %: С 54.00; Н 7.95. $C_{17}H_{30}ClO_5P$. Вычислено, %: С 53.61; Н 7.94. $^{31}P\{^1H\}$ ЯМР: δ 34.8 (s). ^{1}H ЯМР: δ 7.00 (d, $^{3}J_{HH}$ = 8.2, 1H, m-H), 6.98 (pseudo t, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 6.88 (d pseudo t, $^{3}J_{HH}$ = 8.2, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 3.91 (s, 3H, OCH₃), 3.73 (d, $^{2}J_{PH}$ = 14.0, 2H, ArCH₂), 3.70 (t, $^{3}J_{HH}$ = 5.9, 6H, CH₂OH), 2.27-2.25 (m, 6H, PCH₂), 1.88-1.75 (m, 6H, PCH₂CH₂). $^{13}C\{^{1}H\}$ ЯМР: δ 149.5 (d, $^{4}J_{PC}$ = 2.5 C-OCH₃), 146.6 (d, $^{5}J_{PC}$ = 3.8, C-OH), 124.4 (d, $^{3}J_{PC}$ = 5.4, o-C), 121.2 (d, $^{2}J_{PC}$ = 8.6, C_{ipso}), 117.7 (d, $^{4}J_{PC}$ = 3.5, m-C), 115.2 (d, $^{3}J_{PC}$ = 4.7, o-C), 62.4 (d, $^{3}J_{PC}$ = 16.6, CH₂OH), 57.5 (s, OCH₃), 26.9 (d, $^{1}J_{PC}$ = 46.1, ArCH₂), 24.9 (d, $^{2}J_{PC}$ = 4.2, PCH₂CH₂), 16.2 (d, $^{1}J_{PC}$ = 49.5, PCH₂). Macc-cnextp ESI: m/e = 345.3 [M-Cl] + M_{pacq} = 380.2.

Синтез [3-MeO-4-OH-C₆H₃CH₂PMe₂Ph]Cl (LVIIi). Получали по процедуре, описанной выше для LVIIb. Выход 595 мг (96%). Найдено, %: С 61.45; Н 6.71. С₁₆H₂₀ClO₂P. Вычислено, %: С 61.84; Н 6.49. 31 P{ 1 H} ЯМР: δ 23.9 (s). 1 H ЯМР: δ 7.79-7.56 (m, 5H, C₆H₅), 6.78 (d, $^{3}J_{\text{HH}} = 8.1$, 1H, m-H), 6.57 (d pseudo t, $^{3}J_{\text{HH}} = 8.1$, $^{4}J_{\text{HH}} \Rightarrow ^{4}J_{\text{PH}} \Rightarrow 2$, 1H, o-H), 6.31 (pseudo t, $^{4}J_{\text{HH}} \Rightarrow ^{4}J_{\text{PH}} \Rightarrow 2$, 1H, o-H), 3.73 (d, $^{2}J_{\text{PH}} = 14.3$, 2H, ArCH₂), 3.52 (s, 3H, OCH₃), 2.13 (d, $^{2}J_{\text{PH}} = 14.0$, 6H, PCH₃). 13 C{ 1 H} ЯМР: δ 148.8 (d, $^{4}J_{\text{PC}} = 4.6$, C-OCH₃), 146.3 (d, $^{5}J_{\text{PC}} = 4.6$, C-OH), 135.9 (s, p-C в PhP), 132.8 (d, $^{3}J_{\text{PC}} = 10.7$, m-C в PhP), 131.0 (d, $^{3}J_{\text{PC}} = 12.2$, o-C в PhP), 124.4 (d, $^{3}J_{\text{PC}} = 4.6$, o-C), 121.1 (d, $^{2}J_{\text{PC}} = 9.2$, C_{ipso}), 120.3 (d, $^{1}J_{\text{PC}} = 85.7$, C_{ipso} в PhP), 117.1 (d, $^{4}J_{\text{PC}} = 3.1$, m-C), 115.2 (d, $^{3}J_{\text{PC}} = 4.6$, o-C), 57.0 (s, OCH₃), 32.7 (d, $^{1}J_{\text{PC}} = 49.0$, ArCH₂), 7.1 (d, $^{1}J_{\text{PC}} = 56.6$, PCH₃). Macc-спектр ESI: m/e = 275.2 [m-Cl] $^{+}$; $M_{\text{pacq}} = 310.1$.

Синтез [3-МеО-4-ОН-С₆H₃CH₂PMePh₂]Cl (LVIIj). Получали по процедуре, описанной выше для LVIIb. Выход 484 мг (65%). Найдено, %: С 67.73; Н 6.09. С₂₁H₂₂ClO₂P. Вычислено, %: С 67.65; Н 5.95. 31 P{ 1 H} ЯМР (CD₃OD): δ 23.7 (s). 1 H ЯМР (CD₃OD): δ 7.91-7.65 (m, 10H, C₆H₅), 6.70 (d, 3 J_{HH} = 8.1, 1H, *m-H*), 6.60 (d pseudo t, 3 J_{HH} = 8.1, 4 J_{HH} » 4 J_{PH} » 2, 1H, *o-H*), 6.48 (pseudo t, 4 J_{HH} » 4 J_{PH} » 2, 1H, *o-H*), 4.41 (d, 2 J_{PH} = 14.7, 2H, ArCH₂), 3.55 (s, 3H, OCH₃), 2.46 (d, 2 J_{PH} = 13.7, 3H, PCH₃). 13 C{ 1 H} ЯМР (CD₃OD): δ 149.3 (d, 4 J_{PC} = 3.6, *C*-OCH₃), 148.2 (d, 5 J_{PC} = 4.0, *C*-OH), 135.9 (d, 4 J_{PC} = 3.0, *p-C* в Ph₂P), 134.0 (d, 3 J_{PC} = 9.6, *m-C* в Ph₂P), 131.2 (d, 3 J_{PC} = 12.4, *o-C* в Ph₂P), 124.5 (d, 3 J_{PC} = 6.0, *o-C*), 119.1 (d, 2 J_{PC} = 8.7, 2 C_{ipso}), 121.1 (d, 1 J_{PC} = 84.5, 2 C_{ipso} в Ph₂P), 116.8 (d, 4 J_{PC} = 3.4, *m-C*), 114.9

(d, ${}^{3}J_{PC} = 4.8$, o-C), 56.3 (s, OCH₃), 30.7 (d, ${}^{1}J_{PC} = 48.0$, ArCH₂), 6.1 (d, ${}^{1}J_{PC} = 58.2$, PCH₃). Масс-спектр ESI: $M/e = 337.1 \ [M$ -Cl] $^{+}$; $M_{pacy} = 372.1$.

Синтез {[3-ОМе-4-ОН-C₆H₃CH₂PEt₃-CH₂-]₂}²⁺Cl₂ (LVIII). Получали по процедуре, описанной выше для LXIIIb, но с использованием 0.24 мл (1.0 ммол) дифосфина. Выход 511 мг (93%). Найдено, %: С 56.3; Н 8.0. С₂₆H₄₂O₄Cl₂P₂. Вычислено, %: С 56.63; Н 7.68. 31 P{ 1 H} ЯМР: δ 37.9 (s). 1 H ЯМР: δ 6.87 (d, $^{3}J_{HH}$ = 7.9, 2H, m-H), 6.84 (br s, 2H, o-H), 6.72 (br d, $^{3}J_{HH}$ = 7.9, 2H, o-H), 3.81 (s, 6H, OCH₃), 3.65 (d, $^{2}J_{PH}$ = 13.4, 4H, ArCH₂), 2.33-2.23 (m, 8H, PCH₂CH₃), 2.14 (pseudo d, $^{2}J_{PH}$ = 6.7, 4H, PCH₂CH₂P), 1.22 (dt, $^{3}J_{PH}$ = 18.9, $^{3}J_{HH}$ = 7.6, 12H, PCH₂CH₃). 13 C{ 1 H} ЯМР: δ 149.6 (s, C-OCH₃), 146.9 (s, C-OH), 124.0 (br s, o-C), 120.2 (t, $^{2}J_{PC}$ = 8.9, C_{ipso}), 117.7 (s, m-C), 114.7 (s, o-C), 57.3 (s, OCH₃), 25.6 (d, $^{1}J_{PC}$ = 45.6, ArCH₂), 12.0 (d, $^{1}J_{PC}$ = 48.6, PCH₂CH₃), 5.8 (d, $^{2}J_{PC}$ = 5.0, PCH₂CH₃). Macc-спектр ESI: m/e = 515.3 [100%, M-Cl]⁺, 343.3 [45%, M-2Cl-CH₂C₆H₃(OH)(OMe)]⁺, m/2e =240.2 [60%, M-2Cl]²⁺; M_{pacq} = 550.2.

Синтез [3-MeO-4-OH-C₆H₃CH(Me)PEt₃]Cl (LX). Получали по процедуре, описанной выше для LVIIb. Выход 522 мг (86%). Найдено, %: С 59.40; Н 8.75. С₁₅H₂₆ClO₂P. Вычислено, %: С 59.11; Н 8.60. 31 P{ 1 H} ЯМР: δ 40.9 (s). 1 H ЯМР: δ 6.94-6.91 (m, 2H, o-H и m-H), 6.85 (d pseudo t, $^{3}J_{HH} = 8.1$, $^{4}J_{HH}$ » $^{4}J_{PH}$ » 2, 1H, o-H), 3.86 (s, 3H, OC H_3), 3.80 (dq, $^{3}J_{HH} = 7.7$, $^{2}J_{PH} = 14.4$, 1H, ArCH), 2.22-2.08 (m, 6H, PC H_2 CH₃), 1.63 (dd, $^{3}J_{HH} = 7.7$, $^{3}J_{PH} = 17.0$, 3H, C H_3), 1.13 (dt, $^{3}J_{PH} = 17.7$, $^{3}J_{HH} = 7.6$, 9H, PC H_2 C H_3). 13 C{ 1 H} ЯМР: δ 149.2 (d, $^{4}J_{PC} = 3.0$, C-OCH₃), 146.7 (d, $^{5}J_{PC} = 3.1$, C-OH), 127.5 (d, $^{2}J_{PC} = 6.1$, C_{ipso}), 123.0 (d, $^{3}J_{PC} = 6.1$, o-C), 117.3 (d, $^{4}J_{PC} = 3.1$, m-C), 113.9 (d, $^{3}J_{PC} = 4.6$, o-C), 57.4 (s, OCH₃), 33.1 (d, $^{1}J_{PC} = 44.4$, ArCH), 14.8 (s, CH₃), 11.4 (d, $^{1}J_{PC} = 49.0$, PC H_2 CH₃), 6.3 (d, $^{2}J_{PC} = 6.1$, PC H_2 CH₃). Macc-спектр ESI: m/e = 269.1 [M-CI] $^{+}$; $M_{pacq} = 304.1$.

Синтез [(**3-MeO-4-OH-C₆H₃-CH₂**)₄**P**]Cl (LXI). Нагревали смесь THPC (50 мг, 0,26 ммол) и ванильного спирта (202 мг, 1.31 ммол) в воде (8 мл) при 90°С. Полноту реакции периодически контролировали с помощью спектроскопии ЯМР 31 P{ 1 H}. После 9 ч нагревания ~2 мл воды было, белый осадок отфильтровывали и сушили в вакууме в течение ночи. 31 P{ 1 H} ЯМР (CD₃OD): δ 23.4 (s). 1 H ЯМР (CD₃OD): δ 6.82 (d, $^{3}J_{HH}$ = 8.1, 4H, m-H), 6.64 (ddd, $^{3}J_{HH}$ = 8.1, $^{4}J_{HH}$ = 2.0, 4H, o-H), 6.51 (dd, $^{4}J_{PH}$ » $^{4}J_{HH}$ » 2, 4H, o-H), 3.75

(s, 12H, OC H_3), 3.65 (d, ${}^2J_{PH} = 13.3$, 8H, CH₂). ${}^{13}C\{{}^{1}H\}$ ЯМР (CD₃OD): δ 149.8 (d, ${}^5J_{PC} = 2.8$, p-C), 148.4 2 (d, ${}^4J_{PC} = 3.4$, m-C-OCH₃), 124.6 (d, ${}^3J_{PC} = 5.5$, o-C), 119.8 (d, ${}^2J_{PC} = 8.1$, ipso-C), 117.2 (d, ${}^4J_{PC} = 2.6$, m-C), 115.0 (d, ${}^3J_{PC} = 4.8$, o-C), 56.7 (s, OCH₃), 28.2 (d, ${}^1J_{PC} = 4.9$, CH₂). Macc-chektp ESI: m/e = 579.3 [M-Cl]⁺; $M_{pacq} = 614.2$.

Синтез [4-HO-3-MeO-C₆H₃CH(PEt₃)CH₂CH₂OH]Cl (LXIIIa). Нагревали смесь кониферилового спирта (360 мг, 2.0 ммол) и Et_3P (236 мг, 2.0 ммол) в воде (8 мл) при 90°С в течение 20 ч. Непрореагировавший фосфин отгоняли в вакууме, добавляли HCl (0.17 мл 37%-го водного раствора, 2.0 ммол) и отгоняли воду в вакууме. Полученный вязкий остаток растворяли в EtOH (5 мл), после добавления Et₂O (5 мл) получали масло, которое после сушки в вакууме давало белое пенообразное вещество. Выход 300 мг (45%). Найдено, %: С 57.3; Н 8.7. С $_{16}$ Н $_{28}$ О $_{3}$ СlP. Вычислено, %: С 57.40; Н 8.43. 31 Р 1 Н 3 ЯМР: δ 40.4 (s). ¹H ЯМР: δ 6.98 (d, ³ J_{HH} = 8.2, m-H), 6.97 (br s, 1H, o-H), 6.91 (dt, ³ J_{HH} = 8.2, ${}^{4}J_{PH} = {}^{4}J_{HH} = 2.2$, 1H, o-H), 3.88 (s, 3H, OC H_3), 3.83 (ddd, ${}^{3}J_{HH} = 2.6$, ${}^{3}J_{HH} = 12.8$, ${}^{2}J_{PH} = 12.8$ 15.5, 1H, CH), 3.64 (m, 1H, CH_AH_BOH), 3.38 (m, 1H, CH_AH_BOH), 2.35 (m, 1H, CH_AH_B), $2.22 \text{ (dq, }^{3}J_{HH} = 7.6, ^{2}J_{PH} = 12.6, 6H, PCH_{2}), 2.15 \text{ (m, 1H, CH}_{A}H_{B}), 1.16 \text{ (dt, }^{3}J_{HH} = 7.6, ^{3}J_{PH} = 1.00, 1$ 17.7, 9H, CH_3). ¹³C{¹H} ЯМР: δ 149.4 (d, ⁴ J_{PC} = 2.5, C-OCH₃), 146.9 (d, ⁵ J_{PC} = 3.3, C-OH), 124.4 (d, ${}^{2}J_{PC} = 6.1$, C_{ipso}), 123.7 (br s, o-C), 117.5 (d, ${}^{4}J_{PC} = 2.5$, m-C), 114.7 (br s, o-C), 59.3 $(d, {}^{3}J_{PC} = 14.0, CH_{2}OH), 57.4 (s, OCH_{3}), 35.4 (d, {}^{1}J_{PC} = 45.3, PCH), 31.0 (s, CH_{2}), 11.7 (d, CH_{2}OH), 31.0 (s, CH_{2}$ $^{1}J_{PC} = 47.7$, PCH₂), 3.6 (d, $^{2}J_{PC} = 5.6$, CH₃). Масс-спектр ESI: M/e = 299.2 (100%) [M-CI]⁺, 281.2 (30%) [*M*-Cl-H₂O]⁺; $M_{\text{pacy}} = 334.1$.

Синтез {4-HO-3-MeO-C₆H₃CH[P(CH₂CH₂CH₂OH)₃]CH₂CH₂OH}Cl (LXIIb). Нагревали смесь кониферилового спирта (18 мг, 0.1 ммол) и THPP (20.8 мг, 0.1 ммол) в воде (1 мл) при 90°С. Полноту реакции периодически контролировали с помощью спектроскопии ЯМР 31 P{ 1 H}: δ 37.2 (s). После 4 ч нагревания отгоняли воду, а остаток анализировали с помощью масс-спектроскопии ESI: m/e 389.3 (100%) [M + H $^{+}$] $^{+}$, 371.3 (20%) [M – H₂O + H $^{+}$] $^{+}$; $M_{\text{расч}}$ = 388.2.

Исследование скорости расходования ТНРР в реакции с бензиловыми спиртами с помощью ЯМР. В гловбоксе смешивали ТНРР (20.8 мг, 0.1 ммол) и соответствующий спирт (0.1 ммол) в воде (1 мл). После растворения всех компонентов

помещали часть раствора (~ 0.7 мл) в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР 31 Р 1 H 3 .

Рентгеноструктурный анализ соединения LVIIb. Бесцветные кристаллы (0.04 $^{\prime}$ 0.10 $^{\prime}$ 0.25 мм) соединения получали кристаллизацией из насыщенного раствора в ДМСО. Данные собирались до максимального значения $2q = 52.8^{\circ}$ с расстоянием между кристаллом и детектором 38.95 мм. Из 8292 собранных отражений 3322 являются независимыми ($R_{\rm int} = 0.034$). Минимальный и максимальный коэффициент пропускания 0.831 и 0.987 соответственно. Кристаллы орторомбические: пространственная группа $P = 2_1 2_1 2_1$ (#19), a = 8.1209(4) Å, b = 11.0776(5) Å, c = 18.0926(9) Å, V = 1627.6(1) Å 3 , Z = 4, m = 3.38 см $^{-1}$, R1 (I > 2s(I)) = 0.035, wR2 = 0.088, где $w = 1/[s^2(F_o^2) + (0.0448P)^2 + 0.0000P]$, где $P = (F_o^2 + 2F_c^2)/3$. Все не водородные атомы уточнены анизотропно. ОН-протон выявлен из разностного синтеза и уточнен изотропно. Все другие атомы водорода помещены в расчетные позиции, но не уточнены.

К главе 9

ЯМР исследование реакции (HOCH₂)₃Р с Na₂S₂O₄ в D₂O. Под аргоном растворяли THP (15.0 мг, 0.12 ммол) в D₂O (~ 1.5 мл), содержащем Na₂S₂O₄ (20.9 мг, 0.12 ммол, полагая 100% чистоту). Часть реакционной смеси (~ 0.7 мл) помещали в ЯМР-ампулу типа J-Young и периодически снимали спектры ЯМР при комнатной температуре.

Аналогично проводили ЯМР исследование взаимодействия ТНР с $Na_2S_2O_3$ (19.0 мг, 0.12 ммол) и $NaHSO_3$ (12.6 мг, 0.12 ммол), а также взаимодействие ($HOCH_2$)₄PCI (22.8 мг, 0.12 ммол) с $Na_2S_2O_3$ (19.0 мг, 0.12 ммол) и реакции [HOCH(Me)]₄PCI (30 мг, 0.12 ммол) с $NaHSO_3$ (50.8 мг, 0.48 ммол) и с $Na_2S_2O_3$ (19.0 мг, 0.12 ммол).

Синтез сульфида (HOCH₂)₃PS (THPS). (а) В обычных условиях добавляли $Na_2S_2O_3$ (1.01 г, 6.4 ммол) к водному раствору THPC (1.22 г, 6.4 ммол). Реакционную смесь перемешивали в течение 3 ч. Удаляли воду при пониженном давлении, полученные остаток выдерживали в вакууме в течение ночи, а затем растирали с MeOH (~5 мл) для растворения THPS и HOCH₂SO₃Na. Отгоняли метанол и экстрагировали THPS ацетонитрилом (~5 мл). Послу удаления растворителя получали белый

кристаллический продукт THPS. Выход ~85%. Найдено %: С 23.47; Н 5.86. С₃H₉O₃PS. Вычислено %: С 23.08; Н 5.81. ³¹P{ 1 H} ЯМР (D₂O): δ 47.8 (s). 1 H ЯМР (D₂O): δ 4.25 (d, 6H, CH₂, $^{2}J_{PH}$ = 1.3).

К главе 10

Синтез *транс*-PdCl₂[(Ph₂P)CH(Ph)CH(Me)CH(OMe)₂]₂ (LXIV). Фосфин XXVId (87.0 мг, 0.262 ммол) добавляли под аргоном к раствору *trans*-PdCl₂(PhCN)₂ (50.0 мг, 0.131 ммол) в MeOH (~5 мл). Реакционная масса перемешивали в течение 18 ч при комнатной температуре. Выпавшие желтые кристаллы комплекса **LXIV** отфильтровали, промывали метанолом (~1 мл) и сушили в вакууме в течение ночи. Выход 80.0 мг (66%). Найдено, %: С 61.70; H 5.79. $C_{48}H_{54}Cl_2O_4P_2Pd$. Вычислено, %: С 61.71; H 5.83.

LXIV-a (*SS/RR* и *RR/SS* энантиомеры). ³¹P{¹H} ЯМР (CD₂Cl₂): δ 25.20 (s). ¹H ЯМР (CD₂Cl₂): δ 7.70–6.77 (m, 30H, Ph), 4.70 (dt, 2H, C*H*Ph, ³ J_{HH} = 11.3, ² J_{PH} » ⁴ J_{PH} » 3.6), 3.46 (d, 2H, C*H*(OMe)₂ ³ J_{HH} = 2.2), 3.14 (s, 6H, OC*H*₃), 3.07 (s, 6H, OC*H*₃), 2.63 (m, 2H, C*H*Me), 1.68 (d, 6H, C*H*₃, ³ J_{HH} = 6.8). ¹³C{¹H} ЯМР: δ 137.8 (t, J_{PC} = 2), 136.0 (t, J_{PC} = 5), 135.7 (t, J_{PC} = 6), 131.2 (br s), 130.7 (s), 130.5 (s), 129.4 (t, J_{PC} = 21), 128.3 (s), 127.9 (t, J_{PC} = 5), 127.5 (t, J_{PC} = 5), 127.3 (s), 107.4 (t, *C*H(OMe)₂, J_{PC} = 6), 56.9 (s, O*C*H₃), 55.9 (s, O*C*H₃), 46.6 (t, P*C*H, J_{PC} = 10), 40.4 (t, *C*HMe, J_{PC} = 2), 14.2 (t, *C*H₃, J_{PC} = 3).

LXIV-b (*SS/SS* и *RR/RR* энантиомеры). ³¹P{¹H} ЯМР (CD₂Cl₂): δ 25.35 (s). ¹H ЯМР (CD₂Cl₂): δ 7.70–6.77 (m, 30H, Ph), 4.69 (dt, 2H, C*H*Ph, ³ J_{HH} = 11.3, ² J_{PH} » ⁴ J_{PH} » 3.6), 3.44 (d, 2H, C*H*(OMe)₂, ³ J_{HH} = 2.2), 3.13 (s, 6H, OC*H*₃), 3.07 (s, 6H, OC*H*₃), 2.63 (m, 2H, C*H*Me), 1.69 (d, 6H, C*H*₃, ³ J_{HH} = 6.8). ¹³C{¹H} ЯМР: δ 137.7 (t, J_{PC} = 2), 136.1 (t, J_{PC} = 5), 135.5 (t, J_{PC} = 6), 131.2 (br s), 130.8 (s), 130.4 (s), 129.6 (t, J_{PC} = 21), 128.3 (s), 127.9 (t, J_{PC} = 5), 127.6 (t, J_{PC} = 5), 127.3 (s), 107.4 (t, *C*H(OMe)₂, J_{PC} = 6, 56.8 (s, O*C*H₃), 55.9 (s), 46.4 (t, P*C*H, J_{PC} = 10), 40.2 (t, *C*HMe, J_{PC} = 2), 14.1 (t, *C*H₃, J_{PC} = 3).

Синтез PdCl₂[Ph₂PCH(Ph)CH₂CH(OH)PPh₂] (LXV). Дифосфин **IIa** (39 мг, 0.077 ммол, основываясь на 95% чистоте) в MeOH (1 мл) добавляли под аргоном к раствору $PdCl_2(PhCN)_2$ (28 мг, 0.073 ммол) в 1 мл MeOH. Немедленно образовавшийся желтый осадок растворился в течение 1 мин, и раствор выдерживали 4 ч при комнатной температуре. Выпавшие кристаллы комплекса **LXV** отфильтровывали, промывали метанолом (\sim 1 мл) и сушили в вакууме в течение ночи. Выход 25 мг (50%, $de \sim$ 90%).

Найдено, %: С 58.26; Н 4.64. С₃₃ $H_{30}Cl_2OP_2Pd$. Вычислено, %: С 58.13; Н 4.43. Перемешивание реакционной смеси в течение 16 ч ведет к образованию комплекса **LXV** с выходом 80% ($de \sim 53\%$). Комплекс **LXV** является смесью стереоизомеров.

LXV- α (*S,S/R,R*-энантиомеры). ³¹P{ ¹H} ЯМР (CD₂Cl₂): δ 24.1 [d, ² J_{PP} = 16.0, PCH(OH)] и 23.6 [d, $^2J_{PP} = 16.0$, PCH(Ph)]. 1 H ЯМР (сигналы в области δ 8.30-6.30 перекрываются с соответствующими сигналами изомера LXV-β): δ 8.29–8.22 (m, 2H, o-H в PhPCH(OH)), 7.93–7.85 (m, 2H, o-H в PhPCH(Ph)), 7.85-7.78 (m, 2H, o-H в Ph'PCH(OH)), 7.70–7.35 (m, 10H, p-H и m-H в Ph₂PCH(OH), p-H в Ph₂PCH(Ph), и m-H в *Ph*PCH(Ph)), 7.32–7.25 (m, 2H, *o-H* в *Ph*'PCH(Ph)), 7.19–7.07 (m, 3H, *p-H* в PhCH, *m-H* в Ph'PCH(Ph)), 6.94 (t, ${}^{3}J_{HH} = 7.8$, m-H B PhCH), 6.35 (d, ${}^{3}J_{HH} = 7.8$, o-H B PhCH), 5.02 (d, $^{3}J_{HH} = 6.8$, CH(OH)), 4.58 (pseudo t, $^{2}J_{PH} = 10.3$, 1H, CH(Ph); $^{1}H\{^{31}P\}$, dd, $^{3}J_{HH} = 12.3$, $^{3}J_{HH} = 12.3$ 1.6), 2.77 (br s, 1H, OH), 2.71-2.20 (m, 2H, CH₂, перекрываются с сигналом CH₂ соединения **LXV-**β). 13 С{ 1 H} ЯМР: δ 138.0 (d, $^{2}J_{PC}$ = 9.0, C_{ipso} в PhCH), 136.9 (d, $^{2}J_{PC}$ = 11.1, o-C в Ph'PCH(Ph)), 135.8 (d, $^2J_{PC}$ = 9.5, o-C в PhPCH(OH)), 134.6 (d, $^2J_{PC}$ = 9.8, o-C в Ph'PCH(OH)), 133.8 (d, $^2J_{PC}$ = 9.1, o-C в PhPCH(Ph)), 132.6 (d, $^4J_{PC}$ = 2.5, p-C в PhPCH(OH)), 132.0 (d, ${}^4J_{\rm PC}=2.6,~p\text{-}C$ в Ph'PCH(Ph)), 131.8 (d, ${}^4J_{\rm PC}=2.1,~p\text{-}C$ в Ph'PCH(OH)), 131.2 (d, ${}^{4}J_{PC} = 2.8$, p-C B PhPCH(Ph)), 65.3 (dd, ${}^{1}J_{PC} = 38.2$, ${}^{3}J_{PC} = 7.0$, CH(OH)), 35.5 (dd, ${}^{1}J_{PC} = 22.7$, ${}^{3}J_{PC} = 9.0$, CH(Ph)), 34.2 (перекрывающиеся dd, ${}^{2}J_{PC} = 7.4$, $^{3}J_{PC} = 6.8$, CH_{2}). Другие $^{13}C\{^{1}H\}$ сигналы (как и для **LXV-** β) не могут быть назначены изза наложения.

LXV-β (S,R/R,S-энантиомеры). 31 P{ 1 H} ЯМР (1 61 МГц, 2 CD₂Cl₂): δ 39.1 [d, 2 J_{PP} = 16.8, 2 PCH(Ph)] и 28.0 [d, 2 J_{PP} = 16.8, 2 PCH(OH)]. 1 H ЯМР: δ 8.32–8.29 (m, 2H, o- 2 H в PhPCH(OH)), 7.78–7.71 (m, 2H, o- 2 H в 2 PPPCH(Ph)), 7.27–7.21 (m, 2H, o- 2 H в 2 PPPCH(Ph)), 4.98 (ddd, 2 J_{PH} = 5.1, 2 CH(OH); 1 H{ 31 P}, dd, 3 J_{HH} = 11.6, 3 J_{HH} = 2.2), 4.12 (ddd, 2 J_{PH} = 8.3, 2 CH(Ph); 1 H{ 31 P}, dd, 3 J_{HH} = 11.8, 3 J_{HH} = 2.3). 13 C{ 1 H} ЯМР: δ 137.9 (d, 2 J_{PC} = 9.6, C_{ipso} в 2 PhCH), 137.0 (d, 2 J_{PC} = 10.7, 2 O- 2 C в 2 PhPCH(OH)), 136.7 (d, 2 J_{PC} = 9.9, 2 O- 2 C в 2 PhPCH(OH)), 134.4 (d, 2 J_{PC} = 9.4, 2 O- 2 C в 2 PhPCH(Ph)), 132.5 (d, 4 J_{PC} = 2.5, 2 D- 2 C), 132.1 (d, 4 J_{PC} = 2.5, 2 D- 2 C), 131.8 (предположительно d, 2 D- 2 C в 2 PhPCH(Ph), перекрывается с 2 D- 2 C сигналом Ph'PCH(OH)), 131.4 (d, 4 J_{PC} = 2.9, 2 D- 2 C), 71.4 (dd, 1 J_{PC} = 31.1, 3 J_{PC} = 7.5, 2 CH(OH)), 47.6 (broad d, 1 J_{PC} = 23.3, 2 CH(Ph)), 37.2 (broad d, 2 J_{PC} » 8).

Синтез H₂**P**(**CH**₂)₂**P**(**H**)(**CH**₂)₂**P**(**O**)(**OEt**)₂ (**LXVI**). К раствору дифосфина $H_2P(CH_2)_2PH_2$ (0.94 г, 10 мол) в Et_2O (10 мл), охлажденному до 0°С, добавляли под аргоном и при перемешивании t-BuOK (1.12 г, 10 ммол). Через 5 мин добавили по каплям в течение 30 мин раствор CH_2 = $CHP(O)(OEt)_2$ (1.64 г, 10 ммол) в Et_2O (5 мл). Реакционную массу перемешивали 30 мин и отфильтровывали неорганические продукты под аргоном. Удаляли эфир и непрореагировавший дифосфин. Полученное масло перегоняли в вакууме при ~100°С и 0.1 торр. Выход **LXVI** (бесцветное масло) 0.5 г (19%). $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ 31.8 (d, 1P, P=O, $^{3}J_{PP}$ = 43), -59.7 (dd, 1P, PH, $^{3}J_{PP}$ = 43, $^{3}J_{PP}$ = 10), -128.9 (d, 1P, PH₂, $^{3}J_{PP}$ = 10). ^{1}H ЯМР (CDCl₃): δ 4.15–3.94 (m, 4H, OCH₂), 2.84 (pseudo dt, 1H, ^{2}P H, ^{2}P H = 195, ^{3}P H = 7), 2.75 (dt, 2H, ^{2}P H, ^{2}P H = 195, ^{3}P H = 7), 1.89–1.50 (m, 8H, ^{2}P H, ^{2}P H, OCH₂CH₃, ^{3}P H = 7).

Синтез [(EtO)₂(O)P(CH₂)₂P(H)CH₂]₂ (LXVII). Процедура аналогична той, что описана выше для LXVI. Соотношение CH_2 = $CHP(O)(OEt)_2$: $H_2P(CH_2)_2PH_2 = 2$: 1; масса CH_2 = $CHP(O)(OEt)_2$ 3.45 г. После удаления растворителя получали соединение LXVII как бесцветное масло с чистотой 88%, загрязненное соединением LXVI (5%) и LXVIII (7%). $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ 31.7 (m, 2P, P=O), -58.0 (m, 2P, PH); в Et_2O , δ 30.4 (m, 2P, P=O), -58.6 (m, 2P, PH). ^{1}H ЯМР (CDCl₃): δ 4.18–3.98 (m, 8H, OC H_2), 3.23 (br d, 2H, PH, $^{1}J_{PH}$ = 198), 1.98–1.57 (m, 12H, CH_2CH_2), 1.30 (t, 12H, OCH_2CH_3 , $^{3}J_{HH}$ = 7).

Синтез (EtO)₂(O)P(CH₂)₂P(H)(CH₂)₂P[(CH₂)₂P(O)(OEt)₂]₂ (LXVIII). Процедура аналогична той, что описана выше для LXVI, но с использованием 0.2 г (2.1 ммол) дифосфина $H_2P(CH_2)_2PH_2$, 0.24 г (2.1 ммол) t-BuOK и 1.05 г (6.3 ммол) CH_2 =CHP(O)(OEt)₂. После удаления растворителя получали желтое вязкое масло, состоящее из LXVII, LXVIII и LXIX в соотношение 28, 50 и 22% соответственно. $^{31}P\{^{1}H\}$ ЯМР для LXVIII (CDCl₃): δ 31.9 (m, 3P, P=O), -17.6 (dt, 1P, $P(CH_2CH_2)_3$, $^{3}J_{PP}$ = 22, $^{3}J_{PP}$ = 50), -56.6 (dd, 1P, PH, $^{3}J_{PP}$ = 22, $^{3}J_{PP}$ = 43). Присутствие соединений LXXVI и LXIX не позволяет однозначно определить сигналы спектров ЯМР 1 H.

Синтез {[(**EtO**)₂(**O**)**P**(**CH**₂)₂]₂**PCH**₂}₂ (**LXIX**). *t*-BuOK (112 мг, 1 ммол) добавляли при 0°С и под аргоном к раствору дифосфина (94 мг, 1 ммол) в ТГФ (5 мл). Дальнейшая процедура аналогична той, что использовалась для синтеза **LXVI**, **LXVII** и **LXVIII**, за

исключением того, что использовали избыток CH_2 = $CHP(O)(OEt)_2$ (0.82 г, 5 ммол). Удалением растворителя в вакууме, получали чистое соединение **LXIX** в виде желтоватого, вязкого масла с выходом 750 мг (100%). ³¹ $P\{^1H\}$ ЯМР (CDCl₃): δ 32.0 (m, 4P, P=O), -16.5 (m, 2P, $P(CH_2CH_2)_3$). ¹H ЯМР (CDCl₃): δ 4.12–3.96 (m, 16H, OC H_2), 1.82–1.52 (m, 16H, O= PCH_2CH_2P), 1.47 –1.40 (m, 4H, PCH_2CH_2P), 1.26 (t, 24H, OCH₂C H_3 , ³ J_{HH} = 7).

Синтез [**H**₂**P**(**CH**₂)₂]₂**PH** (**LXX**). Соединение **LXVI** (0.52 г, 2 ммол) растворяли в сухом Et_2O (5 мл) при 0°C, и при перемешивании добавляли по каплям суспензию LiAlH₄ (0.15 г, 4 ммол) в Et_2O (5 мл). Через 30 мин добавляли 20% водный раствор HCl (2 мл) свободный от кислорода для удаления избытка LiAlH₄. Эфирный слой отделяли, а водный экстрагировали Et_2O (2 х 5 мл). Эфирные слои сушили в течение ночи над CaH_2 , фильтровали и отгоняли Et_2O в вакууме. Выход соединения **LXX** ~0.15 г (~50%) (бесцветная жидкость). $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ –62.6 (t, 1P, PH, $^{3}J_{PP}$ = 10), –128.8 (d, 2P, PH_2 , $^{3}J_{PP}$ = 10). ^{1}H ЯМР (CDCl₃): δ 2.79 (dt, 4H, PH_2 , $^{1}J_{PH}$ = 195, $^{3}J_{HH}$ = 7; ожидаемый дублет квинтетов для PH спрятан в плечах dt для PH_2), 1.83–1.56 (m, 8H, CH_2CH_2).

Синтез [$H_2P(CH_2)_2P(H)CH_2$]₂ (LXXI). Соединение LXXI получали восстановлением с помощью LiAlH₄ (0.30 г, 8 ммол) соединения LXVII (0.84 г, 2 ммол) по процедуре аналогичной той, что описана выше для LXX. После удаления Et_2O полученная жидкость перегонялась при ~120°C и 0.1 торр. Соединение LXXI в виде бесцветной жидкости получали с выходом ~0.19 г (~45%). $^{31}P\{^{1}H\}$ ЯМР (CDCl₃): δ –60.7 (br s, 2P, PH), –128.7 (br s, 2P, PH₂). ^{1}H ЯМР (CDCl₃): δ 2.85 (pseudo dt, 2H, PH, $^{1}J_{PH}$ = 195, $^{3}J_{HH}$ = 7), 2.77 (dt, 4H, PH₂, $^{1}J_{PH}$ = 195, $^{3}J_{HH}$ = 7), 1.82–1.57 (m, 12H, CH_2CH_2).

Синтез {[(**H**₂**P**(**CH**₂)₂]₂**PCH**₂}₂ (**LXXII**). Получали по процедуре аналогичной то, что описана для **LXX** и **LXXI**, с использованием LiAlH₄ (0.30 г, 8 ммол) и соединения **LXIX** (0.75 г, 1 ммол). Удалением эфира получали бесцветное, сиропообразное, аморфное вещество с выходом 0.13 г (40%). 31 P{ 1 H} ЯМР (CDCl₃): δ –19.1 (br s, 2P, P(CH₂)₃), –126.8 (br s, 4P, PH₂). 1 H ЯМР (CDCl₃): δ 2.82 (dt, 8H, PH₂, 1 J_{PH} = 195, 3 J_{HH} = 7), 1.73–1.53 (m, 16H, H₂PCH₂CH₂P), 1.53–1.45 (m, 4H, PCH₂CH₂P).

Синтез [(**HOCH**₂)₂**P(CH**₂)₂]₂**PCH**₂**OH** (**LXXIII**). Раствор трифосфина **LXX** (50 мг, 0.32 ммол) в Et₂O (1 мл) добавляли при комнатной температуре и под аргоном к 6 мл 37%-го водного формальдегида (150 мг, 1.85 ммол). Реакционная смесь интенсивно перемешивалась в течение 2 ч при комнатной температуре. Полученный прозрачный, бесцветный раствор был проанализирован с помощью спектроскопии ЯМР 31 P{ 1 H}, которая показала полную конверсию исходного трифосфина **LXX** в третичный фосфин **LXXIII**. 31 P{ 1 H} ЯМР: d - 18.3 (t, 3 J_{PP} = 34, 1P), - 20.1 (d, 3 J_{PP} = 34, 2P). Попытки выделить соединение **LXXIII** в чистом виде были неудачны ввиду его окисления водой.

Синтез [(HOCH₂)₂P(CH₂)₂P(CH₂OH)CH₂]₂ (LXXIV). 37%-й водный формальдегид (300 мг, 3.70 ммол), насыщенный аргоном, добавляли к тетрафосфину LXXI (100 мг, 0.47 ммол) в ЕtOH. Реакционная смесь интенсивно перемешивалась в течение 2 ч при комнатной температуре. Полученный прозрачный, бесцветный раствор был проанализирован с помощью спектроскопии ЯМР 31 P{ 1 H}, которая показала полную конверсию исходного тетрафосфина LXXI в фосфин LXXIV. 31 P{ 1 H} ЯМР: d - 17.9 [m, 2P, P(CH₂OH)], - 20.8 [m, 2P, P(CH₂OH)₂]. Попытки выделить соединение LXXIV в чистом виде были неудачны ввиду его окисления водой.

Синтез [(HOCH₂)₂P(O)(CH₂)₂]₂P(O)CH₂OH (LXXV). Добавляли H_2O_2 (30%-й водный раствор) по каплям к раствору трифосфина LXXIII, приготовленного по методике, описанной выше. Реакционную смесь перемешивали 30 мин. После удаления воды в вакууме белый остаток перекристаллизовывали из EtOH. Найдено, %: С 31.0, Н 6.5. $C_9H_{23}O_8P_3$. Вычислено, %: С 30.69, Н 6.58. $^{31}P\{^{1}H\}$ ЯМР (D_2O): d 57.1 (t, $^{3}J_{PP}=44$, 1P), 54.0 (d, $^{3}J_{PP}=44$, 2P). ^{1}H ЯМР (D_2O): d 4.23-4.09 (br m, 10H, CH_2OH), 2.36-2.15 (br m, 8H, CH_2CH_2). $^{13}C\{^{1}H\}$ ЯМР (D_2O): d 56.3 (d, $^{1}J_{PC}=81$, PCH_2OH), 55.6 [dd, $^{1}J_{PC}=76$, $^{4}J_{PC}=2$, $P(CH_2OH)_2$], 15.8 [dd, $^{1}J_{PC}=64$, $^{2}J_{PC}=4$, $CH_2P(CH_2OH)_2$], 13.9 (dd, $^{1}J_{PC}=60$, $^{2}J_{PC}=4$, CH_2PCH_2OH). Macc-спектр ESI-MS (MeOH): M/e 284.9 (5%) [$M-3CH_2O+Na]^+$, 314.9 (15%) [$M-2CH_2O+Na]^+$, 345.0 (45%) [$M-CH_2O+Na]^+$, 374.9 (100%) [$M+Na]^+$; $M_{Dacq}=352.1$.

Синтез {[(HOCH₂)₃P(CH₂)₂]₂P(CH₂OH)₂}Cl₃ (LXXVI). Смесь CH₂O (0.24 г 37%-го раствора, 2.9 ммол) и HCl (0.18 г 20%-го водного раствора, 1 ммол) в воде (5 мл)

насыщали аргоном в течение 2 ч барботированием. Добавляли раствор трифосфина **LXX** (50 мг, 0.33 ммол) в Et_2O (1 мл). Через 1 ч отгоняли воду в вакууме, полученный остаток перекристаллизовывали из MeOH/H₂O (2 мл смеси 5:1). Выход 56 мг (34%). Найдено, %: С 28.9; Н 6.2. $C_{12}H_{32}Cl_3O_8P_3$. Вычислено, %: С 28.62; Н 6.40. $^{31}P\{^1H\}$ ЯМР (ДМСО-d₆): δ 34.1 (t, 1P, $P(CH_2OH)_2$, $^3J_{PP}=42$), 30.7 (d, 2P, $P(CH_2OH)_3$, $^3J_{PP}=42$). 1H ЯМР (ДМСО-d₆): δ 6.61 (br s, 2H, $P(CH_2OH)_2$), 6.46 (br s, 6H, $P(CH_2OH)_3$), 4.63 (d, 4H, $P(CH_2OH)_2$), $^2J_{PH}=6$), 4.56 (d, 12H, $P(CH_2OH)_3$), $^2J_{PH}=6$), 3.01–2.77 (m, 8H, $P(CH_2CH_2P)$). Масс-спектр ESI (H_2O): M/e=335.0 [M-2 CH_2O -2H] $^+$; $M^{3+}_{pacy}=397.3$.

Синтез [(**HOCH**₂)₃**P**(**CH**₂)₂**P**(**CH**₂**OH**)₂**CH**₂]₂**Cl**₄ (**LXXVII**). Получали аналогично процедуре, описанной для **LXXVI**, используя тетрафосфин **LXXI** (0.10 г, 0.47 ммол), CH₂O (0.45 г 37%-го раствора, 5.6 ммол) и HCl (0.35 г 20%-го раствора, 1.9 ммол). Перекристаллизовывали из MeOH/H₂O. Выход 130 мг (42%). Найдено, %: С 29.3; Н 6.8. $C_{16}H_{42}Cl_4O_{10}P_4$. Вычислено, %: С 29.11; Н 6.41. $^{31}P\{^{1}H\}$ ЯМР (ДМСО-d₆): δ 34.2 (m, 2P, $P(CH_2OH)_2$), 30.7 (m, 2P, $P(CH_2OH)_3$). ^{1}H ЯМР (ДМСО-d₆): δ 6.62 (br s, 4H, $P(CH_2OH)_2$), 6.45 (br s, 6H, $P(CH_2OH)_3$), 4.66 (d, 8H, $P(CH_2OH)_2$, $^{2}J_{PH} = 5$), 4.56 (br s, 12H, $P(CH_2OH)_3$), 3.06–2.78 (m, 12H, $P(CH_2CH_2P)$). Масс-спектр ESI (MeOH): M/e = 425.4 (100%) [M-3CH₂O-3H]⁺, 335.3 (30%) [M-6CH₂O-3H]⁺; $M^{4+}_{pacy} = 518.4$.

Синтез {[(НОСН₂)₃P(СН₂)₂]₂P(СН₂OH)СН₂}₂Cl₆ (LXXVIII). Получали аналогично процедуре, описанной для LXXVI, используя гескафосфин LXXII (0.10 г, 0.3 ммол), СН₂О (0.36 г 37%-го раствора, 4.5 ммол) и НСІ (0.38 г 20%-го раствора, 2.1 ммол). После удаления воды в вакууме остаток промывали МеОН и сушили в вакууме. Выход 275 мг (94%). Найдено, %: С 30.0; Н 6.5. С₂₄H₆₂Cl₆O₁₄P₆. Вычислено, %: С 29.62; Н 6.42. ³¹P{¹H} ЯМР (Н₂О): δ 38.7 (m, 2P, P(CH₂OH)), 29.9 (m, 4P, P(CH₂OH)₃). ¹H ЯМР (ДМСО-d₆): δ 6.62 (br s, 2H, P(CH₂OH)), 6.44 (br s, 12H, P(CH₂OH)₃), 4.78 (br s, 4H, P(CH₂OH)), 4.65 (br s, 24H, P(CH₂OH)₃), 3.34–2.91 (br m, 20H, PCH₂CH₂P). Масс-спектр ESI (МеОН): м/е 621.3 (68%) [M-5CH₂O-5H+O]⁺, 605.3 (100%) [M-5CH₂O-5H]⁺, 591.3 (25%) [M-6CH₂O-6H+OH]⁺, 575.3 (30%) [M-6CH₂O-5H]⁺, 561.3 (15%) [M-7CH₂O-7H+OH]⁺, 545.3 (13%) [M-7CH₂O-5H]⁺, 531.3 (12%) [M-8CH₂O-6H+OH]⁺, 515.3 (12%) [M-8CH₂O-5H]⁺; M⁶⁺_{расч} = 760.6.

Синтез 1,2-бис[трис(гидроксиметил)фосфониум]этан дихлорида [(HOCH₂)₃PCH₂]₂Cl₂. Дифосфин H₂P(CH₂)₂PH₂ (200 мг, 2.1 ммол) и формальдегид (1.06 г 37%-го раствора, 13.0 ммол) смешивали при комнатной температуре в воде свободной от кислорода в присутствии HCl (0.78 г 20%-го раствора, 4.2 ммол) по процедуре, описанной для **LXXVI**. Перекристаллизацией из MeOH/H₂O получали белое твердое вещество с выходом 0.44 г (60%). Найдено, %: С 28.0; Н 6.8. $C_8H_{22}Cl_2O_6P_2$. Вычислено, %: С 27.68; Н 6.39. ³¹P{ 1 H} ЯМР (ДМСО- 1 G): 1 B 30.5 s. 1 H ЯМР (ДМСО- 1 G): 1 B 6.44 (br s, 6H, P(CH₂OH)₃), 4.52 (br s, 12H, P(CH₂OH)₃), 2.82 (br d, 4H, PCH₂CH₂P, 2 J_{PH} = 7). Массспектр ESI (H₂O): 1 B 244.9 (100%) [1 B-CH₂O-H] 7, 215.0 (45%) [1 B-2CH₂O-H] 7, 185.0 (17%) [1 B-3CH₂O-H] 8, 1 B 1, 1 B 1, 1 B 1, 1 B 2, 1 B 2, 1 B 2, 1 B 3, 1 B 2, 1 B 3, 1 B 4, 1 B 5, 1 B 5, 1 B 5, 1 B 5, 1 B 6, 1 B 7, 1 B 7, 1 B 7, 1 B 8, 1 B 9, 1 B 9

Рентгеноструктурный анализ LXIV. Желтые, иррегулярные кристаллы соединения **LXIV** получали из реакции фосфина **XXVId** и *mpaнc*-PdCl₂(PhCN)₂, описанной выше. Некоторые кристаллографические данные представлены ниже в таблице 22. Минимальный и максимальный коэффициент пропускания 0.707 и 0.969 соответственно.

Рентгеноструктурный анализ LXV. Светло-желтые кристаллы соединения **LXV**%МеОН получали из реакции, описанной выше. Некоторые кристаллографические данные представлены ниже в таблице 22. Данные собирались до максимального значения $2q = 55.8^{\circ}$ с расстоянием между кристаллом и детектором 36.00 мм. Из 46556 собранных отражений 8420 являются независимыми ($R_{\rm int} = 0.066$). Минимальный и максимальный коэффициент пропускания 0.703 и 0.961 соответственно. Материал представляет собой смесь диастереомеров с предпочтением S,S (и R,R) хиральностью на C(1) и C(3) и небольшой фракцией (\sim 5%) S,R (и R,S) изомера. Это реализуется в небольшом нарушении упорядоченности при C(3) и во фрагменте PdP_2Cl_2 . Все не водородные атомы, за исключение атом в нарушенной упорядоченностью, уточнены анизотропно. Все атомы с нарушенной упорядоченностью уточнены изотропно. ОНпротон соединения выявлен из разностного синтеза и уточнен изотропно. Все другие атомы водорода помещены в расчетные позиции, но не уточнены.

Рентгеноструктурный анализ [(HOCH₂)₃PCH₂]₂Cl₂. Бесцветные кристаллы соединения получали диффузией CH_2Cl_2 в раствор вещества в смеси MeOH/H₂O (5:1). Некоторые кристаллографические данные представлены ниже в таблице 22. Данные собирались до максимального значения $2q = 56.0^{\circ}$ с расстоянием между кристаллом и детектором 37.99 мм. Из 11982 собранных отражений 1841 являются независимыми ($R_{int} = 0.070$). Минимальный и максимальный коэффициент пропускания 0.616 и 0.968 соответственно. Все не водородные атомы уточнены анизотропно. ОН-протоны соединения выявлены из разностного синтеза и уточнены изотропно. Все другие атомы водорода помещены в расчетные позиции, но не уточнены.

Таблица 22. Кристаллографические данные для соединений **LXIV**, **LXV** и [(HOCH₂)₃PCH₂]₂Cl₂

	LXIV	LXV	[(HOCH ₂) ₃ PCH ₂] ₂ Cl ₂
	LAIV	LAV	
Эмпирическая формула	$C_{48}H_{54}O_4P_2PdCl_2$	$C_{36}H_{42}O_4P_2PdCl_2$	$C_8H_{22}O_6Cl_2P_2$
Размер кристалла, мм ³	0.05 ′ 0.10 ′ 0.20	0.05 ′ 0.13 ′ 0.40	0.10 x 0.05 x 0.05
Кристаллическая система	триклинная	примитивная	орторомбическая
Пространственная группа	P -1 (#2)	P bca (#14)	P bca (#61)
a, Å	10.0267(10)	14.7439(6)	11.611(1)
b, Å	12.5501(9)	21.8538(9)	8.814(1)
c, Å	18.985(2)	21.9153(9)	15.073(2)
V, Å ³	5220.68(5)	7061.3(5)	1542.6(3)
Z	2	8	4
F(000)	968	3200	728
<i>т</i> , см ⁻¹	6.35	8.05	6.42
Число переменных	523	450	94
R1 (I > 2s(I))	0.050	0.055	0.038
wR2	0.112 (все данные) ^а	0.113 (все данные) ^б	0.093 (все данные) ^в
gof	1.00 (все данные)	1.12 (все данные)	1.06 (все данные)

 $^{^{}a}$ $w = 1/[s^{2}(F_{o}^{2}) + (0.0437P)^{2} + 0.1168P]$, where $P = (F_{o}^{2} + 2F_{c}^{2})/3$.

 $^{^{6}}$ $w = 1/[s^{2}(F_{0}^{2}) + (0.00P)^{2} + 36.2447P]$, where $P = (F_{0}^{2} + 2F_{c}^{2})/3$.

 $^{^{6}}$ $w = 1/[s^{2}(F_{o}^{2}) + (0.0359P)^{2} + 0.2315P]$, where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

V. ВЫВОДЫ

- 1. Были проведены исследования устойчивости к распаду третичных фосфинов, содержащих одну или три а-гидроксиалкильные группы. Найдено, что наличие электронодонорных заместителей у атома фосфора и у а-углеродного атома, а также снижение донорного числа растворителя понижают устойчивость гидроксиалкил)фосфинов. Установлено, что три(гидроксиметил)фосфин (НОСН₂)₃Р относительно устойчивым является единственным представителем водорастворимых три(а-гидроксиалкил)фосфинов.
- 2. На модельных реакциях вторичных и третичных фосфинов с моделями лигнина изучены возможные реакции, протекающие в процессе отбеливания механической пульпы при производстве бумаги.
- 3. Установлено, что ароматические альдегиды в водной среде при нагревании в присутствии $(HOCH_2CH_2CH_2)_3P$ восстанавливаются до соответствующих бензиловых спиртов с высокими выходами.
- 4. Бензиловые спирты, содержащие ОН-группу в *пара*-положении, взаимодействуют с третичными фосфинами в воде при нагревании, с образованием новых цвиттерионов типа $R_3P^+CH_2Ar$ - O^- с высокими выходами.
- 5. Пара-гидроксикоричные альдегиды в реакциях с третичными фосфинами типа R₃P в протонных растворителях устанавливают равновесие с моноцвиттер-ионами, продуктами 1,4-присоединения. В спиртах данное равновесие зависит от диэлектрической постоянной спирта: чем она выше, тем сильнее равновесие сдвинуто в сторону продуктов. В воде моноцвиттер-ионы способны подвергаться самоконденсации с образование бисцвиттер-ионов. Обработкой HCl были получены, выделены с высокими выходами и охарактеризованы новые бисфосфониевые соли. Пара-гидроксибензилиденацетон реагирует с (HOCH₂CH₂CH₂)₃P в воде с образованием устойчивого фосфониевого цвиттер-иона, который не подвергается самоконденсации.
- 6. Коричный альдегид в реакции с (HOCH₂CH₂CH₂)₃P в водной среде при комнатной температуре подвергается восстановительной конденсации с образованием 2-бензил-5-фенилпента-2,4-диеналя и 5-фенил-2-(фенилметилен)-4-пентаналя.

- 7. Кинетическое исследование взаимодействия (HOCH₂CH₂CH₂)₃P и кониферилового альдегида (4-гидрокси-3-метоксикоричного альдегида) в водной среде при 2 < pH < 12 с помощью УФ-спектрометрии показало, что нуклеофильная атака фосфина по С=О группе протекает в ~ 400 раз быстрее, чем по С=С связи. Реакционная способность фенольной формы альдегида выше в ~ 10 раз по сравнению с фенолятной.
- 8. Реакцией коричных альдегидов с Ph₂PH в отсутствие растворителя или с моно(агидроксиалкил)дифенилфосфинами Ph₂PCH(OH)R (R = Et, CH₂Ph, Ph) в органическом растворителе получены с хорошими выходами и охарактеризованы новые третичные монофосфины Ph₂PCH(Ar)CH₂CHO (Ar = Ph, 4-Me-C₆H₄, 4-MeO-C₆H₄) и Ph₂PCH(Ph)CH(Me)CHO, а также дифосфин Ph₂PCH(Ph)CH₂CH(OH)PPh₂. С помощью спектроскопии ЯМР изучены механизм и интермедиаты данных реакций. Получены и охарактеризованы комплексы новых фосфинов с Pd(II).
- 9. Фосфины PhP(CH₂OH)₂ и P(CH₂OH)₃ в реакциях с коричным альдегидом в МеОН на первой стадии количественно дают соответствующий фосфин-альдегид R₂PCH(Ph)CH₂CHO, который циклизуется до 1,3-оксафосфоринана. Данный продукт может присоединять вторую молекулу коричного альдегида с образованием несимметричного фосфиноксида.
- 10. Коричные кислоты взаимодействуют с $(HOCH_2CH_2CH_2)_3P$ в ацетоне при комнатной температуре с образованием устойчивых цвиттер-ионов типа $R_3P^+CH(Ar)CH_2CO_2^-$ с высокими выходами. Метиловые эфиры коричных кислот в ацетоне в присутствии воды в реакции с $(HOCH_2CH_2CH_2)_3P$ дают те же продукты. Реакция коричных кислот с $(HOCH_2)_3P$ в ацетоне протекает медленнее, чем с $(HOCH_2CH_2CH_2)_3P$, и дает неустойчивые цвиттер-ионы.
- 11. Реакцией *пара*-бензохинонов с третичными фосфинами R_3P [$R = (CH_2)_3OH$, Et, Me] и Ph_2MeP были получены с высокими выходами и охарактеризованы новые цвиттер-ионы типа $R_3P^+C_6H_3(O^-)(OH)$.
- 12. Объяснен синергетический эффект совместного использования $(HOCH_2)_3P$ и $Na_2S_2O_4$ при отбеливании бумаги. Данные вещества при взаимодействии между собой в воде при комнатной температуре могут генерировать вторичный фосфин $(HOCH_2)_2PH$ и гидроксиметансульфинат натрия $HOCH_2SO_2Na$, способные разрушать сопряжение в хромофорах лигнина.

- 13. Впервые исследована устойчивость к окислению в водной среде фосфинов (HOCH₂)₃P и (HOCH₂CH₂CH₂)₃P. Установлено, что оба фосфина имеют зоны стабильности, находящиеся в пределах рН 7–8 и 10–12 соответственно, где проявляют повышенную стойкость к аэробному и анаэробному окислению.
- 14. Реакции тетра(α -гидроксиалкил)фосфониевых солей и три(α -гидроксиалкил)фосфинов с Na₂S₂O₃ и NaHSO₃ представляют один из способов получения новых водорастворимых соединений R₃PS, R₂P(O)OH.

ГЛАВА VI. ЛИТЕРАТУРА

- 1. Boerjan, W. Lignin Biosynthesis / W. Boerjan, J. Ralph, M. Baucher // Annu. Rev. Plant Biol. 2003. V. 54. P. 519.
- 2. Higuchi, T. Lignin biochemistry: Biosynthesis and biodegradation / T. Higuchi // Wood Sci. Technol. 1990. V. 24. P. 23.
- 3. Janshekar, H. Lignin: Biosynthesis, Application, and Biodegradation / H. Janshekar, A. Fiechter // Advances in Biochemical Engineering/Biotechnology. 1983. V. 27. P. 119.
- Ralph, J. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids / J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph, J. H. Holst, W. Boerjan // Phytochemistry Reviews. 2004. V. 3. No. 1-2. P. 29.
- 5. Falkehag, S. I. Chromophores in Kraft Lignin / S. I. Falkehag, J. Marton, E. Adler // Advances in Chemistry. 1966. V. 59. P. 75.
- 6. Imsgard, F. On Possible Chromophoric Structures in Spruce Wood / F. Imsgard, S. I. Falkehag, K. P. Kringstad // Tappi J. 1971. V. 54. No. 10. P. 1680.
- 7. Glasser, W. On Possible Chromophoric Structures in Wood and Pulpsa Survey of Present State of Knowledge / W. Glasser, D. N.-S. Hon // Polymer-Plastics Technology Engineering. 1979. V. 12. No. 2. P. 159.
- 8. Adler, E. Recent studies on the structural elements of lignin / E. Adler // Paperi ja Puu. 1961. V. 43. P. 634.
- 9. Pew, J. C. Color of coniferous lignin / J. C. Pew, W. J. Connors // Tappi J. 1971. V. 54. No. 2. P. 245.
- 10. Dence, C. W. Pulp Bleaching Principles and Practice / C. W. Dence, D. W. Reeve. Atlanta: Tappi Press, 1996. 868 p.
- Lundquist, K. Reactions of Lignin Chromophores of The Enal and Enone Types with Sulphite / K. Lundquist, J. Parkas, M. Paulsson, C. Heitner // BioResources. – 2007. – V. 2. – No. 3. – P. 334.
- 12. Paulsson, M. Light-induced Yellowing of Lignocellulosic Pulps Mechanisms and Preventive Methods / M. Paulsson, J. Parkas // BioResources. 2012. V. 7. No. 4. P. 5995.

- 13. Crawford, R. L. Lignin Biodegradation and Transformation / R. L. Crawford USA: John Wiley & Sons Inc., 1981. 154 p.
- 14. Furman, G. S. Charge-Transfer Complexes in Kraft Lignin. Occurrence / G. S. Furman, W. F. W. Lonsky // J. Wood Chem. Technol. 1988. V. 8. No. 2. P. 165.
- Furman, G. S. Charge-Transfer Complexes in Kraft Lignin. Contribution to Color / G.
 S. Furman, W. F. W. Lonsky // J. Wood Chem. Technol. 1988. V. 8. No. 2. P.
 191.
- 16. Presley, J. R. The Technology of Mechanical Pulp Bleaching, Chapter 1: Peroxide Bleaching of (Chemi)mechanical Pulp / J. R. Presley, R. T. Hill в Dence, C. W. Pulp Bleaching Principles and Practice / C. W. Dence, D. W. Reeve. Atlanta: Tappi Press, 1996. 868 р.
- 17. Ellis, M. E. The Technology of Mechanical Pulp Bleaching, Chapter 2: Hydrosulfite (Dithionite) Bleaching / Ellis M. E. в Dence, C. W. Pulp Bleaching Principles and Practice / C. W. Dence, D. W. Reeve. Atlanta : Tappi Press, 1996. 868 р.
- 18. Garner, A. Sources of Thiosulphate in Papermachine White Water, Part II: Thiosulphate Formation During Sodium Hydrosulphite Brightening / A. Garner // J. Pulp Paper Sci. 1984. V. 10. No. 3. P. J51.
- 19. Mayer, W. C. Reductive Bleaching of Mechanical Pulp with Sodium Borohydride / W.C. Mayer, C. P. Donofrio // Pulp Paper Mag. Can. 1958. P. 157.
- 20. Kutney, G. W. The Bleaching Action of Thiols on Mechanical Pulp / G. W. Kutney // J. Pulp Paper Sci. 1986. V. 12. No. 4. P. J129.
- 21. Kutney, G. W. Sulphur Dioxide and Its Derivatives: The Forgotten Bleaching Chemicals / G. W. Kutney, T. D. Evans // J. Pulp Paper Sci. 1986. V. 12. No. 2. P. J44.
- 22. Kuys, K. Bleaching of Mechanical Pulp with Sodium Bisulfite / K. Kuys, J. Abbot // Appita 1996. V. 49. No. 4. P. 269.
- 23. Varennes, S. Bleaching of Thermomechanical Pulp with Sodium Perborate / S. Varennes, C. Daneault, M. Parenteua // Tappi J. 1996. V. 79. No. 3. P. 245.
- 24. Leduc, C. Bleaching of a Mechanical Pulp with Sodium Percarbonate and Amineborane Bleaching Response and Brightness Stability / C. Leduc, M. Garceau, C. Daneault, S. Robert // J. Pulp Paper Sci. 2002. V. 28. No. 5. P. 171.

- 25. Violet, P. F. D. Photochemical Brightness Reversion of Peroxide Bleached Mechanical Pulp in the Presence of Various Additives / P. F. D. Violet, A. Nourmamode, N. Colombo, J. Zhu, A. Castellan // Cellulose Chem. Technol. 1990. V. 24. No. 2. P. 225.
- 26. Castellan, A. An Approach to Understanding the Mechanism of Protection of Bleached High-Yield Pulp Against Photoyellowing by Reducing Agents Using the Lignin Model Dimer: 3,4-Dimethoxy-α-(2'-methoxyphenoxy)-acetophenone / A. Castellan, J. H. Zhu, N. Colombo, A. Nourmamode // J. Photochem. Photobiol. A: Chem. 1991. V. 58. No. 2. P. 263.
- 27. Guo, J. X. Inhibition of Light-Induced Yellowing of High-Yield Pulp by Sodium Hydroxymethylphosphinate / J. X. Guo, D. G. Gray // J. Pulp Paper Sci. 1996. V. 22. No. 2. P. J64.
- 28. Leduc, C. Bleaching of a Mechanical Pulp with Sodium Percarbonate and Amineborane Bleaching Response and Brightness Stability / C. Leduc, M. Garceau, C. Daneult, S. Robert // J. Pulp Paper Sci. 2002. V. 28. No. 5. P. 171.
- 29. Nguyen, D. Bleaching of Kraft Pulp by a Commercial Lipase: Accessory Enzymes Degrade Hexenuronic Acids / D. Nguyen, X. Zhang, Z.-H. Jiang, A. Audet, M. G. Paice, S. Renaund, A. Tsang // Enzyme Microb. Technol. 2008. V. 43. No. 2. P. 130.
- Gutiérrez, A. Enzymatic Removal of Free and Conjugated Sterols Forming Pitch Deposits in Environmentally Sound Bleaching of Eucalypt Paper Pulp / A. Gutiérrez, J. C. del Río, D. Ibarra, J. Rencoret, J. Romero, M. Speranza, S. Camarero, M. J. Martínez, Á. T. Martínez // Environ. Sci. Technol. 2006. V. 40. No. 10. P. 3416.
- 31. Ghazaleh, A. Intensified and Short Catalytic Bleaching of Eucalyptus Kraft Pulp / A. Ghazaleh, N. K. Chenna, T. Vuorinen // Ind. Eng. Chem. Res. 2015. V. 54. No. 34. P. 8417.
- 32. Lehtimaa, T. The Effect of Process Variables in Chlorine Dioxide Prebleaching of Birch Kraft Pulp. Part 1. Inorganic Chlorine Compounds, Kappa Number, Lignin, and Hexenuronic Acid Content / T. Lehtimaa, V. Tarvo, S. Kuitunen, A. S. Jaaskelainen, T. Vuorinen // J. Wood Chem. Technol. 2010. V. 30. No. 1. P. 1.

- 33. Jablonsky, M. Optimization of Ozone Bleaching Conditions of Oxygen Delignified Hardwood Kraft Pulp with D-Mannitol / M. Jablonsky // Wood Res. 2009. V. 54. No. 2. P. 73.
- 34. Tarvo, V. A model for chlorine dioxide delignification of chemical pulp / V. Tarvo, T. Lehtimaa, S. Kuitunen, V. Alopaeus, T. Vuorinen, J. Aittamaa // J. Wood Chem. Technol. 2010. V. 30. No. 3. P. 230.
- 35. Chenna, N. K. Rapid and selective catalytic oxidation of hexenuronic acid and lignin in cellulosic fibers / N. K. Chenna, A.-S. Jaaskelainen, T. Vuorinen // Ind. Eng. Chem. Res. 2013. V. 52. No. 50. P. 17744.
- 36. Zhang, H. Using an Optical Brightening Agent To Boost Peroxide Bleaching of a Spruce Thermomechanical Pulp / H. Zhang, M. Lei, F. Du, H. Li, J. Wang // Ind. Eng. Chem. Res. 2013. V. 52. No. 36. P. 13192.
- 37. Hosseinpour, R. Hydrogen Peroxide Bleaching of Canola Straw Chemimechanical Pulp / R. Hosseinpour, A. J. Latibari, P. Fatehi // BioResources. 2014. Vol. 9. No. 1. P. 1201.
- 38. Chenna, N. K. Organochlorine Formation in Tertiary Amine Catalyzed Pulp Bleaching / N. K. Chenna, P. Piovano, C. Järnefelt, T. Vuorinen // J. Wood Chem. Technol. 2016. V. 36. No. 5. P. 318.
- 39. Haartman, S. Potential Applications of Hybrid Layered Double Hydroxide (LDH) Particles in Pulp and Paper Production / S. Haartman, E. Heikkilä, C. Lange, P. Fardim // BioResources. 2014. Vol. 9. No. 2. P. 2274.
- 40. Compositions and Methods for Enhancing Brightness and Brightness Stabilization in Papermaking: пат. US 20060229393 A1.: МПК D21H21/30, C08K3/30, C08K5/00, C08K5/41 / Duggirala R., Shevchenko S.; заявитель и патентообладатель NALCO COMPANY № 11/102,318; заявл. 08.08.2005; опубл. 12.10.2006.
- 41. Bajpai, P. Environmentally Friendly Production of Pulp and Paper / P. Bajpai. Hoboken, NJ: John Wiley & Sons, Inc., 2010. 376 p.
- 42. Wong, T. Y. H. Catalytic Hydrogenation of Lignin Aromatics Using Ru-Arene Complexes / T. Y. H. Wong, R. Pratt, C. G. Leong, B. R. James, T. Q. Hu // Catalysis of Organic Reactions. 2000. V. 82. P. 255.

- 43. Hu, T. Q. Towards Inhibition of Yellowing of Mechanical Pulp. Part III: Hydrogenation of Milled Wood Lignin / T. Q. Hu, B. R. James, Y. Wang // J. Pulp Paper Sci. 1999. V. 25. No. 9. P. 312.
- 44. Hu, T. Q. Towards Inhibition of Yellowing of Mechanical Pulp. Part II: Water-soluble Catalysts for the Hydrogenation of Lignin Model Compounds / T. Q. Hu, B. R. James, C.-L. Lee // J. Pulp Paper Sci. 1997. V. 23. No. 5. P. J200.
- 45. Bleaching and Brightness Stabilization of Lignocellulosic Materials with Water-soluble Phosphines and Phosphonium Compounds: пат. WO 2004070110 (A8).: МПК D21C 9/10, D21H 21/32 / Hu T. Q., James B. R., Yawalata D., Ezhova M. В.; заявитель и патентообладатель Pulp And Paper Research Institute Of Canada, University Of British Columbia № PCT/CA2004/000144; заявл. 03.02.2004; опубл. 10.03.2005.
- 46. Hu, T. Q. A New Class of Bleaching and Brightness Stabilizing Agents. Part I: Bleaching of Mechanical Pulp / T. Q. Hu, B. R. James, D. Yawalata, M. B. Ezhova // J. Pulp Paper Sci. 2004. V. 30. No. 8. P. 233.
- 47. Hu, T. Q. A New Class of Bleaching and Brightness Stabilizing Agents. Part II: Bleaching Power of a Bisphosphine / T. Q. Hu, B. R. James, D. Yawalata, M. B. Ezhova, R. P. Chandra // J. Pulp Paper Sci. 2005. V. 31. No. 1. P. 69.
- 48. Hu, T. Q. A New Class of Bleaching and Brightness Stabilizing Agents. Part III: Brightness Stabilization of Mechanical Pulps / T. Q. Hu, B. R. James, D. Yawalata, M. B. Ezhova // J. Pulp Paper Sci. 2006. V. 32. No. 3. P. 131.
- 49. Chandra, R. A new class of bleaching and brightness stabilizing agents. Part IV: probing the bleaching chemistry of THP and BBHPE / R. Chandra, T. Q. Hu, B. R. James, M. B. Ezhova, D. V. Moiseev // Journal of Pulp and Paper Science. 2007. V. 33. No. 1. P. 15.
- 50. Hu, T. Q. Mill Trial of the New Bleaching Agent –THPS / T. Q. Hu, T. Williams, J. A. Schmidt, B. R. James, R. Cavasin, D. Lewing // Pulp Pap.-Can. 2009. V. 110. P. 37.
- 51. Synergistic bleaching of lignocellulosic materials with sodium hydrosulfite and water-soluble phosphines or phosphonium salts: пат. WO 2007016769 (A1).: МКП D21H 21/32, D21H 17/10, D21C 9/10, D21H 17/09, D21H 21/14, D21H 17/00 / Hu T. Q., James B. R., Williams T., Schmidt J. A., Moiseev D.; заявитель и патентообладатель Fpinnovations № PCT/CA2006/001281; заявл. 02.08.2006; опубл. 15.02.2007.

- 52. Wylliea, M. J. Tris(hydroxymethyl)phosphine, P(CH₂OH)₃ A convenient and effective new reagent for the fixation of protein samples for SEM imaging / M. J. Wylliea, H. Turnerb, W. Henderson // Micron. 2016. V. 89. P. 28.
- 53. Nawrot, B. Acyclic analogs of nucleosides based on tris(hydroxymethyl)phosphine oxide: synthesis and incorporation into short DNA oligomers / B. Nawrot, O. Michalak, B. Mikołajczyk, W. J. Stec // Heterocycl. Commun. 2015. V. 21. No. 5. P. 303.
- 54. Cheng, T.-C. Application of Tris(hydroxymethyl)phosphine as a Coupling Agent for β-Galactosidase Immobilized on Chitosan to Produce Falactooligosaccharides / T.-C. Cheng, K.-J. Duan, D.-C. Sheu // J. Chem. Technol. Biotechnol. 2006. V. 81. No. 2. P. 233.
- 55. Chen, W. Immobilization of Recombinant Thermostable β-Galactosidase from Bacillus Stearothermophilus for Lactose Hydrolysis in Milk / W. Chen, H. Chen, Y. Xia, J. Yang, J. Zhao, F. Tian, H. P. Zhang, H. Zhang // J. Dairy Sci. 2009. V. 92. No. 2. P. 491.
- 56. Chen, S.-C. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent / S.-C. Chen, K.-J. Duan // Int. J. Mol. Sci. 2015. V. 16. No. 6. P. 12499.
- 57. Chung, C. Tetrakis(hydroxymethyl) Phosphonium Chloride as a Covalent Cross-Linking Agent for Cell Encapsulation within Protein-Based Hydrogels / C. Chung, K. J. Lampe, S. C. Heilshorn // Biomacromolecules. 2012. V. 13. No. 12. P. 3912.
- 58. Petach, H. H. P(CH₂OH)₃ A New Coupling Reagent for the Covalent Immobilisation of Enzymes / H. H. Petach, W. Henderson, G. M. Olsen // J. Chem. Soc. Chem. Commun. 1994. No. 18. P. 2181.
- 59. Cochrane, F. C. Application of tris(hydroxymethyl)phosphine as a coupling agent for alcohol dehydrogenase immobilization / F. C. Cochrane, H. H. Petach, W. Henderson // Enzyme Microbial Tech. 1996. V. 18. No. 5. P. 373.
- 60. Graham, J. S. Assembly of collagen fibril meshes using gold nanoparticles functionalized with tris(hydroxymethyl)phosphine-alanine as multivalent cross-linking agents / J. S. Graham, Y. Mirona, M. Grandbois // J. Mol. Recognit. 2011. V. 24. No. 3. P. 477.

- 61. McNulty, J. Tris(3-hydroxypropyl)phosphine (THPP): A mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides / J. McNulty, V. Krishnamoorthy, D. Amoroso, M. Moser // Bioorg. Med. Chem. Lett. 2015. V. 25. No. 19. P. 4114.
- 62. Krettler, C. Tris(3-hydroxypropyl)phosphine is superior to DTT for in vitro assessment of vitamin K 2,3-epoxide reductase activity / C. Krettler, C. G. Bevans, C. Reinhart, M. Watzka, J. Oldenburg // Anal. Biochem. 2015. V. 474. No. 1. P. 89.
- 63. Renner, J. N. Characterization of Resilin-Based Materials for Tissue Engineering Applications / J. N. Renner, K. M. Cherry, R. S.-C. Su, J. C. Liu // Biomacromolecules. 2012. V. 13. No. 11. P. 3678.
- 64. Wang, H. Hybrid Elastin-like Polypeptide_Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density / H. Wang, L. Cai, A. Paul, A. Enejder, S. C. Heilshorn // Biomacromolecules. 2014. V. 15. No. 9. P. 3421.
- 65. Cheng, T.-C. Immobilization of b-fructofuranosidase from Aspergillus japonicas on chitosan using tris(hydroxymethyl)phosphine or glutaraldehyde as a coupling agent / T.-C. Cheng, K.-J. Duan, D.-C. Sheu // Biotech. Lett. 2005. V. 27. No. 5. P. 335.
- 66. Chen, S.-C. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent / S.-C. Chen, K.-J. Duan // Int. J. Mol. Sci. 2015. V. 16. No. 6. P. 12499.
- 67. Li, L. Resilin-like polypeptide hydrogels engineered for versatile biological function / L. Li, Z. Tong, X. Jiaabc, K. L. Kiick // Soft Matter. 2013. V. 9. No. 3. P. 665.
- 68. Henkel, M. Selective and efficient cysteine conjugation by maleimides in the presence of phosphine reductants / M. Henkel, N. Röckendorf, A. Frey // Bioconjugate Chem. 2016. в печати.
- 69. Raghuraman, K. Exceptional Kinetic Propensity of Hydroxymethyl Phosphanes Toward Rh(III) Stabilization in Water / K. Raghuraman, N. Pillarsetty, W. A. Volkert, C. Barnes, S. Jurisson, K. V. Katti // J. Am. Chem. Soc. – 2002. – V. 124. – No. 25. – P. 7276.

- 70. Jurisson, S. S. Rhodium-105 complexes as potential radiotherapeutic agents / S. S. Jurisson, A. R. Ketring, W. A. Volkert // Transition Met. Chem. 1997. V. 22. No. 3. P. 315.
- 71. Marzano, C. In Vitro Antitumor Activity of the Water Soluble Copper(I) Complexes Bearing the Tris(hydroxymethyl)phosphine Ligand / C. Marzano, V. Gandin, M. Pellei, D. Colavito, G. Papini, G. G. Lobbia, E. D. Giudice, M. Porchia, F. Tisato, C. Santini // J. Med. Chem. 2008. V. 51. No. 4. P. 798.
- 72. Santini, C. In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands / C. Santini, M. Pellei, G. Papini, B. Morresi, R. Galassi, S. Ricci, F. Tisato, M. Porchia, M. P. Rigobello, V. Gandin, C. Marzano // J. Inorg. Biochem. 2011. V. 105. No. 2. P. 232.
- 73. Jirasek, A. Investigation of tetrakis hydroxymethyl phosphonium chloride as an antioxidant for use in x-ray computed tomography polyacrylamide gel dosimetry / A. Jirasek, M. Hilts, C. Shaw, P. Baxter // Phys. Med. Biol. 2006. V. 51. No. 7. P. 1891.
- 74. Porchia, M. Neutral and charged phosphine/scorpionate copper(I) complexes: Effects of ligand assembly on their antiproliferative activity / M. Porchia, A. Dolmella, V. Gandin, C. Marzano, M. Pellei, V. Peruzzo, F. Refosco, C. Santini, F. Tisato // activity Eur. J. Med. Chem. 2013. V. 59. P. 218.
- 75. Marzano, C. Synthesis, Characterization, and in Vitro Antitumor Properties of Tris(hydroxymethyl)phosphine Copper(I) Complexes Containing the New Bis(1,2,4-triazol-1-yl)acetate Ligand / C. Marzano, M. Pellei, D. Colavito, S. Alidori, G. G. Lobbia, V. Gandin, F. Tisato, C. Santini // J. Med. Chem. 2006. V. 49. No. 25. P. 7317.
- 76. Johnson, G. S. The processing and characterization of animalderived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials / G. S. Johnson, M. R. Mucalo, M. A. Lorier, U. Gieland, H. Mucha // J. Mater. Sci. Mater. Med. 2000. V. 11. No. 11. P. 725.
- 77. Pederson, R. L. Applications of Olefin Cross Metathesis to Commercial Products / R. L. Pederson, I. M. Fellows, T. A. Ung, H. Ishihara, S. P. Hajela // Adv. Synth. Catal. 2002. V. 344. No. 6-7. P. 728.

- Doherty, S. An efficient recyclable peroxometalate-based polymer-immobilised ionic liquid phase (PIILP) catalyst for hydrogen peroxide-mediated oxidation / S. Doherty, J. G. Knight, J. R. Ellison, D. Weekes, R. W. Harrington, C. Hardacre, H. Manyar // Green Chem. 2012. V. 14. No. 4. P. 925.
- 79. Vougioukalakis, G. C. Removing Ruthenium Residues from Olefin Metathesis Reaction Products / G. C. Vougioukalakis // Chem. Eur. J. 2012. V. 18. No. 29. P. 8868.
- 80. Method and Composition to Remove Irom and Iron Sulfide from Pipeline Networks: пат. US 8673834 (B2).: МКП С11D 3/30, С11D 7/36 / Trahan D. О.; заявитель и патентообладатель Trahan D. О. № US 12/928,777; заявл. 17.12.2010; опубл. 18.03.2014.
- 81. Gallup, D. L. Reaction Investigation of Metal Salts with Tetrakis(hydroxymethyl)phosphonium Sulfate and Chloride / D. L. Gallup, S. Yean, H. Mogaddedi // Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2013. V. 43. No. 9. P. 1274.
- 82. Process and composition for the removal of hydrogen sulfide from industrial process fluids: пат. US 9334182 (B2).: МКП C02F 103/00, C02F 103/02, C02F 101/10, C02F 1/50, C02F 103/34, C02F 1/68 / Janak K.; заявитель и патентообладатель Lonza Inc. № 14/345,825; заявл. 21.09.2012; опубл. 10.05.2016.
- Daigle, D. J. A Flame-Retardant Finish Based upon Tris(hydroxymethyl)phosphine / D.
 J. Daigle, A. B. Pepperman, G. L. Drake, W. A. Reeves // Text. Res. J. 1972. V. 42.
 No. 6. P. 347.
- 84. Durable flame retardant finish for cellulosic textile materials: пат. US 3644083 (A).: МКП D06M 15/43, C07F 9/00, D06M 15/37, D06M 15/667, D06M 15/433, D06M 13/00, D06M 13/285, C07F 9/54 / Frank H. W., James O. S., Frederick S. R.; заявитель и патентообладатель American Cyanamid Co. № 27,167; заявл. 09.04.1970; опубл. 22.02.1972.
- 85. Duan, L. A novel branched phosphorus-containing flame retardant: Synthesis and its application into poly (butylene terephthalate) / L. Duan, H. Yang, Y. Shi, Y. Hou, Y. Zhu, Z. Gui, Y. Hu // Ind. Eng. Chem. Res. 2016. в печати.

- 86. Singh, H. Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review / H. Singh, A. K. Jain // J. Appl. Polym. Sci. 2009. V. 111. No. 2. P. 1115.
- 87. Tan, Z. Phosphorus-containing polymers from tetrakis(hydroxymethyl)phosphonium sulfate III. A new hydrolysis-resistant tris(allyloxymethyl)phosphine oxide and its thiolene reaction under ultraviolet irradiation / Z. Tan, C. Wu, M. Zhang, W. Lv, J. Qiu, C. Liu // RSC Adv. 2014. V. 4. No. 79. P. 41705.
- 88. Wen, Z. Preparation of Novel Dendritic Flame-Retardant Polymer and Its Application in EPDM Composites / Z. Wen, W. Jincheng, S. Kai, Z. Yi // J. Appl. Polym. Sci. 2014. V. 131. No. 19. P. 40855.
- 89. Biocidal Compositions and Methods of Use: пат. US 2014/0249114 (A1).: МКП A01N 57/34, A01N 43/80 / Yin B., Enzien M. V., Love D. J., Sianawati E.; заявитель и патентообладатель Dow Global Technologies Llc. № 14/351,360; заявл. 09.10.2012; опубл. 04.09.2014.
- 90. Biocidal Compositions and Treatments: пат. US 5385896 (A).: МКП A01N 25/02, A01P 1/00, A01N 25/14, A01N 25/30, A01N 35/00, C07F 9/54, A01N 35/02, A01N 57/02, A01N 57/34, C02F 1/50 / Bryan E., Veale M. A., Talbot R. E., Cooper K. G., Matthews N. S.; заявитель и патентообладатель Albright & Wilson Limited. № 08/240,100; заявл. 09.05.1994; опубл. 31.01.1995.
- 91. Biocidal mixture of tetrakis (hydroxymethyl) phosphonium salt and a surfactant: пат. US 5741757 (A).: МКП A01N 25/30, A01N 57/18, A01N 57/20, A01N 57/34, C02F 1/50 / Cooper K. G., Talbot R. E., Turvey M. J.; заявитель и патентообладатель Albright & Wilson Limited. № 08/407,494; заявл. 17.05.1995; опубл. 21.08.1998.
- 92. Method for protecting growing plants against fungal or microbial path pathogens: пат. US 5139561 (A).: МКП С07F 9/50, A01N 57/34, A01N 57/20 / Talbot R. E., Соорег К. G.; заявитель и патентообладатель Albright & Wilson Limited. № 07/733,955; заявл. 19.07.1991; опубл. 18.08.1992.
- 93. Synergistic antimicrobial composition: пат. US 8598147 (B2).: МКП A01N 57/20, A01P 1/00 / Yin B.; заявитель и патентообладатель Dow Global Technologies Llc. № 13/496,945; заявл. 13.09.2010; опубл. 03.12.2013.
- 94. Addition of THP or THP+ salt to pulping liquors to destroy catalase and/or catalase producing bacteria: πaτ. US 7214292 (B2).: MKΠ D21C 9/16, D21C 11/00, D21C 3/00,

- D21C 5/00 / Bowdery R. E., Edmunds S., Talbot R. E.; заявитель и патентообладатель Rhodia Consumer Specialties Limited. № 10/181,104; заявл. 16.01.2001; опубл. 08.05.2007.
- 95. Karasik, A. A. Synthesis, Molecular Structure and Coordination Chemistry of the First 1-Aza-3,7-diphosphacyclooctanes / A. A. Karasik, R. N. Naumov, Y. S. Spiridonova, O. G. Sinyashin, P. Lönnecke, E. Hey-Hawkins // Z. Anorg. Allg. Chem. 2007. V. 633. No. 2. P. 205.
- 96. Karasik, A. A. An effective strategy of P,N-containing macrocycle design / A. A. Karasik, A. S. Balueva, O. G. Sinyashin // C. R. Chimie. 2010. V. 13. No. 8-9. P. 1151.
- 97. Karasik, A. A. Chelating cyclic aminomethylphosphines and their transition metal complexes as a promising basis of bioinspired mimetic catalysts / A. A. Karasik, A. S. Balueva, E. I. Musina, O. G. Sinyashin // Mendeleev Commun. 2013. V. 23. No. 5. P. 237.
- 98. Doud, M. D. Versatile Synthesis of PR₂NR'₂ Ligands for Molecular Electrocatalysts with Pendant Bases in the Second Coordination Sphere / M. D. Doud, K. A. Grice, A. M. Lilio, C. S. Seu, C. P. Kubiak // Organometallics. 2012. V. 31. No. 3. P. 779.
- 99. Wiese, S. [Ni(PMe₂NPh₂)₂](BF₄)₂ as an Electrocatalyst for H₂ Production / S. Wiese, U. J. Kilgore, D. L. DuBois, R. M. Bullock // ACS Catal. 2012. V. 2. No. 5. P. 720.
- Musina, E. I. New Functional Cyclic Aminomethylphosphine Ligands for the Construction of Catalysts for Electrochemical Hydrogen Transformations / E. I. Musina, V. V. Khrizanforova, I. D. Strelnik, M. I. Valitov, Y. S. Spiridonova, D. B. Krivolapov, I. A. Litvinov, M. K. Kadirov, P. Lönnecke, E. Hey-Hawkins, Y. H. Budnikova, A. A. Karasik, O. G. Sinyashin // Chem. Eur. J. 2014. V. 20. No. 11. P. 3169.
- 101. Guthrie, J. P. Intramolecular Aldol Condensations: Rate and Equilibrium Constants / J. P. Guthrie, J. Guo // J. Am. Chem. Soc. 1996. V. 118. No. 46. P. 11472.
- 102. Anslyn, E. V. Modern Physical Organic Chemistry / E. V. Anslyn, D. A. Dougherty USA: University Science Books, 2006. 1104 p.

- 103. Roman-Leshkov, Yu. Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water / Y. Roman-Leshkov, M. Moliner, J. A. Labinger, M. E. Davis // Angew. Chem. Int. Ed. 2010. V. 49. No. 47. P. 8954.
- 104. Enger, B. C. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts / B. C. Enger, R. Lødeng, A. Holmen // Appl. Catal., A. 2008. V. 346. No. 1-2. P. 1.
- 105. Gomez-Gallego, M. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms / M. Gomez-Gallego, M. A. Sierra // Chem. Rev. 2011. V. 111. No. 8. P. 4857.
- 106. Conte, M. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism / M. Conte, A. F. Carley, C. Heirene, D. J. Willock, P. Johnston, A. A. Herzing, C. J. Kiely, G. J. Hutchings // J. Catal. 2007. V. 250. No. 2. P. 231.
- 107. Larionov, E. Scope and mechanism of asymmetric C(sp3)–H/C(Ar)–X coupling reactions: computational and experimental study / E. Larionov, M. Nakanishi, D. Katayev, C Besnard, E. P. Kundig // Chem. Sci. 2013. V. 4. No. 5. P. 1995.
- 108. Lv, Y. Copper-catalyzed annulation of amidines for quinazoline synthesis / Y. Lv, Y. Li, T. Xiong, W. Pu, H. Zhang, K. Sun, Q. Liu, Q. Zhang // Chem. Commun. 2013. V. 49. No. 57. P. 6439.
- 109. Plata, R. E. A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis-Hillman Reactions. The Importance of Experimental Observations // R. E. Plata, D. A. Singleton // J. Am. Chem. Soc. 2015. V. 137. No. 11. P. 3811.
- 110. Simmons, E. M. On the Interpretation of Deuterium Kinetic Isotope Effects in C_H Bond Functionalizations by Transition-Metal Complexes / E. M. Simmons, J. F. Hartwig // Angew. Chem. Int. Ed. 2012. V. 51. No. 13. P. 3066.
- 111. Verbeeck, S. ONSH: Optimization of Oxidative Alkylamination Reactions through Study of the Reaction Mechanism / S. Verbeeck, W. A. Herrebout, A. V. Gulevskaya, B. J. van der Veken, B. U. W. Maes // J. Org. Chem. 2010. V. 75. No. 15. P. 5126.
- 112. Wang, T. Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity / T. Wang, L.-G. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H. Fan, J.

- Xiang, Z.-X. Yu, A. S. C. Chan // J. Am. Chem. Soc. 2011. –V. 133. No. 25. P. 9878.
- 113. Wang, W.-H. Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight // W.-H. Wang, S. Xu, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman, E. Fujita, Y Himeda // ChemSusChem. 2014. V. 7. No. 7. P. 1976.
- 114. Krawczyk, B. Deuterium Labeled Peptides Give Insights into the Directionality of Class III Lantibiotic Synthetase LabKC / B. Krawczyk, P. Ensle, W. M. Muller, R. D. Sussmuth // J. Am. Chem. Soc. 2012. V. 134. No. 24. P. 9922.
- 115. Saha, S. K. Tagging of biomolecules with deuterated water (D_2O) in commercially important microalgae / S. K. Saha, J. Hayes, S. Moane, P. Murray // Biotechnol Lett. -2013.-V.35.-No.7.-P.1067.
- 116. Labeled biomolecular compositions and methods for the production and uses thereof: пат. US 20100228009 (A1).: МПК С07К 1/00, С12N 15/63, С07К 1/13, G01R 33/44 / Montelione G. T., Inouye M, Tang Y., Roth M., Schneider W. М.; заявитель и патентообладатель University Of Medicine And Dentistry Of New Jersey. № 12/531,447; заявл. 17.03.2008; опубл. 09.09.2010.
- 117. Pabst, G. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application / G. Pabst, N. Kučerka, M.-P. Nieh, J. Katsaras USA: CRC Press, 2014. 478 p.
- 118. Kelman, Z. Methods in Enzymology. Isotope Labeling of Biomolecules Labeling Methods / Z. Kelman USA: Academic Press, 2015. 634 p.
- 119. Atreya, H. S. Isotope labeling in Biomolecular NMR / H. S. Atreya Netherlands: Springer, 2012. 219 p.
- 120. Kushner, D. J. Pharmacological uses and perspectives of heavy water and deuterated compounds / D. J. Kushner, A. Baker, T. G. Dunstall // Can. J. Physiol. Pharmacol. 1999. V. 77. No. 2. P. 79.
- 121. Harbeson, S. L. Deuterium in Drug Discovery and Development / S. L. Harbeson, R. D. Tung // Annu. Rep. Med. Chem. 2011. V. 46. P. 403.
- 122. Meanwell, N. A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design / N. A. Meanwell // J. Med. Chem. 2011. V. 54. No. 8. P. 2529.

- 123. Ellis, J. W. Water-soluble Tris(hydroxymethyl)phosphine Complexes with Nickel, Palladium, and Platinum. Crystal Structure of [Pd{P(CH₂OH)₃}₄]×CH₃OH / J. W. Ellis, K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle, M. B. Smith // Inorg. Chem. 1992. V. 31. No. 14. P. 3026.
- 124. Bharathi, D. S. The first copper(I) complex of tris(hydroxymethyl)phosphine / D. S. Bharathi, M. A. Sridhar, J. S. Prasad, A. G. Samuelson // Inorg. Chem. Commun. 2001. V. 4. No. 9. P. 490.
- 125. Frank, A. W. Chemistry of Hydroxymethyl Phosphorous Compounds. Part II. Phosphonium Salts / A. W. Frank, D. J. Daigle, S. L. Vail // Textile Res. J. 1982. V. 52. No. 11. P. 678.
- 126. Frank, A. W. Chemistry of Hydroxymethyl Phosphorous Compounds. Part III. Phosphines, Phosphine Oxides, and Phosphonium Hydroxides / A. W. Frank, D. J. Daigle, S. L. Vail // Textile Res. J. 1982. Vol. 52. No. 11. P. 738.
- 127. James, B. R. Developments in the chemistry of tris(hydroxymethyl)phosphine / B. R. James, F. Lorenzini // Coord. Chem. Rev. 2010. V. 254. No. 5-6. P. 420.
- 128. Griffiths, D. V. Investigations into the Oxidative Stability of Hydroxymethyland Bis(Hydroxymethyl)-Phosphines / D. V. Griffiths, H. J. Groombridge, M. C. Salt // Phosphorus, Sulfur Silicon. 2008. V. 183. No. 2-3. P. 473.
- 129. Hoffman, A. The Action of Hydrogen Phosphine on Formaldehyde / A. Hoffman // J. Am. Chem. Soc. 1921. V. 43. No. 7. P. 1684.
- Reeves, W. A. Imparting flame-resistance to cotton by the use of THPC-resins /
 W. A. Reeves, J. D. Guthrie // U.S. Dept. Agr., Bur. Agr. Ind. Chem. 1953. V. 364.
 P. 1.
- 131. Reeves, W. A. Intermediate for Flame-Resistant Polymers Reactions of Tetrakis(hydroxymethyl)phosphonium Chloride / W. A. Reeves, J. D. Guthrie // Ind. Eng. Chem. 1956. V. 48. No. 1. P. 64.
- Reeves, W. A. Flame Retardants for Cotton Using APO and APS-THPC Resins /
 W. A. Reeves, G. L. Drake, L. H. Chance, J. D. Guthrie // Text. Res. J. 1957. V. 27.
 No. 3. P. 260.
- 133. Horak, J. Reaktion von Phosphin und Unterphosphoriger Säure mit Aldehyden IV. Kinetische Studie der Umsetzung von Phosphin mit Formaldehyd und Benzaldehyd / J. Horak, V. Ettel // Coll. Czech. Chem. Commun. 1961. V. 26. P. 2401.

- 134. Process for preparing trihydroxymethylphosphine: пат. US 3030421 (A).: МПК C07F 9/50, D06M 13/285, B27K 3/36, A01N 57/20 / Reuter M., Orthner L.; заявитель и патентообладатель Hoechst Ag № DE1957F0022199; заявл. 14.01.1958; опубл. 17.04.62.
- 135. Harrison, K. N. Water soluble, zero-valent, platinum—, palladium—, and nickel— P(CH₂OH)₃ complexes:catalysts for the addition of PH₃ to CH₂O / K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle, M. B. Smith // J. Chem. Soc. Chem. Commun. 1989. No. 16. P. 1096.
- 136. Hoye, P. A. T. Hydrophosphination of formaldehyde catalysed by tris(hydroxymethyl)phosphine complexes of platinum, palladium or nickel / P. A. T. Hoye, P. G. Pringle, M. B. Smith, K. Worboys // J. Chem. Soc. Dalton Trans. 1993. No. 2. P. 269.
- 137. Дорфман, Я. А. а-Гидроксиалкилирование, b-цианэтилирование, b-алкоксикарбонилэтилирование PH_3 в присутствии фосфиновых комплексов переходных металлов / Я. А. Дорфман, Л. В. Левина, Л. И. Греков // Журн. общ. хим. − 1995. Т. 65. № 9. С. 1459.
- 138. Grekov, L. I. Kinetics of phosphine hydroxymethylation with formaldehyde / L. I. Grekov, I. A. Novakov // Kinetika i Kataliz. 2006. V. 47. No. 3. –P. 358.
- 139. Grekov, L. I. Mechanism of noncatalytic synthesis of tris(hydroxymethyl)phosphine. Nonempirical quantum-chemical approach / L. I. Grekov, D. P. Kalinkin, A. O. Litinskii // Russ. J. Gen. Chem. 2011. –V. 81. No. 6. P. 1111.
- 140. Grekov, L. I. Quantum-Chemical Calculations of Thermodynamic Parameters of the Synthesis of Tris(hydroxymethyl)phosphine / L. I. Grekov, A. O. Litinskii // Russ. J. Gen. Chem. 2009. –V. 79. No. 5. P. 905.
- 141. Grayson, M. Phosphonium Compounds. III. Mechanism of Hydroxide Cleavage of Tetrakis(hydroxymethyl)phosphonium Chloride / M. Grayson // J. Am. Chem. Soc. 1963. V. 85. No. 1. P. 79.
- 142. Lucken, E. A. C. The electron spin resonance spectra of species resulting from the action of hydroxyl radicals on trishydroxymethylphosphine and related compounds / E. A. C. Lucken // J. Chem. Soc. A. 1966. No. 0. P. 1357.

- 143. Fodor, L. M. Study of some oxidation reactions of the tetrakis-hydroxymethyl phosphonium cation: Ph.D. Dissertation /Fodor Lawrence Martin. N.Y., 1963. 154 c.
- 144. Moiseev, D. V. Air-stability of aqueous solutions of $(HOCH_2)_3P$ and $(HOCH_2CH_2CH_2)_3P$ / D. V. Moiseev, B. R. James // Inorg. Chim. Acta. 2011. V. 379. No. 1. P. 23.
- 145. Kisanga, P. The synthesis of 2,6,7-trioxa-1,4-diphosphabicyclo[2.2.2]octane revisited: the synthesis of 2,6,7-triphenyl-2N,6N,7N-triaza-1,4-diphosphabicyclo[2.2.2]octane and the synthesis of 1 λ 5-phosphiranol / P. Kisanga, J. Verkade // Heteroatom Chem. 2001. V. 12. No. 2. P. 114.
- 146. Петров, К. А. Новый способ синтеза третичных алифатических, жирноароматических фосфинов и метилолфосфинов / К. А. Петров, В. А. Паршина, М. Б. Лузанова // Журн. общ. хим. 1962. Т. 32. № 2. С. 553.
- 147. Frank, A. W. Displacement of tertiary phosphines from methylolphosphonium salts by tributylphosphine / A. W. Frank, G. L. Drake // J. Org. Chem. 1971. V. 36. No. 4. P. 549.
- 148. Preparation of tertiary phosphines: пат. US 3257460 (A).: МПК С07F 9/00 С07F 9/50 / Gordon I., Wagner G. M.; заявитель и патентообладатель Hooker Chemical Corp.; заявл. 24.01.1962; опубл. 21.06.1966.
- 149. Novel process for the preparation of tris(hydroxymethyl)phosphine and tris(hydroxymethyl)phosphine oxide: пат. US 3833661 (A).: МПК С07F 9/53 / Connick W., Ellzey S.; заявитель и патентообладатель US Agriculture.; заявл. 18.07.1972; опубл. 03.09.1974.
- 150. Shao, S. Effect of pH on the Phosphorous Components in Tetra-hydroxymethyl Phosphonium Chloride Solution / S. Shao, L. Jiang, Y. Li, K. Shi // Adv. Mat. Res. 2012. V. 560-561. P. 237.
- 151. Bloom, S. M. The Oxidation of Organs-phosphines by Aqueous Alkali / S. M. Bloom, S. A. Buckler, R. F. Lambert, E. V. Merry // J. Chem. Soc. D, Chem. Commun. 1970. No. 14. P. 870.
- 152. Preparation of tertiary organophosphine oxides: пат. US 3852362 (A).: МПК C07F 9/00, C07F 9/53, C07F 9/30 / Lambert R. F.; заявитель и патентообладатель Polaroid Corp.; заявл. 27.08.1973; опубл. 3.12.1974.

- 153. Fenton, G. W. Influence of poles and polar linkings on the course pursued by elimination reactions. Part V. The mechanism of thermal decomposition of quaternary phosphonium hydroxides / G. W. Fenton, C. K. Ingold // J. Chem. Soc. 1929. No. 0. P. 2342.
- 154. Zanger, M. Kinetic Study of the Decomposition of Quaternary Phosphonium Hydroxides / M. Zanger, C. A. Vander Werf, W. E. McEwen // J. Am. Chem. Soc. 1959. V. 81. No. 14. P. 3806.
- 155. Grayson, M. Phosphonium Compounds. II: Decomposition of Phosphonium Alkoxides to Hydrocarbon, Ether and Phosphine Oxide / M. Grayson, P. T. Keough // J. Am. Chem. Soc. 1960. V. 82. No. 15. P. 3919.
- 156. Aksnes, G. Alkaline Decomposition of Methyl Phenyl Phosphonium Compounds / G. Aksnes, L. J. Brudvik // Acta Chem. Scand. 1963. V. 17. No. 6. P. 1616.
- 157. McEwen, W. E. Mechanisms of Substitution Reactions at Phosphorus. X. The Wittig Reaction and the Decomposition of Quaternary Phosphonium Hydroxides // W. E. McEwen, K. F. Kumli, A. Blade-Font, M. Zanger, C. A. Vander Werf // J. Am. Chem. Soc. 1964. V. 86. No. 12. P. 2378.
- McEwen, W. E. Mechanisms of Substitution Reactions at Phosphorus. XII. A Kinetic Study of the Decomposition of Quaternary Phosphonium Hydroxides / W. E. McEwen, G. Axelrad, M. Zanger, C. A. Vander Werf // J. Am. Chem. Soc. 1965. V. 87. No. 17. P. 3948.
- 159. Hays, H. R. Reaction of tetraalkylphosphonium salts with anhydrous sodium hydroxide / H. R. Hays, R. G. Laughlin // J. Org. Chem. 1967. V. 32. No. 4. P. 1060.
- 160. Pagilagan, R. U. Steric effects in phosphonium salt formation and in phosphonium hydroxide decomposition reactions / R. U. Pagilagan, W. E. McEwen // Chem. Commun. 1966. No. 18. P. 652.
- 161. Cremer, S. Rates of Hydroxide Decomposition of Cyclic Phosphonium Salts / S. Cremer, B. Trivedi, F. Weitl // J. Org. Chem. 1971. V. 36. No. 21. P. 3226.
- Byrne, P. A. First ever observation of the intermediate of phosphonium salt and ylide hydrolysis: *P*-hydroxytetraorganophosphorane / P. A. Byrne, Y. Ortin, D. G. Gilheany // Chem. Commun. 2015. V. 51. No. 6. P. 1147.

- 163. Deng, Z. Nucleophilic arylation with tetraarylphosphonium salts / Z. Deng, J.-H. Lin, J.-C. Xiao // Nature Commun. 2016. V. 7. P. 1.
- 164. Avila, L. Z. Hydrocarbon and phosphate triester formation during homolytic hydrolysis of organophosphonium ions: an alternate model for organophosphonate biodegradation / L. Z. Avila, P. A. Bishop, J. W. Frost // J. Am. Chem. Soc. 1991. V. 113. No. 6. P. 2242.
- 165. Hoffman, A. The Action of Hydrogen Phosphine on Formaldehyde. II / A. Hoffman // J. Am. Chem. Soc. 1930. V. 52. No. 7. P. 2995.
- W. Neutralization 166. Vullo, J. **Studies** Concerning the of Tetrakis(hydroxymethyl)phosphonium chloride and the Reaction of Tris(hydroxymethyl)phosphine with Formaldehyde / W. J. Vullo // J. Org. Chem. – 1968. – V. 33. – No. 9. – P. 3665.
- 167. Buckler, S. A. Autoxidation of Trialkylphosphines / S. A. Buckler // J. Am. Chem. Soc. 1962. V. 84. No. 16. 3093.
- 168. Burkett, H. D. Possible Evidence for a New Mechanism for Reaction of Trimethylphosphine with Dioxygen / H. D. Burkett, W. E. Hill, S. D. Worley // Phosphorus Sulfur 1984. V. 20. No. 2. P. 169.
- 169. Messinger, J. Ueber die Entwicklung von gasförmigem Phosphorwasserstoff und dessen Einwirkung auf Aldehyde und Ketonsäuren / J. Messinger, C. Engels // Ber. 1888. V. 21. No. 1. P. 326.
- 170. Method of preparing tetrakis (1-hydroxyalkyl) phosphonium salts: пат. US 3013085 (A).: МПК С07F 9/54 / Buckler, S. A.; заявитель и патентообладатель American Cyanamid Co.; заявл. 01.04.59 опубл. 12.12.1961.
- 171. Buckler, S. A. Reactions of Phosphine with Aliphatic Aldehydes / S. A. Buckler, V. P. Wystrach // J. Am. Chem. Soc. 1961. V. 83. No. 1. P. 168.
- 172. Fireproofing cellulose textiles with tetrakis (hydroxymethyl) phosphonium chloride and aniline: пат. US 3897205 (A).: МПК С07F 9/50, D06M 13/285, C08K 5/49, C07F 9/54, C07F 9/6584, C08K 5/50 / Frank, A. W., Drake, G. L.; заявитель и патентообладатель US Agriculture; заявл. 06.07.73 опубл. 29.07.1975.
- 173. Albouy, D. New (α-Hydroxyalkyl)phosphorus Amphiphiles: Synthesis and Dissociation Constants / D. Albouy, A. Brun, A. Munoz, G. Etemad-Moghadam // J. Org. Chem. 1998. V. 63. No. 21. P. 7223.

- 174. Buckler, S. A. Derivatives of Phosphine Formed with Pyruvic Acid and Benzaldehyde / S. A. Buckler // J. Am. Chem. Soc. 1960. V. 82. No. 16. P. 4215.
- 175. Козлов, Е. С. Получение и свойства трис(a-окси-b,b,b-трихлорэтил)фосфина / Е. С. Козлов, А. В. Соловьев, Л. Н. Марковский // Журн. общ. хим. 1978. Т. 48. № 11. С. 2437.
- 176. Шермолович, Ю. Г. Синтез (полифтор-1-гидроксиалкил)фосфинов и 3,5,8-трис-(полифторалкил)-2,6,7-триокса-1,4-дифосфабицикло(2.2.2)-октанов из полифторированных алифатических альдегидов / Ю. Г. Шермолович, Е. А. Данченко, А. В. Соловьев, Л. Н. Марковский // Журн. общ. хим. − 1985. − Т. 55. − № 10. − С. 2218.
- Моисеев, Д. В. Взаимодействие фосфина с ацетальдегидом в водной среде и некоторые реакции тетра(α-гидроксиэтил)фосфоний хлорида [HO(Me)CH]4PCl / Д. В. Моисеев, Б. Р. Джеймс, А. В. Гущин // Журн. общей химии. 2013. Т. 83. № 2. С. 198.
- 178. Preparation of tertiary phosphines: пат. US 3257460 (A).: МПК С07F 9/00 С07F 9/50 / Gordon I., Wagner G. M.; заявитель и патентообладатель Hooker Chemical Corp.; заявл. 24.01.1962; опубл. 21.06.1966.
- 179. Петров, К. А. Реакции фосфинов. II. Реакции первичный ароматических фосфинов с альдегидами и кетонами / К. А. Петров, В. А. Паршина, В. А. Гайдамак // Журн. общ. хим. 1961. Т. 31. №. 10. С. 3411.
- 180. Петров, К. А. Реакции фосфинов. III. Реакции вторичных фосфинов с альдегидами и кетонами / К. А. Петров, В. А. Паршина // Журн. общ. хим. 1961.
 Т. 31. №. 10. С. 3417.
- 181. Petrov, K. A. Hydroxyalkylphosphines and Hydroxyalkylphosphine Oxides / K. A. Petrov, V. A. Parshina // Russ. Chem. Rev. 1968. V. 37. No. 7. P. 532.
- 182. Hellmann, H. Hydroxymethyl-phosphine, Hydroxymethyl-phosphoniumsalze und Chlormethyl-phosphoniumsalze / H. Hellmann, J. Bader, H. Birkner, O. Schumacher // Liebigs Ann. Chem. 1962. V. 659. No. 1. P. 49.
- 183. Kuznetsov, R. M. Synthesis of new macrocyclic aminomethylphosphines based on 4,4'-diaminodiphenylmethane and its derivatives / R. M. Kuznetsov, A. S. Balueva,

- I. A. Litvinov, A. T. Gubaidullin, G. N. Nikonov, A. A. Karasik, O. G. Sinyashin // Russ. Chem. Bull., Int. Ed. 2002. V. 51. No. 1. P. 151.
- 184. Kuhl, O. Metallatriphos complexes: synthesis and molecular structure of [TpZr(OCH₂PPh₂)₃] (Tp=tris(pyrazolyl)hydroborate) and formation of the heterodinuclear complex [TpZr(μ-OCH₂PPh₂)₃Mo(CO)₃] with bridging phosphinoalkoxide ligands / O. Kuhl, S. Blaurock, J. Sieler, E. Hey-Hawkins // Polyhedron. 2001. V. 20. No. 17. P. 2171.
- 185. Trippett, S. The rearrangement of l-hydroxyalkylphosphines to alkylphosphine oxides / S. Trippett // J. Chem. Soc. 1961. No. 0. P. 2813.
- 186. Evanelidou-Tsolis, E. Reactions of Secondary and Tertiary Phosphines with Monocarbonyl Compounds / E. Evanelidou-Tsolis, F. Ramirez, J. F. Pilot, C. P. Smith // Phosphorus Relat. Group V Elem. 1974. V. 4. P. 109.
- 187. Muller, G. Synthesis of monohydroxy –methyl and –ethyl-phosphines PPh₂CHROH / G. Muller, D. Sainz // J. Organomet. Chem. 1995. V. 495. No. 1-2. P. 103.
- 188. Issleib, K. 1,3-Oxaphosphorinane / K. Issleib, H. Oehme, M. Scheibe // Syn. *Inorg. Metal-Org. Chem.* 1972. V. 2. No. 3. P. 223.
- 189. Zschunke, A. Konfigurations- und konformationsbestimmung an 1,3-oxaphosphorinanen / A. Zschunke, H. Meyer, E. Leissring, H. Oehme, K. Issleib // *Phosphorus, Sulfur.* 1978. V. 5. No. 1. P. 81.
- 190. Oehme, H. Beitrag zur Reaktion sekundarer Phosphine mit Aromatischen Aldehyden / H. Oehme, E. Liessring // Z. Chem. 1979. V. 19. No. 11. P. 416.
- 191. Chikkali, S. Hydrophosphanation of Phenolic Aldehydes as Facile Synthetic Approach to Catechol-Functionalized Phosphane Oxides and Phosphanes / S. Chikkali, D. Gudat // Eur. J. Inorg. Chem. 2006. No. 15. P. 3005.
- 192. Moiseev, D. V. Reversible decomposition of mono(a-hydroxy)phosphines, and their reaction with a,b-unsaturated aldehyde / D. V. Moiseev, P. Marcazzan, B. R. James // Can. J. Chem. 2009. V. 87. No. 4. P. 582.
- 193. James, B. R. Protonated dimethyl sulphoxide, [Me₂SO ··· H ··· OSMe₂]⁺; a novel hydrogen-bridged structure: *X*-ray crystal structure of *trans*-[H(Me₂SO)₂][RhCl₄(Me₂SO)₂] / B. R. James, R. H. Morris, F. W. B. Einstein, A. Willis // J. Chem. Soc., Chem. Commun. 1980. No. 1. P. 31.

- 194. Benedetti, E. Structure, and infrared and ultraviolet spectra of protonated dimethylacetamide / E. Benedetti, B. Di Blasio, P. Baine // J. Chem. Soc. Perkin Trans. II. 1980. No. 3. P. 500.
- 195. Imamoto, T. Phosphine Oxides and LiAlH₄-NaBH₄-CeCl₃: Synthesis and Reactions of Phosphine-Boranes / T. Imamoto, T. Kusumoto, N. Susuki, K. Sato // J. Am. Chem. Soc. 1985. V. 107. No. 18. P. 5301.
- 196. Imamoto, T. Synthesis and Reactions of Phosphine-Boranes. Synthesis of New Bidentate Ligands with Homochiral Phosphine Centers via Optically Pure Phosphine-Boranes / T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato // J. Am. Chem. Soc. 1990. V. 112. No. 13. P. 5245.
- 197. Bourumeau, K. P–H bond activation of primary phosphine-boranes: Access to α -hydroxy and α,α' -dihydroxyphosphine-borane adducts by uncatalyzed hydrophosphination of carbonyl derivatives / K. Bourumeau, A.-C. Gaumont, J.-M. Denis // J. Organomet. Chem. 1997. V. 529. No. 1-2. P. 205.
- 198. Lee, S. W. Nucleophilic Addition of Phosphines to Carbonyl Groups. Isolation of 1-Hydroxy Phosphonium and 1-(Trimethylsiloxy) Phosphonium Salts and the Crystal Structure of (1-Hydroxy-1-methylethyl)triethylphosphonium Bromide / S. W. Lee, W. C. Trogler // J. Org. Chem. 1990. V. 55. No. 9. P. 2644.
- 199. Dal Canto, R. A. Addition of Triphenylphosphonium Salts to Aldehydes. Remarkable Counter Ion Effects on Phosphorus Proton Couplings / R. A. Dal Canto, E. J. Roskamp // J. Org. Chem. 1992. V. 57. No. 1. P. 406.
- 200. Darensbourg, D. J. Nucleophilic Addition of a Water-Soluble Phosphine to Aldehydes. Isolation of (1-Hydroxyalkyl)phosphonium Salts and the Crystal Structure of the (1-Methoxy-1-benzyl)-(m-sulfonatophenyl)diphenylphosphonium Salt / D. J. Darensbourg, F. Joó, A. Katho, J. N. W. Stafford, A. Bényei, J. H. Reibenspies // Inorg. Chem. 1994. V. 33. No. 1. P. 175.
- 201. Moiseev, D. V. a-Monodeuterated Benzyl Alcohols and Phosphobetaines from Reactions of Aromatic Aldehydes with a Water/D₂O-Soluble Phosphine / D. V. Moiseev, B. R. James, T. Q. Hu // Inorg. Chem. 2006. V. 45. No. 25. P. 10338.
- 202. Piper, T. Revisiting the metabolism of 19-nortestosterone using isotope ratio and high resolution/high accuracy mass spectrometry / T. Piper, W. Schänzer, M. Thevis // J. Steroid Biochem. Mol. Biol. 2016. V. 162. P. 80.

- 203. Ecker, J. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species / J. Ecker, G. Liebisch // Prog. Lipid. Res. 2014. V. 54. P. 14.
- 204. Kurita, T. Facile and Convenient Method of Deuterium Gas Generation Using a Pd/C-Catalyzed H₂–D₂ Exchange Reaction and Its Application to Synthesis of Deuterium-Labeled Compounds / T. Kurita, F. Aoki, T. Mizumoto, T. Maejima, H. Esaki, T. Maegawa, Y. Monguchi, H. Sajiki // Chem. Eur. J. 2008. V. 14. No. 11. P. 3371.
- 205. Wang, W.-H. Highly Efficient D₂ Generation by Dehydrogenation of Formic Acid in D2O through H⁺/D⁺ Exchange on Iridium Catalyst: Application to the Synthesis of Deuterated Compounds by Transfer Deuterogenation / W.-H. Wang, J. F. Hull, J. T. Muckerman, E. Fujita, T. Hirose, Y. Himeda // Chem. Eur. J. 2012. V. 18. No. 30. P. 9397.
- 206. Miyake, H. Umpolung of a Hydrogen Atom of Water by Using a Hexacoordinated Phosphate and Its Application to Deuteride Reduction Reactions of Carbonyl Compounds / H. Miyake, N. Kano, T. Kawashima // J. Am. Che. Soc. 2009. V. 131. No. 46. P. 16622.
- 207. Atzrodt, J. The Renaissance of H/D Exchange / J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann // Angew. Chem. Int. Ed. 2007. V. 46. No. 41. P. 7744.
- 208. Concello, J. M. Sequential Elimination ± Reduction Reactions Promoted by Samarium Diiodide: Synthesis of 2,3-Dideuterioesters or –amides / J. M. Concello, H. Rodríguez-Solla // Chem. Eur. J. 2001. V. 7. No. 19. P. 4266.
- 209. Carrion, M. C. Selective Catalytic Deuterium Labeling of Alcohols during a Transfer Hydrogenation Process of Ketones Using D₂O as the Only Deuterium Source. Theoretical and Experimental Demonstration of a Ru-H/D⁺ Exchange as the Key Step / M. C. Carrion, M. Ruiz-Castaneda, G. Espino, C. Aliende, L. Santos, A. M. Rodríguez, B. R. Manzano, F. A. Jalon, A. Lledos // ACS Catal. –2014. V. 4. No. 4. P. 1040.
- 210. Shirakawa, E. Reduction of alkynes into 1,2-dideuterioalkenes with hexamethyldisilane and deuterium oxide in the presence of a palladium catalyst / E. Shirakawa, H. Otsuka, T. Hayashi // Chem. Commun. 2005. No. 47. P. 5885.

- 211. Yamada, T. Mild and Direct Multiple Deuterium-Labeling of Saturated Fatty Acids / T. Yamada, K. Park, N. Yasukawa, K. Morita, Y. Monguchi, Y. Sawama, H. Sajiki // Adv. Synth. Catal. 2016. в печати.
- 212. Dvořák, D. Reaction of arylmethylenemalonaldehydes with some nucleophiles / D. Dvořák, Z. Arnold // Collec. Czech. Chem. Commun. 1987. V. 52. No. 11. P. 2699.
- 213. Process for removing triorganophosphine from a liquid composition: пат. US 4283304 (A).: МПК С07С 45/50, С07F 9/50, С07F 9/02, С07С 45/00, В01Ј 31/40, С07С 67/00 / Bryant D. R., Galley R. A.; заявитель и патентообладатель Union Carbide Corporation № US 06/108,279; заявл. 28.12.1979; опубл. 11.08.1981.
- 214. Bryant, D. R. Classical Homogeneous Catalyst Separation Technology / D. R. Bryant. Глава 2 в Cole-Hamilton, D. J. Catalyst Separation, Recovery and Recycling : Chemistry and Process Design / D. J. Cole-Hamilton, R. P. Tooze. Dordrecht : Springer, 2006. 248 p.
- 215. Moiseev, D. V. Interaction of Tertiary Phosphines with Lignin-type, a,b-Unsaturated Aldehydes in Water / D. V. Moiseev, B. R. James, B. O. Patrick, T. Q. Hu // Inorg. Chem. 2007. V. 46. No. 22. P. 9389.
- 216. Tebby, J. C. General Experimental Techniques and Compilation of Chemical Shift Data / J. C. Tebby Γπαβα 1 в Verkade, J. G. Phosphorus-31 NMR spectroscopy in stereochemical analysis / J. G. Verkade, L. D. Quin Florida : VCH Publishers, 1987. 717 p.
- 217. Fluck, E. Empirical Methods for Interpreting Chemical Shifts of Phosphorus Compounds / E. Fluck; G. Heckmann Глава 2 в Verkade, J. G. Phosphorus-31 NMR spectroscopy in stereochemical analysis / J. G. Verkade, L. D. Quin Florida: VCH Publishers, 1987. 717 p.
- 218. Quin, L. D. A guide to organophosphorus chemistry / L. D. Quin New York : Wiley-Interscience, 2000. 394 c.
- 219. Ragnar, M. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin / M. Ragnar, C. T. Lindgren, N-O. Nilvebrant // J. Wood Chem. & Tech. 2000. V. 20. No. 3. P. 277.
- 220. Po, H. N. The Henderson-Hasselbalch Equation: Its History and Limitations / H. N. Po, N. M. Senozan // J. Chem. Educ. 2001. V. 78. No. 11. P. 1499.

- 221. Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality / L. J. Henderson // Am. J. Physiol. 1908. V. 21. No. 2. P. 173.
- 222. Perkampus, H.-H. UV-Vis Spectroscopy and Its Applications / H.-H. Perkampus Berlin : Springer-Verlag, 1992. 244 p.
- 223. Henderson, W. M. The Nucleophilicity of Phosphines / W. M. Henderson, S. A. Buckler // J. Am. Chem. Soc. 1960. V. 82. No. 22. P. 5794.
- 224. Моисеев, Д. В. Взаимодействие третичных фосфинов с α,β-ненасыщенными альдегидами лигнина в органических растворителях / Д. В. Моисеев, Б. Р. Джеймс, А. В. Гущин // Журн. общей химии. 2012. Т. 82. № 5. С. 732.
- 225. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis / C. A. Tolman // Chem. Rev. 1977. V. 77. No. 3. P. 313.
- 226. Moiseev, D. V. Reaction of (HOCH₂CH₂CH₂)₃P with a,b-Unsaturated Ketones Containing a Phenylpropanoid Backbone / D. V. Moiseev, B. R. James, A. V. Gushchin // Phosphorus, Sulfur, and Silicon and the Related Elements. 2014. V. 189. No. 2. P. 242.
- 227. Moiseev, D. V. Chemistry and Stereochemistry of the Interaction of the Water-Soluble Phosphine [HO(CH₂)₃]₃P with Cinnamaldehyde in Aqueous Media / D. V. Moiseev, B. R. James, T. Q. Hu // Inorg. Chem. 2007. V. 46. No. 11. P. 4704.
- 228. Kolodiazhnyi, O. I. Phosphorus Ylides: Chemistry and Applications in Organic Synthesis / O. I. Kolodiazhnyi. Weinheim, Germany: Wiley-VCH, 1999. 568 p.
- 229. Schmidbaur, H. Inorganic chemistry with ylides / H. Schmidbaur // Acc. Chem. Res. 1975. V. 8. No. 2. P. 62.
- 230. Starnes, W. H. Oxidation inhibitors. VII. Reaction of a quinone methide with trin-butylphosphine / W. H. Starnes, J. J. Lauff // J. Org. Chem. 1970. V. 35. No. 6. P. 1978.
- 231. Friebolin, H. Basic one- and two-dimensional NMR spectroscopy / H. Friebolin New York : Wiley-VCH, 1998, 386 p.
- 232. Bifulco, G. Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods / G. Bifulco, P. Dambruoso, L. Gomez-Paloma, R. Riccio // Chem. Rev. 2007. V. 107. No. 9. P. 3744.

- 233. Arjona, O. Stereochemistry of addition to the carbonyl group. Part 17. Study of the factors affecting asymmetric induction in condensation reactions of methyl- and phenyl-magnesium bromide with chiral carbonyl compounds / O. Arjona, R. Perez-Ossorio, A. Perez-Rubalcaba, M. L. Quiroga // J. Chem. Soc. Perkin II. 1981. No. 4. P. 597.
- 234. Unterhalt, B. Ungesättigte Oxime, 24. Mitt. 6-Phenyl-3,5-hexadien-2-one und 7-Phenyl-4,6-heptadien-3-one sowie deren Oxime / B. Unterhalt, K. Weyrich // Arch. Pharm. 1980. V. 313. No. 11. P. 913.
- 235. Masuyama, Y. Nickel- and Palladium-Catalyzed Aldol-Type Condensation by Enol Esters / Y. Masuyama, T. Sakai, T. Kato, Y. Kurusu // Bull. Chem. Soc. Jpn. 1994. V. 67. No. 8. P. 2265.
- 236. Nongkhlaw, R. L. Synthesis of substituted hexa-3,5-dienoic acid methyl esters from conjugated dienones / R. L. Nongkhlaw, R. Nongrum, B. Myrboh // J. Chem. Soc. Perkin I. 2001. No. 11. P. 1300.
- 237. Hapiot, P. Oxidative Dimerization of Phenolic Aldehydes Related to Lignin Formation / P. Hapiot, J. Pinson, C. Francesch, F. Mhamdi, C. Rolando // J. Phys. Chem. 1994. V. 98. No. 10. P. 2641.
- 238. Guggenheim, E. A. On the determination of the velocity constant of a unimolecular reaction / E. A. Guggenheim // Phil. Mag. 1926. V. 2. No. 9. P. 538.
- 239. Connors, K. A. Chemical Kinetics: the Study of Reaction Rates in Solution / K. A. Connors New York: VCH Publishers, 1990. 496 p.
- 240. Ahmad, M. A Pseudo First-Order-Second-Order Kinetics Experiment / M. Ahmad, J. Hamer // J. Chem. Educ. 1964. V. 41. No. 5. P. 249.
- 241. Линник, Ю. В. Метод наименьших квадратов и основы математикостатистической теории обработки наблюдений / Ю. В. Линник. – 2-е изд., доп. и исп. – М. : Гос. изд-во физико-математической литературы, 1962. – 349 с.
- 242. Bell, R. P. The kinetics of the hydration of acetaldehyde / R. P. Bell, B. B. Darwent // Trans. Faraday Soc. 1950. V. 46. P. 34.
- 243. Gruen, L. C. Kinetics of hydration of aliphatic aldehydes / L. C. Gruen, P. T. McTigue // J. Chem. Soc. 1963. P. 5224.

- 244. Socrates, G. Hydration study of acetaldehyde and propionaldehyde / G. Socrates // J. Org. Chem. 1969. V. 34. No. 10. P. 2958.
- 245. Bell, R. P. The reversible hydration of carbonyl compounds / R. P. Bell // Advances in Physical Organic Chemistry. 1966. V. 4. P. 2.
- 246. Medvedeva, A. S. Spontaneous Hydration of the Carbonyl Group in Substituted Propynals in Aqueous Medium / A. S. Medvedeva, I. V. Mitroshina, A. V. Afonin, K. A. Chernyshev, D. A. Bulanov, A. V. Mareev // Russ. J. Org. Chem. – 2013. – V. 49. – No. 6. – P. 828.
- Achyuthan, K. E. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products / K. E. Achyuthan, P. D. Adams, B. A. Simmons, A. K. Singh // Molecules. 2009. V. 14. No. 11. P. 4758.
- 248. Talano, M. A. Modulator role of ascorbic acid on coniferyl alcohol oxidation by a basic peroxidase from tomato hairy roots / M. A. Talano, E. Agostini, A. L. WevarOller, M. I. Medina, S. R. Milrad de Forchetti // Plant Sci. 2008. V. 175. No. 5. P. 724.
- Delacroix, O. Hydrophosphination of Unactivated Alkenes, Dienes and Alkynes:
 A Versatile and Valuable Approach for the Synthesis of Phosphines / O. Delacroix, A.
 C. Gaumont // Curr. Org. Chem. 2005. V. 9. No. 18. P. 1851.
- 250. Lavenot, L. Synthesis of new hydrophilic phosphines by addition of diphenylphosphine on activated alkenes: characterization of their rhodium complexes / L. Lavenot, A. Bortoletto, C. Roucoux, C. Larpent, H. Patin // J. Organomet. Chem. 1996. V. 509. No. 1. P. 9.
- 251. Kovacik, I. Pt(Me-Duphos)-Catalyzed Asymmetric Hydrophosphination of Activated Olefins: Enantioselective Synthesis of Chiral Phosphines / I. Kovacik, D. K. Wicht, N. S. Grewal, D. S. Glueck, C. D. Incarvito, I. A. Guzei, A. L. Rheingold // Organometallics. 2000. V. 19. No. 6. P. 950.
- 252. Scriban, C. P-C and C-C Bond Formation by Michael Addition in Platinum-Catalyzed Hydrophosphination and in the Stoichiometric Reactions of Platinum Phosphido Complexes with Activated Alkenes / C. Scriban, D. S. Glueck, L. N. Zakharov, W. S. Kassel, A. G. DiPasquale, J. A. Golen, A. L. Rheingold // Organometallics. 2006. V. 25. No. 24. P. 5757.

- 253. Baillie, C. Catalytic Synthesis of Phosphines and Related Compounds / C. Baillie, J. Xiao // Curr. Org. Chem. 2003. V. 7. No. 5. P. 477.
- 254. Trofimov, B. A. Addition of secondary phosphines to N-vinylpyrroles / B. A. Trofimov, S. F. Malysheva, B. G. Sukhov, N. A. Belogorlova, E. Yu. Schmidt, L. N. Sobenina, V. A. Kuimov, N. K. Gusarova // Tetrahedron Lett. 2003. V. 44. No. 13. P. 2629.
- 255. Van Doorn, J. A. Addition of Diphenylphosphine to Maleic Anhydride and Related Compounds / J. A. Van Doorn, R. L. Wife // Phosphorus 1990. V. 47. No. 3-4. P. 253.
- 256. Blinn, D. A. Addition of diphenylphosphine to Michael-type olefins: the preparation of phosphine-nitrile and phosphine-ester ligands / D. A. Blinn, R. S. Button, V. Farazi, M. K. Neeb, C. L. Tapley, T. E. Trehearne, S. D. West, T. L. Kruger, B. N. Storhoff // J. Organomet. Chem. 1990. V. 393. No. 1. P. 143.
- 257. Wauters, I. Preparation of phosphines through C–P bond formation / I. Wauters, W. Debrouwer, C. V. Stevens // Beilstein J. Org. Chem. 2014. V. 10. P. 1064.
- 258. Issleib, K. Alkali-Phosphorverbindungen und ihr reaktives Verhalten, LIV: [3-Oxo-alkyl]-diorgano-phosphine R"-CO-CH₂-CHR'-PR₂ / K. Issleib, K. Jasche // Chem. Ber. 1967. V. 100. No. 10. P. 3343.
- 259. Sadow, A. D. Enantioselective Addition of Secondary Phosphines to Methacrylonitrile: Catalysis and Mechanism / A. D. Sadow, A. Togni // J. Am. Chem. Soc. 2005. V. 127. No. 48. P. 17012.
- 260. Пудовик, А. Н. а-Оксиалкилфосфины, их образование и термические превращения /А. Н. Пудовик, И. В. Коновалова, Г. В. Романов, В. М. Пожидаев, Н. Р. Аношина, А. А. Лапин // Журн. Общ. Хим. 1978. Т. 48. № 5. С. 1001.
- 261. Scriban, C. P-C and C-C Bond Formation by Michael Addition in Platinum-Catalyzed Hydrophosphination and in the Stoichiometric Reactions of Platinum Phosphido Complexes with Activated Alkenes / C. Scriban, D. S. Glueck, L. N. Zakharov, W. S. Kassel, A. G. DiPasquale, J. A. Golen, A. L. Rheingold // Organometallics. 2006. V. 25. No. 24. P. 5757.
- 262. Crimmin, M. R. Calcium-Catalyzed Intermolecular Hydrophosphination / M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitchcock, P. A. Procopiou // Organometallics. 2007. V. 26. No. 12. P. 2953.

- 263. Rosenberg, L. Mechanisms of Metal-Catalyzed Hydrophosphination of Alkenes and Alkynes / L. Rosenberg // ACS Catal. 2013. V. 3. No. 12. P. 2845.
- 264. Bartoli, G. Organocatalytic asymmetric hydrophosphination of nitroalkenes / G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti, L. Sambria, P. Melchiorre // Chem. Commun. 2007. No. 7. P. 722.
- 265. Koshti, V. Contemporary avenues in catalytic PH bond addition reaction: A case study of hydrophosphination / V. Koshti, S. Gaikwad, S. H. Chikkali // Coord. Chem. Rev. 2014. V. 265. P. 52.
- 266. Hashimoto, T. Synthesis of 1,3-Bis(diphenylphosphinoyl)alkanes via Double Addition of Diphenylphosphine to α,β-Unsaturated Carbonyl Compounds: Sequential 1,4- and 1,2-Addition Promoted by NbCl₅-BF₃·OEt₂ / T. Hashimoto, H. Maeta, T. Matsumoto, M. Morooka, S. Ohba, K. Suzuki // Synlett. 1992. No. 4. P. 340.
- 267. Suzuki, K. Lewis Acid Promoted Reaction of Secondary Phosphines with Carbonyl Compounds: Remarkable Effect of Niobium(V) Chloride in Promoting an Intramolecular Oxidation-Reduction Process / K. Suzuki, T. Hashimoto, H. Maeta, T. Matsumoto // Synlett. 1992. No. 2. P. 125.
- 268. Imamoto, T. Synthesis and reactions of phosphine-boranes. Synthesis of new bidentate ligands with homochiral phosphine centers via optically pure phosphine-boranes / T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato // J. Am. Chem. Soc. 1990. V. 112. No. 13. P. 5244.
- 269. Moiseev, D. V. New Tertiary Phosphines from Cinnamaldehydes and Diphenylphosphine / D. V. Moiseev, B. O. Patrick, B. R. James // Inorg. Chem. 2007. V. 46. No. 26. P. 11467.
- 270. Landvatter, E. F. Chelate-assisted oxidative addition of functionalized phosphines to iridium(I) / E. F. Landvatter, T. B. Rauchfuss // Organometallics. 1982. V. 1. No. 3. P. 506.
- 271. Hoots, J. E. Substituted Triaryl Phosphines / J. E. Hoots, T. B. Rauchfuss, D. A. Wrobleski // Inorg. Synth. 1982. V. 21. P. 175.
- 272. Pei, Y. Modular multidentate phosphine ligands: application to palladium-catalyzed allylic alkylations / Y. Pei, E. Brule, C. Moberg // Org. Biomol. Chem. 2006. V. 4. No. 3. P. 544.

- 273. Hedden, D. Synthesis of New Hybrid Phosphine Amine and Phosphine Amide Compounds. Preparation of a Series of New Phosphine Amido Chelate Complexes of Palladium(II) and Platinum(II) and Their Reactions with Bases and Brernsted Acids / D. Hedden, D. M. Roundhill // Inorg. Chem. 1985. V. 24. No. 24. P. 4152.
- 274. Kim, S.-H. Palladium-Catalyzed Enantioselective Allylic Substitution by Chiral *P,N*-Heterodonor Ligands / S.-H. Kim, X.-F. Guo, G.-J. Kim // React. Kinet. Catal. Lett. 2006. V. 88. No. 2. P. 285.
- 275. Malesevic, N. Synthesis and characterization of a novel Pd(II) complex with the condensation product of 2-(diphenylphosphino)benzaldehyde and ethyl hydrazinoacetate. Cytotoxic activity of the synthesized complex and related Pd(II) and Pt(II) complexes / N. Malesevic, T. Srdic, S. Radulovic, D. Sladi, V. Radulovic, I. Brceski, K. Andelkovic // J. Inorg. Biochem. 2006. V. 100. No. 11. P. 1811.
- 276. Vaughn, G. D. Synthesis and Reactivity of Metallacyclic Manganese a-Hydroxyalkyl Complexes Containing Aliphatic Bridges and Phosphorus and Nitrogen Donor Atoms; First Carbonylation of an Isolable a-Hydroxyalkyl Complex / G. D. Vaughn, J. A. Gladysz // J. Am. Chem. Soc. 1986. V. 108. No. 7. P. 1473.
- 277. Mikhailine, A. A. New cyclic phosphonium salts derived from the reaction of phosphine-aldehydes with acid / A. A. Mikhailine, P. O. Lagaditis, P. E. Sues, A. J. Lough, R. H. Morris // J. Organomet. Chem. 2010. V. 695. No. 14. P. 1824.
- 278. Yuan, M. Novel Synthesis of Chiral 1,3-Diphosphines via Palladium Template Promoted Hydrophosphination and Functional Group Transformation Reactions / M. Yuan, S. A. Pullarkat, Y. Li, Z.-Y. Lee, P.-H. Leung // Organometallics. 2010. V. 29. No. 16. P. 3582.
- 279. Sokolov, M. 2-Oxoethyl-diphenylphosphin / M. Sokolov, K. Issleib // Z. fur Chem. 1977. V. 17. No. 10. P. 365.
- 280. Ibraham, I. Enantioselective Organocatalytic Hydrophosphination of α,β-Unsaturated Aldehydes / I. Ibraham, R. Rios, J. Vesley, P. Hammar, L. Eriksonn, F. Himo, A. Córdova // Angew. Chem. Int. Ed. 2007. V. 46. No. 24. P. 4507.
- 281. Carlone, A. Organocatalytic Asymmetric Hydrophosphination of α,β -Unsaturated Aldehydes / A. Carlone, G. Bartoli, M. Bosco, L. Sambri, P. Melchiorre // Angew. Chem. Int. Ed. -2007.-V. 46. -No. 24. -P. 4504.

- 282. Chen, Y.-R. Palladium-Catalyzed 1,4-Addition of Diarylphosphines to a,β-Unsaturated Aldehydes / Y.-R. Chen, W.-L. Duan // Org. Lett. 2011. V. 13. No. 21. P. 5824.
- 283. Yuan, M. Asymmetric Synthesis of Functionalized 1,3-Diphosphines via Chiral Palladium Complex Promoted Hydrophosphination of Activated Olefins / M. Yuan, N. Zhang, S. A. Pullarkat, Y. L. F. Liu, P.-T. Pham, P.-H. Leung // Inorg. Chem. 2010. V. 49. No. 3. P. 989.
- 284. Henderson, W. A. The Basicity of Phosphines / W. A. Henderson, C. A. Streuli // J. Am. Chem. Soc. 1960. V. 82. No. 22. P. 5791.
- 285. Bentrude, W. G. Stereospecificity in ³¹P-Element Couplings: Proton-Phosphorus Couplings / W. G. Bentrude, W. N. Setzer– Глава 11 в Verkade, J. G. Phosphorus-31 NMR spectroscopy in stereochemical analysis / J. G. Verkade, L. D. Quin Florida: VCH Publishers, 1987. 717 p.
- 286. Ma, E. S. F. Extension of the Karplus relationship to vicinal coupling within the P–Ru–S–H moiety of the H_2S complexes cis-Ru X_2 (P–N)(PPh $_3$)(SH $_2$) {X = Cl, Br; P–N = [o-(N,N-dimethylamino)phenyl]diphenylphosphine} / E. S. F. Ma, S. J. Rettig, B. R. James // Chem. Commun. 1999. No. 24. P. 2463.
- 287. Ellzey, S. E. Nuclear magnetic resonance study of the formaldehyde-induced exchange of methylol groups in tetrakis(hydroxymethyl)phosphonium chloride and tris(hydroxymethyl)phosphine / S. E. Ellzey, W. J. Connick, G. J. Boudreaux // J. Org. Chem. 1972. V. 37. No. 22. P. 3453.
- 288. Валетдинов, Р. К. Термические превращения гидроокси тетра(оксиметил)фосфония / Р. К. Валетдинов, А. Н. Зуйкова, Т. А. Зябликова, А. В. Ильясов // Журн. Общ. Хим. 1978. Т. 48. № 1. С. 97.
- 289. Валетдинов, Р. К. Синтез и спектры ЯМР 1,3,5-диоксафосфоринанов / Р. К. Валетдинов, А. Н. Зуйкова, Н. Ш. Якиминская, Т. А. Зябликова, Е. Н. Офицеров, А. В. Ильясов // Журн. Общ. Хим. − 1978. − Т. 48. − № 12. − С. 2653.
- 290. Moiseev, D. V. Conformational analysis of the 1,3 oxaphosphorinanes formed from a,b-unsaturated aldehydes and the (hydroxymethyl)phosphines RP(CH₂OH)₂ (R = Ph or CH₂OH) / D. V. Moiseev, B. R. James // J. Heterocyclic Chem. 2015. V. 52. No. 5. P. 1518.

- 291. Featherman, S. I. Carbon-13 magnetic resonance spectral study of some phosphorinanes and their 1-sulfides / S. I. Featherman, S. O. Lee, L. D. Quin // J. Org. Chem. 1974. V. 39. No. 19. P. 2899.
- 292. Featherman, S. I. Conformational studies of the phosphorinane system based on low-temperature phosphorus-31 nuclear magnetic resonance spectroscopy / S. I. Featherman, L. D. Quin // J. Am. Chem. Soc. 1975. V. 97. No. 15. P. 4349.
- 293. Quin, L. D. Stereochemical consequences of C-methylation of 1-methylphosphorinane and its sulfide and oxide: a carbon-13 and phosphorus-31 nuclear magnetic resonance study / L. D. Quin, S. O. Lee // J. Org. Chem. 1978. V. 43. No. 7. P. 1424.
- Macdonell. G. D. Nuclear magnetic resonance studies of phosphorus inversion in and conformational analysis of cis- and trans-4-tert-butyl-1-phenylphosphorinane / G.
 D. Macdonell, K. D. Berlin, J. R. Baker, S. E. Ealick, D. Helm, K. L. Marsi // J. Am. Chem. Soc. 1978. V. 100. No. 14. P. 4535.
- 295. Bentrude, W. G. Conformations of six-membered ring phosphorus heterocycles. I. Ring conformations and phosphorus configurations of isomeric six-membered ring phosphites / W. G. Bentrude, J. H. Hargis // J. Am. Chem. Soc. 1970. V. 92. No. 24. P. 7136.
- 296. Cogne. A. Etude par Résonance Magnétique Nucléaire de dioxaphosphorinanes-1,3,2 à liaison P–N extracyclique. Exemple de changement d'orientation de la liaison P–N / A. Cogne, A. G. Guimaraes, J. Martin, R. Nardin, J. B. Robert, W. J. Stec // Org. Magn. Reson. 1974. V. 6. No. 12. P. 629.
- 297. Martin, J. Axial and equatorial bond orientation around phosphorus in 1,3,2-dithiaphosphorinanes. Use of J(³¹P¹H) and J(³¹P¹³C) for stereochemical assignments / J. Martin, J. B. Robert, C. Taieb // J. Phys. Chem. 1976. V. 80. No. 21. P. 2417.
- 298. Mosbo, J. A. Ring conformations of 2-substituted 2-oxo-4-methyl-1,3,2-dioxaphosphorinanes. Evidence for a boat conformation in equilibrium with two interconverting chairs / J. A. Mosbo // Org. Magn. Reson. 1978. V. 11. No. 6. P. 281.
- 299. McMurry, J. Organic Chemistry / J. McMurry. 7th edition. USA: Thomson Learning, Inc., 2008. 1376 p.

- 300. Preparation of dialkyl 2-methyleneglutarates: пат. US 3074999 (A).: МКП С07С 69/593, C08F 22/00 / Rauhut M., Currier H.; заявитель и патентообладатель American Cyanamid Co.; заявл. 31.12.1958; опубл. 22.01.1963.
- 301. Aroyan, C. E. The Rauhut-Currier Reaction: A History and Its Synthetic Application / C. E. Aroyan, A. Dermenci, S. J. Miller // Tetrahedron. 2009. V. 65. No. 21. P. 4069.
- 302. Morita, K. Tertiary Phosphine-catalyzed Reaction of Acrylic Compounds with Aldehydes / K. Morita, Z. Suzuki, H. A. Hirose // Bull. Chem. Soc. Jpn. 1968. V. 41. No. 11. P. 2815.
- 303. Reaction of acrylic type compounds with aldehydes and certain ketones: пат. US 3743669 (A).: МКП С07С 69/54, С07С 49/248, С07С 33/025, С07С 69/73, С07С 49/24, С07С 45/72, С07С 69/732, С07С 205/45, С07С 49/835 / Baylis A. B., Hillman M. E. D.; заявитель и патентообладатель Celanese Corp.; заявл. 6.11.1970; опубл. 3.07.1973.
- 304. Basavaiah, D. Recent Advances in the Baylis-Hillman Reaction and Applications / D. Basavaiah, A. J. Rao, T. Satyanarayana // Chem. Rev. 2003. V. 103. No. 3. P. 811.
- 305. Stewart, I. C. Phosphine-Catalyzed Hydration and Hydroalkoxylation of Activated Olefins: Use of a Strong Nucleophile to Generate a Strong Base / I. C. Stewart, R. G. Bergman, F. D. Toste // J. Am. Chem. Soc. 2003. V. 125. No. 29. P. 8696.
- 306. Gimbert, C. Michael additions catalyzed by phosphines. An overlooked synthetic method / C. Gimbert, M. Lumbierres, C. Marchi, M. Moreno-Manas, R. M. Sebastian, A. Vallribera // Tetrahedron. 2005. V. 61. No. 36. P. 8598.
- McDougal, N. T. Highly Diastereoselective Synthesis of Bicyclo[3.2.1]octenones through Phosphine-Mediated Condensations of 1,4-Dien-3-ones / N. T. McDougal, S. E. Schaus // Angew. Chem., Int. Ed. 2006. V. 45. No. 19. P. 3117.
- 308. Neue quartaere phosphoniumsalze und deren verwendung als mikrobizide mittel: пат. DE 3332716 (A1).; МКП С07F 9/6553, С07F 9/142, С07F 9/655, С07F 9/54, A01N 57/34 / Tammer T., Heubach G., Sachse B.; заявитель и патентообладатель Hoechst Ag № DE19833332716; заявл. 10.09.1983; опубл. 28.03.1985.

- 309. Larpent, C. Nucleophilic addition of water-soluble phosphines on activated olefins / C. Larpent, H. Patin // Tetrahedron. 1988. V. 44. No. 19. P. 6107.
- 310. Galkin, V. I. Synthesis and Properties of Phosphabetaine Structures: III. Phosphabetaines Derived from Tertiary Phosphines and α,β-Unsaturated Carboxylic Acids. Synthesis, Structure, and Chemical Properties / V. I. Galkin, Yu. V. Bakhtiyarova, N. A. Polezhaeva, I. V. Galkina, R. A. Cherkasov, D. B. Krivolapov, A. T. Gubaidullin, I. A. Litvinov // Russ. J. Gen. Chem. 2002. V. 72. No. 3. P. 384.
- 311. Galkin, V. I. The synthesis and reactions of betaines formed in reactions of tertiary phosphines with unsaturated carboxylic acids and their derivatives / V. I. Galkin, Yu. V. Bakhtiyarova, R. I. Sagdieva, I. V. Galkina, R. A. Cherkasov // Heteroatom Chem. 2006. V. 17. No. 6. P. 557.
- 312. Бахтиярова, Ю. В. Трициклогексилфосфин в реакциях с непредельными моно- и дикарбоновыми кислотами. / Ю. В. Бахтиярова, М. С. Бондарь, И. В. Галкина, В. И. Галкин // Ученые записки Казанского ун-та. Естест. Науки. 2008. Т. 150. № 1. С. 42.
- 313. Galkin, V. I. Kinetics and mechanism of triphenylphosphine quarternization with unsaturated carboxylic acids in the medium of acetic acid / V. I. Galkin, A. V. Salin, Yu. V. Bakhtiyarova, A. A. Sobanov // Russ. J. Gen. Chem. 2009. V. 79. No. 5. P. 919.
- 314. Salin, A. V. Kinetic study of the reaction of triphenylphosphine with acrylic acid in alcohol media / A. V. Salin, A. A. Sobanov, Yu. V. Bakhtiyarova, A. A. Khabibullin, V. I. Galkin // Russ. J. Gen. Chem. 2010. V. 80. No. 9. P. 1738.
- 315. Salin, A. V. Kinetics and mechanism of quaternization of tertiary phosphines with unsaturated carboxylic acids. Kinetic studies of the reactions in aprotic solvents / A. V. Salin, A. A. Sobanov, Yu. V. Bakhtiyarova, A. A. Khabibullin, V. I. Galkin // Russ. J. Gen. Chem. 2011. V. 81. No. 5. P. 824.
- 316. Salin, A. V. Kinetic Study of the Reaction of Tertiary Phosphines with Acrylic Acid in Aprotic Solvents / A. V. Salin, A. A. Sobanov, Yu. V. Bakhtiyarova, A. A. Khabibullin, V. I. Galkin, R. A. Cherkasov // Phosphorus, Sulfur Silicon. 2011. V. 186. No. 4. P. 854.
- 317. Salin, A. V. Kinetics and Mechanism of Triphenylphosphine Quarternization with Unsaturated Carboxylic Acids in Various Media / A. V. Salin, A. A. Sobanov, Yu.

- V. Bakhtiyarova, A. A. Khabibullin, V. I. Galkin, R. A. Cherkasov // Phosphorus, Sulfur Silicon. 2011. V. 186. No. 4. P. 857.
- 318. Salin, A. V. Mechanistic aspects of reactions of triphenylphosphine with electron-deficient alkenes in acetic acid solution / A. V. Salin, A. R. Fatkhutdinov, A. V. Il'in, E. I. Sotov, A. A. Sobanov, V. I. Galkin, B. R. James // J. Phys. Org. Chem. 2013. V. 26. No. 8. P. 675.
- 319. Salin, A. V. Solvent Effect on Kinetics and Mechanism of the Phospha-Michael Reaction of Tertiary Phosphines with Unsaturated Carboxylic Acids / A. V. Salin, A. R. Fatkhutdinov, A. V. Il'in, V. I. Galkin, F. G. Shamsutdinova // Heteroatom Chem. 2014. V. 25. No. 3. P. 205.
- 320. Salin, A. V. Effect of Anchimeric Assistance in the Reaction of Triphenylphosphine with α,β -Unsaturated Carboxylic Acids / A. V. Salin, A. R. Fatkhutdinov, A. V. Il'in, V. I. Galkin // Int. J. Chem. Kinetics. 2014. V. 46. No. 4. P. 206.
- 321. Bakhtiyarova, Yu. V. Synthesis of Carboxylate Phosphabetaines from 3-(Diphenylphosphino)propanoic Acid and Unsaturated Monocarboxylic Acids / Yu. V. Bakhtiyarova, R. R. Minnullin, I. V. Galkina, R. A. Cherkasov, V. I. Galkin // Russ. J. Gen. Chem. 2015. V. 85. No. 9. P. 2037.
- 322. Salin, A. V. Effect of Anchimeric Assistance in Addition Reaction of Bifunctional Tertiary Phosphines to Electron-Deficient Alkenes / A. V. Salin, A. R. Fatkhutdinov, A. V. Il'in, F. G. Shamsutdinova // Int. J. Chem. Kinetics. 2016. V. 48. No. 3. P. 161.
- 323. Process for the manufacture of quaternary organic phosphorus compounds: пат. US 2937207 (A).; МКП D06M 13/285, B27K 3/36, C07F 9/54 / Reuter M., Orthner L., Jakob F., Wolf E.; заявитель и патентообладатель Hoechst Ag № US19580711567; заявл. 28.01.1958; опубл. 17.05.1960.
- 324. Lim, D. W. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution / D. W. Lim, D. L. Nettles, L. A. Setton, A. Chilkoti // Biomacromolecules. 2007. V. 8. No. 5. P. 1463.
- 325. Injectable forms of solid-forming crosslinked bioelastic biopolymers for local drug delivery: πaτ. US 20090098110 (A1).; ΜΚΠ A61K 38/02, A61K 39/395 / Adams

- S. B., Setton L. A.; заявитель и патентообладатель Duke University № US 12/129,085; заявл. 29.05.2008; опубл. 16.04.2009.
- 326. Means and methods of processing biological samples: пат. WO 2009080308 (A1).; МКП G01N 33/68, G01N 1/30 / Lührmann R., Kastner B., Stark H., Urlaub H., Pörschke D., Sander B., Golas M., Richter F.; заявитель и патентообладатель MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V № PCT/EP2008/010914; заявл. 19.12.2008; опубл. 02.07.2009.
- 327. Structuring particles into useful structures and their use in life science: пат. WO 2010063725 (A2).; МКП В01Ј 20/30, В01Ј 20/28, В01Ј 37/00 / Mattiasson B., Galaev I., Kirsebom H.; заявитель и патентообладатель № РСТ/ЕР2009/066161; заявл. 01.12.2009; опубл. 20.06.2010.
- 328. Compositions and methods for functionalizing or crosslinking ligands on nanoparticle surfaces: пат. WO 2010040074 (A2).; МКП B82B 3/00 / Tulsky E., Huang W., Goodwin J., Zhao W.; заявитель и патентообладатель Life Technologies Corporation № PCT/US2009/059409; заявл. 02.10.2009; опубл. 08.04.2010.
- 329. Functionalized fluorescent nanocrystals, and methods for their preparation and use: пат. US 20060216759 (A1).; МКП G01N 33/53, G01N 33/551 / Naasani I.; заявитель и патентообладатель № US 11/261,861; заявл. 28.10.2005; опубл. 28.09.2006.
- 330. Highly luminescent functionalized semiconductor nanocrystals for biological and physical applications: пат. US 20040009341 (A1).; МКП G01N 33/58 / Naasani I.; заявитель и патентообладатель № US 10/410,108; заявл. 09.04.2003; опубл. 15.01.2004.
- 331. Moiseev, D. V. Interaction of tris(3-hydroxypropyl)phosphine with cinnamic acids / D. V. Moiseev, B. R. James, A. V. Gushchin // Phosphorus, Sulfur, and Silicon. 2013. V. 188. No. 6. P. 678.
- 332. Moiseev, D. V. NMR Studies on the 1:1 Interaction of Tris(hydroxymethyl)phosphine with Cinnamic Acids / D. V. Moiseev, B. R. James, A. V. Gushchin // Eur. J. Inorg. Chem. 2014. No. 36. P. 6275.
- 333. Валетдинов, Р. К. О взаимодействии три(оксаметил)фосфина с эфирами акриловой кислоты / Р. К. Валетдинов, А. Н. Зуйкова // Журн. общ. хим. 1978. Т. 48. № 8. С. 1726.

- 334. Ramirez, F. The Structure of Quinone-Donor Adducts. I. The Action of Triphenylphosphine on p-Benzoquinone, 2,5-Dichloro-p-benzoquinone and Chloranil / F. Ramirez, S. Dershowitz // J. Am. Chem. Soc. 1956. V. 78. No. 21. P. 5614.
- 335. Boekestein, G. Charge Transfer Reactions of Trivalent Phosphorus Compounds with p-Quinones / G. Boekestein, H. M. Buck // Phosphorus Sulfur 1978. V. 5. No. 1. P. 61.
- 336. Müller, P. Aktivierte Chinone: *O- versus C-*Addition von Phenolen; eine neue, regiospezifische Synthese von Xanthonen, Thioxanthonen und *N-*Methyl-9-acridonen / P. Müller, T. Venakis, C. H. Eugster // Helv. Chim. Acta. 1979. V. 62. No. 7. P. 2350.
- 337. Abdou, W. M. The reactions of 2, 6-di-tert-butyl-1, 4-benzoquinone with triphenyl-phosphine,-arsine and-stibine and their oxides / W. M. Abdou, Y. O. El-Khoshnieh, A. A. Kamel // J. Chem. Research (S). 1996. No. 7. P. 326.
- 338. Ramirez, F. Reaction of Trialkyl Phosphites with p-Benzoquinone and with Other Symmetrically Substituted p-Quinones. A New Synthesis of Hydroquinone Monoalkyl Ethers / F. Ramirez, E. H. Chen, S. Dershowitz // J. Am. Chem. Soc. 1959. V. 81. No. 16. P. 4338.
- 339. Müller, E. Weitere Verbindungen mit paramagnetischem Phosphor III / E. Müller, H. Eggensperger, B. Teissier, K. Scheffler // Z. Naturforschung. 1963. V. 18b. P. 984.
- 340. Ramirez, F. Reaction of diethylphenylphosphine with chloranil: Quinone-oxyphosphonium betaines and quinone-bis-oxyphosphonium dibetaines, a new type of stable phosphorus ylide / F. Ramirez, D. Rhum, C. P. Smith // Tetrahedron. 1965. V. 21. No. 8. P. 1941.
- 341. Ramirez, F. Trialkyl Phosphites as Reagents in a Novel Reductive O-Alkylation of Quinones / F. Ramirez, S. Dershowitz // J. Org. Chem. 1958. V. 23. No. 5. P. 778.
- 342. Frolova, N. G. Addition of Bis(pentafluorophenyl)phosphinous Acid to Compounds with Activated C=C Bond as a Method for the Synthesis of First Tertiary P,P-Bis(pentafluorophenyl)phosphine Oxides / N. G. Frolova, E. D. Savin, E. I. Goryunov, K. A. Lysenko, Yu. V. Nelyubina, P. V. Petrovskii, E. E. Nifant'ev // Doklady Chemistry. 2010. V. 430. No. 2. P. 18.

- 343. 1,4-Bis(phosphine)-2,5-difluoro-3,6-dihydroxybenzenes and their P-oxides: Syntheses, structures, ligating and electronic properties / L. R. Pignotti, N. Kongprakaiwoot, W. W. Brennessel, J. Baltrusaitis, R. L. Luck, E. Urnezius // J. Organomet. Chem. 2008. V. 693. No. 20. P. 3263.
- 344. Asymmetric Synthesis of P-Stereogenic Diarylphosphinites by Palladium-Catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones / Y. Huang, Y. Li, P.-H. Leung, T. Hayashi // J. Am. Chem. Soc. 2014. V. 136. No. 13. P. 4865.
- 345. Organophosphorus Compounds in Reactions with Quinones / A. A. Kutyrev, V. V. Moskva / Russ. Chem. Rev. 1987. V. 56. No. 11. P. 1028.
- 346. Пудовик, А. Н. Реакции вторичных фосфинов с хинонами / А. Н. Пудовик, Г. В. Романов, В. М. Пожидаев // Журн. общ. хим. 1977. Т. 47. № 8. С. 1910.
- 347. Osman, F. H. Reactions of α-Diketones and *o*-Quinones with Phosphorus Compounds / F. H. Osman, F. A. El-Samahy // Chem. Rev. 2002. V. 102. No. 3. P. 629.
- 348. Iranpoor, N. Triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone as a new, selective and neutral system for the facile conversion of alcohols, thiols and selenols to alkyl halides in the presence of halide ions / N. Iranpoor, H. Firouzabadi, Gh. Aghapour, A. R. Vaezzadeh // Tetrahedron. 2002. V. 58. No. 43. P. 8689.
- 349. Firouzabadi, H. Ph₃P/DDQ/NH₄SCN as a New and Neutral System for Direct Preparation of Diethyl a-Thiocyanatophosphonates from Diethyl a-Hydroxyphosphonates / H. Firouzabadi, N. Iranpoor, S. Sobhani // Synthesis. 2004. No. 2. P. 0290.
- 350. Moiseev, D. V. Interactions of Tertiary Phosphines with p-Benzoquinones; X-ray structures of $[HO(CH_2)_3]_3P^+C_6H_2(O^-)(OH)(MeO)$ and $Ph_3P^+C_6H_3(O^-)(OH)$ / D. V. Moiseev, B. O. Patrick, B. R. James, T. Q. Hu // Inorg. Chim. Acta. 2010. V. 363. No. 13. P. 3569.
- 351. Ott, R. Untersuchungen über Chinone, 10. Mitt. Zur Reaktion von *p*-Benzochinon mit sekundären aliphatischen Aminen / R. Ott, E. Pinter // Monatsh. Chem. 1997. V. 128. No. 8-9. P. 901.

- 352. Liu, Y.-C. A novel photoinduced self-substitution reaction of dichloro-1,4-benzoquinones in the presence of certain aliphatic tertiary amines / Y.-C. Liu, M.-X. Zhang, L. Yang, Z.-L. Liu // J. Chem. Soc. Perkin Trans. 2. 1992. No. 11. P. 1919.
- 353. Maruyama, K. Photochemical dimerization of 2-acyl-1,4-benzoquinones in the presence of rose Bengal / K. Maruyama, N. Narita // J. Org. Chem. 1980. V. 45. No. 8. P. 1421.
- 354. Hofmann, A. W. Ueber die Einwirkung des Phosphorwasserstoffs auf die Jodide des Methyls und Aethyls / A. W. Hofmann // Ber. 1871. V. 4. No. 1. P. 372.
- 355. Ledermann, B. Zur Kenntniss der Tetrabenzyl-phosphonium-Verbindungen / B. Ledermann // Ber. 1888. V. 21. No. 1. P. 405.
- 356. Production of quaternary phosphonium halides: пат. US 2905717 (A).; МПК C07F 9/00, C07F 9/54 / Sarnecki W., Pommer H.; заявитель и патентообладатель Basf Ag.; заявл. 25.06.1957; опубл. 22.09.1959.
- 357. Zhang, J.-X. An Improved Preparation Method of Benzyl and Thenyl Triphenylphosphonium Salts / J.-X. Zhang, P. Dubois, R. Jerome // Synth. Commun. 1996. V. 26. No. 16. P. 3091.
- 358. Hamanaka, N. Simple and Facile Synthesis of Phosphonium Salts / N. Hamanaka, S. Kosuge, S. Iguchi // Synlett. –1990. No. 3. P. 139.
- 359. Lee, K. Y. Facile Synthesis of Phosphonium Salts from Alcohols / K. Y. Lee, J. N. Kim // Bull. Korean Chem. Soc. 2000. V. 21. No. 8. P. 763.
- 360. Verfahren zur herstellung von hydroxybenzylphosphoniumsalzen: пат. DE 3331008 (A1).: МКП С07F 9/54 / Reuther W., Ruland А.; заявитель и патентообладатель Basf Ag. № DE19833331008; заявл. 27.08.1983; опубл. 14.03.1985.
- 361. Moiseev, D. V. Reaction of Tertiary Phosphines with Alcohols in Aqueous Media / D. V. Moiseev, B. O. Patrick, B. R. James // Inorg. Chem. 2009. V. 48. No. 1. P. 239.
- 362. Volod'kin, A. A. Stable Methylenequinones / A. A. Volod'kin, V. V. Ershov // Russ. Chem. Rev. 1988. V. 57. No. 4. P. 336.
- 363. Chiang, Y. Kinetics and Mechanisms of Hydration of *o*-Quinone Methides in Aqueous Solution / Y. Chiang, A. J. Kresge, Y. Zhu // J. Am. Chem. Soc. 2000. V. 122. No. 40. P. 9854.

- 364. Chiang, Y. Flash Photolytic Generation and Study of *p*-Quinone Methide in Aqueous Solution. An Estimate of Rate and Equilibrium Constants for Heterolysis of the Carbon–Bromine Bond in *p*-Hydroxybenzyl Bromide / Y. Chiang, A. J. Kresge, Y. Zhu // J. Am. Chem. Soc. 2002. V. 124. No. 22. P. 6349.
- 365. Tetrakis hydroxybenzyl phosphonium halides and the preparation thereof: пат. US 3483260 (A).: МКП С07F 9/54, С08К 5/50, С11В 5/00, С09К 15/32, С08К 5/49 / Worrel C. J.; заявитель и патентообладатель Ethyl Corp.; заявл. 27.10.1967; опубл. 09.12.1969.
- 366. Tetrakis (hindered phenolic)phosphonium halide antioxidants: пат. US 3642691 (A).: МКП С07F 9/54, С11В 5/00, С08К 5/50, С08К 5/49, С09К 15/32 / Worrel C. J.; заявитель и патентообладатель Ethyl Corp.; заявл. 19.09.1969; опубл. 15.02.1972.
- 367. Yon, J.-N. Phosphonioalkylthiosulfate zwitterions—new masked thiol ligands for the formation of cationic functionalised gold nanoparticles / J.-N. Yon, N. Bricklebank, D. W. Allen, P. H. E. Gardiner, M. E. Light, M. B. Hursthouse // Org. Biomol. Chem. 2006. V. 4. No. 23. P. 4345.
- 368. Петров, К. А. Фосфорные аналоги холина и ацетилхолина. І. Фосфорхолины и ацетилфосфорхолины / К. А. Петров, А. И. Гаврилова, В. М. Нам, В. П. Чучканова // Журн. общ. хим. 1962. Т. 32. № 11. С. 3711.
- 369. Plénat, F. Synthesis of New Functionalized Hydroxyalkyl Phosphonium Salts / F. Plénat, D. Grelet, V. Ozon, H.-J. Cristau // Synlett. 1994. No. 4. P. 269.
- 370. Singh, J. Chemoselective Carbonyl Reduction of Functionalised Aldehydes and Ketones to Alcohols with Sodium Dithionite / J. Singh, G. L. Kad, M. Sharma, R. S. Dhillon // Synth. Commun. 1998. V. 28. No. 12. P. 2253.
- 371. De Vries, J. G. Reduction of aldehydes and ketones by sodium dithionite / J. G. De Vries, R. M. Kellogg // J. Org. Chem. 1980. V. 45. No. 21. P. 4126.
- 372. Gassman, P. G. Mechanism of sodium dithionite reduction of aldehydes and ketones / P. G. Gassman, O. M. Rasmy, T. O. Murdock, K. Saito // J. Org. Chem. 1981. V. 46. No. 26. P. 5457.
- 373. Heilmann, S. M. Reduction of unsymmetrical benzils using sodium dithionite / S. M. Heilmann, J. K. Rasmussen, H. K. Smith // J. Org. Chem. 1983. V. 48. No. 7. P. 987.

- 374. Dhillon, R. S. Selective 1,4-reduction of conjugated aldehydes and ketones in the presence of unconjugated aldehydes and ketones with sodium dithionite / R. S. Dhillon, R. P. Singh, D. Kaur // Tetrahedron Lett. 1995. V. 36. No. 7. P. 1107.
- 375. Camps, F. Regiospecific reduction of unsaturated conjugated ketones with sodium dithionite under phase transfer catalysis / F. Camps, C. Jose, J. Guitart // Tetrahedron. 1986. V. 42. No. 16. P. 4603.
- 376. De Vries, J. G. Sodium Dithionite as a Reductant for Aldehydes and Ketones / J. G. De Vries, T. J. van Bergen, R. M. Kellogg // Synthesis. 1977. No. 4. P. 246.
- 377. Salnikov, D. S. Cobalamin reduction by dithionite. Evidence for the formation of a six-coordinate cobalamin(II) complex / D. S. Salnikov, R. Silaghi-Dumitrescu, S. V. Makarov, R. van Eldik, G. R. Boss // Dalton Trans. 2011. V. 40. No. 38. P. 9831.
- 378. Surpur, M. P. One-Pot Synthesis of Benzimidazoles from o-Nitroanilines under Microwaves via a Reductive Cyclization / M. P. Surpur, P. R. Singh, S. B. Patil, S. D. Samant // Synth. Commun. 2007. V. 37. No. 8. P. 1375.
- 379. Romero, A. H. A Simple One-Pot Synthesis of 2-Substituted Quinazolin-4(3H)-ones from 2-Nitrobenzamides by Using Sodium Dithionite / A. H. Romero, J. Salazar, S. E. López // Synthesis. 2013. V. 45. No. 14. P. 2043.
- 380. Cao, P. Ph₃As-Catalyzed Wittig-Type Olefination of Aldehydes with Diazoacetate in the Presence of $Na_2S_2O_4$ / P. Cao, C.-Y. Li, Y.-B. Kang, Z. Xie, X.-L. Sun, Y. Tang // J. Org. Chem. 2007. V. 72. No. 17. P. 6628.
- 381. Makarov, S. V. Recent trends in the chemistry of sulfur-containing reducing agents / S. V. Makarov // Russ. Chem. Rev. 2001. V. 70. No. 10. P. 885.
- 382. Cho, H. Redox-sensitive polymeric nanoparticles for drug delivery / H. Cho, J. Bae, V. K. Garripelli, J. M. Anderson, H.-W. Junb, S. Jo // Chem. Commun. 2012. No. 48. 6043.
- 383. Makarov, S. V. Sodium dithionite and its relatives: past and present / S. V. Makarov, R. Silaghi-Dumitrescu // J. Sulfur Chem. 2013. V. 34. No. 4. P. 444.
- 384. Rinker, R. G. Kinetics and Mechanism of Thermal Decomposition of Sodium Dithionite in Aqueous Solution / R. G. Rinker, S. Lynn, D. M. Mason, W. H. Corcoran // Ind. Eng. Chem. Fundamen. 1965. V. 4. No. 3. P. 282.

- 385. Holman, D. A. A Multicomponent Kinetics Study of the Anaerobic Decomposition of Aqueous Sodium Dithionite / D. A. Holman, D. W. Bennett // J. Phys. Chem. 1994. V. 98. No. 50. P. 13300.
- 386. Janzen, E. G. ESR studies of thermal decomposition mechanisms. II. Electron spin resonance study of the SO2- formation in the thermal decomposition of sodium dithionite, sodium and potassium metabisulfite, and sodium hydrogen sulfite / E. G. Janzen // J. Phys. Chem. 1972. V. 76. No. 2. P. 157.
- 387. Rinker, R. G. Kinetics and Mechanism of the Air Oxidation of the Dithionite ion (S₂O₄²⁻) in Aqueous Solution / R. G. Rinker, T. P. Gordon, D. M. Mason, R. R. Sakaida, W. H. Corcoran // J. Phys. Chem. 1960. V. 64. No. 5. P. 573.
- 388. Moiseev, D. V. Characterization of Secondary and Primary (Hydroxymethyl)phosphines and Their Oxidation Products: Synergism in Pulpbleaching / D. V. Moiseev, B. R. James // Phosphorus, Sulfur, and Silicon. 2012. V. 187. No. 4. P. 433.
- 389. Danehy, J. P. Iodometric method for the determination of dithionite, bisulfite, and thiosulfate in the presence of each other and its use in following the decomposition of aqueous solutions of sodium dithionite / J. P. Danehy, C. W. Zubritsky // Anal. Chem. 1974. V. 46. No. 3. P. 391.
- 390. Process for bleaching pulp or paper: пат. US 6758942 (B2).: МКП D21С 9/10 / Naddeo R. C.; заявитель и патентообладатель Royce Associates; заявл. 15.02.2002 опубл. 06.07.2004.
- 391. Способ получения волокнистой массы для изготовления газетной бумаги: авторское свидетельство SU 1414901 (A1).: МКП D21С 9/10 / Осминин Е. Н., Зуйков Л. А., Лепухин В. З., Дьяченко Л. Р., Коптев В. М., Кайсина В. А., Горошников В. В., Фабриков Ю. И.; заявитель и патентообладатель Центральный научно-исследовательский институт бумаги; заявл. 13.02.1987; опубл. 07.08.1988.
- 392. Способ отделки древесной массы: авторское свидетельство SU 1560663 (A1).: МКП D21С 9/10 / Осминин Е. Н., Зуйков Л. А., Коптев В. М., Кузнецов В. А., Кайсина В. А., Горошников В. В., Саксин А. П.; заявитель и патентообладатель Центральный научно-исследовательский институт бумаги; заявл. 03.06.1988; опубл. 30.04.1990.

- 393. Kotha, S. Rongalite: A Useful Green Reagent in Organic Synthesis / S. Kotha, P. Khedkar // Chem. Rev. 2012. V. 112. No. 3. P. 1650.
- 394. Miller, R. C. Disubstituted Phosphine Oxides. IV. Addition Reactions with Aldehydes and Ketones / R. C. Miller, C. D. Miller, W. Rogers, L. A. Hamilton // J. Am. Chem. Soc. 1957. V. 79. No. 2. P. 424.
- 395. Rauhut, M. M. Disubstituted Phosphine Oxides and Disubstituted Phosphinic Acids. II. The Di-n-alkyl Series / M. M. Rauhut, I. Hechenbleikner, H. A. Currier, V. P. Wystrach // J. Am. Chem. Soc. 1958. V. 80. No. 12. P. 6690.
- 396. Well, M. Addition von Dimethylphosphinoxid bzw. –sulfid an Carbonylverbindungen; Darstellung von α-Hydroxy-phosphinoxiden bzw. -sulfiden / M. Well, R. Schmutzler // Phosphorus, Sulfur Silicon. 1992. V. 72. No. 1-4. P. 171.
- 397. Ivanova, N. I. Reaction of Secondary Phosphine Oxides with Aromatic Aldehydes / N. I. Ivanova, A. M. Reutskaya, N. K. Gusarova, S. A. Medvedeva, A. V. Afonin, I. A. Ushakov, A. A. Tatarinova, B. A. Trofimov // Russ. J. Gen. Chem. 2003. V. 73. No. 9. P. 1354.
- 398. Hirai, T. Air-Induced *anti*-Markovnikov Addition of Secondary Phosphine Oxides and H-Phosphinates to Alkenes / T. Hirai, L.-B. Han // Org. Lett. 2007. V. 9. No. 1. P. 53.
- 399. Иванов, Б. Е. Синтез и свойства а-оксиметилфосфиновой и диметилолфосфиновой кислот / Б. Е. Иванов, Т. И. Карпова // Изв. Акад. Наук СССР, Сер. Хим. 1964. Т. 13. № 7. С. 1230.
- 400. Lorenzini, F. Reactions of a Phosphinoaldehyde with Pd(II)-, Rh(I)- and Ir(I) Precursors, Including Formation of Complexes Containing a P,OH-Chelated Phosphinohemiacetal Ligand: a New Bonding Mode / F. Lorenzini, D. V. Moiseev, B. O. Patrick, B. R. James // Inorg. Chem. 2010. V. 49. No. 5. P. 2111.
- 401. Grossman, O. Palladium Complexes Bearing Novel Strongly Bent Trans-Spanning Diphosphine Ligands: Synthesis, Characterization, and Catalytic Activity / O. Grossman, C. Azerraf, D. Gelman // Organometallics. 2006. V. 25. No. 2. P. 375.
- 402. Baber, R. A. Special effects of *ortho*-isopropylphenyl groups. Diastereoisomerism in platinum(II) and palladium(II) complexes of helically chiral

- PAr₃ ligands / R. A. Baber, A. G. Orpen, P. G. Pringle, M. J. Wilkinson, R. L. Wingad // J. Chem. Soc. Dalton Trans. 2005. No. 4. P. 659.
- 403. Stott, T. L. Assembly of a terthiophene-containing metallamacrocycle / T. L. Stott, M. O. Wolf, A. Lam // J. Chem. Soc. Dalton Trans. 2005. No. 4. P. 652.
- 404. Ronig, B. Anionic Phosphane A New Ligand with a Phosphane and a Weakly Coordinating Heteroborate Moiety / B. Ronig, H. Schulze, I. Pantenburg, L. Wesemann // Eur. J. Inorg. Chem. 2005. No. 2. P. 314.
- 405. Yamamoto, Y. Homo- and heteronuclear complexes based on arene ruthenium complexes bearing bis(diphenylphosphinomethyl)phenylphosphine (dpmp) / Y. Yamamoto, Y. Sinozuka, Y. Tsutsumi, K. Fuse, K. Kuge, Y. Sunada, K. Tatsumi // Inorg. Chim. Acta. 2004. V. 357. No. 4. P. 1270.
- 406. Carlson, S. J. 3D structures constructed by $\pi \cdots \pi$ and C-H··· π interactions. Synthesis, structures and selected guest molecule binding properties / S. J. Carlson, T. Lu, R. L. Luck // Inorg. Chem. Commun. 2003. V. 6. No. 5. P. 455.
- 407. Ogasawara, M. Synthesis and Characterization of a Novel Chiral Phosphole and Its Derivatives / M. Ogasawara, K. Yoshida, T. Hayashi // Organometallics. 2001. V. 20. No. 5. P. 1014.
- 408. W. Steffen, L. Crystal and molecular structures of dichloro[bis(diphenylphosphino)methane]palladium(II), dichloro[bis(diphenyland dichloro[1,3-bis(diphenylphosphino)prophosphino)ethane]palladium(II), pane]palladium(II) / W. L. Steffen, G. J. Palenik // Inorg. Chem. – 1976. – V. 15. – No. 10. – P. 2432.
- 409. Smith, C. J. Different co-ordination modes of the new, water-soluble, triphosphine PhP[CH₂CH₂P(CH₂OH)₂]₂ with Pt^{II}, Pd^{II}, Rh^I and Re^V / C. J. Smith, V. S. Reddy, K. V. Katti // J. Chem. Soc., Dalton Trans. 1998. No. 8. P. 1365.
- Bampos, N. Synthesis of new tetradentate oligophosphine ligands / N. Bampos,
 L. D. Field, B. A. Messerle, R. J. Smernik // Inorg.Chem. 1993. V. 32. No. 19. –
 P. 4084.
- Antberg, M. Oligo(phosphine) ligands. 7. Free-radical-catalyzed synthesis of some completely alkylated oligo(tertiary phosphines) containing trimethylene linkages / M. Antberg, C. Prengel, L. Dahlenburg // Inorg. Chem. 1984. V. 23. No. 25. P. 4170.

- 412. King, R. B. Poly(tertiary phosphines and arsines). X. Synthesis of methylated poly(tertiary phosphines) / R. B. King, J. C. Cloyd Jr. // J. Am. Chem. Soc. 1975. V. 97. No. 1. P. 53.
- 413. King, R. B. Polytertiary phosphines and arsines. IV. Metal complexes of two isomeric tetratertiary phosphines / R. B. King, R. N. Kapoor, M. S. Saran, P. N. Kapoor // Inorg. Chem. 1971. V. 10. No. 9. P. 1851.
- 414. King, R. B. New Polyphosphines Containing Various Combinations of Primary, Secondary, and Tertiary Phosphorus Atoms / R. B. King, J. C. Cloyd Jr. // Z. Naturforsch., B. 1972. V. 27. No. 11. P. 1432.
- 415. Moiseev, D. V. New Oligophosphines and (Hydroxymethyl)phosphonium Chlorides / D. V. Moiseev, B. O. Patrick, B. R. James, T. Q. Hu // Inorg. Chem. 2006. V. 45. No. 7. P. 2917.
- 416. Моисеев, Д. В. Новый водорастворимый трифосфин [(HOCH2)2PCH2CH2]2PCH2OH, его триоксид и комплекс Pd(II) / Д. В. Моисеев, Б. Р. Джеймс, А. В. Гущин // Журн. общей химии. 2011. Т. 81. № 8. С. 1284.
- 417. Mäding, P. Synthese und Analyse von [¹⁴CH₃] Bis(dimethylphosphino)-ethan und dessen Derivaten / P. Mäding, D. Klötzer, R. Münze // Isotopenpraxis. 1986. V. 22. No. 10. P. 353.
- 418. Mäding, P. Synthese von Ethan-1,2-bis[tris(chlormethyl)-phosphoniumchlorid] / P. Mäding // J. prakt. Chem. 1992. V. 334. No. 1. P. 87.
- 419. Biocidal compositions and treatments: пат. EP 380359 (A1).: МПК A01N 57/34, A61K 31/66 / Hoye, P. A. Т.; заявитель и патентообладатель Albright & Wilson Limited № 90300845.6; заявл. 26.01.1990; опубл. 01.08.90.
- 420. Nieckarz, G. F. Generation of 19-Electron Adducts in Aqueous Solution Using the Water-Soluble (HOCH₂)₂PCH₂CH₂P(CH₂OH)₂ Ligand / G. F. Nieckarz, T. J. R. Weakley, W. K. Miller, B. E. Miller, D. K. Lyon, D. R. Tyler // Inorg. Chem. 1996. V. 35. No. 6. P. 1721.
- 421. Jeffery, G. A. An Introduction to Hydrogen Bonding / G. A. Jeffery. New York : Oxford University Press, 1997. 303 p.
- 422. Hibbert, F. Hydrogen bonding and chemical reactivity / F. Hibbert, J. Emsley // Adv. Phys. Org. Chem. 1990. V. 26. P. 255.

- 423. Беккер, Х. Органикум. Практикум по органической химии: в 2 т. / Х. Беккер, Г. Домшке, Э. Фангхенель, М. Фишер, К. Гевальд, Р. Майер, Д. Пафель, Г. Шмидт, К. Шветлик, В. Бергер, И. Фауст, Ф. Геяц, Р. Глух, К. Мюллер, К. Шолльберг, Э. Заилер, Г. Цеппенфельд. М.: Мир, 1979. 2 т.
- 424. Вайсберг, А. Органические растворители / А. Вайсберг, Э. Проскауэр, Дж. Риддик, Э. Тупс. М.: И.Л., 1958. 519 с.
- 425. Daubresse, N. A Mild Synthesis of Coumaryl, Coniferyl, Sinapyl Aldehydes and Alcohols / N. Daubresse, C. Francesch, F. Mhamdi, C. Rolando // Synthesis. 1994. No. 4. P. 369.
- 426. Hua, D. H. Syntheses and Bioactivities of Substituted 9,10-Dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrones. Unusual Reactivities with Amines / D. H. Hua, M. Tamura, X. Huang, H. A. Stephany, B. A. Helfrich, E. M. Perchellet, B. J. Sperfslage, J.-P. Perchellet, S. Jiang, D. E. Kyle, P. K. Chiang // J. Org. Chem. 2002. V. 67. No. 9. P. 2907.
- 427. Vullo, W. Hydroxymethyl Replacement Reactions of Tetrakis(hydroxymethyl)phosphonium Chloride / W. Vullo // J. Ind. Eng. Chem. Prod. Res. Dev. 1966. V. 5. No. 9. P. 346.
- 428. Joo, F. (*Meta*-Sulfonatophenyl) Diphenylphosphine, Sodium Salt and its Complexes with Rhodium(I), Ruthenium(II), Iridium(I) / F. Joo, J. Kovacs, A. Katho, A. C. Benyei, D. J. Darensbourg // Inorg. Synth. 1998. V. 32. P. 1.
- 429. Taylor, R. C. 1,2-Bis(phosphino)ethane / R. C. Taylor, D. B. Walters // Inorg. Synth. 1973. Vol. 14. P. 10.
- 430. Kharasch, M. S. Coördination Compounds of Palladous Chloride / M. S. Kharasch, R. C. Seyler, F. R. Mayo // J. Am. Chem. Soc. 1938. V. 60. No. 4. P. 882.
- 431. SAINT, Version 7.03A; Bruker AXS Inc.: Madison, WI, 1997-2003.
- 432. SADABS. Bruker Nonius area detector scaling and absorption correction, V2.10; Bruker AXS Inc.: Madison, WI, 2003.
- 433. Altomare, A. SIR97: a new tool for crystal structure determination and refinement / A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna // J. Appl. Crystallogr. 1999. V. 32. P. 115.

- 434. Kiyooka, S. Diphenylboron perchlorate as an efficient catalyst for self- and cross-condensation reactions of aldehydes having α-active hydrogens / S. Kiyooka, H. Fujimoto, M. Mishima, S. Kobayashi, K. M. Uddin, M. Fujio // Tetrahedron Lett. 2003. V. 44. No. 5. P. 927.
- 435. Barrault, J. On the catalytic properties of mixed oxides obtained from the Cu-Mg-Al LDH precursors in the process of hydrogenation of the cinnamaldehyde / J. Barrault, A. Derouault, G. Courtois, J. M. Maissant, J. C. Dupin, C. Guimon, H. Martinez, E. Dumitriu // Appl. Catalysis, A: General. 2004. V. 262. No. 1. P. 43.
- 436. Sato, T. An effective preparative method of alpha,beta-unsaturated aldehydes via beta-alkoxyacylsilanes / T. Sato, M. Arai, I. Kuwajima // J. Am. Chem. Soc. 1977. V. 99. No. 17. P. 5827.
- 437. Doyama, K. Carbonylation of Enynes under Hydroformylation Conditions Catalyzed by Rhodium Carbonyl. A New Method for Synthesis of Cyclic Enones / K. Doyama, T. Joh, T. Shiohara, S. Takahashi // Bull. Chem. Soc. Jpn. – 1988. – V. 61. – No. 12. – P. 4353.
- 438. Masuyama, Y. Nickel- and Palladium-Catalyzed Aldol-Type Condensation by Enol Esters / Y. Masuyama, T. Sakai, T. Kato, Y. Kurusu // Bull. Chem. Soc. Jpn. 1994. V. 67. No. 8. P. 2265.