Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

На правах рукописи

Андреев Павел Валерьевич

Структура кристаллов некоторых комплексов Sb(V) и Bi(V) и особенности их координационных полиэдров

Специальность 01.04.07 – Физика конденсированного состояния

Диссертация на соискание ученой степени кандидата физико-математических наук

> Научный руководитель: кандидат физ.-мат. наук Сомов Николай Викторович

Нижний Новгород 2018

содержание

ВВЕДЕНИЕ
Глава 1. Комплексы Sb(V) и Bi(V) с арильными и карбоксилатными лигандами и
особенности их кристаллического строения12
§1.1. Кристаллы комплексов Sb(V) 14
§1.2. Кристаллы комплексов Bi(V)
§1.3. Координационное окружение атома металла в комплексах пятивалентных
сурьмы и висмута
§1.4. Методы количественного описания геометрии координационных полиэдров
§1.5. Геометрия координационных полиэдров и физические свойства кристаллов
§1.6. Анализ псевдосимметричных структур
Заключение по главе 1 39
Глава 2. Рентгеноструктурное исследование некоторых комплексов
пятивалентной сурьмы 40
§2.1. Рентгеноструктурное исследование кристалла ди-пара-метоксициннамата
трифенилсурьмы с бензолом $[Ph_3Sb(C_{10}H_9O_3)_2] \cdot PhH$
§2.2. Рентгеноструктурное исследование кристалла бис[(2e)-3-(2-фурил)проп-2-
еноата] трифенилсурьмы с бензолом $Ph_3Sb[O_2CCH=CH(C_4H_3O)]_2 \cdot PhH47$
§2.3. Рентгеноструктурное исследование кристалла 2,6-дибром(4- <i>трет</i> -
бутил) фенокси-тетра-пара-толилсурьмы (4- MeC_6H_4) ₄ SbOC ₆ H ₂ (Br ₂ -2,6)(<i>t</i> -Bu-4). 51
§2.4. Рентгеноструктурное исследование кристалла <i>бис</i> (2,3,4,5,6-
пентахлорфенокси)- <i>трис</i> (3-фторфенил)сурьмы $(3-FC_6H_4)_3Sb(OC_6Cl_5)_2$ 55
§2.5. Рентгеноструктурное исследование кристалла 2,4-динитрофенокси-тетра-
$napa$ -толилсурьмы 4- $Me(C_6H_4)_4SbOC_6H_3(NO_2)_2$ -2,4
§2.6. Рентгеноструктурное исследование кристалла сольвата трииодида [(µ4-
сукцинато) гексадекафенилтетрасурьмы] с бензолом
$[(Ph_4Sb)_2O_2CCH_2CH_2CO_2(Ph_4Sb)_2][I_3]_2 \cdot 4PhH.$

§2.7. Рентгеноструктурное нона(3исследование кристалла метилфенил)тристибоксан-1,5-диил бис(трифторметансульфоната) с бензолом $CF_3OSO_2Sb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSO_2CF_3 \cdot PhH......69$ §2.8. Рентгеноструктурное исследование кристалла 2.3.4.5.6пентахлорфенокситетра-*пара*-толилсурьмы с бензолом p- Tol_4 SbOC₆Cl₅·PhH......75 §2.9. Рентгеноструктурное исследование псевдосимметричных кристалловизоморфов дихлорида и дибромида *mpuc*(4-этилфенил)сурьмы (4-*Et*C₆H₄)₃SbCl₂ \$2.10. Рентгеноструктурное исследование кристалла бис[(2E,4E)-гекса-2,4-3. Рентгеноструктурное исследование некоторых комплексов Глава Рентгеноструктурное исследование кристалла *бис*(бут-2-еноато-к*O*) **§**3.1. §3.2. Рентгеноструктурное исследование кристалла *бис*(3-фенилпроп-2-еноат) §3.3. Рентгеноструктурное исследование кристалла бис[3-(2-фурил)акрилата] трифенилвисмута с тетрагидрофураном $Ph_3Bi[O_2CCH=CH(C_4H_3O)]_2 \cdot C_4H_8O.... 101$ §3.4. Рентгеноструктурное исследование кристалла ди-мета-нитроциннамата трифенилвисмута с тетрагидрофураном $Ph_3Bi(O_2CCH=CH-C_6H_4NO_2-m)_2 \cdot 2C_4H_8O_2$ §3.5. Рентгеноструктурное исследование кристалла дипентаноата трифенилвисмута (C_6H_5)3Sb(OCOCH=CHCH=CHCH_3)₂.....109

§4.2. Анализ координационных полиэдров в кристаллах комплексов Sb(V) и Bi(V)
методом расчета степени подобия координационных полиэдров 119
§4.3. Анализ геометрии координационных полиэдров сурьмы и висмута с
помощью диаграммы <i><d></d></i> -Ф
§4.4. Влияние искажения координационного полиэдра комплексообразователя в
структуре дикарбоксилатов триарилсурьмы и триарилвисмута на спектр
пропускания кристалла в ИК-диапазоне125
§4.5. Анализ искажения координационных полиэдров Sb(V) и Bi(V) с помощью
диаграмм Φ_{Δ} – Φ_{\Box} и Φ – $ au$
§4.6. Расчет степени инвариантности электронной плотности координационных
полиэдров
Заключение по главе 4140
Основные результаты и выводы по диссертации141
Список используемой литературы143
Приложение

ВВЕДЕНИЕ

Актуальность и степень разработанности темы исследований

Комплексы пятивалентной сурьмы и пятивалентного висмута являются перспективными материалами с широким спектром применения [1–4]. Одной из наиболее актуальных задач является использование дикарбоксилатов триарилсурьмы и триарилвисмута при разработке новых типов полимерных органических сцинтилляторов повышенной радиационной стойкости, применяемых в детекторах адронов и гамма-фотонов [5, 6].

Идея применения таких соединений в органических сцинтилляторах изначально связана с перспективой увеличения средней атомной массы полимера. Кроме того, наличие в указанных соединениях кислотных остатков непредельных карбоновых кислот (карбоксилат-анионов) обеспечивает легкую встраиваемость молекул в структуру полимера. Сурьма и висмут являются элементами переменной валентности (III, V), что обеспечивает возможность присоединения свободных радикалов, образующихся в результате неупругого взаимодействия высокоэнергетических частиц с атомами сцинтиллятора, и продлевает срок службы детектора.

Влияние на свойства кристалла искажений идеальных геометрических форм его атомной структуры или ее частей относится к фундаментальным вопросам структурной кристаллографии. В частности, этот вопрос рассматривается с точки зрения степени симметричности координационного окружения комплексообразователей. При рассмотрении координационных полиэдров (КП) атомных структур кристаллов расчет численной характеристики степени симметрии (правильности или искаженности) позволяет классифицировать искаженные координационные многогранники по степени их близости к эталонным многогранникам, что дополняет численным критерием понятие «искаженный координационный полиэдр».

К настоящему времени существует несколько методов расчета геометрической искаженности (или правильности) КП. Наиболее простым и часто используемым является метод, основанный на расчете степени тригональности пятивершинников, предложенный в [7]. Указанный метод обладает явным недостатком, так как использует только два наибольших несмежных валентных угла внутри КП и не учитывает длины химических связей. Среди более универсальных методов известны метод непрерывной симметрии (Continuous Symmetry Measures, CSM) [8] и метод двугранных углов [9, 10]. Подход, основанный на расчете объемов рассматриваемого и эталонного КП, был предложен в работах [11] и [12]. Метод эллипсоидального анализа, работающий

для высокосимметричных структур, был предложен в работе [13]. Большинство из указанных методов рассматривались авторами для решения частных задач, недостатки перечисленных методов отмечались в [14].

Метод, который использовался для анализа координационных полиэдров в настоящем диссертационном исследовании, заключается в оценке *степени подобия* двух КП с одинаковыми координационными числами (КЧ) [15]. Предложенный способ учитывает искажения длин химических связей и валентных углов. Численным критерием оценки *степени подобия* двух КП выступает безразмерная величина Φ , лежащая в диапазоне от 0 до 1, характеризующая обобщенное отношение соответствующих длин химических связей и валентных углов. Значение $\Phi = 1$ соответствует геометрическому подобию двух КП.

Монокристальный рентгеноструктурный анализ позволяет количественно рассчитать параметры структурной модели кристаллов рассматриваемых координационных соединений. Предложенный метод расчета степени подобия позволяет проводить количественный анализ подобия рассматриваемых КП сурьмы и висмута эталонным, а также сравнивать КП между собой. Степень подобия в настоящей задаче выступает в качестве скалярного параметра, позволяющего оптимизировать процесс кристаллохимического анализа и классификации структурных моделей металлоорганических и координационных соединений.

В кристаллической структуре комплексов дикарбоксилатов триарилсурьмы и триарилвисмута координационные полиэдры не относятся к геометрически правильным В результате внутримолекулярных взаимодействий между комплексообразователем и карбонильными атомами кислорода карбоксилатных фрагментов, что отмечается в работах [16–18]. В работах [19, 20] было теоретически и экспериментально показано влияние геометрии молекул в структуре кристаллов на положение характерных частот колебаний v_{as}(COO) и v_s(COO) в комплексах с карбоксилатными лигандами. Представляет научный колебаний $v_{as}(COO)$ интерес анализ взаимосвязи частот И $v_{s}(COO),$ регистрируемых на ИК-спектрах, степени искаженности КΠ И комплексообразователя структурах дикарбоксилатов В триарилсурьмы И триарилвисмута.

Цели и задачи исследования:

Целью настоящей работы являлось экспериментальное исследование атомной структуры некоторых комплексов пятивалентных сурьмы и висмута, особенностей координационного окружения комплексообразователя и их взаимосвязи с физическими свойствами кристаллов. Для этого были решены следующие задачи:

- исследовать атомную структуру и провести кристаллохимическое описание кристаллов ряда новых комплексов пятивалентных сурьмы и висмута;
- предложить методики количественного описания степени геометрического совершенства координационных пятивершинников;
- анализ взаимосвязи частот характерных провести полос поглощения карбоксилат-аниона ИК-спектрах КΠ В И степени искажения комплексообразователя в кристаллах дикарбоксилатов триарилсурьмы и триарилвисмута.

<u>Научная новизна</u>

1) Впервые установлена в анизотропном (для неводородных атомов) приближении тепловых параметров атомно-молекулярная структура 11 новых комплексов пятивалентной сурьмы и монокристаллов 5 новых комплексов пятивалентного висмута: определены параметры элементарных ячеек геометрические координаты атомов, параметры И молекул, кристаллогеометрические характеристики молекулярной упаковки.

2) Разработана уникальная методика исследования геометрических особенностей координационного окружения комплексообразователя в кристаллических структурах на примере комплексов пятивалентных сурьмы и висмута. Количественная характеристика степени подобия рассчитывается на основании координат центра и вершин КП, принимает значения от 0 до 1. Данная классифицировать методика позволяет искаженные координационные многогранники по степени их близости к эталонным многогранникам с одинаковым количеством вершин.

466 3) Впервые для атомных структур кристаллов комплексов 546 пятивалентных содержащих симметричносурьмы И висмута, неэквивалентных координационных полиэдров, рассчитана степень подобия КП правильным координационным пятивершинникам – тригональной бипирамиде и тетрагональной пирамиде.

4) Впервые 466 атомных для структур кристаллов комплексов пятивалентных сурьмы И висмута рассчитана степень инвариантности электронной плотности координационного полиэдра относительно электронной плотности эталонных координационных пятивершинников – тригональной бипирамиды и тетрагональной пирамиды. Показано, что использование степени сходства электронной плотности эффективно в случае исследования КП с малыми искажениями геометрии относительно эталона.

5) Проведен анализ взаимосвязи *степени подобия* КП комплексообразователя эталонам: правильной тригональной бипирамиде и правильной тетрагональной пирамиде с частотами колебаний карбоксилатного фрагмента $v_{as}(COO)$ и $v_s(COO)$, а также разностью этих частот $\Delta v(COO)$ в дикарбоксилатах триарилсурьмы и триарилвисмута. Подтверждено снижение величины $\Delta v(COO)$ с ростом степени подобия КП тетрагональной пирамиде.

Практическая значимость результатов

Полученный молекулярный состав кристаллов 11 новых комплексов И 5 новых комплексов пятивалентного пятивалентной сурьмы висмута подтверждает правильность проведенных химических синтезов и методик монокристаллов. Структурные атомные модели выращивания кристаллов, полученные в анизотропном (для неводородных атомов) приближении тепловых параметров, обладают удовлетворительными величинами факторов недостоверности и были депонированы в Кембриджском банке структурных данных (КБСД, ССDС). Информация об атомной структуре кристаллов может быть использована для расчета ряда их физических свойств.

Разработанные и апробированные количественные методы сравнения координационных полиэдров расширяют возможности классификации атомных структур. Безразмерная, ограниченная диапазоном от 0 до 1 величина степени подобия классифицировать Φ позволяет искаженные координационные многогранники по степени их близости к эталонным многогранникам с одинаковым количеством вершин, проводить сравнение КП между собой, может выступать в качестве параметра порядка в структурных фазовых переходах II рода и в качестве характеристики локального окружения примесных ионов. Проведенные расчеты для большой группы структурных данных позволяют классифицировать координационные пятивершинники сурьмы и висмута по степени подобия Ф.

Результаты работы могут быть использованы в учебном процессе при преподавании таких курсов как «Рентгенография кристаллов», «Кристаллография» и «Кристаллохимия» на физических и химических факультетах высших учебных заведений.

Методология и методы исследования

Комплексные соединения пятивалентной сурьмы и висмута были синтезированы на кафедре органической химии химического факультета ННГУ и в лаборатории химии элементоорганических соединений ЮУрГУ. Образцы монокристаллов были получены методом спонтанной кристаллизации из раствора и методом замены растворителя.

В качестве основного метода исследования атомной структуры кристаллов применялся комплексов пятивалентной сурьмы И висмута метод рентгеноструктурного анализа монокристаллов. Эксперименты выполнялись на современном аналитическом оборудовании Oxford Diffraction Gemini S, Rigaku Bruker D8 QUEST. обработки результатов XTaLab Pro MM003, Для использовались стандартные математические и статистические методы, в том коммерческом свободно числе реализованные В И распространяемом программном обеспечении.

Положения, выносимые на защиту

1. Экспериментально определены атомные структуры 11 кристаллов новых комплексов пятивалентной сурьмы и 5 кристаллов новых комплексов пятивалентного висмута.

2. Количественный анализ степени подобия эталонам для 546 координационных полиэдров, первая координационная сфера которых содержит атомы кислорода и углерода, принадлежащих 466 комплексам Sb(V) и Bi(V), показал, что 493 (90%) рассмотренных координационных полиэдра относятся к искаженной тригонально-бипирамидальной форме.

3. В кристаллах дикарбоксилатов триарилсурьмы и триарилвисмута повышение степени подобия координационного полиэдра комплексообразователя тетрагональной пирамиде соответствует уменьшению разности частот симметричной и асимметричной мод колебаний карбоксилатного фрагмента, регистрируемых на ИК-спектрах.

Апробация результатов работы

По теме диссертации опубликовано 11 статей в журналах, входящих в перечень ВАК (4 – в журнале «Кристаллография», 3 – в «Журнале неорганической химии», по две в журналах «Acta Crystallographica Section E» и «Координационная химия»).

Результаты работы докладывались на следующих конференциях: Лауэ-100. Рентгеноструктурные исследования (Нижний Новгород, 2012),

9

VII-VIII национальные кристаллохимические конференции (Суздаль, 2013, 2016 гг.),

XVIII-я, XIX-я Нижегородские сессии молодых ученых (естественные, математические науки) (Н. Новгород 2013, 2014),

Шестнадцатая, восемнадцатая конференции молодых ученых - химиков Нижегородской области (Нижний Новгород 2013, 2015),

Всероссийские конференции молодых ученых, аспирантов и студентов с международным участием по химии и наноматериалам Менделеев-2013, Менделеев-2015 (Санкт-Петербург, 2013, 2015),

XXXIII научные чтения имени академика Н.В. Белова: (Нижний Новгород, 2014),

VI Международная конференция молодых ученых «Органическая химия сегодня» InterCYS-2014 (Санкт-Петербург, 2014),

XI Международная конференция «Спектроскопия координационных соединений» (Краснодар, 2014),

Третья школа молодых ученых по физике наноструктурированных и кристаллических материалов (Нижний Новгород, 2014),

XX International conference on chemical thermodynamics in Russia (Нижний Новгород, 2015),

Первый российский кристаллографический конгресс (Москва, 2016),

16-я Международная научная конференция-школа «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение» (Саранск, 2017),

27th International Chugaev Conference on Coordination Chemistry and 4th Young Conference School Physicochemical Methods in the Chemistry of Coordination Compounds (Нижний Новгород, 2017).

Объем и структура работы

Работа состоит из введения и четырех глав, в том числе литературного обзора и трех оригинальных глав, заключения, списка цитируемых источников (150 наименований) и приложения. Общий объем – 165 страниц, включая 65 рисунков и 47 таблиц.

Диссертационная работа выполнена на кафедре кристаллографии и экспериментальной физики физического факультета ННГУ.

Личный вклад автора:

• участие в постановке задачи;

• подготовка кристаллических образцов и проведение рентгендифракционных экспериментов на монокристальных дифрактометрах

Oxford Diffraction Gemini S и Rigaku XTaLab Pro MM003, обработка экспериментальных данных с использованием программных комплексов CrysAlisPro, SHELX, подготовка и депонирование структурных данных;

• участие в разработке метода количественной оценки степени искажения функции электронной плотности координационного полиэдра по отношению к электронной плотности эталонного полиэдра;

• тестирование программного комплекса PseudoSymmetry/Polyhedron, в том числе создание базы данных эталонных КП и написание инструкций по работе с программным комплексом;

• анализ структурных данных из КБСД и расчет количественных характеристик кристаллических структур, рассматриваемых в работе.

Синтез новых соединений, экспериментальное исследование ИК-спектров выращивание образцов поглощения, а также монокристаллов для рентгеноструктурных исследований проводилось сотрудниками кафедры органической химии химического факультета ННГУ под руководством д.х.н., проф. А.В. Гущина и в лаборатории химии элементоорганических соединений ЮУрГУ под руководством д.х.н., проф. В.В. Шарутина.

Работа над диссертацией частично велась в рамках грантов, поддержанных Российским фондом фундаментальных исследований (гранты № 14-03-31625 мол_а и №16-33-00752 мол_а) и в рамках базовой части государственного задания высшим учебным заведениям и научным организациям в сфере научной деятельности, проект №3.6502.2017/БЧ.

Автор выражает благодарность профессору А.В. Гущину и профессору В.В. Шарутину за предоставленные образцы монокристаллов; профессору Е.В. Чупрунову, профессору В.Н. Чувильдееву, доценту М.А. Фаддееву, старшему преподавателю А.П. Гажулиной, старшему преподавателю А.А. Конакову, старшему преподавателю П.А. Юнину за ценные советы и обсуждение результатов.

ГЛАВА 1. КОМПЛЕКСЫ SB(V) И BI(V) С АРИЛЬНЫМИ И КАРБОКСИЛАТНЫМИ ЛИГАНДАМИ И ОСОБЕННОСТИ ИХ КРИСТАЛЛИЧЕСКОГО СТРОЕНИЯ

Изучение комплексов сурьмы и висмута перспективно для развития органического синтеза, получения металлосодержащих полимеров, биологически активных веществ. Карбоксилатные производные сурьмы И висмута используются лечения лейшманиоза [4, 21. 22], проявляют для противоопухолевую [23–25] и фунгицидную [26] активность. Интерес к арильным производным пятивалентной сурьмы обусловлен, прежде всего, их разнообразной биологической активностью, исследованной различными авторами [1–4]. Интерес к арильным соединениям пятивалентного висмута обусловлен возможностью их использования в качестве арилирующих и окисляющих агентов в тонком [27]. В органическом синтезе частности, аренсульфонаты тетра-И трифенилвисмута применялись для получения физиологически активных веществ [28, 29]. Соединения пятивалентного висмута также традиционно применяются в медицине [21, 30, 31].

Одним из научных приложений соединений указанного типа считается перспективная область производства радиационно стойких полимеров для создания органических сцинтилляторов. Необходимость увеличения радиационной стойкости сцинтилляторов является важной задачей, так как при работе в мощных радиационных полях на ядерно-физических объектах и на современных экспериментальных установках в области ядерной физики и физики высоких энергий часто возникает необходимость замены десятков и более тонн сцинтилляторов, что связано с накоплением в них радиационных дефектов, связанных с образованием активных радикалов, радиолизом полимерной матрицы и сцинтилляционных добавок, что приводит к появлению полос оптического поглощения наиболее интенсивных в ультрафиолетовой и синей областях спектра [32].

В последнее время широко развивается химия полимеров, содержащих металл, в том числе сурьму и висмут. Акрилаты, метакрилаты, винилбензоаты и другие производные этих металлов, способные к полимеризации, используются для синтеза металлосодержащих полимеров на основе метилметакрилата, стирола, винилацетата, акриловой кислоты, проявляющих фунгицидную и биоцидную активность [33–35]. Имеются данные о применении соединений висмута в создании радиационно стойких полимерных стекол для сцинтилляторов в детекторах элементарных частиц высокой энергии [36, 37].

В литературе имеются данные о введении в полиметилметакрилат, полистирол, полиакриловую кислоту или поливинилацетат металлических

висмута и сурьмы в коллоидном состоянии [38, 39]. В основную цепь макромолекул можно встраивать сурьму с применением циклоолигостибинов [40, 41]. Сурьма может вводиться в качестве заместителя в боковой цепи полимера. Синтезированы и исследованы производные трифенилсурьмы с непредельными карбоновыми кислотами диметакрилат и диакрилат трифенилсурьмы [5, 6], в кристаллах которых были обнаружены близкие контакты между двойными связями карбоксилатных лигандов двух соседних молекул вещества. Наличие терминальных двойных связей в дикарбоксилатах привело к образованию сшитых, нерастворимых полимеров, обладающих высокой термоокислительной стабильностью.

Введение стекловидную полимерную В матрицу сцинтилляторов соединений поливалентных металлов, в случае минеральных стекол, позволило повысить радиационную стойкость на несколько порядков величины. Поэтому актуальной задачей является проведение исследований по повышению среднего химических элементов атомного номера В полимерных органических сцинтилляторах [42].

Для производства подобных стекол в шихту вводятся пары солей поливалентных металлов с разной валентностью, таких как церий, олово или висмут в количестве нескольких процентов по весу. Механизм повышения радиационной стойкости стекол связан с устранением радиационных дефектов (центров окраски) в присутствии ионов металлов, легко меняющих валентность. Радиационная стойкость стекол с оптимальной концентрацией солей поливалентных металлов (например, солей церия в случае работы [43]) превышает десятки Мрад в то время как у обычных стекол радиационная стойкость не превышает десятков крад [44].

Основной проблемой, задерживающей проведение синтеза органических (полистирола), содержащих соединения поливалентных стекол металлов, являлось отсутствие пар координационных соединений с различной валентностью металла, растворимых В неполярных органических растворителях. Металлоорганические соединения церия неизвестны, в случае олова известно соединение с четырехвалентным оловом (тетрафенилолово), но специально соединение (дифенилолово) синтезированное двухвалентное оказалось нестабильным и окрашенным. Сотрудниками химического факультета ННГУ удалось синтезировать первую пару соединений поливалентного металла [45, 46].

Для продолжения разработок металлонаполненных полимеров актуальным является исследование атомно-молекулярной структуры соединений сурьмы и висмута, включая исследование координационной геометрии атомов металла для последующего прогнозирования свойств соединения в составе полимера.

§1.1. Кристаллы комплексов Sb(V)

Первым соединением поливалентного металла, с которым проводились исследования сополимеризации с метилметакрилатом (MMA) для последующих исследований металлонаполненных полимерных органических сцинтилляторов, является акрилат тетрафенилсурьмы [45]. Кристаллическая структура акрилата тетрафенилсурьмы описывается ромбической сингонией (a = 9.9506(4) Å, b = 15.0382(5) Å, c = 15.4194(7) Å, $\alpha = \beta = \gamma = 90.00^{\circ}$). Вид молекулы представлен на рис. 1.1, характерные углы и длины химических связей внутри КП сурьмы приведены в табл. 1.1.

Молекула имеет искаженную тригонально-бипирамидальную координацию. В экваториальных положениях находятся три фенильные группы, в аксиальных – акрилатная и фенильная группы. Сумма углов C_{Ph} –Sb– C_{Ph} в экваториальной плоскости составляет 357.18° (идеальное значение для данной координации 360°). Аксиальный угол O1–Sb1–C7 чуть более чем на 2° отличается от идеального значения 180°. Длина связи Sb1–C7 заметно превышает расстояния между атомом сурьмы и экваториальными атомами углерода фенильных лигандов Sb1–C1, Sb1– C8, Sb1–C29, которые примерно одинаковы (табл. 1.1).

Таблица 1.1. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла акрилата тетрафенилсурьмы

Связь	<i>d</i> , Å	Угол	ω, °
Sb1–O1	2.232(2)	O1–Sb1–C7	177.85(8)
Sb1–C7	2.184(2)	C8–Sb1–C29	130.51(10)
Sb1-C29	2.124(2)	C1–Sb1–C8	112.98(8)
Sb1–C1	2.124(2)	C1-Sb1-C29	113.69(10)
Sb1–C8	2.121(2)	'	1
SUI-C8	2.121(2)		

 $Ph_4SbO_2CCH=CH_2$

Рисунок 1.1. – Симметрично-независимый фрагмент кристалла акрилата тетрафенилсурьмы *Ph*₄SbO₂CCH=CH₂ [45]

Также известна структура кристалла дициннамата трифенилсурьмы [47]. Кристаллическая структура дициннамата трифенилсурьмы описывается пространственной группой C2/с моноклинной сингонии (a = 13.142(3) Å, b = 21.498(4) Å, c = 12.208(2) Å, $\beta = 119.87(3)$, $\alpha = \gamma = 90.00^{\circ}$). Вид молекулы представлен на рис. 1.2, характерные углы и длины химических связей внутри КП сурьмы приведены в табл. 1.2.

Координация атома сурьмы молекулы дициннамата трифенилсурьмы в как тригонально-бипирамидальная. кристалле описывается искаженная В экваториальных положениях находятся атомы углерода фенильных групп, в аксиальных – атомы кислорода ацилатных групп. Сумма углов С_{*Ph*}-Sb-С_{*Ph*} в экваториальной плоскости составляет 360° (идеальное значение для данной координации) за счет поворотной оси симметрии 2-го порядка, проходящей через Sb, C16, C19 молекулы кристалла. Искаженность тригональной атомы бипирамиды проявляется за счет неравнозначности углов в экваториальной плоскости (см. табл. 1.2). Аксиальный угол O1–Sb–O1' более чем на 2° отличается от идеального значения 180°. Расстояния Sb-O2 составляют 2.664(4) Å, что заметно меньше суммы вандерваальсовых радиусов (3.60 Å) [48]. Стоит отметить, что факт сокращения межатомного расстояния металл-кислород характерен для

дикарбоксилатов триарилсурьмы, и часто отмечается в публикациях, посвященных исследованию атомно-молекулярной структуры.

Рисунок 1.2. – Симметрично-независимый фрагмент кристалла дициннамата трифенилсурьмы *Ph*₃(SbO₂CCH=CH*Ph*)₂

Таблица 1.2. – Длины симметрично-неэквивалентных химических связей и симметрично-неэквивалентные валентные углы для координационного окружения атома сурьмы в структуре кристалла дициннамата трифенилсурьмы *Ph*₃(SbO₂CCH=CH*Ph*)₂

d, Å	Угол	ω, °
2.155(2)	2.155(2) O1–Sb–O1'	
2.119(3)	2.119(3) C10–Sb–C10'	
2.120(5) C10–Sb–C16		104.2
O1–Sb–C10'		91.0
O1–Sb–C10 89.6		
	O1–Sb–C16	88.8
	<i>d</i> , Å 2.155(2) 2.119(3) 2.120(5)	d, ÅУгол2.155(2)O1–Sb–O1'2.119(3)C10–Sb–C10'2.120(5)C10–Sb–C16O1–Sb–C10'O1–Sb–C10O1–Sb–C10O1–Sb–C16

Код симметрии: (') 1 - x, y, $\frac{1}{2} - z$

Анализ опубликованных структур ароксидов тетрафенилсурьмы, в ароксигруппе которых присутствуют заместители, обладающие различными электронными эффектами, показывает, что их природа определяет как значения валентных углов при атоме сурьмы, так и длину связи Sb–O [49–53]. Такие соединения, безусловно, представляют интерес, поскольку позволяют выявить факторы. определяющие переход фрагмента SbC_4 В тетраэдрическую координацию [51–54]. В литературе синтез также описан ароксидов тетрафенилсурьмы из диароксидов трифенилсурьмы и пентафенилсурьмы, выступающей в реакции в качестве фенилирующего агента [55, 56]. Строение подобных соединений сурьмы с иными арильными заместителями при атоме сурьмы изучено в значительно меньшей степени [57].

Рассмотрим соединение (4-ацетил-3-гидроксифенокси)тетрафенилсурьмы [54]. Кристаллическая структура (4-ацетил-3-гидроксифенокси) тетрафенилсурьмы описывается триклинной пространственной группой P1 (a = 9.454(2) Å, b = 9.874(2) Å, c = 15.168(4) Å, $\alpha = 101.454(4)^{\circ}$, $\beta = 92.332(4)$, $\gamma = 104.869(4)^{\circ}$). Вид молекулы представлен на рис. 1.3., характерные углы и длины химических связей внутри КП сурьмы приведены в табл. 1.3.

Координационный полиэдр сурьмы представляет собой искаженную тригональную бипирамиду с атомами углерода C1, C7, C19 фенильных лигандов в экваториальной плоскости. Валентные углы C_{Ph} –Sb– C_{Ph} в экваториальной плоскости КП примерно равны, их сумма составляет 356.73° (идеальное значение для данной координации 360°). Аксиальный угол O1–Sb1–C7 чуть более чем на 2° отличается от идеального значения 180°. Длина связи Sb1–C13 заметно превышает расстояния между атомом сурьмы и экваториальными фенильными лигандами Sb1–C1, Sb1–C7, Sb1–C19, которые примерно одинаковы (табл. 1.3).

Таблица 1.3. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла (4-ацетил-3-

гидроксифенокси) тетрафенилсурьмы Ph_4 SbOC₆H₃C(OH)(COCH₃)

' ' L	1 /			0 5 ()(57
Связь	d, Å	Угол	ω, °	Угол	ω, °
Sb-O1	2.237(1)	O1–Sb–C13	177.86(5)	C7–Sb–C13	96.03(6)
Sb-C11	2.112(1)	C7–Sb–C19	119.71(6)	C13-Sb-C19	94.32(6)
Sb-C7	2.114(2)	C1-Sb-C19	119.04(6)	O1-Sb-C19	85.84(5)
Sb-C13	2.170(2)	C1–Sb–C7	117.98(6)	O1–Sb–C1	84.01(5)
Sb-C19	2.118(2)	C1-Sb-C13	97.75(5)	O1–Sb–C7	82.05(5)

Рисунок 1.3. – Симметрично-независимый фрагмент кристалла (4-ацетил-3гидроксифенокси)тетрафенилсурьмы *Ph*₄SbOC₆H₃C(OH)(CH₃) [54]

Реакции синтеза этого вещества с участием три-*пара*-толилсурьмы и *трис*-(4-фторфенил)сурьмы описаны в литературе [58, 59]. Как следует из литературных данных, реакция окислительного присоединения приводит к образованию с высоким выходом диароксидов три-(*пара*-толил)сурьмы [60], однако аналогичные производные *трис*-(3-фторфенил)сурьмы к настоящему времени не известны.

В работе [60] описаны атомные структуры двух кристаллов соединений три-(*пара*-толил)сурьмы. Кристаллическая диароксидов структура ди(2,4дибромфенокси)три(4-метилфенил)- λ^5 -стибан (*a*) описывается тригональной пространственной группой R3 (a = b = 22.533(2) Å, c = 17.8277(17) Å, $\alpha = \beta = 90^{\circ}$, ди(2,4,6-трибромфенокси)три(4- $\gamma = 120^{\circ}$). Кристаллическая структура метилфенил)- λ^5 -стибана (б) описывается триклинной пространственной группой (a = 9.8333(3) Å, $P\overline{1}$ b = 14.4216(4) Å, c = 14.6978(5) Å, $\alpha = 110.806(2)^{\circ}$, $\beta = 106.205(2)^{\circ}$, $\gamma = 103.980(2)^{\circ}$). Вид молекул двух соединений представлен на рис. 1.4, характерные валентные углы и длины химических связей внутри КП сурьмы приведены в табл. 1.4.

Координационный полиэдр сурьмы в каждом случае представляет собой искаженную тригональную бипирамиду с атомами углерода фенильных лигандов

в экваториальной плоскости и атомами кислорода ароксильных групп в аксиальных положениях. Валентные углы C_{Ph} –Sb– C_{Ph} в экваториальной плоскости КП примерно равны и отличаются от идеальных для данного типа координации 120° не более чем на 6° (*a*) и 4° (*б*), а их суммы близки к идеальному значению 360° в пределах погрешности эксперимента. Аксиальные углы O–Sb–C незначительно отличаются от идеального значения 180°.

Структурная организация в кристалле соединения (*a*) обусловлена образованием водородных связей Br····H–C_{Ar} (3.05, 3.01 Å). Межмолекулярные контакты в кристалле соединения (δ) представлены взаимодействиями Br····Br (3.18 и 3.30 Å), Br·H–C_{Ar} (3.03 Å).

Таблица 1.4. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристаллов диароксидов три-(*пара*-толил)сурьмы: ди(2,4-дибромфенокси)три(4-метилфенил)-λ⁵-стибана

	м(4-метилфенил)-λ ³ -стибана (б)
--	---

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
(<i>a</i>)					
Sb1-C11	2.13(1)	O1–Sb1–O2	179.7(3)	C11–Sb1–O1	91.6(4)
Sb1–C1	2.10(1)	C1-Sb1-C21	126.0(4)	O1–Sb1–C21	90.1(4)
Sb1-C21	2.09(1)	C11–Sb1–C21	118.8(4)	O2–Sb1–C21	89.9(3)
Sb1–O1	2.088(7)	C1–Sb1–C11	115.2(5)	O2–Sb1–C11	88.1(4)
Sb1–O2	2.068(5)	C1–Sb1–O2	92.2(4)	O1–Sb1–C1	88.0(4)
(δ)					
Sb1–C1	2.11(1)	O1–Sb1–O2	178.4(2)	O2–Sb1–C1	91.7(3)
Sb1–O2	2.102(4)	C1-Sb1-C15	123.9(3)	O2–Sb1–C8	91.4(3)
Sb1–O1	2.099(4)	C1–Sb1–C8	118.5(3)	O1–Sb1–C8	89.8(3)
Sb1–C8	2.083(8)	C8–Sb1–C15	117.6(3)	O1–Sb1–C1	88.6(3)
Sb1-C15	2.089(9)	O1–Sb1–C15	92.2(3)	O2-Sb1-C15	86.4(3)

Рисунок 1.4. – Симметрично-независимые фрагменты кристаллов диароксидов три-(*пара*-толил)сурьмы: бис(2,4-дибромфенокси)три(4-метилфенил)-λ⁵- стибана (*a*) и бис(2,4,6-трибромфенокси)три(4-метилфенил)-λ⁵-стибана (*б*) [60]

Важную роль в химии сурьмаорганических соединений играют соединения, в которых с атомом сурьмы, помимо органических радикалов, связаны различные заместители Х. Они являются прекурсорами при синтезе разнообразных производных сурьмы и имеют практическое значение в качестве катализаторов, биологически активных веществ и др. Кроме того, эти соединения являются объектами теоретических исследований, связанных с изучением строения молекул и характера связей Sb–C и Sb–X. Поэтому реакции, приводящие к замещению функциональных групп X на другие группы без изменения числа и характера органических радикалов, связанных с атомом металла, представляют большой интерес, но по-прежнему малоизучены. Для синтеза карбоксилатов тетраарилсурьмы широко используются в лабораторной практике реакции замещения галогенидов тетраарилсурьмы (как правило, бромидов, реже хлоридов) с натриевыми или серебряными солями карбоновых кислот [61, 62]. Однако взаимодействие карбоксилатов тетраарилсурьмы с галогенидами натрия в литературе не описано.

В целом, большинство опубликованных в последние годы структур кристаллов сурьмаорганических соединений традиционно посвящены производным типа R₄SbX и R₃SbX₂ (X – электроотрицательный лиганд), которые можно считать достаточно хорошо изученными [63]. В то же время существуют

20

органические соединения сурьмы, которым уделялось и уделяется немного внимания [18]. К числу таких мало исследованных производных сурьмы относятся трехъядерные комплексы, в которых три атома сурьмы связаны через мостиковые кислорода. Известно структурно охарактеризованное атомы нонафенилтристибоксан-1,5-диил такого типа бис(2.4соединение динитробензолсульфонат), полученное из оксида трифенилсурьмы и 2,4динитробензолсульфоновой кислоты [64].

Кристаллическая структура нонафенилтристибоксан-1,5-диил *бис*(2,4динитробензолсульфоната) описывается моноклинной пространственной группой I2/a (a = 24.436(7) Å, b = 10.665(5) Å, c = 24.75(9) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 99.62(5)^{\circ}$). Вид молекул двух соединений представлен на рис. 1.5, характерные валентные углы и длины химических связей внутри КП сурьмы приведены в табл. 1.5.

Молекула соединения состоит из трех центральных атомов сурьмы, соединенных между собой мостиковыми атомами кислорода. Молекула является симметричной: поворотная ось симметрии 2-го порядка проходит через атомы Sb2, C31, C34. Исходя из симметрии, в молекуле можно выделить два симметрично-неэквивалентных КП сурьмы, каждый из которых представляет собой искаженную тригональную бипирамиду с углеродами фенильных лигандов в экваториальной плоскости и атомами кислорода в аксиальных положениях.

Валентные углы C_{Ph} –Sb– C_{Ph} в экваториальной плоскости КП примерно равны и отличаются от идеальных для данного типа координации 120° не более чем на 5° в каждом случае. А суммы углов в экваториальной плоскости КП близки к идеальному значению 360° в пределах погрешности эксперимента для КП Sb1 и строго равна этому значению вследствие симметрии для КП Sb2. Аксиальные углы O–Sb–O незначительно отличаются от идеального значения 180°, для КП Sb1 и для Sb2 этот угол равен идеальному значению вследствие симметрии.

Рисунок 1.5. – Молекула кристалла нонафенилтристибоксан-1,5-диил бис(2,4-динитробензолсульфоната)

Таблица 1.5. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла нонафенилтристибоксан-1,5-диил *бис*(2,4-динитробензолсульфоната)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Sb101	1.922(6)	O1–Sb1–O2	174.4(2)	O2–Sb1–C7	81.8(2)
Sb1–O2	2.509(6)	O1–Sb1– C1	104.0(3)	O2-Sb1-C13	83.6(2)
Sb1–C1	2.111(8)	O1–Sb1–C7	95.7(3)	C1–Sb1–C7	111.3(3)
Sb1–C7	2.107(8)	O1–Sb1–C13	93.8(3)	C1-Sb1-C13	119.8(3)
Sb1–C13	2.104(8)	O2–Sb1–C1	81.5(2)	C7–Sb1–C13	123.6(3)
Sb201	2.032	O1–Sb2–C25	86.9	C25–Sb–C25'	122.9
Sb2-C25	2.110	O1–Sb–C31	91.6		•
Sb2-C31	2.100	C25–Sb–C31	118.5		
	1		1		

'Код симметрии: $\frac{1}{2} - x$, *y*, -z

§1.2. Кристаллы комплексов Bi(V)

По сравнению с количеством исследованных соединений сурьмы известно не так много органических комплексов Bi(V), и структуры их кристаллов изучены слабо. Было обнаружено, что атом Bi может участвовать во внутримолекулярных взаимодействиях. Это приводит к увеличению KЧ центрального атома до 6 [65, 66] или 7 [67–69]. Например, диацилаты трифенилвисмута часто имеют два внутримолекулярных контакта Bi \cdots O(=C) [67–69]; их длины варьируются в диапазоне 2.798–2.98 Å, что не превышает сумму вандерваальсовых радиусов атомов Bi и O равную 3.9 Å [48].

Показано, что кристаллы мономерного диметакрилата трифенилвисмута могут испытывать фазовый переход второго рода в области низких температур 150-170 К [70], однако структура кристаллов этого соединения до сих пор не была установлена. Было получено производное трифенилвисмута с 3-фенилпроп-2-еновой кислотой $Ph_3Bi(O_2CCH=CHPh)_2$ и исследована атомно-молекулярная структура его кристаллов [69]. В работе [17] представлены исследования атомномолекулярной структуры пяти дикарбоксилатов трифенилвисмута, два из них оказались полиморфными модификациями кристаллов, известных ранее. В работе изучается строение координационного полиэдра висмута, а именно отмечается смещение карбонильных атомов кислорода к атому металла в КП висмута, что сопровождается снижением межатомного расстояния химически несвязанных висмута и кислорода до расстояний, атомов не превышающих CVMMV вандерваальсовых радиусов.

В работах [17, 71] рассматриваются атомные структуры кристалловполиморфов дисалицилата трифенилвисмута (см. рис. 1.6). В одном случае [71] кристаллическая дисалицилата трифенилвисмута описывается структура моноклинной пространственной группой I2/a (a = 24.436(7) Å, b = 10.665(5) Å, c = 24.75(9) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 99.62(5)^{\circ}$) (*a*), в другом случае [17] кристаллическая дисалицилата трифенилвисмута описывается структура триклинной пространственной группой $P\overline{1}$ (a = 8.924(4) Å, b = 9.178(4) Å, c = 17.7944(10) Å, $\alpha = 77.16(2)^{\circ}, \beta = 82.90(2)^{\circ}, 72.383(19)^{\circ})$ (6).

КП висмута в молекулах кристаллов имеют сильно искаженную тригонально-бипирамидальную геометрию с атомами кислорода карбоксилатных групп в вершинах бипирамиды. Валентные углы C_{Ph} -Sb- C_{Ph} в экваториальной плоскости КП отличаются от идеальных для данного типа координации 120°, достигая значений свыше 144° (*a*) и 140° (*б*), а их суммы в экваториальной плоскости равны идеальному значению 360° в пределах погрешности эксперимента. Аксиальные углы O-Sb-C отличаются от идеального значения 180° на 8° (*a*) и 10° (*б*) (см. 1.6).

Рисунок 1.6. – Внешний вид молекул дисалицилата трифенилвисмута в структурах кристаллов (*a*) [71] и (б)

Таблица 1.6. – Валентные углы (°) в координационном полиэдре висмута дл	Я
кристаллов дисалицилата трифенилвисмута	

(1	(б)	
Bi1	Bi2	Bi1
172.6(2)	172.8(2)	170.6(1)
144.4(4)	144.5(4)	140.3(2)
111.5(4)	109.7(4)	112.5(2)
104.1(4)	105.7(4)	107.0(1)
93.4(3)	93.3(3)	96.6(1)
91.9(3)	91.8(3)	90.7(1)
91.1(3)	91.2(3)	90.7(1)
87.8(3)	87.8(3)	87.5(1)
87.5(3)	87.3(3)	86.2(1)
86.0(3)	86.0(3)	86.0(1)

§1.3. Координационное окружение атома металла в комплексах пятивалентных сурьмы и висмута

Из представленного в §1.2 обзора кристаллических структур комплексов сурьмы и висмута можно сделать общий вывод, что пятивалентный атом металла в соединениях чаще всего имеет искаженную тригонально-бипирамидальную координацию, реже – тетрагонально-пирамидальную. На симметрию координационного полиэдра влияют различные факторы, связанные с типом лиганда, в том числе электронные и стерические. Также может влиять наличие сольватных молекул в кристалле и различие способа упаковки молекул основного вещества.

Первыми опубликованными кристаллическими структурами металлоорганических комплексов основе были на сурьмы соединения пентафенилсурьмы. Это соединение было получено в виде двух кристаллических модификаций, для удобства обозначим их (a) [72, 73] и (б) [74]. При этом, в кристалле (а), содержащем сольватные молекулы бензола, геометрия молекулы основного вещества отличается от геометрии той же молекулы в кристалле простого вещества. Согласно рекомендациям IUPAC [75, 76] основными координационными пятивершинниками являются тригональная бипирамида и тетрагональная пирамида с центральным атомом в центре основания (другое название – полуоктаэдр или октаэдр с вакансией). В кристаллической структуре (а) молекула пентафенилсурьмы описывается валентными углами со значениями, близкими к соответствующим значениям углов для классической тригональнобипирамидальной координации. Структура пентафенилсурьмы (а) содержит КП сурьмы, геометрия которого сильно отличается от тригональной бипирамиды и полуоктаэдра. При этом внешний вид структуры напоминает тетрагональную пирамиду с центральным атомом в геометрическом центре КП (см. рис. 1.7). Количественный расчет характерных валентных углов в таком КП демонстрирует соответствие с валентными углами в КП структуры (а) (см. табл. 1.7).

Рисунок 1.7. – Внешний вид молекул пентафенилсурьмы в структурах кристаллов (*a*) и (б)

Таблица 1.7. – Валентные углы (°) в координационном полиэдре сурьмы для кристаллов пентафенилсурьмы и эталонные значения валентных углов для тригональной бипирамиды и тетрагональной пирамиды

(a)) (б) Тригональная Полуоктари		Ποπνοκταρπο	Тетрагональная
(u)	(0)	бипирамида	полуоктаздр	пирамида
162.43	178.70	180	180	151
146.31	121.66	120	180	151
109.80	119.88	120	90	104
103.78	118.44	120	90	104
102.09	91.94	90	90	104
95.30	91.92	90	90	104
90.13	90.77	90	90	86
87.46	88.82	90	90	86
88.15	88.65	90	90	86
84.30	87.94	90	90	86
90.13 87.46 88.15 84.30	90.77 88.82 88.65 87.94	90 90 90 90	90 90 90 90	86 86 86 86

В работе [77] обсуждаются два кристалла соединений-изомеров: (4-нитро-3,6-ди-терт-бутил-катехолато) трифенилсурьмы (*a*) и (6-нитро-3,5-ди-терт-бутилкатехолато) трифенилсурьмы (*б*) (см. рис. 1.8).

Таблица 1.8. – Валентные углы (°) в координационном полиэдре сурьмы для кристаллов (4-нитро-3,6-ди-терт-бутил-катехолато) трифенилсурьмы (*a*) и (6-нитро-3,5-ди-терт-бутил-катехолато) трифенилсурьмы (*б*) и эталонные значения валентных углов для тригональной бипирамиды и тетрагональной пирамиды

<i>(a)</i>	(8	ว์)
Sb1	Sb1	Sb2
155.92(4)	165.27(7)	164.52(7)
141.63(4)	124.72(8)	123.55(7)
110.39(4)	119.90(7)	119.20(8)
106.20(4)	112.84(7)	114.32(7)
101.84(4)	100.92(9)	102.24(9)
99.47(4)	97.26(9)	98.30(9)
98.13(4)	88.38(8)	89.52(8)
85.89(4)	86.99(7)	86.24(7)
83.74(4)	86.53(7)	85.28(7)
77.84(3)	78.83(6)	78.36(6)
		•

Рисунок 1.8. – Симметрично-независимый фрагмент кристалла (4-нитро-3,6-ди-терт-бутил-катехолато) трифенилсурьмы (*a*) и одна из молекул симметрично-независимого фрагмента кристалла (6-нитро-3,5-ди-тертбутил-катехолато) трифенилсурьмы (*б*) [77]

Молекулы изомеров в кристаллах проявляют себя по-разному: в случае (*a*) КП сурьмы представляет собой искаженную тетрагональную пирамиду, в случае (б) – искаженную тригональную бипирамиду. Различие этих конфигураций объясняется наличием дополнительных внутримолекулярных контактов,

стабилизирующих структуру (*a*), обладающую большей энергией конфигурации. Заметим, что на основании табл. 1.8 без дополнительных расчетов сложно сделать однозначный вывод о принадлежности КП к определенному виду (тетрагональнопирамидальному или тригонально-бипирамидальному).

§1.4. Методы количественного описания геометрии координационных полиэдров

строение кристаллов удобно описывать Атомное С применением координационных полиэдров (КП). В целом, геометрически правильная форма КП реализуется в реальных атомных структурах кристаллов достаточно редко, при этом атомы в таких КП, как правило, располагаются по частным правильным системам точек (ПСТ), симметрия позиций которых включает группу симметрии КП. В общем случае реальные КП имеют отклонения от идеальной геометрии, такие КП принято называть искаженными. Геометрию КП обычно описывают набором длин связей и валентных углов. Однако такое описание не всегда удобно, т.к. содержит большое количество размерных параметров. Для проведения сравнительного анализа нескольких КП целесообразно ввести некоторую численную характеристику, заменяющую набор длин связей и валентных углов одним числом.

Как следует из приведенного выше обзора структурных работ, координационное окружение комплексообразователя в соединениях Sb(V) и Bi(V) представляет собой пятивершинник: искаженную тетрагональную пирамиду или искаженную тригональную бипирамиду. Координационный пятивершинник описывается пятью длинами химических связей и десятью валентными углами. В ходе описания атомно-молекулярной структуры кристалла возникает вопрос о корректном и однозначном различии геометрий искаженных пятивершинников.

Проблема однозначного различия искаженных тригональнобипирамидальной и тетрагонально-пирамидальной координаций пятивершинников известна и известны некоторые пути ее решения.

К настоящему времени существует несколько методов. Например, для КП с координационным числом (КЧ) равным пяти, в [7] был предложен критерий степени тригональности т, которая рассчитывается на основе двух валентных углов КП (см. рис. 1.9):

$$\tau = (\alpha - \beta) / 60^{\circ}. \tag{1.1}$$

Диапазон возможных значений т лежит в пределах 0 ≤ τ ≤1. При τ > 0.5 КП считается тригональной бипирамидой, в противном случае – тетрагональной

пирамидой. Метод расчета не требует определения ориентации КП, так как угол α – наибольший валентный угол внутри КП, β – следующий по величине угол, не являющийся прилежащим углом к α.

К достоинствам такого критерия следует отнести тривиальность вычислений, что привело к массовому применению этого критерия в структурных работах, обсуждающих координационные пятивершинники. К недостаткам следует отнести неполноценное описание КП на основе всего лишь двух валентных углов.

Рисунок 1.9. – К вычислению параметра т

В работах [9, 10] был предложен и реализован критерий, основанный на анализе двугранных углов КП. Предложено характеризовать степень искажения исследуемого КП среднеквадратическим отклонением соответствующих двугранных углов от эталонных значений:

$$S(\delta, \theta) = \min\left[\sqrt{\frac{1}{m}\sum_{i=1}^{m} (\delta_i - \theta_i)^2}\right],$$
(1.2)

где *m* – количество всевозможных двугранных углов в полиэдре, δ_i – двугранные углы в рассматриваемом полиэдре, θ_i – двугранные углы в эталонном полиэдре. Минимум функции рассматривается относительно перестановок [δ_i , θ_k]. Метод был апробирован для трех типов координационных восьмивершинников: тригонального додекаэдра, двушапочной тригональной призмы и квадратной антипризмы. В основе метода лежит точечная симметрия рассматриваемого полиэдра, соответственно, D_{2d} , C_{2v} , D_{4d} . Диапазон возможных значений размерной величины *S* ограничен снизу значением $S = 0^{\circ}$.

Алгоритм вычисления величины S предполагает перебор всех возможных ориентаций рассматриваемого КП относительно эталонного. С учетом симметрии эталонного КП некоторые ориентации эквивалентны и дают одинаковое значение параметра S.

К особенностям рассмотренного критерия следует отнести его независимость от длин химических связей. Кроме того, предложенная реализация метода позволяет решить вопрос об ориентации рассматриваемого полиэдра. Отдельно можно прокомментировать сложность реализации такого метода, заключенную в том, что стандартный файл с кристаллографической информацией (Crystallographic Information File, CIF) [78] не содержит значений двугранных углов КП и их требуется рассчитывать.

Альтернативным подходом является метод расчета непрерывной симметрии (Continuous Symmetry Measures, CSM) [8], реализованный в компьютерной программе SHAPE [79]. В основе метода CSM лежит анализ разностей векторов вершин исследуемого и эталонного полиэдров, заданных в декартовой системе координат:

$$S(G) = \frac{\sum_{k=1}^{N} \left| \vec{Q}_{k} - \vec{P}_{k} \right|^{2}}{\sum_{k=1}^{N} \left| \vec{Q}_{k} - \vec{Q}_{0} \right|^{2}} \times 100, \qquad (1.3)$$

где $\vec{Q}_k - N$ векторов атомов окружения, $\vec{P}_k - N$ векторов вершин эталонного полиэдра, \vec{Q}_0 – вектор центра масс рассматриваемой структуры:

$$\vec{Q}_0 = \frac{1}{N} \sum_{k=1}^{N} \vec{Q}_k \,. \tag{1.4}$$

Метод CSM независим от расположения КП в элементарной ячейке, ориентации и размера. Выражение (1.3) является наиболее общим и позволяет рассчитать меру симметрии для любого КП относительно любой формы эталона и любых группы или элемента симметрии. Знаменатель выражения (1.3) определяет сумму квадратов длин химических связей внутри КП и задает нормировку на размер рассматриваемого КП.

Метод CSM характеризует «степень правильности» рассматриваемого и эталонного КП с точки зрения различия соответствующих межатомных расстояний. При этом безразмерная величина S(G), теоретически, может принимать любые положительные значения, равенству двух КП соответствует S(G) = 100.

Алгоритм поиска величины (1.3) для КП предполагает совмещение центров масс рассматриваемого и эталонного КП. Далее требуется минимизировать функцию

$$J = \sum_{k=1}^{N} \left| \vec{Q}_{k} - \vec{P}_{k} \right|^{2} = \sum_{k=1}^{N} \left| \vec{Q}_{k} - \left(A \mathbf{R} \vec{P}_{k} + \vec{T} \right) \right|^{2}, \qquad (1.5)$$

где A – масштабный множитель, \mathbf{R} – матрица поворота, \vec{T} – вектор смещения центра масс. При этом необходимость в векторе \vec{T} отпадает за счет совмещения центров масс структур. Поиск эйлеровых углов для определения матрицы \mathbf{R} , и поиск величины масштабного множителя A предлагается выполнять методом наименьших квадратов для всех возможных N! вариантов взаимного расположения вершин рассматриваемого и эталонного КП за исключением случаев, когда взаимная ориентация заведомо известна исследователю. Показано, что рассматриваемая величина может быть записана в виде

$$S(G) = (1 - \rho^2) \times 100,$$
 (1.6)

где *р* – выборочный коэффициент корреляции между случайными значениями координат вершин рассматриваемого и фиксированными координатами вершин заданного КП.

К недостаткам метода можно отнести то, что рассматриваемые расстояния часто не соответствуют каким-либо химическим связям, то есть метод не анализирует положение центрального атома внутри КП.

Еще один подход, основанный на расчете объемов рассматриваемого и эталонного КП, был предложен в работах [11] и [12]. Величина

$$v = (V_I - V_R) / V_I \times 100, \qquad (1.7)$$

где V_I – объем эталонного КП, V_R – объем рассматриваемого КП. В указанных работах попутно предлагается сравнивать объем эталонного полиэдра с объемом шара, ограниченного описывающей КП сферой. Такой метод предлагается дополнять анализом расположения центрального атома внутри КП. В качестве критерия рассматривается степень смещения центрального атома относительно центра описывающей КП сферы.

Также стоит отметить работу [80], где предлагается оценивать степень искаженности КП, исходя из средних значений длин химических связей внутри КП.

В основе метода эллипсоидальных искажений [13] постулировано, что все атомы координационного окружения выбранного атома в неискаженном случае должны лежать на описывающей его сфере. Искажения КП приводят к искажению сферы. В статье были рассмотрены случаи тетрагонального искажения кубического кристалла, поэтому искажения описывались двумя параметрами – значениями полуосей эллипсоида вращения. Этот метод, очевидно, актуален для высокосимметричных кристаллов, например, для перехода кубического кристалла в тетрагональную и гексагональную фазу. На основании обзора известных методов для количественной характеристики искаженности или правильности координационных полиэдров, которую было бы удобно применять в качестве универсального критерия классификации степени искаженности координационных полиэдров, были сформированы следующие требования.

- 1. Расчет строится на основании данных о координатах атомов КП.
- 2. В качестве численной характеристики выступает безразмерная величина, ограниченная в диапазоне от 0 до 1.
- 3. Критерий может быть применен к любым типам координационных полиэдров независимо от количества вершин и симметрии.
- 4. Возможность различать энантиомеры.

Сформулированный набор требований позволяет производить анализ геометрического сходства КП с учетом положения центрального атома. Метод, удовлетворяющий перечисленному набору требований, будет применим для описания КП с произвольным числом вершин. Численная характеристика, описывающая геометрическое совершенство КП, может быть использована в качестве параметра порядка при описании структурных фазовых переходов второго рода.

Метод, который использовался для анализа координационных полиэдров в настоящем диссертационном исследовании, впервые был применен для хелатных комплексов свинца Pb(II) с нитрило-трис-метиленфосфоновой кислотой [15]. КП в этом методе задается в виде множества векторов, соединяющих центр полиэдра и его вершины. В качестве центра КП выбирается центральный атом рассматриваемого КП. Факт значимости положения центра является основной отличительной чертой рассматриваемого подхода. Фактически это означает, что математически рассматривается комбинированный геометрический объект – многогранник с точкой.

Множеством векторов $T = \{\mathbf{t}_i\}$ задан некоторый исследуемый КП, также задан некоторый эталонный полиэдр $S = \{\mathbf{s}_i\}$ изоморфный T. Центры полиэдров Tи S совпадают, вращение T относительно общего центра описывается матрицей β , а масштаб и деформация S – матрицей α . Для численной оценки степени подобия двух полиэдров используется величина, определяемая максимальным значением функции:

$$\Phi(T,S) = \max_{\alpha,\beta} \left\{ \prod_{i=1}^{n} p_i \exp(-\lambda \cdot \vartheta_i) \right\}, \qquad (1.8)$$

где n – число векторов во множествах T и S,

$$p_{i} = \begin{cases} x, x > 0\\ 0, x \le 0 \end{cases}, \text{ где } x = \frac{\left(\alpha \cdot \mathbf{s}_{i}, \beta \cdot \mathbf{t}_{i}\right)}{\max\left(\left|\alpha \cdot \mathbf{s}_{i}\right|, \left|\beta \cdot \mathbf{t}_{i}\right|\right)^{2}}.$$
(1.9)

Параметром ϑ_i в (1.8) обозначен угол между векторами \mathbf{s}_i и \mathbf{t}_i , который определяется следующим образом:

$$\boldsymbol{\vartheta}_{i} = \arccos\left(\frac{\left(\boldsymbol{\alpha} \cdot \mathbf{s}_{i}, \boldsymbol{\beta} \cdot \mathbf{t}_{i}\right)}{\left|\boldsymbol{\alpha} \cdot \mathbf{s}_{i}\right|, \left|\boldsymbol{\beta} \cdot \mathbf{t}_{i}\right|}\right).$$
(1.10)

Параметр λ задается пользователем, варьируя λ можно управлять «чувствительностью» $\Phi(T,S)$ к искажениям полиэдра T по отношению к S. Значение λ можно определить из следующих соображений. Минимальный угол ϕ_0 между векторами \mathbf{s}_i и \mathbf{t}_i , при котором величина экспоненты в (1.8) составляет $\frac{1}{2}$, тогда параметр λ будет равен

$$\lambda = \ln(2)/\phi_0. \tag{1.11}$$

Величина $\Phi(T,S)$ принимает значения, лежащие в диапазоне от 0 до 1. Если $\Phi(T,S)=1$, то полиэдры являются подобными. Чем ниже $\Phi(T,S)$, тем в меньшей степени полиэдр *T* подобен *S*. Величина $\Phi(T,S)$ будет равна нулю, если какойлибо угол ϑ_i достигнет $\frac{\pi}{2}$.

Максимальное значение (1.8) называют степенью подобия двух полиэдров и обозначают Φ . В случае пятивершинников удобно ввести обозначения Φ_{Δ} и Φ_{\Box} – степени подобия КП, рассчитанные относительно правильной тригональной бипирамиды и правильной тетрагональной пирамиды соответственно.

§1.5. Геометрия координационных полиэдров и физические свойства кристаллов

Рисунок 1.10. – Основные типы координации карбоксилатного лиганда на атом металла

Геометрия координационного окружения атома в кристалле влияет на его энергетическую структуру. Характерным примером является эффект Яна– Теллера, имеющий спектральные проявления при нарушении симметрии координационного окружения *d*- и *f*-элементов в структуре кристаллов [81]. Искажение КП, согласно «теореме дисторсии» [82], коррелирует со средней длиной химической связи в этом КП, что объясняет связь искажений в координационных полиэдрах не только с симметрийно-зависимыми свойствами. В работе [83] обсуждается влияние искажений КП редкоземельных металлов в составе металлоорганических каркасных структур (MOF, Metalorganic Frameworks) на химические свойства материала.

Особенностью солей карбоновых кислот, карбоксилатов и дикарбоксилатов является искажение координационной сферы вследствие структурного строения Связывание карбоксилатного карбоксилат-аниона. лиганда с комплексообразователем может происходить различными способами. Основные типы связывания показаны на рис. 1.10. Тип 1 называется монодентатным связыванием, тип 3 – бидентатным. Возникновение связи типа 3 в химии координационных соединений называют хелатированием. Понятно, что между типами координации 1 и 3 возможен непрерывный набор переходных типов 2, при этом карбонильный атом кислорода образует внутримолекулярный контакт с атомом металла, искажая его координационное окружение. Переходный тип 2 можно классифицировать по длине внутримолекулярного контакта d(O2...M). В работе [16] были представлены исследования зависимости одного из валентных углов внутри КП висмута от величины внутримолекулярного контакта d(O2...M)(см. рис. 1.11).

Рисунок 1.11. – Зависимость величины одного из валентных углов внутри КП от длины внутримолекулярного контакта *d*(O2...*M*) в структурах дикарбоксилатов триарилвисмута [16]

Олним ИЗ экспресс-методов косвенного подтверждения структуры молекулярного кристалла является метод ИК-спектроскопии. Карбоксилатный фрагмент имеет две интенсивные полосы поглощения на ИК-спектре, соответствующие асимметричному $v_{as}(COO)$ И симметричному $v_{s}(COO)$ валентным колебаниям [84]. Эти линии являются весьма интенсивными в том числе и на спектрах дикарбоксилатов триарилсурьмы и триарилвисмута и по ним выполняется качественный химический анализ соединений. Схематично типы нормальных валентных колебаний трехатомного фрагмента представлены на рис. 1.12.

Известен экспериментально наблюдаемый эффект смещения линий ИК-спектра поглощения, соответствующих характерным валентным колебаниям карбоксилатного фрагмента вследствие изменения его типа связывания с катионом.

Рисунок 1.12. – Основные типы колебаний трехатомного фрагмента

В обзоре [19] обсуждаются корреляции положения спектральных линий ИКспектра поглощения карбоксилат-аниона с искажением координации катиона. Располагая данными рентгеноструктурного и ИК-спектроскопического анализа, авторы показали корреляцию между значением Δv (СОО) и структурой ацетатного комплекса и обнаружили следующее:

1) монодентатные комплексы проявляли значение разности $\Delta v(COO)$ гораздо больше, чем ионные комплексы (≥ 200 см⁻¹);

2) хелатные бидентатные комплексы характеризовались величиной $\Delta v(COO)$ значительно меньшей, чем у ионных соединений ($\leq 105 \text{ см}^{-1}$);

3) мостиковые комплексы обладали величиной $\Delta v(COO)$ большей, чем у хелатных бидентатных комплексов, и близкой к ионным комплексам (≤ 150 см⁻¹).

ИК-спектроскопического исследования синтезированных Результаты авторами [85] соединений согласуются с результатами термогравиметрического и химического методов анализа. Синтезированный октаноат лантана (III) не лигандов $La(C_7H_{15}COO)_3,$ содержал дополнительных И имел состав a синтезированный октаноат иттрия(III) содержал координированные молекулы октановой кислоты: $Y(C_7H_{15}COO)_3 \cdot 0.5C_7H_{15}COOH$.

В работе [17] был применен подход для определения наличия дополнительной химической связи типа Bi–O в соединениях дикарбоксилатов трифенилвисмута, основанный на анализе разности частот асимметричной и симметричной полос в ИК-спектре поглощения вещества. Рассмотренные авторами соединения [*Ph*₃Bi(5-Br-2-OH-C₆H₃CO₂)₂], [*Ph*₃Bi(2-OH-C₆H₄CO₂)₂], [*Ph*₃Bi{2,6-(OH)₂-C₆H₃CO₂}₂] с Δv (COO) > 200 см⁻¹ признаны монодентатными, а [*Ph*₃Bi(3-CH₃-2-NH₂-C₆H₃CO₂)₂] и [*Ph*₃Bi (*Ph*CO₂)₂]·H₂O с Δv (COO) < 200 см⁻¹ – бидентатными.
Также известны и теоретические исследования, например, в статье [20] приведены теоретические расчеты ИК-спектров молекулярных кристаллов. Авторами работы была предложена зависимость разницы частот симметричного и асимметричного валентных колебаний карбоксилатного фрагмента от геометрических параметров молекулы:

$$\Delta v = v_{as} - v_s = A_1(d_{C-O} - d_{C=O}) + A_2(\theta_{OCO} - 120^\circ) + A_4, \qquad (1.12)$$
где d_{C-O} и $d_{C=O}$ – длины соответствующих химических связей, θ_{OCO} – валентный угол между этими связями.

Таким образом, тип связывания карбоксилат-аниона с катионом оказывает влияние на геометрические параметры координационного окружения катиона, а также на положение характерных полос поглощения в ИК-спектре. Поэтому целесообразным является проведение количественной оценки связи степени искаженности КП комплексообразователя, сурьмы или висмута, с характерными симметричной, асимметричной и деформационной частотами, соответствующими ИК-спектру поглощения кристаллов дикарбоксилатов трифенилсурьмы и трифенилвисмута.

§1.6. Анализ псевдосимметричных структур

Среди рассматриваемых кристаллов комплексов сурьмы и висмута встречаются псевдосимметричные структуры. В работе [86] приведены данные исследования трансляционной и инверсионной псевдосимметрии 211162 кристаллов методом расчета степени инвариантности электронной плотности. Показано, что псевдосимметрия органических и элементоорганических соединений является распространенным фактом.

В качестве количественного критерия «псевдосимметричности» кристалла удобно выбрать величину степени инвариантности электронной плотности, предложенную в работах [87–89]:

$$\eta_h[\rho(\mathbf{r})] = \frac{1}{K} \int_V \rho(\mathbf{r}) \rho(h\mathbf{r}) dV. \qquad (1.13)$$

Здесь $\rho(\mathbf{r})$ – исходная электронная плотность кристалла, $\rho(h\mathbf{r})$ – электронная плотность кристалла, преобразованная относительно оператора *h*, *K* – нормировочный коэффициент, определяемый следующим образом:

$$K = \int_{V} \rho(\mathbf{r})^2 dV. \qquad (1.14)$$

Интегрирование в (1.13) и (1.14) осуществляется по всему объему элементарной ячейки кристалла V. Значение $\eta_h[\rho(\mathbf{r})]$ стремится к нулю, если электронная плотность кристалла асимметрична относительно преобразования h.

Для псевдосимметричного кристалла значения $\eta_h[\rho(\mathbf{r})]$ стремятся к единице. Функционал (1.13) равен единице, если кристалл симметричен относительно преобразования *h*.

Вычисление функционала (1.13) удобно проводить в обратном пространстве. Для этого электронную плотность кристалла представляют в виде ряда Фурье [90]

$$\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} F(\mathbf{H}) \exp(-2\pi i (\mathbf{H}, \mathbf{r})), \qquad (1.15)$$

где **H** – вектор обратной решетки ($\mathbf{H} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$), $F(\mathbf{H})$ – структурная амплитуда, определяемая следующим образом:

$$F(\mathbf{H}) = \sum_{j=1}^{N} f_j T_j O_j \exp\left(-2\pi i \left(\mathbf{H}, \mathbf{r}_j\right)\right), \qquad (1.16)$$

где f_j – атомный фактор, описывающий функцию атомного рассеяния *j*-го атома, T_j – фактор атомных смещений [91], описывающий статические смещения атома и его тепловое движение (фактор Дебая-Валера [90]), O_j – заселенность кристаллографической позиции, \mathbf{r}_j – радиус-вектор атома, суммирование проводится по всем атомам элементарной ячейки кристалла N. C учетом сказанного, выражение (1.13) можно записать в виде

$$\eta_h[\rho(\mathbf{r})] = \frac{1}{K} \sum_{\mathbf{H}} F(\mathbf{H}) F(-q^T \mathbf{H}) \exp(-2\pi i (\mathbf{H}, \mathbf{t})), \qquad (1.17)$$

где q^T – транспонированная матрица обобщенного поворота оператора h,

$$K = \sum_{\mathbf{H}} \left| F(\mathbf{H}) \right|^2$$

Применение количественного метода оценки структурных особенностей, определяющих псевдосимметрию кристаллической структуры кристаллической структуры в целом, и исследование взаимосвязи псевдосимметрии структуры с соответствующими структурно- и симметрийно-чувствительными свойствами кристаллов позволяют в некоторых случаях прогнозировать влияние структурных данных на соответствующие свойства [92, 93].

Заключение по главе 1

Соединения пятивалентных сурьмы и висмута имеют широкое прикладное значение, поэтому исследование их кристаллической структуры, сопутствующее синтезу новых соединений, является актуальной задачей структурной кристаллографии.

Дикарбоксилаты триарилсурьмы И триарилвисмута имеют общую тенденцию к искажению геометрии КП комплексообразователя в зависимости от типа карбоксилатных лигандов. Изучение новых структур кристаллов ряда соединений с разными карбоксилатными лигандами позволяет получать атомные содержащие разные степени искаженности координационных структуры, пятивершинников. Представляет научный интерес анализ взаимосвязи частот колебаний $v_{as}(COO)$ и $v_{s}(COO)$, регистрируемых на ИК-спектрах, и степени искаженности КП комплексообразователя В структурах дикарбоксилатов триарилсурьмы и триарилвисмута.

Расчет численной характеристики степени симметрии (правильности или искаженности) позволяет классифицировать искаженные координационные многогранники по степени их близости к эталонным многогранникам, что дополняет численным критерием понятие «искаженный координационный полиэдр».

ГЛАВА 2. РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ НЕКОТОРЫХ КОМПЛЕКСОВ ПЯТИВАЛЕНТНОЙ СУРЬМЫ

В главе рассмотрены результаты рентгеноструктурного анализа монокристаллических образцов одиннадцати комплексов сурьмы. Кристаллические образцы и соответствующие им кристаллические структуры соединений сурьмы перечислены в табл. 2.1, для удобства каждой структуре присвоен порядковый номер.

	Формула	CCDC	Ссылка
(I)	$C_{44} H_{39} O_6 Sb$	935434	[94]
(II)	$C_{38} H_{31} O_6 Sb$	1045776	[95]
(III)	$C_{38} H_{39} Br_2 O Sb$	1435300	[96]
(IV)	$C_{30}H_{12}Cl_{10}F_3O_2Sb$	1473422	[97]
(V)	$C_{34}H_{31}N_2O_5Sb$	1433797	[98]
(VI)	$C_{124}H_{108}I_6O_4Sb_4$	1486690	[99]
(VII)	$C_{71}H_{68}F_6O_8S_2Sb_3$	1475061	[100]
(VIII)	$C_{40} H_{34} Cl_5 O Sb$	1473086	[101]
(IX)	$C_{24}H_{27}Cl_2Sb$	1502963	[102]
(X)	$C_{24} H_{27} Br_2 Sb$	1502962	[102]
(XI)	$C_{30} H_{29} O_4 Sb$	1055084	
(XII)	C ₂₆ H ₂₅ Bi O ₄	954525	[103]
(XIII)	C ₃₆ H ₂₉ Bi O ₄	990872	[104]
(XIV)	C ₃₆ H ₃₃ Bi O ₇	1548598	[105]
(XV)	C ₄₄ H ₄₃ Bi N ₂ O ₁₀	1548599	[103]
(XVI)	C ₃₀ H ₃₇ Bi O ₄	1845636	

Таблица 2.1. – Перечень атомных структур кристаллов, обсуждаемых в главах 2–3

Рентгенодифракционные эксперименты для образцов (I), (II) и (IX)–(XI) проводились на четырехкружном рентгеновском дифрактометре Oxford Diffraction Gemini S с CCD-детектором Sapphire III. В экспериментах использовалось излучение МоКа (λ =0.71073 Å), генерируемое рентгеновской трубкой с молибденовым анодом и графитовым монохроматором. Режим работы рентгеновской трубки задавался 50 кВ / 40 мА. Для выполнения экспериментов при низких температурах использовалась криоприставка OxfordInstuments

CryoJetHT, способная поддерживать температуру исследуемого образца в диапазоне 90–490 К.

Для рентгеновских исследований образцы подготавливались преимущественно в виде призм или шариков, размером приблизительно 0.2 мм, в некоторых случаях использовались осколки кристаллов, обладающие наиболее изометричной формой.

Перед началом измерений образец юстировался оптически с помощью цифровой видеокамеры по стандартной методике.

Для сбора экспериментальных данных и их обработки использовалась программа CrysAlisPro [106]. При этом производился расчет направлений дифракционных максимумов, определение параметров элементарной ячейки, присвоение дифракционным рефлексам индексов, расчет интенсивностей дифракционных отражений, определение пространственной группы симметрии кристалла.

Поглощение уточнялось эмпирически с использованием сферических гармоник по алгоритму SCALE3 ABSPACK, теоретически с применением описания сферической формы образца (для кристаллов, подготовленных с помощью обкатной машинки), а также с использованием полиэдрического описания формы образца в программе CrysAlisPro [106].

Рентгенодифракционные эксперименты для образцов III–VIII проводились на химическом факультете Южно-Уральского государственного университета на четырехкружном рентгеновском дифрактометре Bruker D8 QUEST, оснащенном двумерным CCD-детектором Photon100. Использовалось излучение МоКа (λ =0.71073 Å), генерируемое рентгеновской трубкой с молибденовым анодом и графитовым монохроматором. В настоящей работе выполнено уточнение атомной структуры кристаллов (**III**)–(**VIII**) по предоставленным данным об элементарной ячейке и квадратов модулей структурных амплитуд F^2 (*hkl*-файл).

Поиск начального фрагмента атомных структур проводился прямыми методами или методом функции Паттерсона. Поиск всех атомов выполнялся с помощью анализа карт разностного синтеза электронной плотности. Для уточнения всех параметров атомных структур применялся метод наименьших квадратов с использованием весовой схемы. Все перечисленные выше операции по решению обратной задачи рентгеноструктурного анализа монокристаллов проводились в программных комплексах SHELX97–2014 [107] с применением оболочек WinGX [108] и ShelxLe [109]. Для работы с CIF-файлами атомных структур, визуализации и т.д. были использованы компьютерные программы Mercury[110], EnCIFer [111], PublCIF [112].

Анализ координационного полиэдра сурьмы выполнялся с использованием т-параметра [7] и Ф-параметра, описанного в гл.1, §1.4. Исследование псевдосимметричных структур проводилось с использованием метода расчета степени инвариатности электронной плотности относительно операций симметрии, описанного в гл.1, §1.6.

§2.1. Рентгеноструктурное исследование кристалла ди-параметоксициннамата трифенилсурьмы с бензолом [*Ph*₃Sb(C₁₀H₉O₃)₂]·*Ph*H

Кристаллическая структура ди-пара-метоксициннамата трифенилсурьмы $[Ph_3Sb(C_{10}H_9O_3)_2] \cdot PhH$ (I) описывается триклинной пространственной группой симметрии $P\overline{1}$ (Z = 2, a = 11.20470(10) Å, b = 11.23370(10) Å, c = 15.0317(2) Å, $\alpha = 91.1250(10)^{\circ}$, $\beta = 94.9360(10)^{\circ}, \quad \gamma = 95.4960(10)^{\circ}).$ Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.22 MM, синтезированный методом спонтанной кристаллизации из раствора в бензоле.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры кристалла (I) приведены в табл. 2.2. Начальный фрагмент структуры кристалла (I) был найден с использованием прямых методов; позиции неводородных атомов, не входящих в начальный Фурье-синтеза фрагмент, разностного вычислялись с использованием Координаты атомов водорода были определены электронной плотности. геометрически и уточнялись по модели наездника. Длины химических связей С-Н и фиксированные изотропные тепловые параметры задавались равными d(C-H)=0.96 Å и $U_{\mu_{30}}$ (H) = 1.5 $U_{3\kappa_{B}}$ (C) для водородов метильных групп, d(C–H)=0.93 Å $U_{\mu_{30}}(H) = 1.2 U_{3KB}(C)$ для остальных атомов водорода. Результаты И рентгеноструктурного исследования депонированы в Кембриджский банк структурных данных (КБСД) [113] (ССDС 935434).

На рис. 2.1 изображен симметрично-неэквивалентный фрагмент структуры исследуемого кристалла (I). Он содержит одну молекулу исходного соединения и одну молекулу растворителя – бензола. Молекула бензола в элементарной ячейке кристалла (I) была описана в виде разупорядоченного фрагмента. Наиболее оптимальным является описание с помощью двух преимущественных позиций бензола, геометрические центры которых расположены практически в одной точке. Заселенности уточненных положений разупорядоченного фрагмента составили 0.556(15) и 0.444(15), угол между плоскостями составил примерно 17°.

Молекула ди-пара-метоксициннамата трифенилсурьмы асимметрична, координация атома сурьмы тригонально-бипирамидальная с карбоксилатными лигандами в аксиальном положении. Степень подобия тригональной бипирамиде

составляет Φ_{Δ} =0.5284(2), в то время как степень подобия тетрагональной пирамиде Φ_{\Box} =0.3192(2). Степень тригональности по [7] составляет τ =0.54. Значения длин связей и величин валентных углов внутри КП атома Sb1 приведены в табл. 2.3. Карбоксильные лиганды имеют плоское строение, угол между плоскостями лигандов A и B не превышает 1°. Расстояния Sb–O2A и Sb–O2B составляют 2.937(13) Å и 2.900(13) Å соответственно и не превышают сумму вандерваальсовых радиусов для сурьмы и кислорода, равную 3.60 Å [48].

Молекулы ди-пара-метоксициннамата трифенилсурьмы (I) упакованы в структуру кристалла слабыми вандерваальсовыми взаимодействиями. Тепловые параметры атомов группы O–CH₃, находящихся на концах карбоксилатных фрагментов, отличаются, демонстрируя меньшую амплитуду колебаний атома углерода COA чем COB (меньшее значение эквивалентного теплового параметра) при меньшем расстоянии до ближайшего фенильного кольца (см/ табл. 2.4, рис. 2.2). Это может свидетельствовать о том, что молекулы $Ph_3Sb(C_{10}H_9O_3)_2]\cdot PhH$ связываются в цепочки, располагающиеся перпендикулярно направлению [010], посредством слабых интермолекулярных взаимодействий типа C–H… π . Упаковка цепочек создает каналы в структуре кристалла, заполненные молекулами сольватного бензола (см. рис. 2.3).

Рисунок 2.1. – Симметрично-независимый фрагмент кристалла ди-параметоксициннамата трифенилсурьмы с бензолом [Sb(C₆H₅)₃(C₁₀H₉O₃)₂]·C₆H₆ (**I**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Таблица 2.2. – Кристаллографические данные и результаты уточнения параметров атомной структуры ди-пара-метоксициннамата трифенилсурьмы с бензолом [*Ph*₃Sb(C₁₀H₉O₃)₂]· *Ph*H (**I**)

 $[Sb(C_6H_5)_3(C_{10}H_9O_3)_2] \cdot C_6H_6$ Химическая формула Сингония, пр. гр., Z Триклинная, $P\overline{1}$, 2 11.20470(10), 11.23370(10), *a*, *b*, *c*, Å 15.0317(2)91.1250(10), 94.9360(10), $\alpha, \beta, \gamma, \circ$ 95.4960(10) $V, Å^3$ 1875.62(3) $\rho_{(выч.)}, \, \Gamma/c M^{3}$ 1.391 MoKα, λ=0.71073 Å, Излучение, λ, монохроматор графитовый μ , MM⁻¹ 0.783 *T*, K 293(2)Размер образца, мм $0.22 \times 0.16 \times 0.07$ Дифрактометр Xcalibur Sapphire3 Gemini Тип сканирования ω-scans Учет поглощения, T_{\min}/T_{\max} 0.84061 / 1 Диапазон сканирования обратного 3.58 / 26.37 пространства $\theta_{\min} / \theta_{\max}$, ° $-13 \le h \le 13; -14 \le k \le 14 - 18$ Интервалы индексов отражений $\leq l \leq 18$ Измерено отражений: всего/ независимых (N_1), $R_{Int} / c I > 2\sigma(I)$ 28524/7595, 0.022/7254 (N_2) Полноматричный МНК по F^2 Метод уточнения Число уточняемых параметров 551 S 1.086 R_1 / wR_2 по N_1 0.0212/0.0515 R_1 / wR_2 по N_2 0.0198/0.0507 Остаточная электронная плотность -0.245/0.336 $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$

Рисунок 2.2. – Упаковка молекул в структуре кристалла ди-параметоксициннамата трифенилсурьмы с бензолом [*Ph*₃Sb(C₁₀H₉O₃)₂]· *Ph*H (**I**). Центры масс фенильных колец C1C...C6C и C1E...C6E обозначены *Ph*C и *Ph*E соответственно

Таблица 2.3. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла ди-параметоксициннамата трифенилсурьмы с бензолом [*Ph*₃Sb(C₁₀H₉O₃)₂]· *Ph*H (**I**)

Связь	d, Å	Угол	ω, °	Угол	ω, °
Sb-O1A	2.1054(11)	O1A–Sb–O1B	172.81(4)	C1E–Sb–O1B	91.28(5)
Sb-O1B	2.1238(11)	C1E–Sb–C1C	140.19(6)	C1C–Sb–O1B	91.12(5)
Sb-C1C	2.1042(15)	C1C–Sb–C1D	112.33(6)	C1C-Sb-O1A	89.43(5)
Sb-C1D	2.1177(16)	C1E–Sb–C1D	107.48(6)	O1A–Sb–C1D	86.57(6)
Sb–C1E	2.1034(16)	C1E–Sb–O1A	92.88(5)	C1D–Sb–O1B	86.60(5)

Таблица 2.4. – Параметры межмолекулярных контактов типа С–Н $\cdots \pi$ в кристалле ди-пара-метоксициннамата трифенилсурьмы с бензолом [$Ph_3Sb(C_{10}H_9O_3)_2$]· PhH (I)

C–H…A	Длина связи D–A, Å	Эквивалентный тепловой параметр U ₂₀₀₀ (С), Å ²			
$COA-HOA1PhC^{1)}$	3.725(2)	0.0671(5)			
$COB^{1}-HOB1^{1}PhE$	3.838(4)	0.1347(15)			
Код симметрии: ¹⁾ $x, y, -1 + z$					

Рисунок 2.3. – Упаковка молекул в атомной структуре кристалла ди-параметоксициннамата трифенилсурьмы с бензолом [*Ph*₃Sb(C₁₀H₉O₃)₂]· *Ph*H (**I**). Сечение одного из каналов, заполненных растворителем, выделено эллипсом

§2.2. Рентгеноструктурное исследование кристалла бис[(2*e*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы с бензолом *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂·*Ph*H

Кристаллическая структура $\delta uc[(2E)-3-(2-\phi ypun)проп-2-еноата]$ трифенилсурьмы с бензолом $Ph_3Sb[O_2CCH=CH(C_4H_3O)]_2 \cdot PhH$ (**II**) описывается триклинной пространственной группой $P\overline{1}$ (Z=2, a = 9.0389(2) Å, b = 12.7374(3) Å, c = 14.8227(3) Å, $\alpha = 75.544(2)$ °, $\beta = 83.136(2)$ °, $\gamma = 81.839(2)$ °). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.17 мм, синтезированный методом замены растворителя из бензола и петролейного эфира.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.5. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по смешанной модели: положение атома водорода H(5A), участвующего в образовании водородной связи, уточняли без ограничений параметров, остальные атомы водорода уточняли по модели наездника. Для модели наездника длины химических связей С–Н и фиксированные изотропные тепловые параметры задавались равными d(C-H) = 0.93 Å и $U_{H30}(H) = 1.2$ $U_{3KB}(C)$. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1045776).

На рис. 2.4 изображен фрагмент структуры исследуемого кристалла (**II**). Асимметричный фрагмент кристалла содержит одну молекулу исходного соединения и две половины молекул сольватного бензола. Значения длин связей и величин валентных углов внутри КП атома Sb1 приведены в табл. 2.6.

Молекула *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы асимметрична, координация атома сурьмы сильно искаженная тригональнобипирамидальная с карбоксилатными лигандами в аксиальном положении. Степень подобия тригональной бипирамиде составляет Φ_{Δ} =0.5890(2), в то время как степень подобия тетрагональной пирамиде Φ_{\Box} =0.28047(18). Степень тригональности по [7] составляет τ =0.61.

Угол между плоскостями фенильных лигандов C1÷C6 и C7÷C12 составляет приближенно 89°, между плоскостями C1÷C6 и C13÷C18 примерно 87°. Плоскости фенильных лигандов C7÷C12 и C13÷C18 практически параллельны, угол между ними не превышает 4°. Кислотные остатки 3-фурилпропеновой

кислоты плоские, максимальное отклонение от средней плоскости неводородных атомов в фрагменте A не превышает 0.1 Å, в фрагменте B составляет около 0.2 Å. Угол между плоскостями кислотных остатков одной молекулы *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы равен 19°.

Межмолекулярные водородные связи C5A–H5A···O2A*(-x, -y, -z) связывают молекулы в центросимметричные димеры. Расстояния C5A–H5A, H5A···O2A* и C5A···O2A* соответственно равны 0.92(3), 2.50(3), 3.386(4) Å, угол C5A–H5A···O2A* равен 161(3)°. Эквивалентные тепловые параметры атомов C6B, C7B и O3B выше, чем атомов C6A, C7A и O3A (табл. 2.6), так как колебания лиганда A ограничены этой водородной связью.

Между димерами действуют только вандерваальсовы силы, создающие канальную структуру кристалла (рис. 2.5). В каналах, идущих вдоль направления [010], размещаются молекулы бензола. Угол между соседними молекулами бензола в канале составляет около 47°.

Таблица 2.5. – Кристаллографические данные и результаты уточнения параметров атомной структуры кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы с бензолом *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂·*Ph*H (**II**)

Брутто-формула $C_{32}H_{25}O_{6}Sb$ Сингония, пр. гр., Z Триклинная, $P\overline{1}$, 2 9.0389(2), 12.7374(3), 14.8227(3) a, b, c, Å $\alpha, \beta, \gamma, \circ$ 75.544(2), 83.136(2), 81.839(2) $V_{\cdot} Å^3$ 1629.50(6) $\rho_{(\text{выч.})},$ г/см ³ 1.438 МоКα, λ=0.71073 Å, графитовый Излучение, λ, монохроматор μ, мм⁻¹ 0.892 *T*, K 293(2)Размер образца, мм $0.11 \times 0.15 \times 0.17$ Дифрактометр Xcalibur Sapphire3 Gemini Тип сканирования ω-scans Учет поглощения, $T_{\text{min}}/T_{\text{max}}$ 0.976/1.000 Диапазон сканирования обратного 3.29 / 26.37 пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений $-11 \le h \le 11, -15 \le k \le 15, -18 \le l \le 18$ Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2 22195/6653, 0.0311/5881 Полноматричный МНК по F^2 Метод уточнения Число уточняемых параметров 406 S 1.067 R_1 / wR_2 по N_1 0.0343 / 0.0652 R_1 / wR_2 по N_2 0.0277 / 0.0629 Остаточная электронная плотность -0.345, 0.361 $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$ $(\Delta/\sigma)_{\rm max}/(\Delta/\sigma)_{\rm mean}$ -0.345 / 0.361

Рисунок 2.4. – Симметрично-независимый фрагмент атомной структуры кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы с бензолом *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂·*Ph*H (**II**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Рисунок 2.5. – Упаковка молекул в атомной структуре кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы с бензолом *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂·*Ph*H (**II**). Сечение каналов выделено эллипсами

Таблица 2.6. – Длины химических связей и валентные углы для координационного окружения атома сурьмы и эквивалентные тепловые параметры избранных атомов в структуре кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноата] трифенилсурьмы с бензолом *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂·*Ph*H (**II**)

Связь	<i>d</i> , Å	Атом	$U_{ m _{5KB.}}, { m \AA}^2$
Sb1–C1	2.121(2)	C(6A)	0.0819(10)
Sb1–C7	2.100(2)	C(7 <i>A</i>)	0.0938(12)
Sb1-C13	2.108(2)	O(3 <i>A</i>)	0.0792(6)
Sb1–O1 <i>B</i>	2.1159(15)	C(6 <i>B</i>)	0.1162(16)
Sb1–O1A	2.1184(15)	C(7 <i>B</i>)	0.1292(18)
		O(3 <i>B</i>)	0.1111(9)
Угол	ω, °	Угол	ω, °
C7–Sb1–C13	135.43(9)	O1 <i>B</i> –Sb1–O1 <i>A</i>	172.18(6)
C7–Sb1–O1 <i>B</i>	92.68(7)	C7–Sb1–C1	112.59(9)
C13–Sb1–O1 <i>B</i>	90.54(8)	C13–Sb1–C1	111.98(9)
C7–Sb1–O1A	90.33(7)	O1 <i>B</i> –Sb1–C1	86.23(7)
C13–Sb1–O1A	92.38(8)	O1A–Sb1–C1	85.95(7)

§2.3. Рентгеноструктурное исследование кристалла 2,6дибром(4-*mpem*-бутил)фенокси-тетра-пара-толилсурьмы (4-*Me*C₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4)

Кристаллическая структура 2,6-дибром(4-трет-бутил)фенокси-тетра-*пара*толилсурьмы (4-*Me*C₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) (**III**) описывается триклинной пространственной группой $P\overline{1}$ (*Z*=2, *a* = 10.7287(17) Å, *b* = 13.0075(18) Å, *c* = 14.446(2) Å, α = 74.905(7) °, β = 75.639(8) °, γ = 66.692(7) °). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.22 мм, синтезированный методом спонтанной кристаллизации из раствора в бензоле.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.7. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Для модели наездника длины химических связей С–Н и фиксированные изотропные тепловые параметры задавались равными d(C-H) = 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3KB}(C)$. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1435300).

На рис. 2.6 изображен фрагмент структуры исследуемого кристалла (III). По данным РСА, независимый фрагмент структуры кристалла (III) содержит одну молекулу исходного соединения 2,6-дибром(4-трет-бутил)фенокси-тетра-паратолилсурьмы.

Атом сурьмы в молекуле $(4-MeC_6H_4)_4$ SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) имеет искаженную тригонально-бипирамидальную координацию с атомом кислорода ароксильной группы в аксиальном положении. Степень подобия тригональной бипирамиде составляет Φ_{Δ} =0.5132(2), в то время как степень подобия тетрагональной пирамиде Φ_{\Box} =0.18447(18). Степень тригональности по [7] составляет τ =0.84. Значения длин связей и валентных углов координационного полиэдра сурьмы представлены в табл. 2.8.

Атомы третбутильной группы C48–C50 разупорядочены и замещают две позиции с соотношением 0.62/0.38. Угол между позициями разупорядоченного фрагмента составляют около 62° относительно связи C44–C47.

Аксиальный угол O–Sb–C равен 176.82(10)°, сумма углов C–Sb–C в экваториальной плоскости составляет 358.0(3)°. Атом сурьмы выходит из экваториальной плоскости [C₃] в сторону аксиального атома углерода не более чем на 0.2 Å, что вызывает отклонение значений углов между аксиальными и экваториальными связями от теоретического значения 90°. Углы O–Sb–C_{экв} изменяются в интервалах 84.62(10)–86.83(10)°, C_{akc} –Sb–C_{экв} – 93.46(12)–96.35(12)°, связи Sb–C_{экв} совпадают в пределах погрешности измерений и составляют 2.111(3)–2.114(3) Å. Расстояния Sb–C_{акс} [2.174(3) Å] длиннее экваториальных, что характерно для тригонально-бипирамидальных структур. Расстояние Sb–O составляет 2.229(2) Å, что значительно превышает сумму ковалентных радиусов атомов сурьмы и кислорода (2.07 Å [48]).

Упаковка молекул в кристалле представляет собой слоистую структуру. Молекулярные слои располагаются параллельно плоскостям *Oxy* (рис. 2.7) Таблица 2.7. – Кристаллографические данные и результаты уточнения параметров атомной структуры 2,6-дибром(4-трет-бутил)фенокси-тетра-*пара*-толилсурьмы (4-*Me*C₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) (**III**)

Брутто-формула Сингония, пр. гр., Z *a*, *b*, *c*, Å $\alpha, \beta, \gamma, \circ$ V, Å³ $\rho_{(выч.)}, \, \Gamma/c M^3$ Излучение, λ, монохроматор μ , MM⁻¹ *T*, K Размер образца, мм Дифрактометр Тип сканирования Диапазон сканирования обратного пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2) Метод уточнения Число уточняемых параметров S R_1 / wR_2 по N_1 R_1 / wR_2 по N_2 Остаточная электронная плотность $\Delta \rho_{min} / \Delta \rho_{max}$, $3/Å^3$

 $C_{38}H_{39}Br_2OSb$ Триклинная, $P\overline{1}$, 2 10.7287(17), 13.0075(18), 14.446(2) 74.905(7), 75.639(8), 66.692(7) 1763.5(5) 1.494 МоКα, λ=0.71073 Å, графитовый 3.075 273(2) $0.69 \times 0.59 \times 0.24$ **Bruker D8 QUEST** ω-scans 3.477 / 26.370 $-13 \le h \le 13$ $-14 \le k \le 16$ $-18 \le l \le 18$ 19747/7117, 0.0345/5586 Полноматричный МНК по F^2 402 1.016 0.0332/0.0781 0.0492/0.0840 -0.658/0.876

Таблица 2.8. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла 2,6-дибром(4-трет-бутил)фенокси-тетра-*пара*-толилсурьмы (4-*Me*C₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) (**III**)

Связь	$d, \mathrm{\AA}$	Угол	ω, °
Sb1–C1	2.114(3)	C1–Sb1–O31	176.82(10)
Sb1-C11	2.112(3)	C41-O1-Sb1	126.96(19)
Sb1-C21	2.111(3)	C21-Sb1-C1	126.19(12)
Sb1-C31	2.174(3)	C21-Sb1-C11	123.25(12)
Sb1–O1	2.229(2)	C11–Sb1–C1	108.58(12)
O1–C41	1.320(4)	C1-Sb1-C31	94.38(12)
		C1-Sb1-O1	84.75(10)

Рисунок 2.6. – Симметрично-независимый фрагмент атомной структуры кристалла 2,6-дибром(4-трет-бутил)фенокси-тетра-*пара*-толилсурьмы (4-*Me*C₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) (**III**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Рисунок 2.7. – Упаковка молекул в атомной структуре кристалла 2,6дибром(4-трет-бутил)фенокси-тетра-*пара*-толилсурьмы (4-MeC₆H₄)₄SbOC₆H₂(Br₂-2,6)(*t*-Bu-4) (**III**). Штриховыми линиями разделены молекулярные слои

§2.4. Рентгеноструктурное исследование кристалла бис(2,3,4,5,6-пентахлорфенокси)-*трис*(3-фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂

Кристаллическая структура $\delta uc(2,3,4,5,6$ -пентахлорфенокси)-*трис*(3фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂ (**IV**) описывается триклинной пространственной группой $P\overline{1}$ (Z=2, a = 9.6108(11) Å, b = 10.8945(13) Å, c = 16.824(2) Å, $\alpha = 98.129(5)$ °, $\beta = 93.674(5)$ °, $\gamma = 104.553(4)$ °). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.18 мм, полученный методом спонтанной кристаллизации в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.9. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. химических связей C–H Для модели наездника длины И фиксированные изотропные тепловые параметры задавались равными 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3\kappa_{B}}(C).$ Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1473422).

На рис. 2.8 изображен фрагмент структуры исследуемого кристалла $\delta uc(2,3,4,5,6$ -пентахлорфенокси)-трис(3-фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂. Независимый фрагмент кристалла содержит одну молекулу исходного соединения. Атомы сурьмы в (**IV**) имеют искаженную тригональнобипирамидальную координацию. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.5644(4)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.2793(2)$. Степень тригональности по [7] составляет $\tau = 0.66$. Значения длин связей и валентных углов координационного полиэдра сурьмы представлены в табл. 2.10.

Углы между плоскостями арильных колец составляют 5.58° [C19–C24], 87.06° [C13–C18], 89.54° [C25–C30]. Плоскости бензольных колец двух арильных лигандов практически перпендикулярны экваториальной плоскости молекулы, в то время как третий арильный лиганд лежит в этой плоскости. Суммы углов C– Sb–C в экваториальной плоскости близки к идеальному значению (в пределах погрешности эксперимента), при этом отличие величин индивидуальных углов от теоретического не превышает 20°. Фрагменты SbC₃ практически плоские, атом сурьмы выходит из плоскости [C₃] на 0.001 Å. Значения аксиальных углов O–Sb– O близки к идеальному и составляют 174.89(7)°.

Длины связей Sb–C изменяются в интервалах 2.113(3)–2.121(2) Å, среднее значение 2.116(2) Å. В структуре (**IV**) экваториальные связи Sb–C длиннее аксиальных Sb–O, которые превышают сумму ковалентных радиусов атомов сурьмы и кислорода (2.07 Å [48]).

В ходе уточнения атомной структуры соединения (**IV**) обнаружена статистическая разупорядоченность атомов фтора. Определено, что позиции F1A и F2A статистически замещаются примерно ³/₄ атомов фтора, F1B и F2B – примерно ¹/₄.

В упаковке кристалла (IV) одно из фенильных колец C7–C12 заслоняет ему симметрично-эквивалентное в соседней молекуле, что обусловливает взаимодействие *п*-систем (см. рис. 2.9), так называемый *п-п-стекинг-*эффект

[114], [115]. Расстояние между параллельными (вследствие симметрии) плоскостями π -систем арильного и фенильного лигандов не превышает 3.8 Å, относительный сдвиг центров масс колец составляет ~1.5 Å. Взаимодействие подобного типа приводит к образованию димеров, которые и составляют пространственную упаковку в кристалле. На рис. 2.10 представлена молекулярная упаковка в кристалле (**IV**).

Рисунок 2.8. – Симметрично-независимый фрагмент атомной структуры кристалла *бис*(2,3,4,5,6-пентахлорфенокси)-трис(3-фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂ (**IV**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Таблица 2.9. – Кристаллографические данные и результаты уточнения параметров атомной структуры *бис*(2,3,4,5,6-пентахлорфенокси)-трис(3-фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂ (**IV**)

Брутто-формула Сингония, пр. гр., Z *a*, *b*, *c*, Å $\alpha, \beta, \gamma, \circ$ $V_{\cdot} Å^3$ $\rho_{(\text{выч.})},$ г/см 3 Излучение, λ , монохроматор μ, мм⁻¹ *T*, K Размер образца, мм Дифрактометр Тип сканирования Диапазон сканирования обратного пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2) Метод уточнения Число уточняемых параметров R_1 / wR_2 по N_1 R_1 / wR_2 по N_2 Остаточная электронная плотность $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$

 $C_{30}H_{12}O_2F_3Cl_{10}Sb$ Триклинная, $P\overline{1}$, 2 9.6108(11), 10.8945(13), 16.824(2) 98.129(5), 93.674(5), 104.553(4) 1678.8(3) 1.855 МоКα, λ=0.71073 Å, графитовый 1.665 273(2) $0.18 \times 0.13 \times 0.11$ **Bruker D8 QUEST** Ω 2.854 / 30.507 $-13 \le h \le 13$ $-15 \le k \le 15$ $-24 \le l \le 24$ 140415/10246, 0.0305/9106 Полноматричный МНК по F^2 435 1.102 0.0427/0.0922 0.0358/0.0862 0.861/-0.702

Таблица 2.10. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла *бис*(2,3,4,5,6-пентахлорфенокси)-трис(3-фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂ (**IV**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Sb1–O1	2.0983(18)	O1–Sb1–O2	174.89(7)	C13Sb1-C25	100.74(9)
Sb1–O2	2.1061(17)	O1-Sb1-C13	91.54(9)	O1–SbC19	87.46(8)
Sb1–C13	2.113(3)	O2-Sb1-C13	92.19(9)	O2-Sb1-C19	87.55(8)
Sb1-C25	2.114(2)	O1-Sb1-C25	91.60(9)	C13-Sb1-C19	124.16(11)
Sb1-C19	2.121(2)	O2–Sb1–C25	91.14(8)	C25–Sb1–C19	135.10(11)

Рисунок 2.9. – Упаковка молекул *бис*(2,3,4,5,6-пентахлорфенокси)-трис(3фторфенил)сурьмы (3-FC₆H₄)₃Sb(OC₆Cl₅)₂ в структуре кристалла (**IV**). Центры масс фенильных колец С7...С12 обозначены красными точками

Рисунок 2.10. – Упаковка молекул в атомной структуре кристалла $\mathit{бuc}(2,3,4,5,6$ -пентахлорфенокси)-трис(3-фторфенил)сурьмы (3- FC_6H_4)_3Sb(OC_6Cl_5)_2 (**IV**)

§2.5. Рентгеноструктурное исследование кристалла 2,4динитрофенокси-тетра-*пара*-толилсурьмы 4-*Me*(C₆H₄)₄SbOC₆H₃(NO₂)₂-2,4

Кристаллическая структура 2,4-динитрофенокси-тетра-*пара*-толилсурьмы 4-(MeC_6H_4)_4SbOC_6H_3(NO_2)_2-2,4 (V) описывается триклинной пространственной группой $P\overline{1}$ (Z=2, a = 10.9836(5) Å, b = 11.3242(5) Å, c = 14.4420(6) Å, $\alpha = 101.3850(10)$ °, $\beta = 106.0690(10)$ °, $\gamma = 106.3620(10)$ °). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.32 мм, полученный методом спонтанной кристаллизации в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.11. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись использованием разностного Фурье-синтеза электронной с плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Длины химических связей С-Н и фиксированные изотропные тепловые параметры задавались равными 0.96 Å и $U_{\mu_{30}}(H) = 1.5 U_{3\kappa_{B}}(C)$ для водородов метильных фрагментов, 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3\kappa_B}(C)$ для остальных атомов водорода. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССОС 1433797).

На рис. 2.11 изображен фрагмент структуры исследуемого кристалла 2,4- $4-(MeC_6H_4)_4SbOC_6H_3(NO_2)_2-2,4.$ динитрофенокси-тетра-пара-толилсурьмы Независимый кристалла содержит одну молекулу фрагмент исходного соединения. Атомы сурьмы в (V) имеют сильно искаженную тригональнобипирамидальную координацию. Степень подобия тригональной бипирамиде составляет $\Phi_{\Lambda} = 0.2123(2)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.07698(17)$. Степень тригональности по [7] составляет $\tau = 0.93$. Сумма углов в основании бипирамиды не превышает 350°, атом Sb1 не лежит в плоскости основания бипирамиды и сдвинут от центра своего координационного полиэдра в сторону аксиального атома углерода на 0.4 Å. Значения длин связей и валентных углов координационного полиэдра сурьмы представлены в табл. 2.12..

Молекулярная упаковка кристалла (V) состоит из трехмерной сетки молекул 2,4-динитрофенокси-тетра-*пара*-толилсурьмы, связанных слабым вандерваальсовым взаимодействием (см. рис. 2.12).

Таблица 2.11. – Кристаллографические данные и результаты уточнения параметров атомной структуры 2,4-динитрофенокси-тетра-*пара*-толилсурьмы 4-(*Me*C₆H₄)₄SbOC₆H₃(NO₂)₂-2,4 (**V**)

Брутто-формула $C_{34}H_{31}N_2O_5Sb$ Триклинная, Р1, 2 Сингония, пр. гр., Z *a*, *b*, *c*, Å 10.9836(5), 11.3242(5), 14.4420(6) 101.3850(10), 106.0690(10), $\alpha, \beta, \gamma, \circ$ 106.3620(10) $V, Å^3$ 1580.62(12) $\rho_{(\text{выч.})},$ г/см 3 1.406 Излучение, λ, монохроматор МоКα, λ=0.71073Å, графитовый μ , MM⁻¹ 0.915 *T*, K 293(2)Размер образца, мм 0.32×0.22×0.10 Дифрактометр **Bruker D8 QUEST** Тип сканирования ω Диапазон сканирования обратного 3.520 / 26.369 пространства $\theta_{\min} / \theta_{\max}$, ° $-13 \le h \le 13$ Интервалы индексов отражений -11 < k < 13 $-16 \le l \le 18$ Измерено отражений: всего/ 4733/3886, 0.0152/3570 независимых (N_1), $R_{\text{Int}} / c I > 2\sigma(I) (N_2)$ Метод уточнения Полноматричный МНК по F^2 Число уточняемых параметров 383 S 1.128 R_1 / wR_2 по N_1 0.0345/0.0786 R_1 / wR_2 по N_2 0.0303/0.0746 Остаточная электронная плотность 0.30/-0.38 $\Delta\rho_{min}$ / $\Delta\rho_{max}$, <code>э/Å³</code>

Таблица 2.12. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла 2,4динитрофенокси-тетра-*пара*-толилсурьмы 4-(*Me*C₆H₄)₄SbOC₆H₃(NO₂)₂-2,4 (**V**)

Связь	d, Å	Угол	ω, °	Угол	00, °
Sb1-O1	2.507(3)	C21–Sb1–C1	117.83(15)	C11-Sb1-C31	100.93(14)
Sb1-C11	2.111(3)	C21-Sb1-C11	118.29(14)	C21–Sb1–O1	75.31(11)
Sb1-C1	2.106(3)	C1-Sb1-C11	113.20(12)	C1-Sb1-O1	78.92(12)
Sb1-C21	2.105(4)	C21-Sb1-C31	99.25(13)	C11-Sb1-O1	82.98(12)
Sb1-C31	2.134(4)	C1-Sb1-C31	102.92(14)	C31-Sb1-O1	174.42(11)

Рисунок 2.11. – Симметрично-независимый фрагмент атомной структуры кристалла 2,4-динитрофенокси-тетра-*пара*-толилсурьмы 4-(*Me*C₆H₄)₄SbOC₆H₃(NO₂)₂-2,4 (**V**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Рисунок 2.12. – Упаковка молекул в атомной структуре кристалла 2,4динитрофенокси-тетра-*пара*-толилсурьмы 4-(*Me*C₆H₄)₄SbOC₆H₃(NO₂)₂-2,4 (**V**)

§2.6. Рентгеноструктурное исследование кристалла сольвата трииодида [(µ4-сукцинато) гексадекафенилтетрасурьмы] с бензолом [(Ph4Sb)₂O₂CCH₂CH₂CO₂(Ph4Sb)₂][I₃]₂ · 4PhH

Кристаллическая структура сольвата трииодида [(μ_4 -сукцинато) гексадекафенилтетрасурьмы] с бензолом [(Ph_4Sb)₂O₂CCH₂CH₂CO₂(Ph_4Sb)₂]·[I₃]₂·4PhH (**VI**) описывается моноклинной пространственной группой $P2_1/n$ (Z=2, a = 14.8925(7) Å, b = 18.1041(9) Å, c = 21.7591(10) Å, $\beta = 97.407(2)^\circ$). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.58 мм, полученный методом спонтанной кристаллизации в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.13. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись разностного Фурье-синтеза электронной использованием плотности. с Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Для модели наездника длины химических связей С-Н и фиксированные изотропные тепловые параметры задавались равными 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3KB}(C).$ Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1486690).

На рис. 2.13 изображен фрагмент структуры исследуемого кристалла сольвата трииодида [(μ_4 -сукцинато) гексадекафенилтетрасурьмы] с бензолом [($Ph_4Sb_2O_2CCH_2CH_2CO_2(Ph_4Sb_2] \cdot [I_3]_2 \cdot 4PhH$ (**VI**). Независимый фрагмент кристалла содержит половину молекулы [(μ_4 -сукцинато)) гексадекафенилтетрасурьмы], две молекулы бензола и одну молекулу трииодида.

Каждая молекула [(µ₄-сукцинато) гексадекафенилтетрасурьмы] содержит по два независимых атома сурьмы, каждый из которых имеет 5 атомов в первой координационной сфере. Значения длин связей И валентных углов координационных полиэдров сурьмы представлены в табл. 2.14. Степени подобия КП атомов сурьмы и тригональной бипирамиды соответственно равны $\Phi_{\Lambda}[Sb1] = 0.3716(2), \Phi_{\Lambda}[Sb2] = 0.2287(1),$ в то время как их степени подобия относительно тетрагональной пирамиды составляют Φ_{\Box} [Sb1] = 0.1698(1), Φ_{\Box} [Sb2] = 0.07388(17). Таким образом, при сравнении КП атомов Sb1 и Sb2 с идеальными конфигурациями пятивершинников было установлено, что рассматриваемые КП соответствуют искаженной тригонально-бипирамидальной

координации, но геометрически не являются подобными, т.к. взаимное подобие сравниваемых КП составляет $\Phi[Sb1,Sb2] = 0.4569(2)$. Степени тригональности по [7] составляют $\tau[Sb1] = 0.81$, $\tau[Sb2] = 0.92$.

Исключая из первой координационной сферы атомов Sb1 и Sb2 атомы кислорода, можно рассчитать степень подобия соответствующих КП и тетраэдра: $\Phi[Sb1] = 0.3659(2), \Phi[Sb2] = 0.4733(2),$ что свидетельствует о большем вкладе тетраэдрической составляющей в КП Sb2.

Рисунок 2.13. – Симметрично-независимый фрагмент атомной структуры кристалла [(µ₄-сукцинато) гексадекафенилтетрасурьмы] с бензолом [(*Ph*₄Sb)₂O₂CCH₂CH₂CO₂(*Ph*₄Sb)₂]·[I₃]₂·4*Ph*H (**VI**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены. Нумерация атомов приведена только для симметрично-независимого фрагмента

Структура кристалла (VI) образует мономолекулярные слои [(μ_4 -сукцинато) гексадекафенилтетрасурьмы] в направлении (1 $\overline{1}0$) (см. рис. 2.14). Связывание внутри слоя происходит слабыми ван-дер-вальсовыми, а также π - π ароматическими взаимодействиями между симметрично-эквивалентными

кольцами C51–C56. Плоскости взаимодействующих фрагментов параллельны, расстояние между ними составляет ~3.42 Å, относительный сдвиг центров масс колец ~2.44 Å. Между слоями [(µ4-сукцинато) гексадекафенилтетрасурьмы] располагаются трииодид-анионы и сольватные молекулы бензола.

Таблица 2.13. – Кристаллографические данные и результаты уточнения параметров атомной структуры сольвата трииодида [(µ₄-сукцинато) гексадекафенилтетрасурьмы] с бензолом [(Ph₄Sb)₂O₂CCH₂CH₂CO₂(Ph₄Sb)₂]·[I₃]₂·4PhH (**VI**)

Брутто-формула Сингония, пр. гр., Z *a*, *b*, *c*, Å β, ° $V_{\cdot} Å^3$ $\rho_{(выч.)}, \, \Gamma/c M^{3}$ Излучение, λ, монохроматор μ , MM⁻¹ *T*, K Размер образца, мм Дифрактометр Тип сканирования Диапазон сканирования обратного пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2) Метод уточнения Число уточняемых параметров R_1 / wR_2 по N_1 R_1 / wR_2 по N_2 Остаточная электронная плотность $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$

 $C_{124}H_{108}I_6O_4Sb_4$ Моноклинная, $P2_1/n$, 2 14.8925(7), 18.1041(9), 21.7591(10) 97.407(2) 5817.6(5) 1.662 МоКα, λ=0.71073 Å, графитовый 2.561 273(2) $1.11 \times 0.58 \times 0.26$ **Bruker D8 QUEST** ω 6.98 / 25.44 $-17 \le h \le 17, -21 \le k \le 21,$ -26 < l < 2688635/10653, 0.0391/8237 Полноматричный МНК по F^2 568 1.059 0.0765/0.1256 0.0536/0.1065 1.55/-1.44

Таблица 2.14. – Длины химических связей и валентные углы для координационного окружения атомов сурьмы в структуре кристалла сольвата трииодида [(µ4-сукцинато) гексадекафенилтетрасурьмы] с бензолом [(Ph₄Sb)₂O₂CCH₂CH₂CO₂(Ph₄Sb)₂]·[I₃]₂·4PhH (**VI**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Sb1–C1	2.113(6)	C21–Sb1–O1	178.8(2)	C51–Sb2–O2	174.5(3)
Sb1-C11	2.121(7)	C31–Sb1–C11	130.1(3)	C71-Sb2-C41	119.1(3)
Sb1-C21	2.158(7)	C31–Sb1–C1	113.6(3)	C71-Sb2-C61	117.3(3)
Sb1-C31	2.109(8)	C1–Sb1–C11	111.8(3)	C61-Sb2-C41	115.9(3)
Sb1–O1	2.347(4)	C11–Sb1–C21	97.8(3)	C61-Sb2-C51	101.6(4)
Sb2-C41	2.106(7)	C31–Sb1–C21	97.2(3)	C41-Sb2-C51	99.0(3)
Sb2-C51	2.122(8)	C1-Sb1-C21	96.1(2)	C71-Sb2-C51	97.3(3)
Sb2-C61	2.094(7)	C11–Sb1–O1	83.4(2)	C41–Sb2–O2	83.2(2)
Sb2-C71	2.082(4)	C1–Sb1–O1	83.16(19)	C61–Sb2–O2	81.8(2)
Sb2–O2	2.525(4)	C31–Sb1–O1	82.3(2)	C71–Sb2–O2	77.23(19)

Рисунок 2.14. – Упаковка молекул в атомной структуре кристалла [(µ₄сукцинато) гексадекафенилтетрасурьмы] с бензолом [(*Ph*₄Sb)₂O₂CCH₂CH₂CO₂(*Ph*₄Sb)₂]·[I₃]₂·4*Ph*H (**VI**)

§2.7. Рентгеноструктурное исследование кристалла нона(3метилфенил)тристибоксан-1,5-диил *бис*(трифторметансульфоната) с бензолом CF₃OSO₂Sb(3-*Me*C₆H₄)₃OSb(3-*Me*C₆H₄)₃OSb(3-*Me*C₆H₄)₃OSO₂CF₃·*Ph*H

Кристаллическая структура нона(3-метилфенил)тристибоксан 1,5-диил бис(трифторметансульфоната) с бензолом $CF_3OSO_2Sb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSO_2CF_3 · PhH (VII) описывается ромбической пространственной группой Pbcn (Z=4, <math>a = 15.3226(8)$ Å, b = 22.1050(11) Å, c = 21.1017(9) Å). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.23 мм, полученный методом спонтанной кристаллизации в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.15. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись разностного Фурье-синтеза электронной использованием плотности. с Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Для модели наездника длины химических связей С-Н и фиксированные изотропные тепловые параметры задавались равными 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{\nu_{3KB}}(C).$ Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1475061).

На рис. 2.15 изображен фрагмент структуры исследуемого кристалла нона(3-метилфенил)тристибоксан 1,5-диил *бис*(трифторметансульфоната) с бензолом $CF_3OSO_2Sb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSb(3-MeC_6H_4)_3OSO_2CF_3\cdot PhH$ (**VII**). Независимый фрагмент кристалла содержит половину молекулы нона(3-метилфенил)тристибоксан 1,5-диил *бис*(трифторметансульфоната) и половину молекулы бензола.

По данным PCA следует, что в соединении (VII) три фрагмента (3- MeC_6H_4)₃Sb объединены двумя мостиковыми атомами кислорода (рис. 2.15.). Атомы Sb2, C41, C44, H44 располагаются на поворотной оси симметрии второго порядка. Таким образом, молекула CF₃OSO₂Sb(3- MeC_6H_4)₃OSb(3- MeC_6H_4)₃OSO₂CF₃·PhH является симметричной: поворотная ось второго порядка проходит через атомы Sb2, C41, C44.

Атомы Sb имеют сильно искаженную тригонально-бипирамидальную координацию.

Каждая нона(3-метилфенил)тристибоксан 1.5-диил молекула бис(трифторметансульфоната) содержит по два независимых атома сурьмы, каждый из которых имеет 5 атомов в первой координационной сфере. Значения длин связей И валентных углов координационных полиэдров сурьмы представлены в табл. 2.16. Степени подобия КП атомов сурьмы и тригональной бипирамиды соответственно равны $\Phi_{\Lambda}[Sb1] = 0.2527(2), \Phi_{\Lambda}[Sb2] = 0.7130(4), в то$ их степени подобия относительно тетрагональной пирамиды время как составляют $\Phi_{\Box}[Sb1] = 0.08496(17), \Phi_{\Box}[Sb2] = 0.1983(2).$ Таким образом, при сравнении КП атомов Sb1 и Sb2 с идеальными конфигурациями пятивершинников было установлено, что рассматриваемые КП соответствуют искаженной тригонально-бипирамидальной координации, но геометрически не являются КΠ взаимное подобие сравниваемых КΠ подобными, т.к. составляет Φ [Sb1,Sb2] = 0.2575(2). Степени тригональности по [7] составляеют τ [Sb1] = 0.89, τ [Sb2] = 0.93.

Экваториальные углы C–Sb–C находятся в интервале 112.2(2)°–123.92(15), длины связей Sb–C составляют 2.095(5)–2.127(7) Å (см. табл. 2.16), что соответствует характерным расстояниям Sb–C в органических производных сурьмы(V) [18].

В структуре (VII) расстояния между центральным атомом сурьмы и мостиковыми атомами кислорода (2.037(3) Å) больше, чем между терминальными атомами сурьмы и мостиковыми атомами кислорода (1.909(3) Å, 2.037(3) Å). Отметим, что подобные значения связей Sb–O_{мост} (2.032(3) Å, 1.922(3) Å) наблюдаются в единственном структурно охарактеризованном трехъядерном комплексе сурьмы [64], что свидельствует об особенном характере мостиковых связей в рассматриваемых структурах.

Можно предположить, что на расстояния Sb–O в структуре (VII) оказывают влияние стерические факторы. Однако имеющихся к настоящему времени данных явно недостаточно, чтобы судить об этом с полной уверенностью.

Пространственная упаковка молекул в кристалле представляет собой слоистую структуру. Молекулярные слои располагаются перпендикулярно направлению [010], молекулы сольватного бензола встраиваются в слои, связь внутри и между слоями организована вандерваальсовыми взаимодействиями (рис. 2.16).

Таблица 2.15. – Кристаллографические данные и результаты уточнения параметров атомной структуры нона(3-метилфенил)тристибоксан 1,5-диил fuc(трифторметансульфоната) с бензолом CF₃OSO₂Sb(3-MeC₆H₄)₃OSb(3- MeC_6H_4)₃OSb(3- MeC_6H_4)₃OSO₂CF₃·PhH (VII)

Брутто-формула	$C_{71}H_{68}F_6O_8S_2Sb_3$
Сингония, пр. гр., Z	Ромбическая, Pbcn, 4
<i>a</i> , <i>b</i> , <i>c</i> , Å	15.3226(8), 22.1050(11), 21.1017(9)
$V, \text{\AA}^3$	7147.3(6)
$ ho_{(выч.)},$ г/см 3	1.480
Излучение, λ монохроматор	МоКα, λ=0.71073 Å, графитовый
μ , mm ⁻¹	1.251
<i>Т</i> , К	273(2)
Размер образца, мм	0.23 imes 0.22 imes 0.10
Дифрактометр	Bruker D8 QUEST
Тип сканирования	ω
Диапазон сканирования обратного	3 216 / 21 745
пространства $ heta_{\min}$ / $ heta_{\max}$, $^{\circ}$	5.2107 21.745
Интеррацы инцексор отражений	$-15 \le h \le 15, -23 \le k \le 23, -21 \le l \le$
интервалы индексов отражении	21
Измерено отражений: всего/	56258/4198
независимых (N_1) ,	0.0521/3254
$R_{\text{Int}} / \text{c} I > 2\sigma(I) (N_2)$	0.0321/3234
Метод уточнения	Полноматричный МНК по F^2
Число уточняемых параметров	417
S	1.061
R_1 / wR_2 по N_1	0.0492/0.0830
R_1 / wR_2 по N_2	0.0316/0.0723
Остаточная электронная плотность	-0 336/0 623
$\Delta ho_{ m min}$ / $\Delta ho_{ m max}$, 3/Å 3	-0.330/0.023

Таблица 2.16. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла нона(3-метилфенил)тристибоксан 1,5-диил *бис*(трифторметансульфоната) с бензолом CF₃OSO₂Sb(3-*Me*C₆H₄)₃OSb(3

	0				T	
Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °	
Sb1–O1	1.909(3)	O1-Sb1-C21	102.03(18)	O1 ⁽¹⁾ –Sb2–O1	179.82(19)	
Sb1–C21	2.097(5)	O1–Sb1–C1	94.73(17)	$O1^{(1)}$ -Sb2-C31 ⁽¹⁾	93.27(17)	
Sb1–C1	2.099(5)	C21–Sb1–C1	121.7(2)	O1–Sb2–C31 ⁽¹⁾	86.83(17)	
Sb1–C11	2.099(5)	O1–Sb1–C11	96.63(17)	O1 ⁽¹⁾ –Sb2–C31	86.83(17)	
Sb1–O2	2.470(3)	C21–Sb1–C11	117.7(2)	O1-Sb2-C31	93.27(17)	
Sb2–O1 ⁽¹⁾	2.037(3)	C1–Sb1–C11	115.08(19)	C31 ⁽¹⁾ –Sb2–C31	112.2(3)	
Sb2–O1	2.037(3)	O1–Sb1–O2	175.35(13)	O1 ⁽¹⁾ –Sb2–C41	89.91(9)	
Sb2–C31 ⁽¹⁾	2.095(5)	C21–Sb1–O2	82.24(17)	O1-Sb2-C41	89.91(9)	
Sb2-C31	2.095(5)	C1–Sb1–O2	81.36(16)	C31 ⁽¹⁾ –Sb2–C41	123.92(15)	
Sb2-C41	2.127(7)	C11–Sb1–O2	82.85(17)	C31–Sb2–C41	123.92(15)	
Преобразования симметрии: (1) $1 - x$, y , $\frac{1}{2} - z$						

Рисунок 2.15. – Симметрично-независимый фрагмент атомной структуры кристалла нона(3-метилфенил)тристибоксан 1,5-диил бис(трифторметансульфоната) с бензолом CF₃OSO₂Sb(3-MeC₆H₄)₃OSb(3-MeC₆H₄)₃OSb(3-MeC₆H₄)₃OSO₂CF₃·PhH (**VII**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены. Нумерация атомов приведена только для симметрично-независимого фрагмента. Преобразования симметрии: (*) 1 – x, y, ¹/₂ – z

Рисунок 2.16. – Упаковка молекул в атомной структуре кристалла нона(3метилфенил)тристибоксан 1,5-диил *бис*(трифторметансульфоната) с бензолом CF₃OSO₂Sb(3-*Me*C₆H₄)₃OSb(3-*Me*C₆H₄)₃OSb(3-*Me*C₆H₄)₃OSO₂CF₃·*Ph*H (**VII**). Штриховыми линиями разделены молекулярные слои

§2.8. Рентгеноструктурное исследование кристалла 2,3,4,5,6пентахлорфенокситетра-*пара*-толилсурьмы с бензолом *p*-*Tol*₄SbOC₆Cl₅·*Ph*H

Кристаллическая 2,3,4,5,6-пентахлорфенокситетра-*n*структура $p-Tol_4$ SbOC₆Cl₅·*Ph*H толилсурьмы (VIII) описывается триклинной $P\overline{1}$ (Z=2, a = 12.6165(7) Å, b = 12.8659(7) Å, пространственной группой c = 12.8779(6) Å, $\alpha = 106.317(2)^\circ$, $\beta = 104.902(2)^\circ$, $\gamma = 94.292(3)^\circ$). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.37 мм, полученный методом спонтанной кристаллизации в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурного эксперимента и уточнения структуры приведены в табл. 2.17. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент вычислялись Фурье-синтеза с использованием разностного электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Длины химических связей С-Н и фиксированные изотропные тепловые параметры задавались равными 0.96 Å и $U_{\mu_{30}}(H) = 1.5 U_{3KB}(C)$ для водородов метильных фрагментов, 0.93 Å и $U_{_{\rm H30}}({\rm H}) = 1.2 \ U_{_{\rm 3KB}}({\rm C})$ для остальных атомов водорода. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1473086).

На рис. 2.17. изображен фрагмент структуры исследуемого кристалла 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы с бензолом p- Tol_4 SbOC₆Cl₅·PhH (**VIII**). Независимый фрагмент кристалла содержит одну молекулу 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы и одну молекулу бензола.

По данным РСА, атом сурьмы в молекуле 2,3,4,5,6-пентахлорфенокситетра*n*-толилсурьмы имеет искаженную тригонально-бипирамидальную координацию с ароксильным лигандом в аксиальном положении. За счет различия сортов атомов в аксиальных положениях атом сурьмы смещен из плоскости экваториальных атомов углерода на 0.25 Å. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.3872(2)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.12220(17)$. Степень тригональности по [7] составляет $\tau = 0.92$. Значения длин связей и валентных углов координационных полиэдров сурьмы представлены в табл. 2.18.

В молекуле 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы одна из арильных групп колец С8–С14, плоскость которого практически совпадает с экваториальной плоскостью С₃ (угол наклона кольца к экваториальной плоскости

составляет 32.82°), заслоняет ароксигруппу С29–С34, что обусловливает взаимодействие *π*-*π*-*стекинг*-эффект. Идеальная для *π*-*π*-*стекинг*-взаимодействия геометрия искажена: расстояние между центрами *π*-систем арильного и фенильного лигандов равно 3.66 Å, а межплоскостной угол не превышает 20°, что допустимо при таком типе взаимодействий [114, 115].

Кристалл (VIII) имеет канальную структуру. В каналах, расположенных вдоль направления [001], кристаллизуются сольватные молекулы бензола (см. рис. 2.18.).

Таблица 2.17. – Кристаллографические данные и результаты уточнения параметров атомной структуры 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы с бензолом *p*-*Tol*₄SbOC₆Cl₅·*Ph*H (**VIII**)

	1
Брутто-формула	$C_{80}H_{68}Cl_{10}O_2Sb_2$
Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1̄, 2
$a,b,c,{ m \AA}$	12.6165(7), 12.8659(7), 12.8779(6)
$\alpha, \beta, \gamma, \circ$	106.317(2), 104.902(2), 94.292(3)
$V, Å^3$	1914.17(18)
$ρ_{(выч.)}$, $Γ/cm^3$	1.439
Излучение, λ, монохроматор	МоКα, λ=0.71073 Å, графитовый
μ, мм ⁻¹	1.100
Т, К	273(2)
Размер образца, мм	0.37×0.24×0.13
Дифрактометр	Bruker D8 QUEST
Тип сканирования	ω
Диапазон сканирования обратного	1.00 / 22.40
пространства $\theta_{min}/\theta_{max}$, °	1.997 23.40
	$-14 \le h \le 14, -14 \le k \le 14,$
интервалы индексов отражении	$-14 \le l \le 14$
Измерено отражений: всего/	27220/5551
независимых (N_1) ,	57229/5551,
$R_{\rm Int}$ / c $I > 2\sigma(I) (N_2)$	0.0449/48/4
Метод уточнения	Полноматричный МНК по F^2
Число уточняемых параметров	416
S	1.056
R_1 / wR_2 по N_1	0.0473/0.0984
R_1 / wR_2 по N_2	0.0377/0.0995
Остаточная электронная плотность	0.460/0.924
$\Delta ho_{ m min}$ / $\Delta ho_{ m max}$, $ m 3/\AA^3$	-0.400/0.824
	•

Таблица 2.18. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы с бензолом *p*-*Tol*₄SbOC₆Cl₅·*Ph*H (**VIII**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Sb1-C15	2.105(4)	C15–Sb1–C22	118.08(16)	C8–Sb1–C1	97.47(15)
Sb1-C22	2.112(4)	C15–Sb1–C8	121.85(15)	C15-Sb1-O1	83.01(12)
Sb1–C8	2.115(4)	C22–Sb1–C8	115.92(15)	C22-Sb1-O1	84.08(13)
Sb1–C1	2.169(4)	C1–Sb1–O1	177.03(12)	C15-Sb1-C1	94.49(15)
Sb1-O1	2.367(3)	C8–Sb1–O1	82.57(12)	C22-Sb1-C1	98.54(16)

Рисунок 2.17. – Симметрично-независимый фрагмент атомной структуры кристалла 2,3,4,5,6-пентахлорфенокситетра-*n*-толилсурьмы с бензолом *p*-*Tol*₄SbOC₆Cl₅·*Ph*H (**VIII**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены. Нумерация атомов приведена только для симметрично-независимого фрагмента. Преобразования симметрии: (*) 1 – *x*, *y*, ¹/₂ – *z*

Рисунок 2.18. – Упаковка молекул в атомной структуре кристалла 2,3,4,5,6пентахлорфенокситетра-*n*-толилсурьмы с бензолом *p*-*Tol*₄SbOC₆Cl₅·*Ph*H (**VIII**). Сечение каналов выделено эллипсами

§2.9. Рентгеноструктурное исследование псевдосимметричных кристаллов-изоморфов дихлорида и дибромида *mpuc*(4этилфенил)сурьмы (4-*Et*C₆H₄)₃SbCl₂ И (4-*Et*C₆H₄)₃SbBr₂

Кристаллическая структура изоморфов дихлорида *mpuc*(4этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**) и дибромида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**) описывается моноклинной пространственной группой *Cc* (*Z*=4, (**IX**): a = 16.7468(4) Å, b = 12.5109(2) Å, c = 12.0080(3) Å, $\beta = 108.949(3)^{\circ}$, (**X**): a = 16.6565(6) Å, b = 12.7712(2) Å, c = 12.0296(4) Å, $\beta = 109.746(4)^{\circ}$). Для проведения рентгеноструктурного анализа были использованы монокристаллы с наибольшим линейным размером 0.21 (**IX**) и 0.24 (**X**) мм, полученные в результате синтеза.

Кристаллографические характеристики, параметры рентгеноструктурных экспериментов и уточнения структур приведены в табл. 2.19. Начальный фрагмент структуры соединений находился с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Длины химических связей С–Н и фиксированные изотропные тепловые параметры задавались равными 0.96 Å и $U_{_{H30}}(H) = 1.5 U_{_{3KB}}(C)$ для водородов метильных фрагментов, 0.93 Å и $U_{_{H30}}(H) = 1.2 U_{_{3KB}}(C)$ для остальных атомов водорода. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 1502963 (**IX**), 1502962 (**X**)).

На рис. 2.19 и 2.20 изображены фрагменты структур исследуемых кристаллов дихлорида mpuc(4-этилфенил)сурьмы $(4-EtC_6H_4)_3SbCl_2$ (**IX**) и дибромида mpuc(4-этилфенил)сурьмы $(4-EtC_6H_4)_3SbBr_2$ (**X**). Независимый фрагмент кристалла содержит одну молекулу соединения.

По данным РСА, атом сурьмы в молекуле имеет искаженную тригональнобипирамидальную координацию с атомами галогенов в аксиальных положениях. Степень подобия КП сурьмы в кристалле (**IX**) тригональной бипирамиде составляет $\Phi_{\Delta} = 0.4894(5)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.1177(2)$. В (**X**) степень подобия КП сурьмы тригональной бипирамиде составляет $\Phi_{\Delta} = 0.4562(9)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.1132(2)$. Степени тригональности по [7] составляют $\tau = 0.95$ и $\tau = 0.97$ для кристаллов (**IX**) и (**X**) соответственно.

Значения длин связей и валентных углов координационных полиэдров сурьмы представлены в табл. 2.20.

Окружение атома сурьмы в каждом из соединений является тригональнобипирамидальным. Аксиальные углы Cl1–Sb1–Cl2 и Br1–Sb1–Br2 в соединениях (IX) и (X) равны 178.30(18)° и 179.68(9)° соответственно. Атомы сурьмы смещены из экваториальной плоскости [C₃] примерно на 0.06 Å в каждом из соединений, суммы углов C–Sb–C в экваториальных плоскостях составляют 359.8(6)° и 359.5(13)° соответственно в (IX) и (X). Средние значения длин связей Sb–C в (IX) (2.098 Å) чуть меньше соответствующего в (X) (2.112 Å). Расстояния Sb1–Cl(2) и Sb1–Br1(2) несколько больше суммы ковалентных радиусов указанных атомов (2.16 Å и 2.31 Å [48] для Sb–Cl и Sb–Br соответственно).

Молекулярная упаковка кристаллов (**IX**) и (**X**) эквивалентна и представляет собой трехмерную сетку молекул дихлорида и дибромида *mpuc*(4-этилфенил)сурьмы, соответственно, связанных слабыми вандерваальсовыми взаимодействиями (см. рис. 2.21).

Таблица 2.19. – Кристаллографические данные и результаты уточнения параметров атомной структуры дихлорида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**) и дибромида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**)

Брутто-формула	$C_{24}H_{27}Cl_2Sb$	$C_{24}H_{27}Br_2Sb$	
Сингония, пр. гр., Z	Моноклин	ная, Сс, 4	
2	16.7468(4),	16.6565(6),	
<i>a, b, c,</i> Å	12.5109(2),	12.7712(2),	
	12.0080(3)	12.0296(4)	
β , °	108.949(3)	109.746(4)	
$V, \text{\AA}^3$	2379.55(10)	2408.51(14)	
$ρ_{(\text{выч.})},$ Γ/cm ³	1.418	1.646	
Излучение, λ, монохроматор	ΜοΚα, λ=0.71073	3 Å, графитовый	
µ, мм ⁻¹	1.39	4.47	
Т, К	293	(2)	
Размер образца, мм	$0.21 \times 0.15 \times 0.11$	$0.24 \times 0.19 \times 0.13$	
Дифрактометр	Xcalibur Sapp	hire3 Gemini	
Тип сканирования	ω		
Учет поглощения, T_{min}/T_{max}	0.78257 / 1	0.82787 / 1	
Диапазон сканирования обратного	7 2 / 66 2	7 2 / 52 7	
пространства θ_{min} / θ_{max} , °	1.27 00.2	1.27 32.1	
	$-25 \le h \le 25$	$-20 \le h \le 20$	
Интервалы индексов отражений	$-18 \le k \le 18$	$-15 \le k \le 15$	
	$-18 \le l \le 18$	$-15 \le l \le 15$	
Измерено отражений: всего/	23778/8004	17181/4803	
независимых (N_1) ,	0.0192/6254	1/101/4095, 0.0224/3074	
$R_{\rm Int}$ / c $I > 2\sigma(I) (N_2)$	0.0172/0254	0.0224/3774	
Метод уточнения	Полноматричный МНК по F^2		
Число уточняемых параметров	24	7	
S	1.134	1.068	
R_1 / wR_2 по N_1	0.0515/ 0.0952	0.0699/ 0.2075	
R_1 / wR_2 по N_2	0.0358/0.0856	0.0571/0.1911	
Остаточная электронная плотность	0.000/0.501		
$\Delta ho_{ m min}$ / $\Delta ho_{ m max}$, $ m 3/\AA^3$	-0.323/0.531	-2.075/0.938	
	1		

Таблица 2.20. – Длины химических связей и валентные углы для координационного окружения атомов сурьмы в структуре кристаллов дихлорида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**) и дибромида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °			
	(IX)							
Sb1-C1	2.082(8)	C1-Sb1-C21	118.8(4)	C11–Sb1–Cl1	89.2(3)			
Sb1-C11	2.114(7)	C1-Sb1-C11	121.50(15)	C1-Sb1-Cl2-	90.1(3)			
Sb1-C21	2.098(3)	C21–Sb1–C11	119.5(4)	C21–Sb1–Cl2	92.2(2)			
Sb1-Cl1	2.473(3)	C1–Sb1–Cl1	88.9(3)	C11–Sb1–Cl2	92.5(3)			
Sb1-Cl2	2.519(4)	C21–Sb1–Cl1	87.1(2)	Cl1-Sb1-Cl2	178.30(18)			
(X)								
Sb1-C1	2.120(18)	C1-Sb1-C21	120.8(8)	C11–Sb1–Br1	91.0(6)			
Sb1-C11	2.11(2)	C1-Sb1-C11	121.6(5)	C1–Sb1–Br2	88.0(6)			
Sb1-C21	2.108(10)	C21–Sb1–C11	117.3(9)	C21–Sb1–Br2	88.5(7)			
Sb1-Br1	2.623(2)	C1–Sb1–Br1	92.3(6)	C11–Sb1–Br2	88.9(6)			
Sb1-Br2	2.597(3)	C21–Sb1–Br1	91.2(7)	Br1–Sb1–Br2	179.68(9)			

Рисунок 2.19. – Симметрично-независимый фрагмент атомной структуры кристалла дихлорида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Рисунок 2.20. – Симметрично-независимый фрагмент атомной структуры кристалла дибромида *трис*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Рисунок 2.21. – Упаковка молекул в атомной структуре кристаллов дихлорида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**) и дибромида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**)

На разностном синтезе электронной плотности кристалла (**X**) наблюдается минимум -2 э/Å³, что, вероятно, обусловлено неудовлетворительным учетом поглощения рентгеновского излучения образцом в ходе эксперимента. Другой возможной причиной может служить ангармонизм тепловых колебаний атома брома. Косвенно об этом свидетельствует положение минимума электронной плотности относительно центра атома брома (Br2) и общий вид функции разностного синтеза электронной плотности (см. сечение на рис. 2.22).

Рисунок 2.22. – Карта разностного синтеза электронной плотности вдоль сечения элементарной ячейки кристалла дибромида *mpuc*(4этилфенил)сурьмы (4-EtC₆H₄)₃SbBr₂ (**X**) вблизи атома Br2. Сечения изолиний приведены с шагом 0.13 э/Å³

Оба соединения кристаллизуются В нецентросимметричной пространственной группе Cc, однако являются псевдосимметричными. была исследована Псевдосимметрия кристаллов методом, предложенным Е.В. Чупруновым и реализованным в программном комплексе *PseudoSymmetry* [87, 89]. Установлено, что кристаллы (IX) и (X) псевдоинвариантны относительно операции инверсии со степенями инвариантности электронной плотности $\eta_{\tau}[\rho] = 0.94$ и $\eta_{\tau}[\rho] = 0.90$ соответственно. Уточненные координаты центров инверсии (0.06, 0.25, 0.06) и (0.06, 0.25, 0.05) соответствуют координатам (x, 1/4, y).

Появление псевдоцентра инверсии в каждом случае закономерно приводит к появлению псевдоосей второго порядка – поворотных и винтовых с той же степенью инвариантности для соответствующих операторов. В группе симметрии *Сс* есть свобода выбора начала координат, удобно начало координат в каждой из

структур выбрать в центре псевдоинверсии. Добавив элементы псевдосимметрии пространственной группы, график можно определить на И надгруппу псевдосимметрии C2/c. Если наложить данных кристаллов: проекцию пространственной группы на проекцию структуры (см. рис. 2.23), легко заметить, что поворотная ось второго порядка проходит через центральные атомы сурьмы молекулы, то есть молекулы соединений дихлорида и дибромида *трис*(4этилфенил)сурьмы псевдосимметричны. Асимметричным является один их этильных фрагментов арильного лиганда.

Высокое значение псевдосимметрии является индикатором возможного структурного фазового перехода 2-го рода с повышением группы симметрии для *C*2/*c*.

Рисунок 2.23. – Проекция пространственной группы *C*2/*c*, наложенная на на проекцию структуры дихлорида *mpuc*(4-этилфенил)сурьмы (4-EtC₆H₄)₃SbCl₂ (**IX**). Розовым цветом показаны элементы группы симметрии *Cc*; зеленым, синим и красным показаны элементы псевдосимметрии

§2.10. Рентгеноструктурное исследование кристалла бис[(2*E*,4*E*)-гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂

Кристаллическая структура бис[(2*E*,4*E*)-гекса-2,4-диеноата] трифенилсурьмы Ph_3 Sb(OCOCH=CHCH=CHCH_3)₂ (**XI**) описывается триклинной пространственной группой симметрии $P\overline{1}$ (*Z* = 2, *a* = 8.8079(3) Å, *b* = 10.3621(4) Å, *c* = 15.4203(5) Å, *a* = 99.105(3)°, *β* = 98.905(3)°, *γ* = 93.993(3)°). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.28 мм, полученный методом спонтанной кристаллизации из системы гексан–ТГФ 4:1.

Кристаллографические характеристики, параметры рентгеноструктурных экспериментов и уточнения структур приведены в табл. 2.21. Начальный фрагмент структуры расшифрован методом тяжелого атома, положения неводородных атомов были определены из разностных синтезов электронной плотности и уточнены в анизотропном приближении методом наименьших квадратов по $|F|^2$. Длины химических связей С–Н и фиксированные изотропные тепловые параметры задавались равными 0.96 Å и $U_{изо}(H) = 1.5 U_{экв}(C)$ для водородов метильных фрагментов, 0.93 Å и $U_{изо}(H) = 1.2 U_{экв}(C)$ для остальных атомов водорода. Результаты рентгеноструктурных исследований депонированы в КБСД [113] (ССDС № 1055084).

На рис. 2.24 представлен фрагмент атомной структуры бис[(2E,4E)-гекса-2,4-диеноата] трифенилсурьмы. На одну элементарную ячейку приходится две молекулы бис[(*2E*, *4E*)-гекса-2, 4-диеноата] трифенилсурьмы, симметричных связанных центром инверсии. Координационный полиэдр атома сурьмы – искаженная тригональная бипирамида, в основании которой лежат атомы углерода фенильных лигандов, а вершинами являются атомы кислорода карбоксилатных лигандов А и В. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.4197(3)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.3706(3)$. Степень тригональности по [7] составляет $\tau = 0.47$. Межатомные расстояния И валентные углы приведены В табл. 2.22. Карбоксилатные лиганды имеют геометрию, близкую к плоской. Угол между плоскостями карбоксилатных лигандов одной молекулы не превышает 10°.

Расстояния Sb1…O2A и Sb1…O2B в структуре (**XI**), приблизительно равные 2.87 Å, меньше суммы вандервальсовых радиусов сурьмы и кислорода (3.60 Å) [48], что неоднократно наблюдалось в кристаллах дикарбоксилатов трифенилсурьмы [94, 95, 116, 117].

В структуре исследованного кристалла молекулы связаны между собой слабыми вандервальсовыми взаимодействиями. Карбоксильные лиганды соседних молекул в структуре кристаллов располагаются плоскопараллельно, расстояния между олефиновыми C=C фрагментами в обеих парах близки и составляют около 4.00 Å (см. рис. 2.25). Это значение несколько больше, чем для описанного ранее аналогичного соединения сурьмы с (2*E*)-бут-2еновой кислотой (C₆H₅)₃Sb(OCOCH=CHCH₃)₂ (3.67 Å) [117]. Данный факт может иметь значение при исследовании возможности сополимеризации соединения (**XI**). Подобное расположение молекул позволяет предположить о возможном межмолекулярном π ... π взаимодействии между *А*-лигандами, что приводит к образованию димеров, которые и составляют молекулярную упаковку кристалла (**XI**) (см. рис. 2.26).

Рисунок 2.24. – Симметрично-независимый фрагмент кристалла бис[(2*E*,4*E*)гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂ (**XI**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Таблица 2.21. – Кристаллографические данные и результаты уточнения параметров атомной структуры бис[(2E,4E)-гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂ (**XI**) ____

Брутто-формула	$C_{30} H_{29} O_4 Sb$
Сингония, пр. гр., Z	Триклинная, $P\overline{1}$, 2
a, b, c, Å β, \circ $V, Å^3$ $ ho_{(выч.)}, г/см^3$ Излучение, λ , монохроматор $\mu, мм^{-1}$ T, K	8.8079(3), 10.3621(4), 15.4203(5) 99.105(3), 98.905(3), 93.993(3) 1366.50(8) 1.398 МоКα, λ=0.71073 Å, графитовый 1.041 293(2)
Размер образца, мм	0.28×0.23×0.17
Дифрактометр Тип сканирования Учет поглощения, T_{min}/T_{max} Диапазон сканирования обратного пространства $\theta_{min}/\theta_{max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2) Метод уточнения Число уточняемых параметров	Хсаlibur Sapphire 3 Gemini $_{0}^{0}$ $0.806/0.876$ 28.28 $-11 \le h \le 11, -13 \le k \le 13, -20 \le l \le 20$ $28651/6761,$ $0.0184/6230$ Полноматричный МНК по F^2 318
S	1.067
R_1 / wR_2 по N_1	0.0263/0.0592
R_1 / wR_2 по N_2	0.0233/0.0577
Остаточная электронная плотность $\Delta \rho_{min} / \Delta \rho_{max}$, э/Å 3	-0.494/0.975

Таблица 2.22. – Длины химических связей и валентные углы для координационного окружения атома сурьмы в структуре кристалла бис[(2*E*,4*E*)-гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂ (**XI**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Sb1–C13	2.1084(17)	C13-Sb1-O1A	90.46(6)	C7–Sb1–C1	105.44(7)
Sb1–O1A	2.1153(13)	C13–Sb1–C7	144.83(8)	C13–Sb1–O1B	89.79(6)
Sb1–C7	2.1158(17)	O1A-Sb1-C7	91.89(6)	O1A–Sb1–O1B	173.09(5)
Sb1–C1	2.1177(18)	C13-Sb1-C1	109.73(7)	C7–Sb1–O1B	91.88(6)
Sb1–O1B	2.1232(13)	O1A-Sb1-C1	87.01(6)	C1–Sb1–O1B	86.40(6)

Рисунок 2.25. – Короткие расстояния между карбоксильными лигандами соседних молекул в кристалле бис[(2E,4E)-гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂ (**XI**)

Рисунок 2.26. – Упаковка молекул в структуре кристалла бис[(2E,4E)-гекса-2,4-диеноата] трифенилсурьмы *Ph*₃Sb(OCOCH=CHCH=CHCH₃)₂ (**XI**)

Заключение по главе 2

В главе 2 были рассмотрены 11 структур кристаллов комплексов пятивалентной сурьмы, содержащих 13 симметрично независимых КП сурьмы.

Семь соединений типа Ar_3SbX_2 (I), (II), (IV), (IX)–(XI) содержат по одному симметрично-независимому атому сурьмы, находящемуся в искаженной тригонально-бипирамидальной координации. Степени подобия КП тригональной бипирамиде принимают значения в диапазоне $0.48 \le \Phi_{\Delta} \le 0.59$. КП сурьмы в II (дикарбоксилате трифенилсурьмы) характеризуется наибольшей степенью подобия тригональной бипирамиде. Наиболее сильно искаженные КП встречается в кристаллах дигалогенидов *трис*(4-этилфенил)сурьмы за счет разницы ионных радиусов углерода и галогенов, входящих в координационную сферу сурьмы.

Три соединения типа *p*-*Tol*₄SbX (**III**), (**V**), (**VIII**), каждое из которых также содержит по одному симметрично-независимому атому сурьмы, характеризуются разными типами КП. Во всех трех соединениях четыре из пяти лигандов одинаковы, пространственные группы симметрии кристаллов совпадают. Несмотря на то, что кристаллы (**III**) и (**V**) не имеют в своей структуре растворителей, а объемы элементарной ячейки различаются менее чем на 15%, КП сурьмы характеризуется искаженной тригональной бипирамидой с $\Phi_{\Delta} \approx 0.51$ в соединении (**III**), а в соединении (**V**) – с $\Phi_{\Delta} \approx 0.21$.

В каждом из кристаллов многоядерных комплексов сурьмы (VI)–(VII) присутствует по два симметрично-независимых атома сурьмы. В кристалле (VII) трехъядерного комплекса с мостиковыми связями атом сурьмы, находящийся в частной кристаллографической позиции с симметрией C₂, характеризуется степенью подобия тригональной бипирамиде выше 0.71, что является самым высоким показателем среди всех исследованных кристаллических структур. В кристалле четырехъядерного комплекса (VI) КП сурьмы представляют собой сильно искаженную тригональную бипирамиду ($\Phi_{\Delta, a} \approx 0.37$, $\Phi_{\Delta, b} \approx 0.23$).

ГЛАВА 3. РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ НЕКОТОРЫХ КОМПЛЕКСОВ ПЯТИВАЛЕНТНОГО ВИСМУТА

В главе рассмотрены основные результаты монокристального рентгеноструктурного анализа образцов кристаллов пяти комплексов пятивалентного висмута. Для удобства изложения в данной главе нумерация структур продолжена. Таким образом, образцы кристаллов и соответствующие им кристаллические структуры соединений висмута имеют номера (XII-XVI) (см. табл 2.1).

Рентгенодифракционные эксперименты для образцов (XII), (XIII), (XVI) проводились на четырехкружном рентгеновском дифрактометре Oxford Diffraction Gemini S с CCD-детектором Sapphire 3.

Рентгенодифракционные эксперименты для образцов (XIV), (\mathbf{XV}) проводились на четырехкружном рентгеновском дифрактометре Rigaku XTaLab Pro MM003 с каппа-гониометром и гибридным координатным детектором Pilatus200К. В экспериментах использовалось излучение МоКα (λ=0.71073 Å), генерируемое микрофокусной рентгеновской трубкой MicroMax 003 молибденовым анодом. Режим работы рентгеновской трубки задавался стандартным 50 кВ / 0.6 мА. Для выполнения экспериментов при низких температурах использовалась приставка Oxford Cobra, способная поддерживать температуру исследуемого образца при температурах 80-400 К.

Для рентгеновских исследований образцы подготавливались преимущественно в виде призм или шариков, размером приблизительно 0.2 мм, в некоторых случаях использовались осколки кристаллов, обладающие наиболее изометричной формой.

Перед началом измерений образец юстировался оптически с помощью цифровой видеокамеры по стандартной методике.

Для обработки экспериментальных данных использовался комплекс CrysAlisPro [106]. При этом производился расчет направлений дифракционных максимумов, определение параметров элементарной ячейки, присвоение дифракционным рефлексам индексов, расчет интенсивностей дифракционных отражений, определение пространственной группы симметрии кристалла.

Поглощение уточнялось эмпирически с использованием сферических гармоник по алгоритму SCALE3 ABSPACK, теоретически с использованием сферического описания формы образца (для кристаллов, подготовленных с помощью обкатной машинки), а также с использованием полиэдрического описания формы образца в программном комплексе CrysAlisPro [106].

Поиск начального фрагмента атомных структур проводился прямыми методами или методом функции Паттерсона. Поиск всех атомов производился с помощью анализа карт разностного синтеза электронной плотности. Уточнение всех параметров атомных структур проводилось методом наименьших квадратов с использованием весовой схемы. Все перечисленные выше операции по решению обратной задачи рентгеноструктурного анализа монокристаллов проводились в программных комплексах SHELX97–2014 [107] с применением оболочек WinGX [108] и ShelxLe [109].

Анализ координационного полиэдра висмута выполнялся с использованием т-параметра [7] и Ф-параметра, описанного в гл.1, §1.4. Исследование псевдосимметричных структур проводилось с использованием метода расчета степени инвариатности электронной плотности относительно операций симметрии, описанного в гл.1, §1.6.

§3.1. Рентгеноструктурное исследование кристалла *бис*(бут-2еноато-к*O*) трифенилвисмута (дикротоната трифенилвисмута) *Ph*₃Bi(C₄H₅O₂)₂

Кристаллическая структура *бис*(бут-2-еноато-к*O*) трифенилвисмута $Ph_3\text{Bi}(\text{C}_4\text{H}_5\text{O}_2)_2$ (**XII**) описывается триклинной пространственной группой симметрии $P\overline{1}$ (Z = 2, a = 10.4710(3) Å, b = 10.4957(3) Å, c = 11.9774(3) Å, $\alpha = 84.941(2)^\circ$, $\beta = 83.633(2)^\circ$, $\gamma = 69.084(3)^\circ$). Для проведения рентгеноструктурного анализа был использован монокристалл, полученный методом спонтанной кристаллизации из раствора в бензоле.

Кристаллографические характеристики, параметры рентгеноструктурных экспериментов и уточнения структур приведены в табл. 3.1. Начальный фрагмент структуры соединения был найден с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент, вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Длины химических связей в длинами связей С-Н и фиксированные 0.96 Å равными изотропные тепловые параметры задавались И $U_{_{\rm H30}}({\rm H}) = 1.5 \ U_{_{3\rm KB}}({\rm C})$ для водородов метильных фрагментов, 0.93 Å и $U_{_{\rm H30}}({\rm H}) = 1.2$ U_{экв}(С) для остальных атомов водорода. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 954525).

На рис. 3.1 изображен симметрично-неэквивалентный фрагмент структуры исследуемого кристалла (**XII**). Асимметричный фрагмент кристалла содержит одну молекулу исходного соединения.

Молекула дикротоната трифенилвисмута асимметрична, координация атома висмута – сильно искаженная тригонально-бипирамидальная с карбоксилатными лигандами в аксиальном положении. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.3804(2)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.3559(2)$. Степень тригональности по [7] составляет $\tau = 0.40$. Значения длин связей и величин валентных углов внутри КП атома Bi1 приведены в табл. 3.2. Карбоксильные лиганды имеют плоское строение, угол между плоскостями лигандов A и B не превышает 5°. Расстояния Bi–O2A и Bi–O2B составляют 2.787(3) Å и 2.734(3) Å, соответственно, и существенно ниже суммы вандерваальсовых радиусов для висмута и кислорода, равной 3.85 Å [48].

Упаковка молекул в кристалле $Ph_3Bi(C_4H_5O_2)_2$ (**XII**) представляет собой слоистую структуру. Молекулярные слои перпендикулярны направлению [010] (см. рис. 3.2). Межмолекулярное связывание внутри слоев и между соседними слоями обеспечивается слабыми вандерваальсовыми взаимодействиями.

Рисунок 3.1. – Симметрично-независимый фрагмент атомной структуры кристалла *бис*(бут-2-еноато-к*O*) трифенилвисмута *Ph*₃Bi(C₄H₅O₂)₂ (**XII**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Таблица 3.1. – Кристаллографические данные и результаты уточнения параметров атомной структуры *бис*(бут-2-еноато-к*O*) трифенилвисмута *Ph*₃Bi(C₄H₅O₂)₂ (**XII**)

Брутто-формула Сингония, пр. гр., Z *a*, *b*, *c*, Å $\alpha,\beta,\gamma,^{\,\circ}$ $V_{\cdot} Å^3$ $\rho_{(\text{выч.})},$ г/см ³ Излучение, λ, монохроматор μ , MM⁻¹ *T*, K Размер образца, мм Дифрактометр Тип сканирования Учет поглощения, $T_{\text{min}}/T_{\text{max}}$ Диапазон сканирования обратного пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1) , $R_{\rm Int}$ / c $I > 2\sigma(I) (N_2)$ Метод уточнения Число уточняемых параметров S R_1 / wR_2 по N_1 R_1 / wR_2 по N_2 Остаточная электронная плотность $\Delta\rho_{min}$ / $\Delta\rho_{max}$, <code>э/ų</code>

 $C_{26}H_{25}BiO_4$ Триклинная, $P\overline{1}$, 2 10.4710(3), 10.4957(3), 11.9774(3) 84.941(2), 83.633(2), 69.084(3) 1220.32(6) 1.661 МоКα, λ=0.71073 Å, графитовый 7.251 293(2)0.09 Xcalibur Sapphire3 Gemini ω-scans 0.810/13.43/26.37 $-13 \le h \le 13, -13 \le k \le 13$ $-14 \le l \le 14$ 17262/4946, 0.0244/4620 Полноматричный МНК по F^2 280 1.114 0.0228/ 0.0501 0.0200/0.0500 -0.843/0.646

Таблица 3.2. – Длины химических связей и валентные углы для координационного окружения атома висмута в структуре кристалла *бис*(бут-2-еноато-к*O*) трифенилвисмута *Ph*₃Bi(C₄H₅O₂)₂ (**XII**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Bi–C7	2.201(3)	C7–Bi–C1	148.62(13)	C13–Bi–O1B	86.30(14)
Bi–C1	2.205(3)	C7–Bi–C13	106.20(13)	C7–Bi–O1A	89.80(11)
Bi-C13	2.226(4)	C1–Bi–C13	105.10(13)	C1–Bi–O1A	89.73(11)
Bi-O1B	2.283(3)	C7–Bi–O1B	90.15(11)	C13–Bi–O1A	86.65(14)
Bi–O1A	2.309(2)	C1–Bi–O1B	94.13(11)	O1B-Bi-O1A	172.64(9)

Рисунок 3.2. – Упаковка молекул в атомной структуре кристалла *бис*(бут-2еноато-кO) трифенилвисмута $Ph_3Bi(C_4H_5O_2)_2$ (**XII**). Штриховыми линиями разделены молекулярные слои

§3.2. Рентгеноструктурное исследование кристалла бис(3фенилпроп-2-еноат) трифенилвисмута *Ph*₃Bi(OCOCH=CHC₆H₅)₂

Кристаллическая структура *бис*(3-фенилпроп-2-еноат) трифенилвисмута *Ph*₃Bi(OCOCH=CHC₆H₅)₂ (**XIII**) описывается моноклинной пространственной группой симметрии *C*2/*c* (*Z* = 4, *a* = 13.2820(4) Å, *b* = 21.3750(2) Å, *c* =12.2407(2) Å, β = 119.936(1)°). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.08 мм, полученный методом замены растворителей бензола и гексана.

Кристаллографические характеристики, параметры рентгеноструктурных экспериментов и уточнения структур приведены в табл. 3.3. Начальный фрагмент структуры соединения *бис*(3-фенилпроп-2-еноато) трифенилвисмута (**XIII**) был определен с использованием прямых методов, позиции неводородных атомов, не входящих в начальный фрагмент вычислялись с использованием разностного Фурье-синтеза электронной плотности. Координаты атомов водорода были определены геометрически и уточнялись по модели наездника. Для модели наездника длины химических связей С–Н и фиксированные изотропные тепловые параметры задавались равными 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3KB}(C)$. Результаты рентгеноструктурного исследования депонированы в КБСД [113] (ССDС 990872).

Вид молекулы соединения Ph_3 Bi(OCOCH=CHC₆H₅)₂ представлен на рис. 3.3. Асимметричный фрагмент кристалла содержит одну молекулу исходного соединения. Значения длин связей и величин валентных углов внутри КП атома Bi1 приведены в табл. 3.4. Координационный полиэдр – искаженная тетрагональная пирамида, вершине соответствует атом углерода C7 фенильного лиганда. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.3865(2)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.3993(2)$. Степень тригональности по [7] составляет $\tau = 0.41$.

Координаты атомов С1 и С1* инвариантны относительно поворота вокруг оси симметрии второго порядка, проходящей через атомы С7 и Ві. Следовательно, атомы С7, Ві, С1 и С1* строго лежат в одной плоскости.

Суммы валентных углов в основании координационного полиэдра висмута O1–Bi–O2, O2–Bi–O2* и O2*–Bi–O1*; O1*–Bi–C7, C7–Bi–O1 составляют 360.04(19)°.

Одно из фенильных колец пространственно разупорядочено и занимает две позиции C7C8AC9AC10C9A*C8A* (позиция A) и C7C8BC9BC10C9B*C8B* (позиция B) с вероятностью 0.55 (3) и 0.45 (3) соответственно. Геометрические центры позиций A и B совпадают, угол между их плоскостями примерно составляет 28°.

Угол между фенильными лигандами C1C2C3C4C5C6 и C1*C2*C3*C4*C5*C6* примерно составляет 13°. Углы между плоскостями указанных фенильных колец и плоскостью C7C8AC9AC10C9A*C8A* составляют примерно по 66°, а с плоскостью C7C8AC9AC10C9A*C8A* примерно по 86°.

Кислотные остатки коричной кислоты имеют плоскую форму, максимальное отклонение от усредненной плоскости неводородных атомов составляет около 0.1 Å. Угол между плоскостями кислотных остатков одной молекулы (XIII) не превышает 5°.

Структура опубликованного ранее кристалла *бис*(3-фенилпроп-2-еноата) трифенилсурьмы [47] (**XIII***) изоморфна структуре исследуемого *бис*(3-фенилпроп-2-еноато) трифенилвисмута (**XIII**). Параметры элементарной ячейки кристалла (**XIII***) отличаются менее, чем на 1% от соответствующих параметров элементарной ячейки кристалла (**XIII***). Валентные углы, описывающие координацию атома металла в кристаллах (**XIII**) и (**XIII***), отличаются не более чем на 1%.

Геометрия циннаматных лигандов схожа с геометрией, описанной для структуры (XIII*) и циннамата тетрафенилсурьмы [118] (XIII**). Длины связей в кислотных остатках коричной кислоты в (XIII) и (XIII**) приближенно совпадают, максимальное отличие составляет 7%.

Расстояние Ві… О2 в структуре (XIII) (табл. 3.4) меньше суммы вандерваальсовых радиусов висмута и кислорода [48] и превышает длину связи Ві–О1 примерно на 17%. В атомных структурах кристаллов (XIII*) и (XIII**) наблюдается аналогичная ситуация, некоторые расстояния металл-кислород меньше суммы соответствующих вандерваальсовых радиусов. В структурах (XIII*) и (XIII**) внутримолекулярные контакты металл-кислород превышают длины химических связей металл-кислород в соответствующем соединении примерно на 21% и на 47% соответственно. В работах [17, 103] описаны аналогичные внутримолекулярные контакты Ві… О=С в дикарбоксилатах трифенилвисмута.

Упаковка молекул в кристалле $Ph_3Bi(OCOCH=CHC_6H_5)_2$ (XIII) представляет собой слоистую структуру. Молекулярные слои перпендикулярны направлению [010] (см. рис. 3.4). Межмолекулярное связывание внутри слоев и между соседними слоями обеспечивается вандерваальсовыми взаимодействиями.

Таблица 3.3. – Кристаллографические данные и результаты уточнения параметров атомной структуры кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноато] трифенилсурьмы *Ph*₃Bi(OCOCH=CHC₆H₅)₂ (**XIII**)

Брутто-формула $C_{36}H_{29}O_4Bi$ Сингония, пр. гр., Z Моноклинная, С2/с, 4 *a*, *b*, *c*, Å 13.2820(4), 21.3750(2), 12.2407(2) β, ° 119.936(1) V. Å³ 3011.52(11) $\rho_{(\text{выч.})},$ г/см ³ 1.62 Излучение, λ,монохроматор МоКα, λ=0.71073 Å, графитовый μ , MM⁻¹ 5.892 *T*, K 293(2)Размер образца, мм 0.08 Xcalibur Sapphire3 Gemini Дифрактометр Тип сканирования ω Учет поглощения, T_{\min}/T_{\max} 0.971/1.000 Диапазон сканирования обратного 3.36/28.28 пространства $\theta_{\min} / \theta_{\max}$, ° $-17 \le h \le 17, -28 \le k \le 28,$ Интервалы индексов отражений $-16 \le l \le 16$ Измерено отражений: всего/ независимых (N_1) , 28721/3723, $R_{\text{Int}} / c I > 2\sigma(I) (N_2)$ 0.0228/3569 Полноматричный МНК по F^2 Метод уточнения 257 Число уточняемых параметров 1.100 S R_1 / wR_2 по N_1 0.0125 / 0.0285 R_1 / wR_2 по N_2 0.0110 / 0.0278 Остаточная электронная плотность 0.591/-0.336 $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$

Рисунок 3.3. – Симметрично-независимый фрагмент атомной структуры кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноато] трифенилсурьмы *Ph*₃Bi(OCOCH=CHC₆H₅)₂ (**XIII**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены.

*) симметрично-эквивалентная позиция -1 - x, y, -0.5 - z

Таблица 3.4. – Длины химических связей и валентные углы для координационного окружения атома висмута в структуре кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноато] трифенилсурьмы *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂ (**XIII**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °
Bi–C1	2.1996(15)	C1–Bi–C7	104.68(4)	C1–Bi–O1	89.56(5)
Bi–C7	2.220(2)	C1–Bi–C1*	150.64(8)	C1*–Bi–O1	91.64(5)
Bi–O1	2.3109(11)	O1-Bi-O1*	175.25(5)	O1–Bi–O2	51.66(4)
Bi–O2	2.6904(11)	O1–Bi–C7	87.63(3)	O2–Bi–O2*	81.46(5)
*)	1	1	1	0.5	

*) симметрично-эквивалентная позиция -1 - x, y, -0.5 - z.

Рисунок 3.4. – Упаковка молекул в атомной структуре кристалла *бис*[(2*E*)-3-(2-фурил)проп-2-еноато] трифенилсурьмы *Ph*₃Sb[O₂CCH=CH(C₄H₃O)]₂ (**XIII**). Штриховыми линиями разделены молекулярные слои

§3.3. Рентгеноструктурное исследование кристалла бис[3-(2фурил)акрилата] трифенилвисмута с тетрагидрофураном *Ph*₃Bi[O₂CCH=CH(C₄H₃O)]₂·C₄H₈O

Кристаллическая структура $\delta uc[3-(2-фурил)$ акрилата] трифенилвисмута с тетрагидрофураном $Ph_3Bi[O_2CCH=CH(C_4H_3O)]_2 \cdot C_4H_8O$ (**XIV**) описывается моноклинной пространственной группой симметрии $P\overline{1}$ (Z = 2, a = 10.68799(2) Å, b = 12.49721(8) Å, c = 12.51738(3) Å, $\alpha = 87.823(5)^\circ$, $\beta = 80.825(4)^\circ$, $\gamma = 89.601(5)^\circ$). Для проведения рентгеноструктурного анализа был использован монокристалл, полученный методом замены растворителей бензола и гексана.

Кристаллографические данные и результаты уточнения структуры приведены в табл. 3.5. Исследования проводились при комнатной температуре. Начальный фрагмент атомной структуры был найден методом тяжелого атома и уточнен методом наименьших квадратов в анизотропном, для неводородных водорода приближении. Положения атомов были атомов, определены геометрически и уточнялись по модели наездника (для атомов водорода фенильных колец и карбоксилатных лигандов d(C-H)=0.93 Å, $U_{\mu_{30}}=1.2U_{3KB}$; для атомов водорода сольватной молекулы тетрагидрофурана (ТГФ) d(C-H)=0.97 Å U_{изо}=1.2U_{экв}). Результаты рентгеноструктурных исследований депонированы в КБСД [113] (ССDС № 1548598).

3.5 фрагмент На рис. представлен атомной структуры бис[3-(2фурил)акрилата] трифенилвисмута с тетрагидрофураном $Ph_{3}Bi[O_{2}CCH=CH(C_{4}H_{3}O)]_{2} \cdot C_{4}H_{8}O$ (**XIV**). Симметрично-независимый фрагмент кристалла содержит одну молекулу соединения бис[3-(2-фурил)акрилата] трифенилвисмута и одну молекулу растворителя ТГФ. Атом Ві координирован с тремя фенильными и двумя карбоксилатными лигандами. Молекула *бис*[3-(2фурил)акрилата] трифенилвисмута в структуре имеет сходство с молекулой бис[3-(2-фурил)акрилат] трифенилсурьмы $Ph_3Sb[O_2CCH=CH(C_4H_3O)]_2$ **(II)**. исследованного нами ранее кристалла [95]. Длины связей координационного окружения атома висмута и валентные углы приведены в табл. 3.6.

Координационный полиэдр атома висмута в исследованном соединении – искаженная тригональная бипирамида (КЧ=5), в основании которой расположены атомы углерода фенильных лигандов, а вершинами являются атомы кислорода карбоксилатных лигандов. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.3888(2)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.3747(2)$. Степень тригональности по [7] составляет $\tau = 0.42$.

Углы между плоскостями фенильных лигандов C1÷C6 и C7÷C12, C7÷C12 и C13÷C18 отличаются незначительно и составляют 86° и 89.4° соответственно,

между плоскостями C1÷C6 и C13÷C18 – 28.7°. Угол между плоскостями кислотных остатков одной молекулы (**XIV**) не превышает 10°.

Расстояния Bi1...O2 и Bi1...O5 составляют около 2.75 Å, что меньше суммы вандерваальсовых радиусов этих атомов (3.80 Å [48]). Это позволяет говорить о наличии дополнительной слабой координации атома висмута.

Кислотные остатки, относящиеся к одной молекуле исследованного соединения (**XIV**), являются *транс*-изомерами фурилакриловой кислоты. Однако в отличие от рассмотренного ранее соединения с сурьмой (**XIV***), карбоксильные лиганды не эквиваленты и различаются поворотом карбонильной группы относительно некратной химической связи $-O_2C-C=$.

Было показано отсутствие тесных межмолекулярных контактов двойных связей С=С ненасыщенных карбоксилатных фрагментов соседних молекул друг с другом (эти расстояния превышают 4 Å). Следовательно, данное соединение отличается от диакрилата трифенилсурьмы, имеющего соответствующие контакты двойных связей (3.64 Å) [5], что может обеспечить возможность полимеризации вещества при нагревании кристалла.

Молекулы в кристалле (XIV) связаны между собой слабыми вандерваальсовыми взаимодействиями и имеют канальную структуру. В каналах, расположенных вдоль направления [010], кристаллизуются сольватные молекулы ТГФ (см. рис. 3.6), тепловые параметры атомов которых выше, чем для атомов молекулы основного соединения. Это говорит о возможной неупорядоченности позиций ТГФ.

Таблица 3.5. – Кристаллографические данные и результаты уточнения параметров атомной структуры *бис*[3-(2-фурил)акрилата] трифенилвисмута с тетрагидрофураном *Ph*₃Bi[O₂CCH=CH(C₄H₃O)]₂·C₄H₈O (**XIV**)

Брутто-формула	$C_{36}H_{33}BiO_7$		
Сингония, пр. гр., Z	Триклинная, <i>Р</i> 1, 2		
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.6880(6), 12.4972(7), 12.5174(7)		
α, β, γ, °	87.823(5), 80.825(4), 89.601(5)		
$V, Å^3$	1649.37(16)		
$ρ_{(выч.)}$, $Γ/cm^3$	1.584		
Излучение, λ, монохроматор	ΜοΚα, λ=0.71073 Å		
μ, мм ⁻¹	5.391		
Т, К	293(2)		
Размер образца, мм	0.34 imes 0.2 imes 0.17		
Дифрактометр	Rigaku XTALab Pro		
Тип сканирования	ω		
Учет поглощения, T_{min}/T_{max}	0.851/1.000		
апазон сканирования обратного	3 55/26 37		
пространства θ_{\min} / θ_{\max} , °	5.55720.57		
интервалы индексов отражений	$-13 \le h \le 13, -15 \le k \le 15,$		
	<i>−</i> 15≤ <i>l</i> ≤15		
Измерено отражений:			
всего/ независимых (N_1) ,	36564/6739,		
$R_{\rm Int}$ / c $I > 2\sigma(I) (N_2)$	0.1037/5734		
Метод уточнения	Полноматричный МНК по F^2		
Число уточняемых параметров	397		
S	1.025		
R_1 / wR_2 по N_1	0.0581/0.0736		
R_1 / wR_2 по N_2	0.0439/0.0683		
таточная электронная плотность	0.002/ 1.278		
183	0.902/-1.2/0		
Учет поглощения, T_{min}/T_{max} апазон сканирования обратного пространства $\theta_{min}/\theta_{max}$, ° Интервалы индексов отражений Измерено отражений: всего/ независимых (N_1), R_{Int} / с $I > 2\sigma(I)$ (N_2) Метод уточнения Число уточняемых параметров S R_1/wR_2 по N_1 R_1/wR_2 по N_2 статочная электронная плотность	0.851/1.000 3.55/26.37 -13≤h≤13, -15≤k≤15, -15≤l≤15 36564/6739, 0.1037/5734 Полноматричный МНК по F 397 1.025 0.0581/0.0736 0.0439/0.0683 0.902/-1.278		

Рисунок 3.5. – Симметрично-независимый фрагмент кристалла бис[3-(2фурил)акрилата] трифенилвисмута с тетрагидрофураном Ph₃Bi[O₂CCH=CH(C₄H₃O)]₂·C₄H₈O (**XIV**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера

Таблица 3.6. – Длины химических связей и валентные углы для координационного окружения атома висмута в структуре кристалла *бис*[3-(2-фурил)акрилата] трифенилвисмута с тетрагидрофураном *Ph*₃Bi[O₂CCH=CH(C₄H₃O)]₂·C₄H₈O (**XIV**)

Связь	d, Å	Угол	ω, °	Угол	ω, °
Bi1–C1	2.201(5)	01-Bi1-04	174.52(14)	O4-Bi1-C1	91.35(17)
Bi1–C7	2.232(5)	C13-Bi1-C1	149.1(2)	C13-Bi1-O1	89.68(18)
Bi1–C13	2.206(6)	C7–Bi1–C1	105.72(19)	O1-Bi1-C1	89.16(17)
Bi1–O1	2.319(4)	C7-Bi1-C13	105.0(2)	C7-Bi1-O4	87.4(2)
Bi1–O2	2.751(4)	C13-Bi1-O4	92.67(19)	C7-Bi1-O1	87.26(19)
Bi1–O4	2.296(4)	•	1	•	•
Bi1–O5	2.748(5)				

104

Рисунок 3.6. – Упаковка молекул в атомной структуре кристалла *бис*[3-(2фурил)акрилата] трифенилвисмута с тетрагидрофураном *Ph*₃Bi[O₂CCH=CH(C₄H₃O)]₂·C₄H₈O (**XIV**). Сечение каналов выделено эллипсами

§3.4. Рентгеноструктурное исследование кристалла ди-*мета*нитроциннамата трифенилвисмута с тетрагидрофураном *Ph*₃Bi(O₂CCH=CH-C₆H₄NO₂-*m*)₂·2C₄H₈O

Кристаллическая структура ди-*мета*-нитроциннамата трифенилвисмута с тетрагидрофураном $Ph_3Bi(O_2CCH=CH-C_6H_4NO_2-m)_2\cdot 2C_4H_8O$ (**XV**) описывается моноклинной пространственной группой симметрии $P2_1$ (Z = 2, a = 8.7365(2) Å, b = 18.2560(4) Å, c = 12.9949(3) Å, $\beta = 101.535(2)^\circ$). Для проведения рентгеноструктурного анализа был использован монокристалл, полученный методом замены растворителей бензола и гексана.

Кристаллографические данные результаты И уточнения структуры приведены в табл. 3.7. Исследования проводились при комнатной температуре. Начальный фрагмент атомной структуры был найден методом тяжелого атома и уточнен методом наименьших квадратов в анизотропном, для неводородных приближении. Положения были атомов. атомов водорода определены

геометрически и уточнялись по модели наездника (для атомов водорода фенильных колец и карбоксилатных лигандов d(C-H)=0.93 Å, $U_{\mu_{30}}=1.2U_{3\kappa_B}$; для атомов водорода сольватной молекулы ТГФ d(C-H)=0.97 Å $U_{\mu_{30}}=1.2U_{3\kappa_B}$). Координаты и изотропные тепловые параметры атомов водорода H23, H29, H41A, участвующих в межмолекулярных водородных связях, были уточнены без ограничений. Результаты рентгеноструктурных исследований депонированы в КБСД [113] (ССDС № 1548599).

На рис. 3.7 представлен фрагмент атомной структуры ди-*мета*нитроциннамата трифенилвисмута. Асимметричный фрагмент кристалла содержит одну молекулу ди-*мета*-нитроциннамата трифенилвисмута и две молекулы растворителя тетрагидрофурана. Атом Ві координирован с тремя фенильными и двумя карбоксилатными лигандами. Избранные длины связей и валентные углы приведены в табл. 3.8.

Координационный полиэдр атома висмута – искаженная тригональная бипирамида (КЧ=5), в основании которой расположены атомы углерода фенильных лигандов, а вершинами являются атомы кислорода карбоксилатных лигандов. Степень подобия тригональной бипирамиде составляет $\Phi_{\Delta} = 0.4103(4)$, в то время как степень подобия тетрагональной пирамиде $\Phi_{\Box} = 0.2989(3)$. Степень тригональности по [7] составляет $\tau = 0.43$.

Расстояние Bi1...O2 и Bi1...O6 составляет 2.84 Å и 2.80 Å соответственно, что меньше суммы вандерваальсовых радиусов этих атомов (3.80 Å [48]). Это, как и в случае структуры (**XIV**), позволяет говорить о наличии дополнительной слабой координации атома висмута. Такой эффект, характерный для дикарбокслатов трифенилвисмута и трифенилсурьмы, связывают с искажением углов в C–Bi–C в основании тригональной бипирамиды (см. табл. 3.8).

Углы между плоскостями фенильных лигандов C1÷C6 и C7÷C12, C7÷C12 и C13÷C18 отличаются незначительно и составляют приблизительно 65.7° и 70.3° соответственно, между плоскостями C1÷C6 и C13÷C18 – 39°. Угол между плоскостями кислотных остатков одной молекулы ди-*мета*-нитроциннамата трифенилвисмута не превышает 5°.

Кристалл (**XV**) имеет канальную структуру. В каналах, расположенных вдоль направления [100] кристаллизуются сольватные молекулы ТГФ (см. рис. 3.8). Тепловые параметры атомов одной из молекул ТГФ: С37, С38, С39, С40, О10 выше, чем для атомов молекулы основного соединения. Это говорит о возможной неупорядоченности позиций ТГФ.

Таблица 3.7. – Кристаллографические данные и результаты уточнения параметров атомной структуры ди-*мета*-нитроциннамата трифенилвисмута с тетрагидрофураном *Ph*₃Bi(O₂CCH=CH-C₆H₄NO₂-*m*)₂·2C₄H₈O (**XV**)

 $C_{44}H_{43}BiN_2O_{10}$ Брутто-формула Сингония, пр. гр., Z Моноклинная, $P2_1$, 2 *a*, *b*, *c*, Å 8.7365(2), 18.2560(4), 12.9949(3) β, ° 101.535(2) $V_{\cdot} Å^3$ 2030.75(8) $\rho_{(выч.)}, \, \Gamma/c M^3$ 1.584 Излучение, λ, монохроматор ΜοΚα, λ=0.71073 Å μ, мм⁻¹ 4.402 *T*, K 100(2)Размер образца, мм $0.38 \times 0.31 \times 0.22$ Дифрактометр Rigaku XTALab Pro Тип сканирования ω 0.464/1.000 Учет поглощения, T_{\min}/T_{\max} Диапазон сканирования обратного 26.37 пространства $\theta_{\min} / \theta_{\max}$, ° $-10 \le h \le 10, -22 \le k \le 22,$ Интервалы индексов отражений *−*16*≤l*≤16 Измерено отражений: всего/ независимых (N_1) , 25585/8084, 0.0332/7841 R_{Int} / c $I > 2\sigma(I)$ (N_2) Полноматричный МНК по F^2 Метод уточнения 533 Число уточняемых параметров 1.033 S 0.0207 0.0485 R_1 / wR_2 по N_1 0.0197/0.0483 R_1 / wR_2 по N_2 Остаточная электронная плотность 0.666/-0.653 $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/{\rm \AA}^3$

Рисунок 3.7. – Симметрично-независимый фрагмент кристалла ди-*мета*нитроциннамата трифенилвисмута с тетрагидрофураном *Ph*₃Bi(O₂CCH=CH-C₆H₄NO₂-*m*)₂·2C₄H₈O (**XV**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены

Таблица 3.8. – Длины химических связей и валентные углы для координационного окружения атомов висмута в структуре кристалла ди-*мета*-нитроциннамата трифенилвисмута с тетрагидрофураном *Ph*₃Bi(O₂CCH=CH-

СВЯЗЬ	<i>d</i> , A	Угол	ω,°	Угол	ω,°
Bi2–C1 2	2.198(5)	O1-Bi2-O5	169.49(18)	O1-Bi2-C1	92.27(14)
Bi2–C7 2	2.221(5)	C13-Bi2-C1	143.72(18)	O5Bi2-C1	92.03(17)
Bi2–C13 2	2.199(4)	C7-Bi2-C13	108.55(17)	C13-Bi2-O1	89.70(14)
Bi2–O1 2	2.289(3)	C7-Bi2-C1	107.7(2)	C7-Bi2-O1	84.85(15)
Bi1–O2 2	2.835(4)	C13-Bi2-O5	92.49(13)	C7-Bi2-O5	84.7(2)
Bi2–O5 2	2.296(3)				
Bi1–O6 2	2.798(4)				

$$C_{6}H_{4}NO_{2}-m_{2}\cdot 2C_{4}H_{8}O(XV)$$

Рисунок 3.8. – Упаковка молекул в атомной структуре кристалла ди-*мета*нитроциннамата трифенилвисмута с тетрагидрофураном *Ph*₃Bi(O₂CCH=CH-C₆H₄NO₂-*m*)₂·2C₄H₈O (**XV**). Сечение каналов выделено эллипсами

§3.5. Рентгеноструктурное исследование кристалла дипентаноата трифенилвисмута (C₆H₅)3Sb(OCOCH=CHCH=CHCH₃)₂

Кристаллическая структура трифенилвисмута дипентаноата $Ph_3Sb(OCO(CH_2)_4CH_3)_2$ (XVI) описывается моноклиной пространственной Cc (Z = 12,a = 42.1532(4) Å, b = 9.61700(10) Å, группой симметрии c = 20.3735(2) Å, $\beta = 92.7860(10)^{\circ}$). Для проведения рентгеноструктурного анализа был использован монокристалл с наибольшим линейным размером 0.3 мм, полученный методом спонтанной кристаллизации из системы гексан-ТГФ 4:1.

Кристаллографические характеристики, параметры рентгеноструктурных экспериментов и уточнения структур приведены в табл. 3.9. Начальный фрагмент структуры расшифрован методом тяжелого атома, положения неводородных атомов были определены из разностных синтезов электронной плотности и уточнены в анизотропном приближении методом наименьших квадратов по $|F|^2$. Длины химических связей С–Н и фиксированные изотропные тепловые параметры атомов водорода задавались равными 0.96 Å и $U_{\mu_{30}}(H) = 1.5 U_{3\kappa_B}(C)$ для водородов метильных фрагментов, 0.93 Å и $U_{\mu_{30}}(H) = 1.2 U_{3\kappa_B}(C)$ для остальных атомов водорода. Результаты рентгеноструктурных исследований депонированы в КБСД [113] (ССDС №1845636).

На рис. 3.9 представлен фрагмент атомной структуры дипентаноата трифенилвисмута. Асимметричный фрагмент кристалла содержит полторы молекулы дипентаноата трифенилвисмута. Атом Ві координирован с тремя фенильными и двумя карбоксилатными лигандами в каждой из двух симметрично-независимых молекул.

Координационный полиэдр атома висмута – искаженная тригональная бипирамида. Степени подобия КП атомов висмута и тригональной бипирамиды соответственно равны $\Phi_{\Lambda}[Bi1] = 0.3610(2), \Phi_{\Lambda}[Bi2] = 0.3953(2),$ в то время как их пирамиды степени подобия относительно тетрагональной составляют Φ_{\Box} [Bi1] = 0.3419(2), Φ_{\Box} [Bi2] = 0.3183(2). Таким образом, при сравнении КП атомов Bi1 и Bi2 с идеальными конфигурациями пятивершинников было установлено, что рассматриваемые КП соответствуют искаженной тригональнобипирамидальной координации, но геометрически не являются подобными, т.к. взаимное подобие сравниваемых КП составляет $\Phi[Bi1,Bi2] = 0.8435(4)$. Однако, стоит отметить, что сходство КП Bi1 и Bi2 весьма высоко. Степени тригональности по [7] составляют τ [Bi1] = 0.36, τ [Bi2] = 0.40. Межатомные расстояния и валентные углы приведены в табл. 3.10.

Карбоксилатные лиганды имеют сложную геометрию, в молекуле Bi2 они эквивалентны вследствие симметрии, в молекуле Bi1 карбоксилатные лиганды отличаются.

Молекулярная упаковка (**XVI**) представляет собой трехмерную сетку молекул дипентаноата трифенилвисмута, связанных слабым вандерваальсовым взаимодействием (см. рис. 3.10).

разностном Ha синтезе электронной плотности (XVI), кристалла э/Å³, что, наблюдается минимум -3.2вероятно, обусловлено неудовлетворительным учетом поглощения рентгеновского излучения образцом в ходе эксперимента и волнами обрыва ряда Фурье. Косвенно об этом свидетельствует положение минимума электронной плотности относительно центра атома висмута (Bi2) и общий вид функции разностного синтеза электронной плотности (см. рис. 3.11).

Таблица 3.9. – Кристаллографические данные и результаты уточнения параметров атомной структуры дипентаноата трифенилвисмута *Ph*₃Sb(OCO(CH₂)₄CH₃)₂ (**XVI**)

Брутто-формула Сингония, пр. гр., Z *a*, *b*, *c*, Å β, ° V. Å³ $\rho_{(\text{выч.})},$ г/см ³ Излучение, λ, монохроматор μ , MM⁻¹ *T*, K Размер образца, мм Дифрактометр Тип сканирования Учет поглощения, T_{\min}/T_{\max} Диапазон сканирования обратного пространства $\theta_{\min} / \theta_{\max}$, ° Интервалы индексов отражений Измерено отражений: всего/независимых (N_1) , $R_{\text{Int}} / c I > 2\sigma(I) (N_2)$ Метод уточнения Число уточняемых параметров S R_1 / wR_2 по N_1 R_1 / wR_2 по N_2 Остаточная электронная плотность $\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $3/Å^3$

C₃₀ H₃₇ Bi O₄ Моноклинная, *C*2/*c*, 12 42.1532(4), 9.61700(10), 20.3735(2) 92.7860(10) 8249.40(14) 1.62 МоКα, 0.71073 Å, графит 6.444 293(2) $0.295 \times 0.213 \times 0.108$ Xcalibur Sapphire3 Gemini ω 0.55173 / 1 3.333 - 27.099 $-54 \le h \le 54, -12 \le k \le 12$ $-26 \le l \le 26$ 71372 / 9036, 0.0314/8771 Полноматричный МНК по F^2 478 1.177 0.0241/0.0522 0.023/0.0518 -1.674/3.219

Рисунок 3.9. – Симметрично-независимый фрагмент кристалла соединения дипентаноата трифенилвисмута *Ph*₃Sb(OCO(CH₂)₄CH₃)₂ (**XVI**). Эллипсоиды тепловых колебаний изображены на 30% от реального размера, атомы водорода на рисунке не представлены.

Код симметрии: 1-x, y, 1/2 - z

Рисунок 3.10. – Упаковка молекул в структуре кристалла дипентаноата трифенилвисмута *Ph*₃Sb(OCO(CH₂)₄CH₃)₂ (**XVI**)

Таблица 3.10. – Длины химических связей и валентные углы для координационного окружения атомов висмута в структуре кристалла дипентаноата трифенилвисмута *Ph*₃Sb(OCO(CH₂)₄CH₃)₂ (**XVI**)

Связь	<i>d</i> , Å	Угол	ω, °	Угол	ω, °	
Bi1–C1	2.203(3)	O1-Bi1-O3	170.31(8)	O5–Bi2–O5 ^(I)	169.80(12)	
Bi1–C11	2.201(4)	C1-Bi1-C21	148.93(13)	C51 ^(I) –Bi2–C51	145.73(17)	
Bi1–C21	2.209(3)	C11–Bi1–C1	106.30(12)	C51-Bi2-C61	107.14(8)	
Bi1–O1	2.292(2)	C11-Bi1-C21	104.75(12)	C51 ^(I) –Bi2–C61	107.14(8)	
Bi1–O3	2.305(2)	C1–Bi1–O1	93.64(10)	C51 ^(I) –Bi2–O5 ^(I)	92.28(10)	
Bi2–C51*	2.205(3)	C21-Bi1-O3	92.80(10)	C51-Bi2-O5	92.27(10)	
Bi2-C51	2.205(3)	C21-Bi1-O1	89.96(10)	C51 ^(I) –Bi2–O5	90.73(10)	
Bi2-C61	2.227(4)	C1–Bi1–O3	88.78(10)	C51–Bi2–O5 ^(I)	90.72(10)	
Bi2-O5	2.303(2)	C11-Bi1-O3	85.36(10)	C61–Bi2–O5 ^(I)	84.90(6)	
Bi2-05*	2.303(2)	C11-Bi1-O1	84.96(10)	C61-Bi2-O5	84.90(6)	
$V_{0,T}$ and $V_{0,T}$						

Код симметрии: 1*–x*, *y*, 1/2 *–z*

Рисунок 3.11. – Карта разностного синтеза электронной плотности вдоль сечения элементарной ячейки кристалла дипентаноата трифенилвисмута *Ph*₃Sb(OCO(CH₂)₄CH₃)₂ (**XVI**) вблизи атома Bi2. Сечение изолиний приведены с шагом 0.2 э/Å³

Заключение по главе 3

Были исследованы 5 кристаллов соединений дикарбоксилатов трифенилвисмута *Ph*₃BiX₂, содержащих 6 симметрично-независимых КП висмута.

Шесть КП висмута соответствуют искаженной тригональнобипирамидальной конфигурации. Степени подобия этих КП тригональной бипирамиде принимают значения в диапазоне $0.36 \le \Phi_{\Delta} \le 0.40$, что в среднем несколько меньше, чем в аналогичных соединениях сурьмы.

Молекулы основного вещества в комплексах (XIV) и (II), рассмотренного в главе 2, имеют одинаковый набор лигандов и отличаются, главным образом, только сортом атома-комплексообразователя. Однако КП атомов-комплексообразователей отличаются: искаженная тригональная бипирамида ($\Phi_{\Delta} \approx 0.39$) для комплекса висмута (XIV) и искаженная тригональная бипирамида ($\Phi_{\Delta} \approx 0.59$) для комплекса сурьмы (II). Степень подобия полиэдров сурьмы и висмута в комплексах (XIV) и (II) $\Phi \approx 0.61$.

Разница между степенями подобия КП тригональной пирамиде и тетрагональной бипирамиде для четырех из шести КП висмута в исследованных структурах не превышает 0.025, что говорит о геометрии КП, близкой и к тригонально-бипирамидальной, и к тетрагонально-пирамидальной одновременно.

ГЛАВА 4. АНАЛИЗ КООРДИНАЦИОННОГО ОКРУЖЕНИЯ SB(V) И BI(V) В КРИСТАЛЛАХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ МЕТОДОМ РАСЧЕТА СТЕПЕНИ ПОДОБИЯ КООРДИНАЦИОННЫХ ПОЛИЭДРОВ

§4.1. Свойства функции степени подобия координационных полиэдров

Описанный в §1.4 метод расчета степени подобия Φ может быть рассмотрен на примере простых плоских трехвершинников. Пусть *T* задает некоторый трехвершинник относительно идеальной конфигурации – правильного треугольника *S*.

Пример I. Подобие координационных трехвершинников с равными длинами связей.

Пусть в качестве стандарта *S* выбран правильный треугольник. Искаженные КП опишем серией равнобедренных треугольников $\{T_i\}$, полученных варьированием угла θ , как это показано на рис. 4.1.

Рисунок 4.1. – К рассмотрению зависимости степени подобия КП от искажения валентных углов

Пусть относительная ориентация КП T и S остается такой, как показано на рис. 4.1, то есть совпадают векторы $\mathbf{t}_1 = \mathbf{s}_1$. Симметрия задачи такова, что максимальное значение функция (1.8) принимает при взаимном расположении трехвершинников, изображенном на рис. 4.1. При этом оказывается решенной задача поиска максимума функции и мы можем рассчитывать значение подобия по следующей формуле:

$$\Phi(T,S) = \prod_{i=1}^{n} p_i \exp(-\lambda \cdot \vartheta_i), \qquad (4.1)$$

где *n* – КЧ.

Каждому треугольнику T_i поставим в соответствие отношение углов θ_i/θ_0 , где $\theta_0=3\pi/2$. Таким образом, в данной задаче функцию $\Phi(T_i,S)$ можно обозначать $\Phi(\theta/\theta_0)$. Если $\theta_i/\theta_0=1$, то *T* совпадает со стандартом *S*, значение Φ тождественно равно единице.

На рис. 4.2 построено несколько зависимостей $\Phi(\theta/\theta_0)$ для разных значений параметра λ в (4.1).

Рисунок 4.2. – Зависимость степени подобия КП $\Phi(\theta/\theta_0)$ при разных значениях λ в диапазоне $0 \le \theta \le \pi$

Величина параметра λ влияет на ширину максимума $\Phi(\theta/\theta_0)$ углов КП. При увеличении λ пик $\Phi(\theta/\theta_0)$ в точке $\theta_i/\theta_0=1$ «обостряется». При стремлении λ к нулю (4.1) асимптотически стремится к:

$$\Phi = \cos^2\left(\frac{\theta_0 - \theta_i}{2}\right). \tag{4.2}$$

Для количественных расчетов необходимо задаться значением параметра λ . Выберем величину λ_0 так, что полная ширина пика $\Phi(\theta_i/\theta_0)$ на полувысоте составляла FWHM=0.5 (рис. 4.2). Тогда

$$\lambda_0 = \frac{6}{\pi} \ln \left[2\cos^2\left(\frac{\pi}{12}\right) \right] \approx 1.19139.$$
(4.3)

Пример II. Подобие координационных трехвершинников с равными валентными углами.

Пусть в качестве стандарта *S* выбран правильный треугольник. Искажения стандарта опишем серией равнобедренных треугольников $\{T_i\}$, полученных варьированием длины вектора \mathbf{t}_1 (см. рис. 4.3).

Рисунок 4.3. – К рассмотрению зависимости степени подобия КП от искажений длин связей

Очевидно, что при искажении только длин векторов в (4.1) $\vartheta_i = 0$.

Каждому треугольнику T_i поставим в соответствие отношение модулей векторов $|\mathbf{t}_1|/|\mathbf{s}_1|$. Таким образом, в данной задаче функцию $\Phi(T_i, S)$ можно обозначать $\Phi(|\mathbf{t}_1|/|\mathbf{s}_1|)$. Если $|\mathbf{t}_1|/|\mathbf{s}_1|=1$, то *T* совпадает со стандартом *S*, значение Φ тождественно равно единице.

При $|\mathbf{t}_1|/|\mathbf{s}_1| < 1$ степень подобия КП будет определяться линейной функцией $\Phi(|\mathbf{t}_1|/|\mathbf{s}_1|) = |\mathbf{t}_1|/|\mathbf{s}_1|$, при $|\mathbf{t}_1|/|\mathbf{s}_1| > 1$ степень подобия КП будет определяться функцией $\Phi(|\mathbf{t}_1|/|\mathbf{s}_1|) = (|\mathbf{t}_1|/|\mathbf{s}_1|)^{-2}$ (см. рис. 4.4).

Рисунок 4.4. – Зависимость степени подобия КП от искажения длин связей

§4.2. Анализ координационных полиэдров в кристаллах комплексов Sb(V) и Bi(V) методом расчета степени подобия координационных полиэдров

При анализе 5-и координированных соединений сурьмы или висмута зачастую возникает вопрос о выборе типа полиэдра комплексообразователя, имеющего наиболее близкую геометрию к исследуемому фрагменту атомной структуры кристалла. Выбор, как правило, ведется между тригональной бипирамидой и тетрагональной пирамидой [7, 119]. Для удобства далее будем называть правильной тригональной пирамидой полиэдр, получаемый объединением по грани двух правильных тетраэдров. Под правильной тетрагональной пирамидой будем понимать полуоктаэдр (также называют октаэдром с вакансией).

Геометрический переход от правильной тетрагональной пирамиды (полуоктаэдра) к правильной тригональной бипирамиде удобно описывать при помощи псевдоротационного перехода [79] (см. рис. 4.5).

119

Рисунок 4.5. – Визуализация псевдоротационного перехода – кратчайшего перехода от тетрагональной пирамиды (ABCDE) к тригональной бипирамиде (A'BC'DE) *а*) полиэдры изображены в виде набора векторов; *б*) полиэдры изображены в классическом виде

На рис. 4.6. представлены результаты расчетов Φ для полиэдров такого ряда. Расчеты выполнялись для двух эталонных полиэдров: правильной тетрагональной пирамиды и правильной тригональной бипирамиды при разных значениях параметра λ ; в качестве центра КП выбирался центральный атом Sb или Bi. Все расчеты были выполнены в комплексе программ **PseudoSymmetry**, доступном по адресу <u>http://www.phys.unn.ru/ps</u>.

Рисунок 4.6. – Зависимости Ф для псевдоротационного перехода от степени тригональности τ, при значениях λ: а) 0.66; b) 0.99; c) 1.19; d) 2.65 pag⁻¹

Для удобства обозначим Φ_{Δ} и Φ_{\Box} – степени подобия КП, рассчитанные относительно правильной тригональной бипирамиды и правильной тетрагональной пирамиды соответственно.

Определим значение параметра λ, используя следующее соотношение

$$\Phi_{\Delta} = \Phi_{\Box} = \tau = \frac{1}{2}. \tag{4.4}$$

В результате численных расчетов было установлено, что соотношение (4.4) справедливо при $\lambda \approx 1.19139$ рад⁻¹, что совпадает со значением λ_0 в (4.3), полученным в примере ранее.

Эталонные координационные полиэдры в структурах кристаллов

В рамках подхода расчета степени подобия КП зададимся эталонными полиэдрами, с которыми будем вести сравнение КП в экспериментально исследованных структурах кристаллов комплексов сурьмы и висмута.

Для рассматриваемой задачи о КП с КЧ=5 были рассчитаны координаты эталонных пятивершинников. Так как в предложенном подходе существенным является положение центра КП, набор пятивершинников содержит две тетрагональных пирамиды – классический полуоктаэдр (с центром в центре основания) и также пирамиду с центром в центре описывающей сферы. Кроме

121

этого, критериями задания эталонного полиэдра являлись его правильность и равноудаленность центра от всех вершин.

В табл. 4.1 представлены координаты вершин правильных координационных пятивершинников: тригональной бипирамиды, тетрагональной пирамиды с центральным атомом В центре описанной окружности, И полуоктаэдра. Эталонные полиэдры заданы в виде набора безразмерных координат вершин, центральный атом совмещен с началом координат.

Таблица 4.1. – Координаты вершин эталонных координационных пятивершинников. Центральный атом располагется в начале координат

Тип эталонного КП	X	у	Z.
Тригональная бипирамида	-0.2165	-0.1250	0
	0	0.2500	0
	0.2165	-0.1250	0
	0	0	0.2500
	0	0	0.2500
Тетрагональная пирамида с	0	0	0.2500
центральным атомом в центре	0	-0.2420	-0.0625
масс	-0.2420	0	-0.0625
	0.2420	0	-0.0625
	0	0.2420	-0.0625
Полуоктаэдр	0	-0.2500	0
	0	0.2500	0
	-0.2500	0	0
	0.2500	0	0
	0	0	0.2500

§4.3. Анализ геометрии координационных полиэдров сурьмы и висмута с помощью диаграммы <*d*>–Ф

Одна из закономерностей геометрии координационных полиэдров была описана В.С. Урусовым: «Искажение КП приводит, при прочих равных условиях, к увеличению средней длины связи по сравнению с правильным полиэдром» [120].

По данным КБСД [113] была сформирована выборка кристаллов содержащих Sb(V) или Bi(V). Первая координационная сфера отобранных кристаллов состоит из двух атомов кислорода и трех атомов углерода. Рентгеноструктурные эксперименты выполнены при температурах, близких к комнатной (280–310 K). Всего в ССDС было обнаружено 180 таких кристаллов. На рис. 4.7 приведена диаграмма $\langle d \rangle - \Phi$ распределения средних длин химических связей в 210 КП Sb(V) и Bi(V), описываемых тригонально-бипирамидальной координацией.

Рисунок 4.7. – Диаграмма (d) – Ф для КП Sb(V) и Bi(V). Закрашенными треугольниками обозначены КП сурьмы, пустыми – КП висмута. Линиями изображены соответствующие линейные аппроксимации

Согласно полученным результатам, теорема дисторсии Урусова в среднем выполняется. Угловые коэффициенты линий тренда для КП Sb(V) и Bi(V)

отличаются незначительно и составляют -0.053 Å и -0.055 Å соответственно. Отметим, что три КП Bi(V) нарушают общий порядок (рис. 4.7, выделенная область 1). Указанные КП Bi(V) принадлежат структурам (C₇H₇O₂SO)₂(*Ph*₃Bi)O [121] и (*Lp*)₂(*Ph*₃Bi)O [122] (рис. 4.8). Данные кристаллы представляют собой двуядерные молекулы, в которых атомы металла соединены между собой атомами кислорода. Длина химических связей в мостике Bi–O–Bi в обеих структурах не превышает 2 Å, что, вероятно, характерно для многоядерных молекул с подобным связыванием ядер [123].

Рисунок 4.8. – Схема молекулы (*Lp*)₂(*Ph*₃Bi)O [122], для которой характерно связывание Bi–O–Bi

§4.4. Влияние искажения координационного полиэдра комплексообразователя в структуре дикарбоксилатов триарилсурьмы и триарилвисмута на спектр пропускания кристалла в ИК-диапазоне

Как было показано в §1.5, тип связывания карбоксилат-аниона с катионом оказывает влияние на геометрические параметры координационного окружения катиона, а также на положение характерных полос поглощения в ИК-спектре. Поэтому целесообразным является проведение количественной оценки связи степени искаженности КП комплексообразователя, сурьмы или висмута, с характерными симметричной, асимметричной и деформационной частотами, соответствующими ИК-спектру поглощения кристаллов дикарбоксилатов триарилсурьмы и триарилвисмута.

Refcode	Ссылка	v_{as}, cm^{-1}	v_s , cm^{-1}	$\Delta v, cm^{-1}$
WURZOA (XIII)	[104]	1546	1369	177
IDUWEL (XII)	[103]	1558	1355	203
(XIV)	[105]	1558	1359	199
(XV)	[103]	1611	1360	251
AGUSEC			1321	
AGUSIG	[124]	1624	1339	0.3181
AGUSOM		1627	1339	0.2319
BAZRUQ	[125]	1584	1372	0.3455
BAZSAX	[123]	1575	1378	0.3486
EFIWUN	[17]	1642	1363	0.2903
EWOGUS	[1]	1645	1334	0.2373
FINSIF	[126]	1634	1352	0.3488
FOQTUA	[127]	1625	1328	0.2478
ITUZEC	[179]	1640	1310	0.2583
ITUZIG	[120]	1690	1320	0.2619
IZAKEA	[129]	1666	1324	0.2771
LAVNUR	[67]	1610	1352	0.3333
TUVBOD			1341	
TUVBUJ	[130]		1356	
TUVCAQ		1622	1331	0.2829

Таблица 4.2. – Сводная таблица данных ИК-спектроскопии соединений дикарбоксилатов триарилвисмута

Refcode	Ссылка	v_{as}, cm^{-1}	v_s , cm^{-1}	$\Delta v, cm^{-1}$
MEXGAZ (I)	[94]	1601	1325	276
(II)	[95]	1603	1321	282
(XI)		1632	1334	298
BEGLUV	[24]	1624	1379	245
DAJTAK	[131]	1652	1370	282
EXIHIC	[132]	1615	1373	242
FOQTIO	[127]	1665		
FUPSEQ	[117]	1609	1375	234
GELLAM	[133]	1592	1348	244
IGIMER	[12/]	1632		
IGIMIV	[134]	1638		
IHEHIM	[135]	1672	1340	332
IWALUN	[136]	1645	1374	271
IWUQUM	[127]	1640	1330	310
IWUREX	[137]	1700	1295	405
IWURIB	r 5 01	1615	1340	275
IWUROH	[30]	1619	1345	274
LUGFUP	[138]	1670	1349	321
PUFTIT	[139]	1625	1346	279
PUPBEI		1633		
PUPBIM	[140]	1631		
PUPBUY		1653		
QIRVIW	[141]	1610	1339	271
REDCIO	[142]	1625		
TAHGIT	[1/2]	1653		
TAHGOZ	[143]	1675		
XAQBIC	[144]	1605	1357	248

Таблица 4.3. – Сводная таблица данных ИК-спектроскопии соединений дикарбоксилатов триарилсурьмы

Для 27 КП сурьмы в соединениях дикарбоксилатов триарилсурьмы и 20 КП висмута в дикарбоксилатах триарилвисмута были рассчитаны степени подобия правильной тригональной бипирамиде и тетрагональной пирамиде. Положения линий поглощения на ИК-спектре были получены из соответствующих литературных источников (см. табл. 4.2 и 4.3).

Рисунок 4.11. – Диаграмма ν–Ф_∆ для КП и Ві(V). Линиями изображены соответствующие линейные аппроксимации

Рисунок 4.12. – Диаграмма ν–Ф_□ для КП и Ві(V). Линиями изображены соответствующие линейные аппроксимации

На рис. 4.9 – 4.12 изображены графики положения линий спектров от степени подобия координационного полиэдра комплексообразователя тригональной бипирамиде и тетрагональной пирамиде. Приведенные в табл. 4.4 погрешности угловых коэффициентов линейных зависимостей вычислены для доверительной вероятности 0.95. Зависимости приведены для величин $v_{as}(COO)$ и $v_s(COO)$, их разности $\Delta v(COO)$, что обосновано исключением систематических погрешностей.

Для проверки значимости регрессионной модели в зависимостях, представленных на рис. 4.9. – 4.12, проводился статистический анализ с применением статистического *t*-критерия Стьюдента [145, 146]. При выбранной доверительной вероятности α =0.95 рассчитанные значения статистики T_R в некоторых случаях превышают соответствующие коэффициенты $t_{0.95,N-2}$, что свидетельствует, в частности, что величины Δv и Φ_{\Box} являются зависимыми для сурьмы и висмута при выбранном уровне доверительной вероятности (см. табл. 4.4).

Таблица 4.4. – Параметры линейной аппроксимации исследованных
экспериментальных зависимостей v(Φ)= $k\Phi + b$, коэффициенты корреляции и
значение статистики Стьюдента

	Тип КП	Линия ИК- спектра	Рис.	k, cm ⁻¹	$b, \operatorname{cm}^{-1}$	R	T_R	t _{0.95,N-2}
	Δ	v_{as}		110±70	1580±40	0.29	1.51	2.02
	Δ	ν_{s}	4.9	-70 ± 80	1380±40	-0.22	-0.9	2.06
Տե	Δ	Δν		340±130	110±60	0.54	2.62	2.06
30		v_{as}		-160 ± 50	1661±13	-0.52	-3.04	2.06
		ν_{s}	4.10	100 ± 80	1316±15	0.31	1.33	2.12
		Δν		-380 ± 120	420±40	-0.62	-3.13	2.12
	Δ	v_{as}		550±160	1380±70	0.66	3.38	2.18
	Δ	ν_{s}	4.11	-230 ± 70	1440 ± 30	-0.60	-3.19	2.13
Bi	Δ	Δν		800±200	-90 ± 100	0.69	3.74	2.18
		v_{as}		-630 ± 140	1800±40	-0.76	-4.56	2.18
		ν_{s}	4.12	260 ± 60	1268±18	0.72	4.39	2.13
		Δν		-940 ± 180	550±50	-0.81	-5.34	2.18

Проведенные исследования демонстрируют, что тип связывания карбоксилатного лиганда оказывает преимущественное влияние на координацию

комплексообразователя и положение основных линий карбоксилатного фрагмента в ИК-спектре поглощения.

Высокие погрешности, полученные для угловых коэффициентов v (до 50%) свидетельствуют о влиянии других факторов, например, о взаимодействии с атомами за пределами первой координационной сферы комплексообразователя (стерических эффектах).

Таким образом, для кристаллов дикарбоксилатов триарилсурьмы И триарилвисмута более высокими значениями подобия КΠ с комплексообразователя тетрагональной пирамиде характерны меньшие значения разницы частот поглощения асимметричной и симметричной линии колебания карбонильной группы. Указанные наблюдения не противоречат данным других исследований и подтверждают выводы, изложенные в известных работах [19, 20, 147, 148].

§4.5. Анализ искажения координационных полиэдров Sb(V) и Bi(V) с помощью диаграмм Φ_Δ-Φ_□ и Φ-τ

Были проведены исследования 5-координационных полиэдров комплексов Sb(V) и Bi(V), в первой координационной сфере которых содержатся только атомы кислорода и углерода.

Информация о 466 атомных структурах кристаллов, содержащих 546 уникальных 5-координационных полиэдров, была получена из Кембриджского банка структурных данных (КБСД, ССDС) [113]. Результаты расчетов приведены в приложении.

Рисунок 4.13. – Диаграмма $\Phi_{\Delta} - \Phi_{\Box}$. Штриховой линией изображен псевдоротационный переход, сплошная линия соответствует прямой $\Phi_{\Delta} = \Phi_{\Box}$

Для определения типа КП удобно использовать диаграмму вида $\Phi_{\Delta}-\Phi_{\Box}$ (рис. 4.13). По осям диаграммы отложены значения Φ для полуоктаэдра (Φ_{\Box}) и

правильной тригональной бипирамиды (Φ_{Δ}). На диаграмме пунктирной линией показан псевдоротационный переход. Линия $\Phi_{\Box}/\Phi_{\Delta} = 1$ делит диаграмму на две части, точки, расположенные ниже этой линии, соответствуют КП, геометрия которых ближе к тригональной бипирамиде, а те, что выше – полуоктаэдру. Геометрия КП с $\Phi_{\Box}/\Phi_{\Delta} \approx 1$ в равной степени отличается от полуоктаэдра и правильной тригональной бипирамиды. Такие КП нельзя однозначно классифицировать в рамках двух рассматриваемых эталонных полиэдров.

На рис. 4.14 представлена диаграмма Ф – т, каждый КП представлен в виде маркера с координатами (т, Ф), вид маркера соответствует эталонному полиэдру с максимальным Ф. Для каждого КП были рассчитаны степени подобия Ф относительно эталонных полиэдров: правильной тригональной бипирамиды (▲), правильной тетрагональной пирамиды (□) и правильной тетрагональной пирамиды с центром описанной сферы в центре масс (♦).

Рисунок 4.14. – Диаграмма Φ – τ распределения 5-координационных полиэдров комплексов Sb(V) и Bi(V). Треугольниками обозначены КП, соответствующие тригональной бипирамиде; пустыми и серыми квадратами – тетрагональной пирамиде с центральным атомом в основании и центре масс соответственно

В правой части диаграммы (т < 0.37) располагаются КП, определенные как тетрагональные пирамиды. Данная область содержит информацию о 15% КП.

Соотношение тетрагональных пирамид с различным расположением центрального атома на диаграмме примерно равное.

В область с $0.37 < \tau < 0.5$ попали КП разных типов. Значения Ф, рассчитанные относительно разных эталонных полиэдров для КП из этой области диаграммы, как правило, отличаются друг от друга незначительно. Геометрия данных КП сильно искажена ($\Phi < 0.5$) и занимает некоторое промежуточное положение между тригональной бипирамидой и тетрагональной пирамидой.

В левой части диаграммы, при $\tau > 0.5$, располагаются приблизительно 77% исследованных КП, надежно определяемых как тригональные бипирамиды ($\Phi_{\Box}/\Phi_{\Delta} < 1$). В тоже время при $\tau < 0.5$ ряд КП характеризуется $\Phi_{\Box}/\Phi_{\Delta} \approx 1$, то есть сильно искаженной координацией. Данный факт указывает на то, что параметр τ наиболее эффективен для описания тригонально бипирамидальной конфигурации. В области $\tau > 0.5$ разброс значений Φ для фиксированного значения параметра τ увеличивается с ростом τ . Если при $\tau \approx 0.6$ разброс Φ приблизительно составляет 0.3, то при $\tau \approx 1.0$ эта величина примерно равна 0.6.

В качестве примера рассмотрим две атомные структуры с высоким т и существенно отличающимися значениями Φ (табл. 4.5). Атомная структура кристалла (CH₃)₃Sb(C₃H₃)₂ (1) [149] характеризуется высокими значениями т и Φ_{Δ} для КП Sb(V), отклонения углов от соответствующих углов в правильной тригональной пирамиде не превышают 1.5 °. В отличие от 1, КП Sb(V) атомной структуры (C₆H₅)₄SbONO₂ (2) [150] характеризуется высоким т и низким значением Φ_{Δ} . Значения Φ_{Δ} для 1 и 2 отличаются более чем в 3.5 раз, отклонения углов КП Sb(V) в 2 лежат в пределах 12 °, что практически на порядок выше аналогичного значения в 1.

Расчет Ф для нескольких эталонных полиэдров позволяет более надежно определить реальный тип КП. В качестве примера рассмотрим две полиморфные модификации структуры дисалицилата трифенилвисмута [17, 71] (табл. 4.6). КП Bi(V) в **3** и **4** характеризуется значениями τ приблизительно равными 0.5, что неоднозначно определяет тип КП. При этом $\Phi_{\Delta}/\Phi_{\Box} > 1.3$, что надежно свидетельствует о тригонально-бипирамидальной координации рассматриваемых КП.

	1		2		
Refcode	MPYN	ISB	XULHUH		
τ	0.9699(5)		0.9798(5)		
Φ_Δ	0.8400		0.2299		
	ω, °	Δ, °	ω, °	Δ, °	
	178.5(7)	1.5	178.39(9)	1.61	
	120.3(3)	0.3	119.61(8)	0.39	
	120.3(6)	0.3	116.46(7)	3.54	
	119.3(6)	0.7	114.66(7)	5.34	
Углы КП	91.1(3)	1.1	100.46(6)	10.46	
	91.1(5)	1.1	100.20(6)	10.20	
	89.6(4)	0.4	100.05(6)	10.05	
	89.6(4)	0.4	81.28(4)	8.72	
	89.3(3)	0.7	79.84(4)	10.16	
	89.3(2)	0.6	78.12(3)	11.88	

Таблица 4.5. – Угловые параметры ω в КП Sb(V)

Δ – отклонение углового параметра КП от соответствующего значения в правильной тригональной бипирамиде.

Таблица 4.6. – Характеристики КП Bi(V) в кристаллах дисалицилата трифенилвисмута (C₆H₅)₃Bi(OCOC₆H₄OH)₂

		4	
Refcode	EFIX	EFIXOI	
Атом	Bi1	Bi2	Bi1
$\Phi_{\scriptscriptstyle \square}$	0.3141(3)	0.3033(4)	0.2639(2)
Φ_Δ	0.4084(5)	0.3948(5)	0.4145(2)
τ	0.4710(5)	0.4703(5)	0.5055(5)

В табл. 4.7 приведены значения степени подобия КП сурьмы и висмута правильной тригональной бипирамиде Ф_△, правильной тетрагональной пирамиде Ф_□ для структур кристаллов, рассмотренных в главах 2 и 3.

	Формула	CCDC	Ссылка	Φ_Δ	$\Phi_{\scriptscriptstyle \square}$
(I)	$C_{44} H_{39} O_6 Sb$	935434	[94]	0.5284(2)	0.3192(2)
(II)	$C_{38} H_{31} O_6 Sb$	1045776	[95]	0.5890(2)	0.28047(18)
(III)	$C_{38} H_{39} Br_2 O Sb$	1435300	[96]	0.5132(2)	0.18447(18)
(IV)	$\begin{array}{c} C_{30}H_{12}Cl_{10}F_{3}O_{2}\\ Sb \end{array}$	1473422	[97]	0.5644(4)	0.2793(2)
(V)	$C_{34}H_{31}N_2O_5Sb$	1433797	[98]	0.2123(2)	0.07698(17)
	C H I O Sh	1/186600	[00]	0.3716(2)	0.1698(10)
$(\mathbf{v}\mathbf{I})$	$C_{124} \Pi_{108} \Pi_6 O_4 O_4 O_4$	1400090	[77]	0.2287(1)	0.0931(4)
	$C_{71}H_{68}F_6O_8S_2Sb_3$	1475061	[100]	0.2527(2)	0.08496(17)
(*11)				0.7130(4)	0.1983(2)
(VIII)	$C_{40} H_{34} Cl_5 O Sb$	1473086	[101]	0.3872(2)	0.12220(17)
(IX)	$C_{24} H_{27} Cl_2 Sb$	1502963	[102]	0.4894(5)	0.1177(2)
(X)	$C_{24} H_{27} Br_2 Sb$	1502962	[102]	0.4562(9)	0.1132(2)
(XI)	$C_{30}H_{29}O_4Sb$	1055084		0.4819(3)	0.3706(3)
(XII)	C ₂₆ H ₂₅ Bi O ₄	954525	[103]	0.3804(2)	0.3559(2)
(XIII)	C ₃₆ H ₂₉ Bi O ₄	990872	[104]	0.3865(2)	0.3993(2)
(XIV)	C ₃₆ H ₃₃ Bi O ₇	1548598	[105]	0.3888(2)	0.3747(2)
(XV)	C ₄₄ H ₄₃ Bi N ₂ O ₁₀	1548599	[105]	0.4103(4)	0.2989(3)
(XVI)	Cas Haz Bi O.	1845636		0.3610(2)	0.3419(2)
	C ₃₀ 11 ₃₇ D1C ₄	10+3030		0.3953(2)	0.3183(2)

Таблица 4.7. – Перечень атомных структур кристаллов, обсуждаемых в главах 2–3

Кристаллы (I)–(V), (VIII)–(XII) и (XIV)–(XV) в своей структуре содержат по одному симметрично-независимому КП, координация которого является искаженной тригонально-бипирамидальной.

Кристаллы (VI) и (VII) содержат по два симметрично-независимых КП, причем оба КП принадлежат одной молекуле. Координация этих КП является искаженной тригонально-бипирамидальной.

Кристалл (XIII) содержит один симметрично-независимый КП, координация которого является тетрагонально-пирамидальной.

Кристалл (**XVI**) содержит два симметрично-независимых КП, принадлежащих двум симметрично-неэквивалентным молекулам, координация которых является тригонально-бипирамидальной.

§4.6. Расчет степени инвариантности электронной плотности координационных полиэдров

Среди недостатков описанного выше метода можно выделить нечувствительность метода к атомному составу КП. При этом атомный состав координационного полиэдра существенно влияет на физические и химические свойства материала. Наиболее существенным недостатком это становится при анализе КП в структурах полиморфных кристаллов.

Пусть задан атомный кластер, соответствующий координационному полиэдру T, так же пусть задан эталонный КП S, для T и S рассчитаны матрицы α и β на основе (1.8). Тогда для каждого полиэдра T и S можно рассчитать распределение электронной плотности. Каждому вектору \mathbf{s}_i и \mathbf{t}_i ставим в соответствие сорт атома, заданный в исходном атомном кластере. Таким образом, информация о сорте атома заключена в индексе *i*.

Электронная плотность $\rho_T(\mathbf{r})$, описывающая *T*, строится на базе векторов βt_i , для расчета электронной плотности эталонного полиэдра $\rho_S(\mathbf{r})$ используются вектора вида $\alpha \mathbf{s}$. Если рассматривается случай простой деформации гиростатического сжатия или растяжения эталонного полиэдра, то матрица α может быть заменена масштабным множителем, начальное значение которого рассчитывается следующим образом

$$\alpha^* = \left\langle \left| \mathbf{t}_i \right| \right\rangle \frac{\left| \mathbf{s}_i \right|}{\max \left| \mathbf{s}_i \right|},\tag{4.5}$$

где $\langle |\mathbf{t}_i| \rangle$ – среднее межатомное расстояние в *T*.

В качестве количественной характеристики можно использовать степень инвариантности электронной плотности $\rho_T(\mathbf{r})$ координационного полиэдра атомной структуры относительно электронной плотности $\rho_S(\mathbf{r})$ эталонного координационного полиэдра, которую определим в виде функционала:

$$\eta[\rho_T(\mathbf{r}),\rho_S(\mathbf{r})] = \max_{\alpha,\beta} \left(K^{-1} \int_V \rho_T(\mathbf{r}) \cdot \rho_S(\mathbf{r}) dV \right), \qquad (4.6)$$

где

$$\mathbf{K} = \int_{V} \rho_{\mathrm{T}}^{2}(\mathbf{r}) dV = \int_{V} \rho_{\mathrm{S}}^{2}(\mathbf{r}) dV.$$
(4.7)

Стоит заметить, что α и β, определенные методом (1.8), в общем случае могут не соответствовать максимуму функционала (4.6).

Интегрирование в (4.6) и (4.7) ведется по всему объему элементарной ячейки, функции электронной плотности атомов могут быть заданы в сферическом приближении, характерном для рентгеноструктурного анализа.

Для этого воспользуемся разложением функции электронной плотности в ряд Фурье:

$$\int_{V} \rho_{T}(\mathbf{r}) \cdot \rho_{S}(\mathbf{r}) dV = \frac{1}{V^{2}} \int_{V} \sum_{\mathbf{H}} \sum_{\mathbf{M}} F_{T}(\mathbf{H}) \cdot F_{S}(\mathbf{M}) \cdot \exp(-2\pi i (\mathbf{H} + \mathbf{M}, \mathbf{r})) dV, \quad (4.8)$$

где V – объем элементарной ячейки, **H** и **M** – векторы обратной решетки, $F_T(\mathbf{H})$ и $F_s(\mathbf{M})$ – структурные амплитуды, рассчитанные для полиэдров T и S соответственно. Ненулевые значения при интегрировании дадут только члены суммы, для которых справедливо равенство

$$\mathbf{H} = -\mathbf{M}.\tag{4.9}$$

Следовательно, интеграл от произведения электронных плотностей $\rho_s(\mathbf{r})$ и $\rho_r(\mathbf{r})$ может быть рассчитан как

$$\int_{V} \rho_{T}(\mathbf{r}) \cdot \rho_{S}(\mathbf{r}) dV = \frac{1}{V} \sum_{\mathbf{H}} F_{T}(\mathbf{H}) \cdot F_{S}(-\mathbf{H}).$$
(4.10)

Тогда выражение (4.6) примет следующий вид

$$\eta[\rho_T(\mathbf{r}),\rho_S(\mathbf{r})] = \max_{\alpha,\beta} \left((KV)^{-1} \sum_{\mathbf{H}} F_T(\mathbf{H}) \cdot F_S(-\mathbf{H}) \right).$$
(4.11)

Коэффициент *К* также может быть вычислен с использованием структурных амплитуд:

$$K = \frac{1}{V} \sum_{\mathbf{H}} \left| F_T \left(\mathbf{H} \right) \right|^2.$$
(4.12)

Из анализа выражений (4.11 – 4.12) следует важное преимущество метода анализа степени инвариантности электронной плотности координационного полиэдра атомной структуры относительно электронной плотности эталонного координационного полиэдра над методом подобия координационных полиэдров для анализа кристаллических структур – отсутствие коэффициента чувствительности.

Информация о 466 атомных структурах кристаллов, содержащих 546 уникальных 5-координационных полиэдров, была получена из Кембриджского банка структурных данных (CCDC) [113]. Результаты расчетов приведены в приложении.

Рисунок 4.15. – Диаграмма Ф–η распределения 5-координационных полиэдров Sb(V) и Bi(V), соответствующих тригональным бипирамидам

Рисунок 4.16. – Диаграмма Ф–η распределения 5-координационных полиэдров Sb(V) и Bi(V), соответствующих тетрагональным пирамидам

Рис. 4.15 и 4.16 демонстрируют наличие стохастической зависимости между параметрами степени подобия координационного полиэдра, рассчитанной двумя методами, однако однозначной корреляции не наблюдается, что свидетельствует о принципиальном различии подходов.

Нетрудно заметить, что с ростом Ф и η разброс значений на диаграммах рис. 4.15 и 4.16 уменьшается. Это свидетельствует о повышении корреляции между Ф и η при их стремлении к единице. Полученный результат объясняется особенностями расчета величины η. При достижении определенной степени искажения исследуемого КП электронные облака некоторых его атомов смещаются настолько, что вклад в интеграл (4.6) от их перекрытия с электронными облаками эталонного КП становится незначительным. Дальнейшее искажение исследуемого КП путем смещения этих же атомов не будет влиять на величину η.

Таким образом, область применения предложенного метода ограничивается сравнением КП с малыми искажениями геометрии относительно эталона.

Заключение по главе 4

Впервые методом степени подобия координационных полиэдров были изучены координационные пятивершинники на примере кристаллов комплексов сурьмы и висмута, которые были исследованы впервые, а также кристаллов, структуры которых опубликованы в КБСД. Были решены модельные задачи, позволившие обоснованно выбрать коэффициент чувствительности для метода расчета пятивершинников.

Представленные в главе результаты демонстрируют возможности метода степени подобия координационных полиэдров для решения широкого спектра задач структурной кристаллографии и физики твердого тела. В дальнейшем метод может быть применен для сравнения и классификации любых видов КП с любым КЧ, что позволит расширить возможности анализа сложных структур неорганических и координационных соединений с применением данных рентгеноструктурного анализа.

В процессе решения основной задачи был решен ряд вспомогательных задач. Так, например, была создана база данных координационных полиэдров, используемая в программе Polyhedron программного комплекса PseudoSymmetry [89], разрабатываемого на кафедре Кристаллографии и экспериментальной физики ННГУ. В базу данных вошли наиболее распространенные полиэдры с координационными числами до 12. Программа Polyhedron позволяет в автоматическом режиме анализировать координационные полиэдры различных структур, сравнивая их с эталонными полиэдрами в базе данных.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ ПО ДИССЕРТАЦИИ

1)Методами рентгеноструктурного анализа определена атомно-молекулярная структура 11 монокристаллов новых комплексов пятивалентной сурьмы и пяти монокристаллов новых комплексов пятивалентного висмута.

2)Исследованы свойства величины степени подобия Φ для модельных координационных трех- и пятивершинников. Обоснована оптимальная величина коэффициента «чувствительности» $\lambda \approx 1.19139$ рад⁻¹ для расчета степени подобия координационных пятивершинников.

3)Рассчитаны степени подобия эталонным пятивершинникам для 546 исследованных координационных полиэдров Sb(V) и Bi(V), содержащих только атомы кислорода и углерода в первой координационной сфере комплексообразователя. Установлено, что 493 (90%) из них характеризуются тригонально-бипирамидальной координацией (Ф_△/Ф_□ > 1).

4)Для атомных структур комплексов Bi(V) и Sb(V) исследована зависимость средней длины химической связи внутри КП комплексообразователя от степени его подобия тригональной бипирамиде $\langle d \rangle - \Phi$. Обнаружен рост средней длины химической связи со снижением степени подобия КП тригональной бипирамиде для кристаллов комплексов Bi(V) и Sb(V), для которых структурная информация получена в схожих температурных условиях, и в первой координационной сфере комплексообразователя содержатся три атома углерода и два атома кислорода. Полученный результат согласуется с теоремой Урусова о дисторсии КП.

5)Исследовано влияние *степени подобия* КП комплексообразователя правильной тригональной бипирамиде и правильной тетрагональной пирамиде на частоты колебаний карбоксилатного фрагмента $v_{as}(COO)$ и $v_s(COO)$ и разности этих частот $\Delta v(COO)$ в карбоксилатах и дикарбоксилатах пятивалентных сурьмы и висмута. Статистическими методами подтверждено снижение величины $\Delta v(COO)$ с ростом степени подобия КП тетрагональной пирамиде Φ_{\Box} , что согласуется с опубликованными ранее данными экспериментальных наблюдений и теоретических расчетов.

6)Предложен метод расчета степени сходства функций электронных плотностей двух КП с одинаковыми КЧ. Рассчитана степень инвариантности электронной плотности 546 исследованных координационных полиэдров

комплексов Sb(V) и Bi(V) относительно электронной плотности эталонных координационных пятивершинников.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Yu L. Synthesis, characterization and cytotoxicity of some triarylbismuth(V) di(N-p-toluenesulfonyl) aminoacetates and the crystal structure of(4-CH₃C₆H₄SO₂NHCH₂CO₂)₂Bi(C₆H₄Cl-4)₃ / Yu L., Ma Y., Wang G.-C., Song H., Wang H.-G., Li J., Cui J., Wang R. // Applied Organometallic Chemistry – 2004. – Vol. 18 – N_{2} 4 – P.187–190.

2. Tiekink E.R.T. Gold derivatives for the treatment of cancer / Tiekink E.R.T. // Critical Reviews in Oncology/Hematology – 2002. – Vol. $42 - N_{2} - P.225 - 248$.

3. Ozturk I.I. Synthesis, characterization and biological studies of new antimony(III) halide complexes with ω -thiocaprolactam / Ozturk I.I., Banti C.N., Manos M.J., Tasiopoulos A.J., Kourkoumelis N., Charalabopoulos K., Hadjikakou S.K. // Journal of Inorganic Biochemistry – 2012. – Vol. 109 – P. 57–65.

4. Ali M.I. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds / Ali M.I., Rauf M.K., Badshah A., Kumar I., Forsyth C.M., Junk P.C., Kedzierski L., Andrews P.C. // Dalton Transactions – 2013. – Vol. 42 – N_{2} 48 – P. 16733.

5. Гущин А.В. Синтез и строение диакрилата трифенилсурьмы / Гущин А.В., Прыткова Л.К., Шашкин Д.В., Додонов В.А., Фукин Г.К., Баранов Е.В., Шавырин А.С., Рыкалин В.И. // Вестник Нижегородского университета им. Н.И. Лобачевского – 2010. – Т. 3 – № 1 – С.95–99.

6. Гущин А.В. Синтез и строение диметакрилата трифенилсурьмы / Гущин А.В., Шашкин Д.В., Прыткова Л.К., Сомов Н.В., Баранов Е.В., Шавырин А.С., Рыкалин В.И. // Журнал Общей Химии – 2011. – Т. 81 – № 3 – С.397–400.

7. Addison A.W. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate / Addison A.W., Rao T.N., Reedijk J., Rijn J. van, Verschoor G.C. // J. Chem. Soc., Dalton Trans. – 1984. – N_{2} 7 – P. 1349–1356.

8. Pinsky M. Continuous Symmetry Measures. 5. The Classical Polyhedra / Pinsky M., Avnir D. // Inorganic Chemistry – 1998. – Vol. 37 – № 21 – P. 5575–5582.

9. Асланов Л.А. Некоторые аспекты стереохимии восьмикоординационных комплексов / Асланов Л.А., Порай-Кошиц М.А. // Журнал структурной химии – 1972. – Т. 13 – № 2 – С.266.

10. Xu J. Plutonium(IV) Sequestration: Structural and Thermodynamic Evaluation of the Extraordinarily Stable Cerium(IV) Hydroxypyridinonate Complexes 1 / Xu J., Radkov E., Ziegler M., Raymond K.N. // Inorganic Chemistry – 2000. – Vol. 39 – N_{2} 18 – P. 4156–4164.

11. Balić Žunić T. Determination of the centroid or `the best centre' of a coordination polyhedron / Balić Žunić T., Makovicky E. // Acta Crystallographica Section B Structural Science – 1996. – Vol. $52 - N_{2} 1 - P. 78-81$.

12. Makovicky E. New Measure of Distortion for Coordination Polyhedra / Makovicky E., Balić-Žunić T. // Acta Crystallographica Section B Structural Science – 1998. – Vol. 54 – N_{2} 6 – P. 766–773.

13. Cumby J. Ellipsoidal analysis of coordination polyhedra / Cumby J., Attfield

J.P. // Nature Communications - 2017. - Vol. 8 - P. 14235.

14. Somov N.V. On Quantitative Estimation of the Degree of Similarity of Coordination Polyhedra / Somov N.V., Andreev P.V. // Crystallography Reports – 2018. – Vol. $63 - N_{\odot} 1 - P. 32-36$.

Somov 15. N.V. Chelate complexes of with lead(II) $[Pb{\mu^5-NH(CH_2PO_3H)_3}]$ acid nitrilotris(methylenephosphonic) and $Na_4[Pb_2(H_2O)_2{\mu^3-N(CH_2PO_3)_3H_2}_2] \cdot 10H_2O$: Synthesis, structure, and asymmetry of lone 6s pair / Somov N. V., Chausov F.F., Zakirova R.M., Reshetnikov S.M., Shishkin A.S., Shumilova M.A., Aleksandrov V.A., Petrov V.G. // Crystallography Reports -2017. – Vol. 62 – № 6 – P. 857–867.

16. Egorova I.V. Structures of triphenylbismuth dicarboxylates / Egorova I. V., Sharutin V.V., Ivanenko T.K., Nikolaeva N.A., Molokov A.A., Fukin G.K. // Russian Journal of Coordination Chemistry – 2006. – Vol. $32 - N_{2} 9 - P. 644-651$.

17. Kumar I. Facile One-Pot Synthesis of Triphenylbismuth(V) Bis(carboxylate) Complexes / Kumar I., Bhattacharya P., Whitmire K.H. // Organometallics – 2014. – Vol. $33 - N_{2} 11 - P. 2906-2909$.

18. Шарутина О.К.Молекулярные структуры органических соединений сурьмы V / О. К. Шарутина, В. В. Шарутин – Челябинск: Издательский центр ЮУрГУ, 2012.– 398с.

19. Deacon G.B. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination / Deacon G.B., Phillips R.J. // Coordination Chemistry Reviews – 1980. – Vol. 33 – N_{2} 3 – P. 227–250.

20. Nara M. Correlation between the Vibrational Frequencies of the Carboxylate Group and the Types of Its Coordination to a Metal Ion: An ab Initio Molecular Orbital Study / Nara M., Torii H., Tasumi M. // The Journal of Physical Chemistry – 1996. – Vol. $100 - N_{2} 51 - P$. 19812–19817.

21. Mishra J. Chemotherapy of Leishmaniasis : Past , Present and Future / Mishra J., Saxena A., Singh S. // Current Medicinal Chemistry $-2007. - Vol. 14 - N_{2} 10 - P.$ 1153–1169.

22. Islam A. Novel triphenylantimony(V) and triphenylbismuth(V) complexes with benzoic acid derivatives: Structural characterization, in Vitro antileishmanial and antibacterial activities and cytotoxicity against macrophages / Islam A., Silva J.G. Da, Berbet F.M., Silva S.M. Da, Rodrigues B.L., Beraldo H., Melo M.N., Frézard F., Demicheli C. // Molecules – 2014. – Vol. 19 – N_{2} 5 – P. 6009–6030.

23. Silvestru C. Synthesis, structural characterization and vitro antitumour properties of triorganoantimony(V) disalicylates: Crystal and molecular structures of [5-Y-2-(ho)-C6H3COO]2SbMe3 (Y=H, Me, MeO) / Silvestru C., Haiduc I., Tiekink E.R.T., Vos D. de, Biesemans M., Willem R., Gielen M. // Applied Organometallic Chemistry – 1995. – Vol. 9 – N_{2} 7 – P. 597–607.

24. Liu R.-C. Synthesis, characterization and vitro antitumor activity of some arylantimony ferrocenecarboxylates and crystal structures of $C_5H_5FeC_5H_4CO_2SbPh_4$ and $(C_5H_5FeC_5H_4CO_2)_2Sb(4-CH_3C_6H_4)_3$ / Liu R.-C., Ma Y.-Q., Yu L., Li J.-S., Cui J.-R., Wang R.-Q. // Applied Organometallic Chemistry – 2003. – Vol. 17 – Nº 9 – P. 662–668.

25. Wang G.-C. Synthesis, crystal structures and in vitro antitumor activities of
some arylantimony derivatives of analogues of demethylcantharimide / Wang G.-C., Xiao J., Yu L., Li J.-S., Cui J.-R., Wang R.-Q., Ran F.-X. // Journal of Organometallic Chemistry -2004. – Vol. $689 - N_{\rm P} 9 - P$. 1631-1638.

26. Leebrick J.R. Antimony compounds and compositions and method for protecting against microorganisms / Leebrick J.R. – 1966. – P. 4.

27. Komatsu N.Organobismuth Chemistry / N. Komatsu, T. Ogawa, T. Murafuji, T. Ikegami / под ред. Н. Suzuki, Y. Matano. – Elsiever, 2001. Вып. 1–620с.

28. Barton D.H.R. The chemistry of pentavalent organobismuth reagents. Part 7. The possible role of radical mechanisms in the phenylation process for bismuth(V), and related lead(IV), lodine(III), and antimony(V) reagents / Barton D.H.R., Finet J., Giannotti C., Halley F. // Journal of the Chemical Society, Perkin Transactions $1 - 1987 - N \ge 14 - P.$ 241.

29. Barton D.H.R. The chemistry of pentavalent organobismuth reagents / Barton D.H.R., Finet J.-P., Giannotti C., Halley F. // Tetrahedron – 1988. – Vol. $44 - N_{2} 14 - P$. 4483–4494.

30. Briand G.G. Bismuth Compounds and Preparations with Biological or Medicinal Relevance / Briand G.G., Burford N. // Chemical Reviews – 1999. – Vol. 99 – N_{2} 9 – P. 2601–2658.

31. Lambert J.R. The actions of bismuth in the treatment of Helicobacter pylori infection / Lambert J.R., Midolo P. // Alimentary Pharmacology and Therapeutics – 1997. – Vol. $11 - N_{\odot} S1 - P. 27-33$.

32. Borisov A. Wiring of tubes for full scale BIL chamber prototype / Borisov A., Borisov E., Goryatchev V., Fakhroutdinov R., Kojine A., Rybachenko V., Startsev V., Vovenko A. – 1996.

33. Додонов В.А. Диакрилаты трифенилвисмута и трифенилсурьмы в синтезе металлосодержащего полиметилметакрилата / Додонов В.А., Гущин А.В., Кузнецова Ю.Л., Моругова В.А. // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Химия. – 2004. – № 1 – С.86–94.

34. Металлоорганические соединения и радикалы / под ред. М.И. Кабачник. – Москва: Наука, 1985.– 287с.

35. Карраер Ч. Металлоорганические полимеры / Ч. Карраер, Д. Шитс, Ч. Питтмен – Москва: Мир, 1981. – 352с.

36. Cherepy N.J. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators / Cherepy N.J., Payne S.A., Sturm B.W., O'Neal S.P., Seeley Z.M., Drury O.B., Haselhorst L.K., Rupert B.L., Sanner R.D., Thelin P.A., Fisher S.E., Hawrami R., Shah K.S., Burger A., Ramey J.O., Boatner L.A. – 2011. – Vol. 8142 – P. 81420W.

37. Rupert B.L. Bismuth-loaded plastic scintillators for gamma-ray spectroscopy / Rupert B.L., Cherepy N.J., Sturm B.W., Sanner R.D., Payne S.A. // EPL (Europhysics Letters) – 2012. – Vol. 97 – N_{2} 2 – P. 22002.

38. Cardenas-Trivio G. Synthesis and molecular weights of metal poly(methyl methacrylates) / Cardenas-Trivio G., Retamal C.C., Klabunde K.J. // Polymer Bulletin – 1991. – Vol. $25 - N_{\odot} 3 - P. 315-318$.

39. Cardenas-Trivino G. Thermogravimetric studies of metal poly(methyl methacrylates) / Cardenas-Trivino G., Retamal C.C., Tagle L.H. // Thermochimica Acta

– 1991. – Vol. 176 – P. 233–240.

40. Naka K. Ring-Collapsed Radical Alternating Copolymerization of Phenyl-Substituted Cyclooligostibine and Acetylenic Compounds / Naka K., Nakahashi A., Chujo Y. // Macromolecules – 2006. – Vol. 39 – № 24 – P. 8257–8262.

41. Naka K. Periodic Terpolymerization of Cyclooligoarsine, Cyclooligostibine, and Acetylenic Compound / Naka K., Nakahashi A., Chujo Y. // Macromolecules – $2007. - Vol. 40 - N_{\odot} 5 - P. 1372 - 1376.$

42. Сурин Н.М. Металлосодержащий пластмассовый сцинтиллятор / Сурин Н.М., Пономаренко С.А., Лупоносов Ю.Н., Музафаров А.М., Борщёв О.В. – 2012. – № 31 – С.1–10.

43. Vasil'chenko V.G. New results on radiation damage studies of plastic scintillators / Vasil'chenko V.G., Lapshin V.G., Peresypkin A.I., Konstantinchenko A.A., Pyshchev A.I., Shershukov V.M., Semenov B.V., Solov'ev A.S. // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment – 1996. – Vol. $369 - N_{\rm e} 1 - P.55-61$.

44. Белянченко С.А.Изучение радиационной стойкости фотоумножителей / С. А. Белянченко, Г. И. Бритвич, Б. М. Глуховский, В. С. Дацко, М. Кобаяши, В. И. Рыкалин, В. А. Смолицкий – Государственный научный центр Российской Федерации Институт физики высоких энергий, 1996.– 6с.

45. Гущин А.В. Синтез, строение акрилата тетрафенилсурьмы и введение его в полиметилметакрилат / Гущин А.В., Шашкин Д.В., Щербакова Т.С., Сомов Н.В., Баранов Е.В., Фукин Г.К., Шавырин А.С., Рыкалин В.И., Додонов В.А. // Вестник Шижегородского университета им. Н.И. Лобачевского. Серия Химия. – 2010. – № 6 – С.68–72.

46. Зайцев А.М. Отчет о научно-исследовательской работе по теме: Разработка аппаратуры для исследования фундаментальных взаимодействий при повышенной светимости протон-протонных столкновений в международном проекте Атлас. Заключительный, этап 4. Государственный контракт / А. М. Зайцев, О. Л. Федин, А. П. Чеплаков, А. А. Снесарев, А. С. Романюк, А. С. Кожин, А. В. Козелов, В. И. Рыкалин, Л. Н. Смирнова, Д. В. Голубков, П. С. Мандрик – Протвино, 2013.– 180с.

47. Шарутин В.В. Реакции пентаарилсурьмы с диацилатами триарилсурьмы / Шарутин В.В., Шарутина О.К., Пакусина А.П., Бельский В.К. // Журнал Общей Химии – 1997. – Т. 67 – № 9 – С.1536–1541.

48. Batsanov S.S. Van der Waals Radii of Elements / Batsanov S.S. // Inorganic Materials Translated from Neorganicheskie Materialy Original Russian Text – 2001. – Vol. $37 - N_{\odot} 9 - P$. 871–885.

49. Шарутин В.В. Особенности строения арильных соединений сурьмы Ar4SbX (X ≠ Alk, Ar) / Шарутин В.В., Пакусина А.П., Шарутина О.К., Платонова Т.П., Смирнова С.А., Герасименко А.В. // Химия и компьютерное моделирование. Бутлеровские сообщения. – 2002. – Т. 4 – № 1 – С.22–30.

50. Шарутин В.В. Особенности строения 4-нитрофеноксида тетрафенилсурьмы / Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Бутлеровские сообщения – 2014. – Т. 97 – № 7 – С.2014.

51. Sharutin V.V. Synthesis , structure , and thermal destruction of

aroxytetraphenylstiboranes / Sharutin V. V., Zhidkov V. V., Muslin D. V., Liapina N.S., Fukin G.K., Zakharov L.N., Yanovsky A.I., Struchkov Y.T. // Russian Chemical Bulletin – 1995. – Vol. $44 - N_{\odot} 5 - P. 931-936$.

52. Sharutin V.V Synthesis and Structure of 2- tert - Butylphenoxytetraphenylantimony / Sharutin V. V, Sharutina O.K., Osipov P.E., Platonova T.P., Pakusina A.P., Fukin G.K., Zakharov L.N. // Russian Journal of Coordination Chemistry – 2001. – Vol. 27 – N_{2} 7 – P. 483–485.

53. Sharutin V.V. Reactions of Pentaarylantimony with ortho-Substituted Phenols / Sharutin V.V., Sharutina O.K., Osipov P.E., Pushilin M.A., Muslin D.V., Lyapina N.S., Zhidkov V.V., Bel'skii V.K. // Russian Journal of General Chemistry – 1997. – Vol. $67 - N_{2} 9 - P$. 1528–1530.

54. Sharutin V.V. Synthesis and structure of (4-acetyl-3-hydroxuphenoxy)tetraphenylantimony / Sharutin V. V., Sharutina O.K., Bondar' E.A., Subacheva O. V., Pakusina A.P., Gerasimenko A. V., Sergienko S.S. // Russian Journal of General Chemistry – 2003. – Vol. 73 – N_{2} 3 – P. 350–353.

55. Sharutin V.V New Method for Preparing Aroxytetraaryl Derivatives of Antimony / Sharutin V. V, Sharutina O.K., Osipov P.E., Subacheva O. V – 2001. – Vol. $71 - N_{2} 6 - P.983-984$.

56. Шарутин В.В. Синтез и строение 2,4,6- трихлорфеноксидов тетра - и трифенилсурьмы / Шарутин В.В., Шарутина О.К., Сенчурин В.С., Щелоков А.... // Журнал общей химии – 2016. – Т. 86 – № 1 – С.92–99.

57. Sharutin V.V. Aroxytetraaryl antimony compounds. Synthesis, structure, and thermolysis / Sharutin V. V., Sharutina O., Osipov P.E., Vorob'eva E.B., Muslin D. V, Bel'skii V.K. // Russian Journal of General Chemistry – 2000. – Vol. 70 – P. 867–872.

58. Sharutin V. V Triarylantimony Dicaroxylates Ar3Sb[OC(O)R]2 (Ar = Ph, p - Tol; R = 2-C4H3O, 3-C5H4N): Synthesis and Structure / Sharutin V. V, Sharutina O.K., Pakusina A.P., Platonova T.P., Zhidkov V. V, Pushilin M.A., Gerasimenko A. V // Russian Journal of Coordination Chemistry – 2003. – Vol. 29 – N 10 – P. 694–702.

59. Sharutin V. V. Tris(4-fluorophenyl)antimony dicarboxylates (4-FC6H4)3Sb[OC(O)R]2 (R = C10H15 or cyclo-C3H5): Synthesis and structure / Sharutin V. V., Sharutina O.K., Efremov A.N. // Russian Journal of Inorganic Chemistry – 2016. – Vol. $61 - N_{\rm P} 1 - P. 43-47$.

60. Sharutin V. V. Synthesis and structure of tri(p-tolyl)antimony diaroxides / Sharutin V. V., Sharutina O.K., Efremov A.N. // Russian Journal of General Chemistry -2016. – Vol. 86 – No 5 – P. 1212–1214.

61. Goel R.G. Organoantimony compounds. II. Studies on tetraphenylantimony(V) derivatives / Goel R.G. // Canadian Journal of Chemistry – 1969. – Vol. $47 - N_{\odot} 24 - P$. 4607–4612.

62. Millington P.L. Phenylantimony(V) oxalates: isolation and crystal structures of [SbPh4][SbPh2(ox)2], [SbPh3(OMe)]2ox and (SbPh4)2ox / Millington P.L., Sowerby D.B. // Journal of the Chemical Society, Dalton Transactions – 1992. – N_{2} 7 – P. 1199.

63. Кочешков К.А. Методы элементоорганической химии. Сурьма, висмут. / К. А. Кочешков, А. П. Сколдинов, Н. Н. Землянский / под ред. А.Н. Несмеянов. – – Москва: Наука, 1976.– 483с.

64. Ruther R. Nonaphenyltristiboxane-1,5-diyl Disulfonates / Ruther R., Huber F., Preut H. // Angewandte Chemie International Edition – 1987. – Vol. 2 – N_{2} 9 – P. 906–907.

65. Barton D.H.R. 67. Structural Studies of Crystalline Pentavalent Olrganohismuth Compounds / Barton D.H.R., Charpiot B., Tran E., Dau H., Mot W.B., Pascard C. // Helvetica Chimica Acta – 1984. – Vol. 67 – No 67 – P. 586–599.

66. Faraglia G. Phenylbismuth(III) and triphenylbismuth(V) complexes with oxine derivatives. The crystal structure of chloro(2-methyl-8-quinolinolato)triphenylbismuth(V) / Faraglia G., Graziani R., Volponi L., Casellato U. // Journal of Organometallic Chemistry – 1983. – Vol. 253 – $N_{\rm P}$ 2 – P. 317–327.

67. Suzuki H. Unexpected formation of triarylbismuth diformates in the oxidation of triarylbismuthines with ozone at low temperatures / Suzuki H., Ikegami T., Matanoa Y., Azuma N. // Journal of the Chemical Society, Perkin Transactions 1 - 1993. – Vol. $4 - N_{2} 20 - P. 2411$.

68. Domagala M. Bis[2-furoato(1–)]triphenylbismuth(V) / Domagala M., Preut H., Huber F. // Acta Crystallographica Section C Crystal Structure Communications – 1988. – Vol. 44 – N $_{2}$ 5 – P. 830–832.

69. Шарутин В.В. Взаимодействие пентафенилсурьмы с диацилатами трифенилвисмута / Шарутин В.В., Шарутина О.К., Егорова И.В., Сенчурин В.С., Иващик И.А., Бельский В.К. // Журнал общей химии – 2000. – Т. 70 – № 6 – С.937–939.

70. Letyanina I.A. Calorimetric Study of Triphenylbismuth Dimethacrylate Ph 3 Bi(O 2 CCMe=CH 2) 2 / Letyanina I.A., Markin A. V., Gushchin A. V., Smirnova N.N., Klimova M.N., Kalistratova O.S. // Journal of Chemical & Engineering Data – 2016. – Vol. $61 - N_{2} 7 - P. 2321-2329$.

71. Feham K. Synthesis and Structural Study of Triphenylbismuth Bis (Salicylate) / Feham K., Benkadari A., Chouaih A., Miloudi A., Boyer G., Abed D. El – 2013. – Vol. 2013 – N_{0} March – P. 28–33.

72. Daly J.J. The crystal and molecular structure of nitrilotrimethylene triphosphonic acid / Daly J.J., Wheatley P.J. // Journal of the Chemical Society A: Inorganic, Physical, Theoretical $-1967. - N_{\odot} 0 - P. 212-221.$

73. Beauchamp A.L. Reinvestigation of the Crystal and Molecular Structure of Pentaphenylantimony / Beauchamp A.L., Cotton F.A. – 1968. – Vol. 231 – № 9.

74. Brabant C. Structure cristalline du pentaphenylantimoine dans le solvate cyclohexanique (C6H5)5Sb·C6H12 / Brabant C., Blanck B., Beauchamp A.L. // Journal of Organometallic Chemistry – 1974. – Vol. $82 - N_{2} - P. 231-234$.

75. Connely N.G. Nomenclature of Inorganic Chemistry – IUPAC Recommendations 2005 / Connely N.G., Damhus T., Hartshorn R.M., Hutton A.T. // Chemistry International – Newsmagazine for IUPAC – 2005. – Vol. 27 – N $_{2}$ 6 – P. 366.

76. Hartshorn R.M. Representation of configuration in coordination polyhedra and the extension of current methodology to coordination numbers greater than six (IUPAC Technical Report) / Hartshorn R.M., Hey-Hawkins E., Kalio R., Leigh G.J. // Pure and Applied Chemistry – 2007. – Vol. 79 – N 10 – P. 1779–1799.

77. Poddel'Sky A.I. The nitro-substituted catecholates of triphenylantimony(V): Tetragonal pyramidal vs trigonal bipyramidal coordination / Poddel'Sky A.I., Baranov

E. V., Fukin G.K., Cherkasov V.K., Abakumov G.A. // Journal of Organometallic Chemistry – 2013. – Vol. 733 – P. 44–48.

78. Hall S.R. The crystallographic information file (CIF): a new standard archive file for crystallography / Hall S.R., Allen F.H., Brown I.D. // Acta Crystallographica Section A Foundations of Crystallography – 1991. – Vol. 47 – N_{0} 6 – P. 655–685.

79. Alvarez S. Shape maps and polyhedral interconversion paths in transition metal chemistry / Alvarez S., Alemany P., Casanova D., Cirera J., Llunell M., Avnir D. // Coordination Chemistry Reviews – 2005. – Vol. 249 – N_{0} 17–18 – P. 1693–1708.

80. Brown I.D. On measuring the size of distortions in coordination polyhedra / Brown I.D. // Acta Crystallographica Section B Structural Science – 2006. – Vol. 62 – N_{2} 4 – P. 692–694.

81. Берсукер И.Б. Электронное строение и свойства координационных соединений. Введение в теорию. / И. Б. Берсукер – Ленинград: "Химия," 1976. Вып. 2–е– 352с.

82. Urusov V.S. Theoretical analysis and empirical manifestation of the distortion theorem / Urusov V.S. // Zeitschrift für Kristallographie - Crystalline Materials – 2003. – Vol. $218 - N_{2} 11 - P.709-719$.

83. Platero-Prats A.E. Insight into Lewis Acid Catalysis with Alkaline-Earth MOFs: The Role of Polyhedral Symmetry Distortions / Platero-Prats A.E., Snejko N., Iglesias M., Monge Á., Gutiérrez-Puebla E. // Chemistry - A European Journal – 2013. – Vol. $19 - N_{2} 46 - P$. 15572–15582.

84. Казицына Л.А. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии / Л. А. Казицына, Н. Б. Куплетская – Москва: Высшая Школа, 1971.–264с.

85. Ильина Е.Г. Синтез и исследование физико-химических свойств октаноатов лантана (III) и иттрия (III) / Ильина Е.Г. // Известия Алтайского государственного университета – 2013. – Т. 3–1(79) – С.159–162.

86. Сомов Н.В. Трансляционная и инверсионная псевдосимметрия атомнх структур кристаллов органических и элементоорганических соединений / Сомов Н.В., Чупрунов Е.В. // Кристаллография – 2009. – Т. 54 – № 4 – С.581–587.

87. Чупрунов Е.В. О количественных оценках симметричности кристаллических структур / Чупрунов Е.В., Солдатов Е.А., Тархова Т.Н. // Кристаллография – 1988. – Т. 33 – № 3 – С.759.

88. Chuprunov E. V. Fedorov pseudosymmetry of crystals: Review / Chuprunov E. V. // Crystallography Reports – 2007. – Vol. 52 – № 1 – P. 1–11.

89. Somov N. V. Pseudosymmetry software for studying the pseudosymmetry of crystal atomic structures / Somov N. V., Chuprunov E. V. // Crystallography Reports – 2014. – Vol. 59 – N_{2} 1 – P. 137–139.

90. Порай-Кошиц М.А.Основы структурного анализа химических соединений / М. А. Порай-Кошиц – Москва: "Высшая школа," 1989.– 192с.

91. Trueblood K.N. Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature / Trueblood K.N., Bürgi H.-B., Burzlaff H., Dunitz J.D., Gramaccioli C.M., Schulz H.H., Shmueli U., Abrahams S.C. // Acta Crystallographica Section A – 1996. – Vol. 52 – N_{2} 5 – P. 770–781.

92. Иванов В.А. Поиск полярных молекулярных кристаллов с высокой степенью центросимметричности / Иванов В.А., Сомов Н.В., Фаддеев М.А., Чупрунов Е.В. // Вестник Нижегородского университета им. Н.И. Лобачевского – 2008. – № 1 – С.21–24.

93. Ivanov V.A. On the effect of structural and symmetrical features of potassium titanyl phosphate crystals with different contents of niobium, antimony, and zirconium on the second-harmonic intensity / Ivanov V.A., Burdov V.A., Marychev M.O., Titaev D.N., Faddeev M.A., Chuprunov E.V. // Crystallography Reports – 2008. – Vol. 53 – N_{2} 4 – P. 678–682.

94. Andreev P. V. Bis[(E)-3-(4-methoxyphenyl)prop-2-enoato]triphenylantimony(V) benzene monosolvate / Andreev P. V., Somov N. V., Kalistratova O.S., Gushchin A. V., Chuprunov E. V. // Acta Crystallographica Section E Structure Reports Online – 2013. – Vol. 69 – No 3 – P. m167–m167.

95. Kalistratova O.S. Synthesis and structure of bis[(2E)-3-(2-furyl)prop-2-enoato]triphenylantimony $Ph_3Sb[O_2CCH=CH(C_4H_3O)]_2$ / Kalistratova O.S., Andreev P. V., Gushchin A. V., Somov N.V., Chuprunov E.V. // Crystallography Reports – 2016. – Vol. 61 – No 3 – P. 391–394.

96. Andreev P. Synthesis and structure of aroxy-tetra-p-tolylantimony (4- MeC_6H_4)₄SbOC₆H₂Br₂-2,6-(t-Bu)-4 / Andreev P., Sharutin V., Sharutina O. // Вестник ЮУрГУ. Серия «Химия». – 2016. – Т. 8, № 1. – Р. 41–45.

97. Sharutin V. V. Tris(3-Fluorophenyl)antimony Derivatives (3- FC_6H_4)_3Sb(OC_6H_3Br_2-2,4)_2, (3- FC_6H_4)_3Sb(OC_6Cl_5-2,3,4,5,6)_2, and (3- FC_6H_4)_3Sb[OC(O)C_6H_4(NO_2-2)]_2: Synthesis and Structure / Sharutin V. V., Sharutina O.K., Efremov A.N., Andreev P. V. // Russian Journal of Inorganic Chemistry – 2018. – Vol. 63 – No 2 – P. 174–179.

98. Sharutin V. V. Tetra(para-Tolyl)antimony aroxides $(4-MeC_6H_4)_4$ SbOAr (Ar = $C_6H_3Cl_2$ -2,6, $C_6H_3(NO_2)_2$ -2,4, and $C_6H_2(NO_2)_3$ -2,4,6): Syntheses and structures / Sharutin V. V., Sharutina O.K., Andreev P. V. // Russian Journal of Coordination Chemistry – 2016. – Vol. 42 – No 7 – P. 449–454.

 $[(\mu^4 -$ Sharutin 99. V. V **Synthesis** and structure of succinato)hexadecaphenyltetraantimony] triiodide solvate with benzene [(Ph₄Sb)₂O₂CCH₂CH₂CO₂(Ph₄Sb)₂][I₃]₂ · 4PhH / Sharutin V. V, Sharutina O.K., Gubanova Y.O., Andreev P.V, Somov N.V // Russian Journal of Coordination Chemistry – 2017. – Vol. 43 – № 7 – P. 453–456.

100. Sharutin V.V. Mono-, Bi-, and Trinuclear Triarylantimony Organylsulfonate Derivatives: Synthesis and Structure / Sharutin V.V., Sharutina O.K., Senchurin V.S., Kartseva M.K., Andreev P. V. // Russian Journal of Inorganic Chemistry – 2018. – Vol. $63 - N_{\odot} 7 - P. 867-873$.

101. Sharutin V.V. Tetra- and triarylantimony pentafluoroand pentachlorophenoxides: Synthesis and structure / Sharutin V.V., Sharutina O.K., Efremov A.N., Andreev P.V. // Russian Journal of Inorganic Chemistry – 2017. – Vol $62 - N_{\rm P} 10 - P. 1320-1326.$

102. Андреев П.В. Синтез и строение дихлорида и дибромида трис(4этилфенил)сурьмы (4-*Et*C₆H₄)₃SbCl₂ И (4-*Et*C₆H₄)₃SbBr₂ / Андреев П.В., Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Вестник ЮУрГУ. Серия «Химия». – 2017. – Т. 9 – № 3 – С.59–64.

103. Andreev P.V. Bis(but-2-enoato- κO)triphenylbismuth(V) / Andreev P.V., Somov N.V., Kalistratova O.S., Gushchin A.V., Chuprunov E.V. // Acta Crystallographica Section E Structure Reports Online – 2013. – Vol. 69 – № 6 – P. m333.

104. Andreev P.V. Synthesis and structure of triphenylbismuth bis(3-phenylprop-2-enoate) / Andreev P.V., Somov N.V., Kalistratova O.S., Gushchin A.V., Chuprunov E.V. // Crystallography Reports – 2015. – Vol. $60 - N_{2} 4 - P. 517-520$.

105. Gusakovskaya A.A. Synthesis and Structures of Triphenylbismuth and Triphenylbismuth Di-meta-nitrocinnamate $Ph_3Bi(O_2CCH=CH-C_6H_4NO_2-m)_2$ / Gusakovskaya A.A., Kalistratova O.S., Andreev P.V, Gushchin A.V, Somov N.V, Chuprunov E. V – 2018. – Vol. 63 – Nº 2 – P. 203–207.

106. Agilent Technologies CrysAlisPro Software System / Agilent Technologies // Yarnton, Oxford, UK – 2014.

107. Sheldrick G.M. A short history of SHELX / Sheldrick G.M. // Acta Crystallographica Section A: Foundations of Crystallography – 2008. – Vol. $64 - N_{\rm P} 1 - P$. 112–122.

108. Farrugia L.J. WinGX and ORTEP for Windows: An update / Farrugia L.J. // Journal of Applied Crystallography – 2012. – Vol. $45 - N_{2} 4 - P. 849-854$.

109. Hübschle C.B. ShelXle: A Qt graphical user interface for SHELXL / Hübschle C.B., Sheldrick G.M., Dittrich B. // Journal of Applied Crystallography – 2011. – Vol. 44 – N_{0} 6 – P. 1281–1284.

110. Macrae C.F. Mercury: Visualization and analysis of crystal structures / Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., Streek J. Van De // Journal of Applied Crystallography – 2006. – Vol. 39 – N_{2} 3 – P. 453–457.

111. Allen F.H. CIF applications. XV. enCIFer: A program for viewing, editing and visualizing CIFs / Allen F.H., Johnson O., Shields G.P., Smith B.R., Towler M. // Journal of Applied Crystallography – 2004. – Vol. $37 - N_{2} - P$. 335-338.

112. Westrip S.P. PublCIF: Software for editing, validating and formatting crystallographic information files / Westrip S.P. // Journal of Applied Crystallography – 2010. – Vol. $43 - N_{\odot} 4 - P.$ 920–925.

113. Groom C.R. The Cambridge structural database / Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials – 2016. – Vol. $72 - N_{\odot} 2 - P$. 171–179.

114. Kozlowska K. Stacking of six-membered aromatic rings in crystals / Kozlowska K., Glowka M.L., Martynowski D. – 1999. – Vol. 2860 – № 98.

115. Seiji Tsuzuki, Kazumasa Honda, Tadafumi Uchimaru, Masuhiro Mikami and K.T. Origin of Attraction and Directionality of the π/π Interaction: Model Chemistry Calculations of Benzene Dimer Interaction / Seiji Tsuzuki, Kazumasa Honda, Tadafumi Uchimaru, Masuhiro Mikami and K.T. // J. Am. Chem. Soc. – 2002. – Vol. 124 – P. 104–112.

116. Gushchin A. V. Synthesis and structure of triphenylantinony dimethacrylate / Gushchin A. V., Shashkin D. V., Prytkova L.K., Somov N. V., Baranov E. V., Shavyrin a. S., Rykalin V.I. // Russian Journal of General Chemistry – 2011. – Vol. 81

– № 3 – P. 493–496.

117. Гущин А.В. Синтез и строение дикротоната трифенилсурьмы / Гущин А.В., Калистратова О.С., Алексеевич В.Р., Сомов Н.В., Шашкин Д.В., Додонов В.А., Лобачевского Н.И. // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Химия. – 2013. – № 1 – С.86–90.

118. Шарутина О.К. Синтез и термическое разложений производных ацилокситетрафенилсурьмы / Шарутина О.К., Шарутин В.В., Сенчурин В.С., Фукин Г.К., Захаров Л.Н., Яновский А.И., Стручков Ю.Т. // Известия Академии наук. Серия химическая – 1996. – № 1 – С.194–198.

119. Alvarez S. Continuous symmetry measures of penta-coordinate molecules: Berry and non-Berry distortions of the trigonal bipyramid / Alvarez S., Llunell M. // Journal of the Chemical Society, Dalton Transactions – $2000. - N_{\rm P} 19 - P. 3288 - 3303.$

120. Urusov V.S. Terms of parity and distortion of coordination polyhedra in inorganic crystal chemistry / Urusov V.S. // Journal of Structural Chemistry – 2014. – Vol. $55 - N_{2} 7 - P$. 1277–1292.

121. Sharutin V. V Reaction of Triphenylbismuth Bis(arenesulfonates) with Triphenylstibine / Sharutin V. V, Sharutina O.K., Pavlushkina I.I., Egorova I. V, Pakusina A.P., Krivolapov D.B., Gubaidullin A.T., Litvinov I.A. // Russian Journal of General Chemistry – 2001. – Vol. 71 – $N_{\rm D}$ 1 – P. 79–82.

122. Oliveira L.G. De Antimony(V) and bismuth(V) complexes of lapachol: Synthesis, crystal structure and cytotoxic activity / Oliveira L.G. De, Silva M.M., Paula F.C.S. De, Pereira-Maia E.C., Donnici C.L., Simone C.A. De, Frézard F., Silva Júnior E.N. Da, Demicheli C. // Molecules – 2011. – Vol. $16 - N_{\rm O} 12 - P$. 10314–10323.

123. Sharutin V. V Synthesis, structure and reactions of μ -oxobis(arenesulfonatotriarylbismuth) / Sharutin V. V, Egorova I. V, Sharutina O.K., Ivanenko T.K., Pavlushkina I.I., Gerasimenko A. V, Pushilin M.A. // Russian Journal of General Chemistry – 2004. – Vol. 74 – № 9 – P. 1359–1364.

124. Cui L. Synthesis, crystal structures, DNA interaction and anticancer activity of organobismuth(V) complexes / Cui L., Bi C., Fan Y., Li X., Meng X., Zhang N., Zhang Z. // Inorganica Chimica Acta – 2015. – Vol. 437 – N_{\odot} V – P. 41–46.

125. Yu L. Synthesis, characterization and in vitro antitumor activity of some arylbismuth triphenylgermylpropionates and crystal structures of $(4-BrC_6H_4)_3Bi(O_2CCH_2CH_2GePh_3)_2$ and $(4-BrC_6H_4)_3Bi[O_2CCH(CH_3)CH_2GePh_3]_2 / Yu$ L., Ma Y., Wang G., Li J., Du G., Hu J.-J. // Journal of Organometallic Chemistry – 2003. – Vol. 679 – No 2 – P. 173–180.

126. Wang G.-C. Synthesis, characterization and in-vitro cytotoxicity screening of some triarylbismuth(V) di(N-salicylidene)amino carboxylates and the crystal structure of $(2-HOC_6H_4CH=NCH_2CO_2)_2Bi(C_6H_5)_3$ / Wang G.-C., Xiao J., Lu Y., Yu L., Song H., Li J., Cui J., Wang R.-Q., Ran F., Wang H. // Applied Organometallic Chemistry – 2005. – Vol. 19 – No 1 – P. 113–117.

127. Barucki H. Characterising secondary bonding interactions within triaryl organoantimony(V) and organobismuth(V) complexes / Barucki H., Coles S.J., Costello J.F., Gelbrich T., Hursthouse M.B. // Journal of the Chemical Society, Dalton Transactions – 2000. – Vol. $2 - N_{\rm P}$ 14 – P. 2319–2325.

128. Sharutin V. V. Synthesis and Structure of Triphenylbismuth

Bis(Fluorobenzoates) / Sharutin V. V., Egorova I. V., Sharutina O.K., Ivanenko T.K., Gatilov Y. V., Adonin N.A., Starichenko V.F. // Russian Journal of Coordination Chemistry $-2003. - Vol. 29 - N_{2} 7 - P. 462-467.$

129. Sharutin V. V. Synthesis and structure of triphenylbismuth bis(phenylcarboranylcarboxylate) / Sharutin V. V., Senchurin V.S., Sharutina O.K., Bregadze V.I., Zhigareva G.G. // Russian Journal of General Chemistry – 2010. – Vol. $80 - N_{2} 10 - P$. 1941–1944.

130. Ong Y.C. Stability and toxicity of tris-tolyl bismuth(V) dicarboxylates and their biological activity towards Leishmania major / Ong Y.C., Blair V.L., Kedzierski L., Tuck K.L., Andrews P.C. // Dalton Transactions – 2015. – Vol. 44 – N_{2} 41 – P. 18215–18226.

131. Yu L. Synthesis and in vitro antitumor activity of some triarylantimony di(N-phenylglycinates) / Yu L., Ma Y., Wang G., Li J. // Heteroatom Chemistry – 2004. – Vol. $15 - N_{2} 1 - P$. 32-36.

132. Yu L. Synthesis, characterization and in vitro antitumor activity of some arylantimony ferrocenylcarboxylate derivatives and the crystal structures of $[C_5H_5FeC_5H_4C(CH_3)=CHCOO]_2Sb(C_6H_4F-4)_3$ and [4- $(C_5H_5FeC_5H_4)C_6H_4COO]_2Sb(C_6H_4F-4)_3$ / Yu L., Ma Y., Liu R., Wang G., Li J., Du G., Hu J. // Polyhedron – 2004. – Vol. 23 – No 5 – P. 823–829.

133. Shaturin V. V. Synthesis and structure of tris(4-N,N-dimethylaminophenyl) antimony(V) dicarboxylates and diaroxides / Shaturin V. V., Senchurin V.S., Shaturina O.K., Chagarova O. V. // Russian Journal of Inorganic Chemistry – 2011. – Vol. 56 – N_{2} 7 – P. 1064–1070.

134. Yin H. Synthesis, characterizations and crystal structures of new organoantimony(V) complexes with various isomers of fluoromethylbenzoate ligands / Yin H., Wen L., Cui J., Li W. // Polyhedron – 2009. – Vol. $28 - N_{2} 14 - P$. 2919–2926.

135. Sharutin V. V Tetra- and Triarylantimony Fluorobenzoates : Synthesis and Structures / Sharutin V. V, Sharutina O.K., Bondar E.A., Pakusina A.P., Gatilov Y. V, Adonin N.Y., Starichenko V.F. – 2002. – Vol. $28 - N_{\odot} 5 - P. 356-363$.

136. Li J.S. Synthesis, characterization and structure of some arylantimony ferrocenylacrylates / Li J.S., Liu R.C., Chi X.B., Wang G.C., Guo Q.S. // Inorganica Chimica Acta – 2004. – Vol. 357 – N_{2} 7 – P. 2176–2180.

137. Sharutin V. V Structural Features of Triorganylantimony Dicarboxylates R3Sb[OC(O)R)]2 / Sharutin V. V, Sharutina O.K., Pakusina A.P., Platonova T.P., Smirnova S. V, Pushilin M.A., Gerasimenko A. V // Russian Journal of Coordination Chemistry $-2003. - Vol. 29 - N \ge 11 - P. 780-789.$

138. Quan L. Synthesis, characterization and crystal structures of tri- and tetraphenylantimony(V) compounds containing arylcarbonyloxy moiety / Quan L., Yin H., Cui J., Hong M., Wang D. // Journal of Organometallic Chemistry – 2009. – Vol. $694 - N_{2} 23 - P. 3708-3717.$

139. Li J.-S. Synthesis, characterization and biological activities of some triarylantimony dichrysanthemates and crystal structure of $Ph_3Sb(O_2CCHCMe_2CMe_2)_2$ / Li J.-S., Huang G.-Q., Wei Y.-T., Xiong C.-H., Zhu D.-Q., Xie O.-L. // Applied Organometallic Chemistry – 1998. – Vol. 12 – No 1 – P. 31–38.

140. Wen L. New organoantimony complexes with the isomers of

chlorophenylacetic acid: Syntheses, characterizations and crystal structures of 1D polymeric chain, 2D network structure and 3D framework / Wen L., Yin H., Li W., Wang D. // Inorganica Chimica Acta – 2010. – Vol. 363 – № 4 – P. 676–684.

141. Ma Y. Synthesis, characterization and antitumor activity of some arylantimony triphenylgermanylpropionates and crystal structures of $Ph_3GeCH(Ph)CH_2CO_2SbPh_4$ and $[Ph_3GeCH_2CH(CH_3)CO_2]_2Sb(4-ClC_6H4)_3 / Ma Y.$, Li J., Xuan Z., Liu R. // Journal of Organometallic Chemistry – 2001. – Vol. 620 – N_2 1–2 – P. 235–242.

142. Asghar F. Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates / Asghar F., Badshah A., Shah A., Rauf M.K., Ali M.I., Tahir M.N., Nosheen E., Zia-ur-Rehman, Qureshi R. // Journal of Organometallic Chemistry – 2012. – Vol. 717 – P. 1–8.

143. Barucki H. Upon the Intriguing Stereoselective Formation of Organobismuth(V) Complexes / Barucki H., Coles S.J., Costello J.F., Hursthouse M.B. // Chemistry - A European Journal – 2003. – Vol. 9 – N_{2} 12 – P. 2877–2884.

144. Jundt D.H. Boules of LiNbO 3 congruently grown by the Czochralski technique / Jundt D.H., Foulon G. // Growth (Lakeland).

145. Крамер Г. Математические методы статистики / Г. Крамер – Москва: Мир, 1975.– 648с.

146. Фаддеев М.А. Элементарная обработка результатов эксперимента / М. А. Фаддеев – Нижний Новгород: Издательство Нижегородского госуниверситета, 2004. Вып. 2–108с.

147. Deacon G.B. Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbonoxygen stretching frequencies / Deacon G.B., Huber F., Phillips R.J. // Inorganica Chimica Acta – 1985. – Vol. $104 - N_{2} 1 - P. 41-45$.

148. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry / K. Nakamoto / под ред. P.R. Griffiths. – Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.– 415 p.

149. Tempel N. Dimethyltriethylstiboran und trimethylantimondipropin: zwei gemischte pentaalkyle des antimons / Tempel N., Schwarz W., Weidlein J. // Journal of Organometallic Chemistry – 1978. – Vol. 154 – N_{2} 1 – P. 21–32.

150. Sharutin V. V. Synthesis and Structure of Tetraphenylantimony Nitrate / Sharutin V. V., Sharutina O.K., Panova L.P., Platonova T.P., Pakusina A.P., Krivolapov D.B., Gubaidullin A.T., Litvinov I.A. // Russian Journal of General Chemistry – 2002. – Vol. $72 - N_{2} 1 - P$. 40–43.

приложение

Таблица – Значения степеней подобия КП эталонным тригональной бипирамиде Φ_Δ, полуоктаэдру Φ_□ и тетрагональной пирамиде с центром в центре масс Φ_◊; степени инвариантности электронной плотности координационного полиэдра атомной структуры относительно электронной плотности эталонных тригональной бипирамиды η_Δ, полуоктаэдра η_□ и тетрагональной пирамиды с центром в центре масс η_◊; степень тригональности τ [7]

Defeede	4	C	тепень подоби	ля	Степе	нь инвар.	. эл. пл.	
Reicode	Атом	Φ_{\square}	Φ_{\Diamond}	Φ_Δ	η_{\Box}	η₀	η_{Δ}	τ
MEXGAZ (I)	Sb1	0.3206(2)	0.3202(2)	0.5284(2)	0.5565	0.4051	0.6432	0.5437
(\mathbf{II})	Sb1	0.28049(18)	0.29008(18)	0.5884(2)	0.5954	0.3273	0.6925	0.6124
(III)	Sb1	0.18419(18)	0.24007(19)	0.5133(2)	0.5707	0.3834	0.6837	0.8430
(IV)	Sb1	0.2793(2)	0.3456(2)	0.5644(4)	0.6800	0.3984	0.7116	0.6632
(V)	Sb1	0.07698(17)	0.10358(17)	0.2123(2)	0.2931	0.4096	0.3239	0.9359
(VI)	Sb1	0.16711(19)	0.1836(2)	0.3731(2)	0.4823	0.3478	0.5352	0.8124
(VI)	Sb2	0.07388(17)	0.10553(18)	0.2290(2)	0.2700	0.3639	0.3681	0.9230
(VII)	Sb1	0.08496(17)	0.10532(18)	0.2527(2)	0.3334	0.3215	0.3972	0.8943
(VII)	Sb2	0.1983(2)	0.2403(2)	0.7130(4)	0.5510	0.3723	0.8314	0.9314
(VIII)	Sb1	0.12201(17)	0.16251(18)	0.3872(2)	0.4466	0.3319	0.5791	0.9201
(XI)	Sb1	0.3705(3)	0.3719(3)	0.4197(3)	0.5606	0.4954	0.6545	0.4710
IDUWEL (XII)	Bi1	0.3559(2)	0.3438(2)	0.3812(2)	0.5347	0.5317	0.5946	0.4003
WURZOA (XIII)	Bi1	0.39913(18)	0.39146(18)	0.38659(18)	0.5789	0.5499	0.6551	0.4102
(XIV)	Bi1	0.3746(2)	0.3596(2)	0.3891(2)	0.5710	0.5348	0.6389	0.4233
(XV)	Bi1	0.2985(3)	0.2944(3)	0.4105(4)	0.5111	0.4663	0.5046	0.4290
(XVI)	Bi1	0.3421(2)	0.32963(19)	0.3611(2)	0.4778	0.5341	0.5216	0.3566
(XVI)	Bi2	0.3183(2)	0.3111(2)	0.3953(2)	0.4718	0.4997	0.5078	0.4008
AFEVÁK	Sb1	0.07402(17)	0.08860(17)	0.20397(18)	0.2940	0.3470	0.3548	0.9795
AGILIN	Sb1	0.1899(2)	0.2373(2)	0.6142(3)	0.5422	0.2614	0.7579	0.9210
AGILIN	Sb2	0.1963(2)	0.2737(2)	0.5382(4)	0.4949	0.3815	0.6947	0.7985
AGILOT	Sb1	0.20607(19)	0.3053(2)	0.5953(2)	0.5476	0.3263	0.7421	0.7740
AGUSEC	Bi1	0.2470(4)	0.2502(4)	0.4573(7)	0.4417	0.3680	0.5556	0.5145
AGUSIG	Bi1	0.3203(17)	0.3181(17)	0.452(2)	0.4754	0.4635	0.5198	0.4767
AGUSOM	Bi1	0.2267(5)	0.2319(5)	0.4881(10)	0.435	0.3074	0.5623	0.5657
AGUZEJ	Sb1	0.1752(3)	0.2282(3)	0.6455(9)	0.5111	0.3221	0.8523	0.8814
AGUZEJ	Sb2	0.1667(2)	0.2316(2)	0.6777(6)	0.5768	0.2935	0.8668	0.8487
AGUZIN	Sb1	0.2062(2)	0.2787(2)	0.7717(6)	0.6636	0.3733	0.8838	0.8729
AJECIC	Bi1	0.5661(10)	0.1440(3)	0.1184(2)	0.6541	0.1861	0.3898	0.0587
ANTPSB	Sb1	0.13808(17)	0.22023(17)	0.42318(17)	0.4231	0.3982	0.5668	0.7974
ANTPSB	Sb2	0.15504(17)	0.21008(17)	0.52148(17)	0.5144	0.3234	0.6673	0.9308
ARASUH	Sb1	0.1808(2)	0.2770(3)	0.8084(8)	0.611	0.3642	0.8806	0.8808
AXOVOY	Sb1	0.2385(3)	0.2864(3)	0.6885(7)	0.5697	0.4279	0.8259	0.7864
AXOVUE	Sb1	0.2588(3)	0.3214(3)	0.6640(7)	0.6584	0.3872	0.7526	0.7449
AXOWAL	Sb1	0.1783(2)	0.2475(2)	0.5228(5)	0.5399	0.3142	0.7033	0.8201
BAJBOD	Sb1	0.17870(17)	0.27152(17)	0.60491(17)	0.4724	0.3543	0.7428	0.7822
BAZRUO	Bi1	0 3535(3)	0.3455(3)	0.3677(3)	0.6015	0 5423	0.6091	0 4027
BAZSAX	Bi1	0.3578(7)	0.3486(7)	0.3800(7)	0.5127	0.5391	0.5714	0.3880
BEGLUV	Sb1	0.3580(4)	0.3633(4)	0.5213(5)	0.6666	0.494	0.6081	0.5389
BIKTOF	Sb1	0.1607(2)	0.2538(2)	0.3219(3) 0.4209(3)	0.3885	0.4582	0 5888	0.6945
CaHaBiaOa	Bi1	0.1007(2) 0.3207(4)	0.2355(2) 0.3265(4)	0.1209(5) 0.4279(5)	0.5005	0.4591	0.6369	0.0213
$C_{64}H_{45}B_{12}O_{12}$	Bi2	0.3207(4)	0.3203(4) 0.3092(4)	0.4064(5)	0 5289	0.4391 0.4784	0.6041	0 4703
BOGL FP	Sh1	0.2991(2)	0.3092(4) 0.4724(2)	0.23714(19)	0.3674	0 5734	0 3801	0 1355
BOGLOZ	Sh1	0.37570(18)	0.34120(18)	0.35125(18)	0.4613	0.5767	0 3898	0.2601
BOGLOZ BOGLOZ	Sh7	0.3718(2)	$0.37120(10) \\ 0.3394(2)$	0.33123(10) 0.3432(2)	0.4181	0.5307	0.5570	0.2001
BOGLOZ	Sb2 Sh3	0.3710(2) 0.36276(10)	0.3374(2) 0.33320(18)	0.3+32(2) 0.34550(18)	0 / 5/2	0.5570	0 38/7	0.2709
DOULUL	505	0.302/0(19)	0.55550(10)	0.34337(10)	0.4342	0.5000	0.3047	0.2009

157								
BOXNOS	Sb1	0.16388(18)	0.18740(18)	0.5255(2)	0.5441	0.4116	0.7591	0.8568
BOXNOS	Sb2	0.16102(19)	0.18666(19)	0.5218(3)	0.5442	0.3854	0.7653	0.8592
BOXNUY	Sb1	0.12980(17)	0.23304(19)	0.4366(2)	0.4104	0.4918	0.6956	0.6635
BOYFIE	Sb1	0.42502(17)	0.41539(17)	0.42461(17)	0.6422	0.5433	0.6550	0.4165
BOYFIE01	Sb1	0.4192(2)	0.4166(2)	0.4287(2)	0.6424	0.5443	0.5993	0.4218
BUPOSB	Sb1	0.16533(17)	0.26624(17)	0.69495(17)	0.5853	0.3632	0.8427	0.8548
BURQEL	Sb1	0.21304(19)	0.4712(2)	0.2602(2)	0.3186	0.6203	0.3480	0.1899
CASBON	Sb1	0.42118(17)	0.42442(17)	0.21852(17)	0.5024	0.4914	0.4940	0.1157
CBPANT	Sb1	0.16872(17)	0.19273(17)	0.49869(17)	0.4995	0.2498	0.6997	0.8401
CBPANT01	Sb2	0.16759(18)	0.20154(19)	0.4795(2)	0.4714	0.3000	0.6637	0.8609
CBPANT02	Sb2	0.1723(2)	0.1941(3)	0.5108(7)	0.5196	0.2375	0.7111	0.8486
CBPANT03	Sb2	0.16749(17)	0.20139(17)	0.47345(19)	0.4691	0.3025	0.6601	0.8582
CBPANT04	Sb2	0.1697(2)	0.1924(2)	0.5077(3)	0.5103	0.3042	0.6978	0.8420
CEYRIJ	Sb1	0.21314(19)	0.3491(2)	0.6529(3)	0.4589	0.3936	0.7508	0.7169
CEYVEJ	Sb1	0.25218(18)	0.27472(18)	0.7640(2)	0.6763	0.2742	0.8471	0.8015
CIJQIV	Sb1	0.1401(2)	0.1999(2)	0.4321(3)	0.3872	0.3945	0.6266	0.8253
CIJOIV	Sb2	0.13013(19)	0.1699(2)	0.4589(3)	0.4525	0.3022	0.6922	0.8999
COLVOP	Sb1	0.3085(3)	0.3172(3)	0.5606(5)	0.5824	0.3800	0.7040	0.6051
CUHGIV	Sb1	0.1303(3)	0.1779(4)	0.4395(11)	0.4989	0.3060	0.6663	0.8842
DAJTAK	Sb1	0.3270(3)	0.3349(3)	0.5489(4)	0.5825	0.4145	0.7002	0.5722
DANNEM	Bi1	0.1922(2)	0.2415(3)	0.8097(9)	0.6507	0.3097	0.9607	0.9275
DANPAK	Sb1	0.22949(19)	0.28403(19)	0.5114(2)	0.5606	0.3837	0.6567	0.7681
DANPEO	Sb1	0.18906(17)	0.25109(18)	0.6044(2)	0.6115	0.2953	0.7725	0.8943
DEYLAU	Sb1	0.0837(2)	0.1049(2)	0.2624(3)	0.3374	0.3464	0.4144	0.9291
DMOPSB	Sb1	0.19803(17)	0.27286(17)	0.69444(17)	0.6561	0 3789	0.8405	0.8586
DUGFEO	Sb1	0.1469(2)	0.27200(17) 0.2592(3)	0.4118(5)	0 3777	0.3812	0.5360	0.7103
DUGFEO	Sb2	0.13839(19)	0.2319(2)	0.4185(3)	0 3735	0.3891	0.4971	0.7242
DUGFE001	Sb1	0.1409(2)	0.2334(3)	0.4261(6)	0 4469	0 3519	0 5185	0 7330
DUGFE001	Sb2	0.15190(18)	0.2652(2)	0.4239(2)	0.4534	0 3754	0.5083	0 7071
DUGFIU	Sb1	0.1842(3)	0.3852(6)	0.3668(6)	0.3560	0.5254	0.4959	0.4814
DURFIF	Sb1	0.1588(4)	0.1939(5)	0.4919(14)	0.4737	0.3559	0.7183	0.8411
DURFIF	Sb2	0.1209(3)	0.2011(5)	0 4060(9)	0 4287	0.4115	0.6158	0.8391
DURFOL	Sb1	0.1120(0) 0.1182(8)	0.1504(10)	0.374(2)	0.3628	0.4662	0.6089	0.8665
DURFOL	Sb2	0.1107(4)	0.1392(5)	0.3412(13)	0.4649	0.4169	0.5353	0.9242
DUWNAK	Sb1	0.2502(3)	0.2892(3)	0.7220(8)	0.6236	0.436	0.8398	0.8366
DUWNEO	Bil	0.2507(6)	0.2793(6)	0.5153(12)	0 5574	0 3992	0.6976	0 5988
DUXOIY	Sb1	0.2207(0) 0.4800(3)	0 11315(18)	0.09022(18)	0.5371	0.1728	0.3638	0.0057
EBAPEE	Sb1	0.1000(3) 0.3675(8)	0 3714(8)	0.09022(10) 0.4871(11)	0.6120	0.4889	0.5050	0.5128
EBAPEE	Sb2	0.3396(4)	0.3778(4)	0.4603(5)	0.6215	0.4416	0.6774	0.5088
FRAPII	Sb1	0.3570(1) 0.2667(2)	0.2837(3)	0.1009(5)	0.5817	0.3503	0.7099	0.5000
EBOTOE	Bil	0.2007(2) 0.1275(6)	0.2657(3) 0.1662(7)	0.3396(15)	0.3801	0.3776	0.4875	0.0210
ECIDOI	Sh1	0.1273(0) 0.3642(3)	0.1002(7) 0.3671(3)	0.3370(13) 0.4979(4)	0.5512	0.5184	0.4075	0.7430
EFIWIIN	Bil	0.3012(3) 0.2864(3)	0.2903(3)	0.1979(1) 0.4785(5)	0.5912	0.3782	0.6863	0.5263
FFIXFY	Bil	0.2001(3) 0.3470(10)	0.2905(3) 0.3285(10)	0.3775(11)	0.5308	0.5155	0.5442	0.3707
FFIXOI	Bi1	0.3470(10) 0.2654(2)	0.3203(10) 0.2717(2)	0.3773(11) 0.4291(2)	0.4859	0.4063	0.6071	0.5055
FKACEZ	Bi1	0.2034(2) 0.2703(3)	0.2717(2) 0.2647(3)	0.4271(2) 0.4227(4)	0.4059	0.4005	0.5987	0.5055
FKATIT	Bi1	0.2703(3) 0.304(2)	0.2047(3) 0.303(2)	0.4227(4) 0.439(3)	0.5000	0.3737	0.5970	0.4705
ERIOEC	Sh1	0.304(2) 0.1908(2)	0.303(2) 0.2301(2)	0.437(3) 0.5952(5)	0.5070	0.4403	0.3970	0.3020
EVIVOU	Sb1	0.1700(2) 0.2244(2)	0.2301(2) 0.2718(2)	0.5752(3)	0.5701	0.4001	0.7077	0.8553
EWICUUS	Bi1	0.2244(2) 0.2303(3)	0.2710(2) 0.2373(3)	0.0830(3) 0.5048(5)	0.0021	0.3711	0.6265	0.8555
FXIHEV	Sh1	0.2303(3) 0.1504(2)	0.2373(3) 0.2403(3)	0.5040(5)	0.4921	0.3034	0.0117	0.3729
EXILL	S01 Sh1	0.1394(2) 0.1406(3)	0.2403(3) 0.4312(3)	0.0212(0) 0.4515(2)	0.0150	0.4432	0.0224	0.0709
EVODIT	501 51	0.4400(3) 0.14472(10)	0.4312(3) 0.1041(2)	0.4313(3) 0.5249(2)	0.0/10	0.201	0.3900	0.4343
	501 Sh1	$0.14473(19) \\ 0.1221(2)$	0.1941(2) 0.1573(2)	0.3240(3) 0.3674(4)	0.3182	0.3213	0.0999	0.9700
	501	0.1551(2) 0.1524(2)	0.1373(2) 0.2407(2)	0.3074(4) 0.4551(4)	0.4408	0.2931	0.3401	0.0340
	502 562	0.1324(2) 0.1545(2)	0.2407(2) 0.1005(2)	0.4331(4) 0.4672(6)	0.4640	0.3734	0.0230	0.7/31
FADHIC	Sb3 Sb1	0.1545(2) 0.1573(2)	0.1905(2) 0.2441(2)	0.4675(6) 0.6157(4)	0.4444 0.4618	0.3048	0.0324	0.7926

FADHOI01	Sb1	0.1573(2)	0.2441(2)	0.6157(4)	0.4618	0.2854	0.7697	0.9125
FAZSUU	Sb1	0.1406(2)	0.2452(4)	0.4104(6)	0.3794	0.3807	0.5020	0.6524
FAZTAB	Sb1	0.2041(2)	0.6652(5)	0.2507(2)	0.3178	0.8272	0.4124	0.0846
FAZTAB	Sb2	0.1808(2)	0.5590(5)	0.3058(3)	0.3187	0.6809	0.4948	0.2311
FAZVEH	Sb1	0.1294(3)	0.2205(4)	0.5362(10)	0.4682	0.3319	0.7965	0.7970
FAZVIL	Sb1	0.2467(5)	0.4126(8)	0.2826(6)	0.3946	0.6123	0.4366	0.2822
FEDYIX	Sb1	0.12434(17)	0.15281(17)	0.36962(18)	0.4429	0.3067	0.5516	0.9011
FEGNAG	Sb1	0.1883(3)	0.2335(4)	0.6686(11)	0.5304	0.3099	0.7968	0.7505
FINSIF	Bil	0.3563(4)	0.3488(4)	0 3938(5)	0 5838	0 5333	0 5888	0.4120
FOMRUU	Sb1	0.0795(2)	0.1198(3)	0.2335(5)	0.3179	0.3966	0.4578	0.8471
FOMRUU	Sb2	0.2024(5)	0.2676(6)	0.7831(19)	0 5401	0.2612	0.9033	0.8990
FOOTIO	Sb1	0.2874(2)	0.3073(2)	0.4984(3)	0.5301	0.2012 0.4424	0.6921	0 5547
FOOTOU	Sb1	0.2038(2)	0.2240(2)	0.5884(5)	0.4886	0.3771	0.6738	0.6457
FOOTOU	Sb2	0.2030(2) 0.2108(3)	0.2210(2) 0.2682(3)	0.3001(9) 0.7124(9)	0.1000	0.3699	0.8486	0.8682
FOOTUA	Bi1	0.2390(2)	0.2002(3) 0.2478(2)	0.7124(2) 0.4114(2)	0.4193	0.3549	0.5761	0.0002
FUGOFF	Sh1	0.3168(6)	0.2178(2) 0.3238(6)	0.5739(11)	0.6469	0.3987	0.6740	0 5934
FUPSEO	Sb1	0.3987(3)	0.3250(0) 0.3955(3)	0.3739(11) 0.4538(3)	0.6402	0.5707	0.6740	0.3734
GARDIJI	Sb1	0.0760(2)	0.3555(3) 0.1164(2)	0.4330(3) 0.2254(4)	0.0010	0.3041 0.4087	0.0507	0.4772
GABDUI	Sb1 Sb2	0.0700(2) 0.0820(2)	0.1299(2)	0.2234(4) 0.2433(4)	0.3020	0.4642	0.4932 0.5242	0.8352
GATOAU	Sb2 Sb1	0.0020(2) 0.21801(18)	0.1277(2) 0.4995(2)	0.2433(4) 0.20674(18)	0.3700	0.4042 0.6414	0.3242	0.0552
GATOAU	Sb1 Sb2	0.21801(10) 0.21802(10)	0.4775(2)	0.20074(18) 0.10424(18)	0.33/7	0.0414	0.307	0.0004
GATOEV	Sb2 Sb1	0.21892(19) 0.20555(18)	0.3104(2) 0.3663(2)	0.19424(10) 0.3633(2)	0.3347	0.7098	0.2380	0.0130
GATOIC	Sb1	0.20333(10) 0.2284(2)	0.5003(2) 0.5033(4)	0.3033(2) 0.2237(2)	0.3003	0.5778	0.4707	0.4703
GATOIC	SU1 Sh2	0.2264(2) 0.1000(2)	0.3033(4) 0.3670(2)	0.2237(2) 0.3348(2)	0.3442	0.0428	0.3377	0.1191
GATOIC	502 Sh3	0.1990(2)	0.3070(2) 0.3476(2)	0.3346(2) 0.3335(2)	0.3652	0.5340	0.4571	0.4027 0.4127
GATOIC	505 Sh4	0.19000(19)	0.3470(2) 0.4621(2)	0.3333(2) 0.2178(2)	0.3792	0.5528	0.4550	0.4137
CELVIE	504 Sh1	0.2117(2) 0.2800(7)	0.4021(3) 0.2060(7)	0.2170(2)	0.5410	0.0190	0.5511	0.1331
GELLAM	501 Sh1	0.2890(7)	0.2900(7)	0.3666(14)	0.5122	0.5372	0.0313	0.0100
GELLAM GELLEO	501 Sh1	0.3879(0) 0.2140(2)	0.4018(0) 0.2604(2)	0.4000(7)	0.5969	0.3223 0.4722	0.0755	0.4602
GELLEQ	501 D:1	0.2149(2) 0.2648(4)	0.2094(2) 0.2556(4)	0.8191(3) 0.2027(4)	0.0052	0.4/33	0.9444	0.9103
CETZIO		0.3046(4) 0.1527(2)	0.3330(4) 0.2601(2)	0.3937(4) 0.1025(2)	0.0071	0.5169	0.0155	0.4221
GEIZIO	501 Sh1	0.1327(2)	0.3001(3)	0.1923(2) 0.4205(2)	0.2132	0.3230	0.5008	0.1511
GEW 115	S01 S1-2	0.13780(18) 0.14722(17)	0.23920(18)	0.4393(2)	0.5507	0.46/4	0.5575	0.0738
GEW I IS	502 Sh1	0.14/33(17) 0.20720(10)	0.24044(18)	0.42481(19)	0.4449	0.5851	0.5954	0.0829
GEWIUI	SD1 Sh1	0.20739(19)	0.4033(2)	0.2805(2)	0.3818	0.5481	0.4240	0.2381
GIKSUI	SD1 Ch 1	0.1847(2)	0.2379(2)	0.8011(8)	0.0014	0.2578	0.9007	0.9290
GILFEM	SD1	0.1782(3)	0.2483(4)	0.7736(13)	0.6314	0.3111	0.8/84	0.9051
GODHUC	Sb1	0.2010(3)	0.318/(4)	0.6695(9)	0.5987	0.4320	0.8116	0.7684
GODHUC	SD2	0.1023(2)	0.1304(2)	0.2830(3)	0.4210	0.3110	0.4773	0.8///
GOGKOD	SDI D'1	0.3342(2)	0.3278(2)	0.5490(2)	0.5760	0.4156	0.6820	0.5595
HAKVOE	B11	0.4385(16)	0.585(2)	0.3434(13)	0.4523	0.6196	0.4635	0.2523
HAIWOP	SD1	0.09853(17)	0.12/88(18)	0.2846(2)	0.3616	0.3411	0.4320	0.9234
HEHCUS	Sb1	0.2032(2)	0.2542(3)	0.7626(8)	0.5/08	0.4835	0.9280	0.8960
HOQKOW	SDI	0.1733(2)	0.21/4(2)	0.3860(3)	0.4913	0.4241	0.6255	0.6098
IBARIN	B11	0.3534(2)	0.4624(2)	0.4852(2)	0.5661	0.5146	0.7262	0.5091
IBASAG	Sbl	0.16289(19)	0.2203(2)	0.5064(3)	0.5128	0.3293	0.6895	0.8320
IBASAG	Sb2	0.1389(2)	0.2058(2)	0.4/33(4)	0.4399	0.3134	0.6698	0.8500
IBASAG01	Sbl	0.1719(2)	0.2012(2)	0.5033(3)	0.4866	0.3345	0.6853	0.8527
IBASAG01	Sb2	0.13886(18)	0.2044(2)	0.4059(2)	0.4855	0.3259	0.5855	0.8420
IBASEK	Sbl	0.2051(2)	0.2868(2)	0.8342(5)	0.5339	0.4452	0.9277	0.8961
IBASOU	Sbl	0.17289(19)	0.21458(19)	0.5006(2)	0.5248	0.4000	0.6880	0.8545
IBASUA	Sb1	0.17652(17)	0.22198(17)	0.43013(18)	0.4858	0.3279	0.5897	0.7995
IBETAL	Sb1	0.15051(17)	0.21332(17)	0.51789(19)	0.4881	0.3541	0.7121	0.9056
IBETEP	Sb1	0.17782(17)	0.21883(17)	0.51936(19)	0.5223	0.3320	0.6761	0.8837
IFULUR	Sb1	0.3846(3)	0.3915(3)	0.5274(3)	0.6876	0.5097	0.6378	0.5418
IFULUR	Sb2	0.2559(3)	0.2674(3)	0.5960(7)	0.5882	0.3786	0.7110	0.6472
IGIMER	Sb1	0.4645(2)	0.4473(2)	0.4315(2)	0.6582	0.5496	0.6765	0.4056
IGIMIV	Sb1	0.3645(6)	0.3693(6)	0.5060(9)	0.6449	0.4722	0.6686	0.5164

159								
IGIMOB	Sb1	0.19496(18)	0.23581(18)	0.4233(2)	0.5088	0.3690	0.6294	0.7518
IGIMUH	Sb1	0.18398(19)	0.2329(2)	0.4660(2)	0.5042	0.3354	0.6474	0.8102
IGINAO	Sb1	0.2349(4)	0.3120(6)	0.4156(8)	0.5038	0.4215	0.5954	0.6322
IHEFOQ	Sb1	0.18726(17)	0.23784(17)	0.77068(17)	0.6583	0.2912	0.8894	0.9049
IHEFUW	Sb1	0.18841(17)	0.23246(17)	0.80480(17)	0.6595	0.2662	0.9074	0.9241
IHEHIM	Sb1	0.3097(2)	0.3212(2)	0.5518(2)	0.6588	0.3731	0.7515	0.6160
IHEHOS	Sb1	0.13289(18)	0.17152(18)	0.3378(2)	0.3788	0.3768	0.5125	0.8295
IROZAQ	Sb1	0.1298(2)	0.2204(3)	0.4426(6)	0.4304	0.4072	0.6519	0.8249
IROZAQ	Sb2	0.1465(3)	0.2131(4)	0.4878(8)	0.4801	0.3892	0.7256	0.8570
IROZEU	Sb1	0.14675(19)	0.2223(2)	0.4775(3)	0.4467	0.3083	0.6808	0.7908
IRUGEH	Bi1	0.2197(2)	0.2220(2)	0.4288(4)	0.3837	0.3210	0.4756	0.4995
IRUGIL	Bi1	0.21221(18)	0.21803(19)	0.4063(2)	0.4654	0.3317	0.5748	0.5929
IRUKUC	Sb1	0.3018(3)	0.2313(3)	0.2658(3)	0.4807	0.3530	0.5562	0.4668
ITUZEC	Bi1	0.2564(2)	0.2583(2)	0.5186(4)	0.4851	0.3317	0.6173	0.5663
ITUZIG	Bi1	0.2572(2)	0.2619(2)	0.4570(4)	0.5022	0.3630	0.6337	0.5487
IWALUN	Sb1	0.2817(2)	0.2888(2)	0.5795(3)	0.5363	0.3382	0.6352	0.5951
IWUKOA	Sb1	0.2028(2)	0.3487(2)	0.6540(4)	0.4897	0.4522	0.7633	0.7318
IWUKUG	Sb1	0.18626(18)	0.23448(19)	0.6530(3)	0.6096	0.4633	0.8451	0.8282
IWUOUM	Sb1	0.41259(18)	0.40486(18)	0.46711(19)	0.5411	0.5723	0.5815	0.4471
IWURAT	Sb1	0.3739(2)	0.3759(2)	0.4982(2)	0.5931	0.4886	0.6175	0.4955
IWUREX	Sb1	0.24465(17)	0.25606(17)	0.6101(2)	0.5251	0 3011	07387	0 6664
IWURIB	Sb1	0.4315(3)	0.4414(3)	0.4693(3)	0.5699	0.5319	0.5730	0.4756
IWUROH	Sb1	0.4179(2)	0.4122(2)	0.4491(2)	0.6101	0 5333	0.6886	0 4736
IWURUN	Sb1	0.22111(17)	0.29200(18)	0.6620(2)	0.6370	0.4476	0 7841	0.8341
IWUSAU	Sb1	0.17125(17)	0 19539(18)	0.6095(2)	0.6151	0 2664	0.8111	0 9 3 9 9
IWUSAU	Sb2	0.16921(17)	0.23974(18)	0.6133(2)	0 5396	0 3799	0.8067	0.8788
IZAKEA	Bi1	0.27171(19)	0.27706(19)	0.4202(2)	0.4229	0.3998	0.5938	0.4468
JABVEO	Sb1	0.1634(2)	0.2538(2)	0.4230(3)	0.4646	0.4540	0.5700	0.6875
JADROV	Sb1	0.15371(19)	0.1788(2)	0.5271(3)	0.5490	0.2847	0.7418	0.9004
JEPZAF	Sb1	0.1466(3)	0.1700(3)	0.4318(7)	0.4865	0.2753	0.6197	0.8749
JEPZAF01	Sb1	0.14771(17)	0.17191(17)	0.43557(19)	0.4797	0.322	0.6177	0.8739
JEPZAF02	Sb1	0.14793(17)	0.17153(17)	0.43582(19)	0.4794	0.2745	0.6177	0.8733
JODDOW	Bi1	0.1936(2)	0.2600(2)	0.8037(5)	0.6488	0.2926	0.8969	0.9055
JODDUC	Bi1	0.21121(19)	0.2843(2)	0.7304(3)	0.5710	0.4115	0.8993	0.8361
JODFAK	Bi1	0.2827(2)	0.2926(2)	0.4654(3)	0.5753	0.3916	0.5927	0.5417
JODLET	Sb1	0.1256(2)	0.2093(2)	0.3948(4)	0.4510	0.437	0.6059	0.6199
JODLET	Sb2	0.1120(2)	0.2102(3)	0.3728(5)	0.3987	0.3337	0.5495	0.6962
JOFFEP	Sb1	0.1644(2)	0.2379(3)	0.6267(6)	0.4967	0.3115	0.8256	0.8991
KANFIP	Bi1	0.10556(18)	0.13301(19)	0.3129(2)	0.3825	0.3122	0.4340	0.9361
KEKGUE	Sb1	0.2449(2)	0.2926(2)	0.6906(3)	0.6160	0.3700	0.8285	0.8269
KEKPIB	Sb1	0.40158(19)	0.40450(19)	0.4745(2)	0.6654	0.519	0.6906	0.4906
KEKQAU	Bi1	0.4878(3)	0.3618(2)	0.3391(2)	0.6009	0.4976	0.6749	0.3166
KIWGAZ	Sb1	0.1718(2)	0.1994(3)	0.5418(7)	0.5319	0.2717	0.7497	0.8399
KORJIM	Sb1	0.26839(19)	0.4864(2)	0.21200(18)	0.3200	0.6032	0.3438	0.0752
KORJIM	Sb2	0.24792(19)	0.4584(2)	0.22244(18)	0.3500	0.5437	0.3806	0.0788
KUMLEL	Sb1	0.2234(2)	0.2615(2)	0.8165(4)	0.6717	0.4302	0.9394	0.9325
KUMLOV	Sb1	0.10961(18)	0.14557(18)	0.3062(2)	0.3850	0.3480	0.4544	0.8952
KUMLUB	Sb1	0.10371(17)	0.13468(17)	0.28955(19)	0.3403	0.3575	0.4232	0.8992
KUMMAI	Sb1	0.18345(18)	0.2366(2)	0.7735(3)	0.5664	0.3144	0.9328	0.9202
LACKAC	Sb1	0.16615(17)	0.22628(18)	0.6500(2)	0.4957	0.2561	0.8414	0.9088
LACKAC	Sb2	0.15549(17)	0.22808(17)	0.6366(2)	0.4981	0.2885	0.8443	0.9126
LACKEG	Sb1	0.1849(2)	0.2412(2)	0.6038(4)	0.5259	0.2561	0.7841	0.8757
LACKIK	Sb1	0.23181(19)	0.2842(2)	0.7344(3)	0.6703	0.4430	0.8537	0.8260
LACKIK	Sb2	0.19960(18)	0.25676(18)	0.7992(2)	0.6717	0.2928	0.9151	0.9275
LACKOQ	Sb1	0.18675(18)	0.23798(18)	0.7141(2)	0.6217	0.4221	0.8549	0.8574
LAFNAJ	Sb1	0.15481(19)	0.2276(2)	0.5331(3)	0.4871	0.2990	0.6971	0.9012
LAHWIC	Bi1	0.5095(3)	0.13033(18)	0.10482(18)	0.5628	0.1756	0.3386	0.0968

160								
LAHWIC	Bi2	0.5517(3)	0.14036(18)	0.11240(18)	0.6779	0.1861	0.3395	0.0680
LANFOV	Bi1	0.1911(2)	0.2566(3)	0.3049(4)	0.4473	0.3620	0.4835	0.5998
LANFUB	Bi1	0.1860(5)	0.2738(7)	0.4661(11)	0.4574	0.3571	0.5068	0.7108
LANGAI	Bi1	0.1308(6)	0.2080(9)	0.3339(15)	0.3991	0.3771	0.3988	0.7362
LAVNUR	Bi1	0.3372(11)	0.3333(11)	0.4308(14)	0.5730	0.4966	0.5701	0.4401
LETVAJ	Sb1	0.13427(17)	0.22963(18)	0.4590(2)	0.4398	0.3624	0.5870	0.7584
LETVEN	Sb1	0.13530(17)	0.23012(18)	0.4631(2)	0.4403	0.3533	0.5870	0.7666
LICWEB	Sb1	0.14953(17)	0.18812(17)	0.39124(19)	0.4428	0.3161	0.5701	0.8148
LICWIF	Sb1	0.17291(17)	0.20061(18)	0.5450(2)	0.5160	0.2524	0.7197	0.8655
LICWOL	Sb1	0.44157(19)	0.42132(19)	0.41111(18)	0.5620	0.5491	0.6281	0.3650
LIFHEN	Bi1	0.2462(16)	0.0769(5)	0.0625(4)	0.4173	0.1604	0.3282	0.0743
LIFHIR	Bi1	0.3116(13)	0.0873(4)	0.0691(3)	0.5602	0.1679	0.3930	0.2153
LIXBOL	Sb1	0.18518(17)	0.5839(2)	0.29169(18)	0.3064	0.6851	0.4588	0.1980
LUFZUI	Sb2	0.1802(2)	0.2390(2)	0.6290(3)	0.5205	0.2900	0.7846	0.9128
LUGFOJ	Sb1	0.15226(18)	0.20133(19)	0.3307(2)	0.4217	0.3967	0.4973	0.7501
LUGFUP	Sb1	0.2706(2)	0.2795(2)	0.6067(4)	0.5391	0.2825	0.7213	0.6438
LUGGEA	Sb1	0.1788(3)	0.2147(4)	0.4177(8)	0.4640	0.3739	0.5908	0.7909
LUPJEL	Sb1	0.2091(2)	0.2609(2)	0.8532(5)	0.6770	0.4419	0.9281	0.9126
LUPRIX	Sb1	0.18865(17)	0.30179(17)	0.66216(19)	0.5985	0.4354	0.7736	0.8125
MAMKUI	Sb1	0.18695(19)	0.2475(2)	0.6451(3)	0.5284	0.3992	0.7948	0.9043
MAMLAP	Sb1	0.18881(17)	0.24340(18)	0.5722(2)	0.5125	0.3034	0.7464	0.7989
MANCUZ	Bi1	0.2091(12)	0.2658(16)	0.556(3)	0.5351	0.3571	0.7207	0.7780
MANDAG	Sb1	0.1256(4)	0.1681(5)	0.5187(15)	0.4909	0.2721	0.7542	0.9493
MANKER	Sb1	0.0942(2)	0.1272(2)	0.2909(4)	0.3502	0.4157	0.4352	0.9419
MANKER01	Sb1	0.0953(2)	0.1352(2)	0.2974(4)	0.3629	0.3720	0.4372	0.9430
MANKER01	Sb2	0.09761(19)	0.1337(2)	0.3070(3)	0.3789	0.3659	0.4589	0.9579
MIFRUP	Bi1	0.2980(2)	0.3031(2)	0.4668(2)	0.6136	0.4237	0.6445	0.5511
MIFSAW	Bi1	0.3275(8)	0.3266(8)	0.4284(10)	0.6019	0.4833	0.6144	0.4732
MIFSEA	Bi1	0.3186(2)	0.3161(2)	0.4228(2)	0.5943	0.4787	0.5980	0.4755
MOPANT	Sb1	0.19121(17)	0.23475(17)	0.66067(17)	0.5523	0.2876	0.8521	0.9131
MPYNSB	Sb1	0.1861(9)	0.2272(11)	0.840(4)	0.5930	0.2627	0.9771	0.9699
MUCVIR	Sb1	0.1920(2)	0.2123(2)	0.6571(6)	0.6035	0.4365	0.8581	0.8061
MUCZAN	Sb1	0.17097(17)	0.21526(17)	0.4632(2)	0.4995	0.342	0.6338	0.8420
MUDMOP	Sb1	0.08509(17)	0.13770(18)	0.2660(2)	0.4228	0.3539	0.4584	0.8387
MUDMOP	Sb2	0.12120(17)	0.16973(18)	0.4341(2)	0.4601	0.3137	0.6366	0.9213
MUNNEO	Sb1	0.17662(18)	0.06812(17)	0.04475(17)	0.4402	0.2657	0.3758	0.0105
NAGXOI	Sb1	0.4701(2)	0.4522(2)	0.4320(2)	0.6140	0.5448	0.6986	0.4322
NAGXUO	Sb1	0.1948(2)	0.2430(3)	0.7312(8)	0.6271	0.4831	0.8958	0.8782
NAGYAV	Sb1	0.0885(3)	0.1160(4)	0.2599(10)	0.3669	0.3355	0.4232	0.9581
NAGYEZ	Sb1	0.16803(19)	0.2248(2)	0.6082(3)	0.5544	0.2738	0.8128	0.9040
NAGYID	Sb1	0.18700(19)	0.2233(2)	0.3508(2)	0.4628	0.4007	0.555	0.7143
NAGYOJ	Sb1	0.07533(17)	0.08748(18)	0.2085(2)	0.2660	0.3715	0.3493	0.9311
NAGYOJ01	Sb1	0.08467(17)	0.11627(17)	0.25568(18)	0.3122	0.3597	0.3828	0.9407
NAMZUX	Bi1	0.12616(17)	0.16922(17)	0.4393(2)	0.4352	0.3507	0.6642	0.8985
NANBAG	Sb1	0.21310(18)	0.27476(18)	0.7190(2)	0.6444	0.3662	0.8437	0.8270
NANBEK	Sb1	0.17720(17)	0.24919(18)	0.7309(2)	0.4938	0.3406	0.8544	0.8808
NAQLIB	Sb1	0.4055(2)	0.3895(2)	0.21488(18)	0.4976	0.4677	0.4118	0.0985
NAXVAJ	Bi1	0.4019(12)	0.3623(11)	0.3464(10)	0.5802	0.5438	0.6610	0.3802
NAXVEN	Bi1	0.382(3)	0.368(3)	0.381(3)	0.5646	0.5443	0.5800	0.4064
NAXVIR	Bi1	0.3479(7)	0.3319(7)	0.4328(9)	0.5398	0.4621	0.5024	0.4064
NAXVOX	Bi1	0.358(2)	0.365(2)	0.416(2)	0.5884	0.4958	0.5751	0.4846
NAXVUD	Bi1	0.2941(12)	0.2852(11)	0.3777(15)	0.5777	0.4718	0.5811	0.4594
NAXWAK	Bi1	0.2836(15)	0.2802(15)	0.376(2)	0.5630	0.4777	0.5615	0.4585
NAXWEO	Bi1	0.4015(16)	0.3961(15)	0.4039(16)	0.6438	0.5489	0.6611	0.4325
NEFCEH	Bi1	0.2141(5)	0.2768(6)	0.6373(14)	0.6345	0.4082	0.8074	0.7909
NEYWAP	Sb1	0.1526(2)	0.2104(2)	0.4884(4)	0.5481	0.3340	0.7075	0.8599
NIMDOE	Sb1	0.30776(18)	0.31745(18)	0.51088(19)	0.6112	0.4048	0.6936	0.5465

161								
NIMDUK	Sb1	0.25234(17)	0.27067(17)	0.67931(19)	0.6345	0.2910	0.8030	0.7382
NIVDIG	Sb1	0.39019(19)	0.39168(19)	0.4702(2)	0.6569	0.5149	0.6909	0.4852
NIXYIC	Sb3	0.1636(2)	0.2060(2)	0.4210(3)	0.4776	0.3382	0.5801	0.8268
NIXYIC	Sb4	0.15715(19)	0.2034(2)	0.4448(3)	0.4798	0.3215	0.6269	0.8457
NODDUF	Bi1	0.2026(2)	0.2495(3)	0.8350(10)	0.6628	0.4112	0.9511	0.9599
NODFER	Bi1	0.0946(4)	0.1294(6)	0.2883(13)	0.3178	0.4003	0.3860	0.9132
NODFIV	Bi1	0.3337(3)	0.4478(4)	0.4046(4)	0.6137	0.4684	0.7263	0.5254
NODFOB	Bil	0 11449(19)	0.1346(2)	0.2417(2)	0 2997	0 3592	03616	0 7818
NODXIN	Sh1	0 1979(7)	0.2529(9)	0.620(2)	0.5930	0.4058	0 7585	0.8603
NOIHAX	Bi1	0.1979(4)	0.2527(9) 0.3602(4)	0.3475(4)	0.5578	0.5344	0.6304	0.3283
NOIHEB	Bi1	0.1292(1) 0.3705(2)	0.3385(2)	0.3173(1) 0.3361(2)	0.4913	0.539	0.4925	0.2856
NOIHIE	Bi1	0.3703(2) 0.3894(3)	0.3305(2) 0.3785(3)	0.3301(2) 0.3878(3)	0.4213	0.5359	0.4923	0.2050
NOIHOI	Bi1	0.3074(3)	0.3785(3)	0.3878(3) 0.4457(2)	0.5301	0.3407	0.5545	0.3707
NOILUD	DII DII	0.2907(2) 0.23030(10)	0.2880(2) 0.24305(10)	0.4437(2) 0.4824(2)	0.3473	0.4313	0.5594	0.4000
NOILAZ	DII Di1	0.23939(19) 0.21560(10)	0.24303(19) 0.21025(10)	0.4624(2) 0.4787(2)	0.4969	0.2104	0.5364	0.5510
NOJJAZ	DII D:1	0.21300(19)	0.21923(19)	0.4707(2)	0.4300	0.2950	0.3310	0.3430
NOJJED	DII D:1	0.3980(3)	0.3923(3)	0.4330(3)	0.5798	0.5577	0.0438	0.4300
NOJJIH	B11 Ch1	0.3/01(4)	0.3489(3)	0.3883(4) 0.2255(2)	0.0383	0.5214	0.0525	0.4421
NONFUR	SD1 Ch 1	0.07401(17)	0.11439(18)	0.2255(2)	0.2950	0.3514	0.3378	0.8920
NONGAY	Sbl	0.1840(2)	0.2353(2)	0.5849(4)	0.5411	0.2998	0.7639	0.8854
NONGAY	Sb2	0.2149(2)	0.2508(2)	0.5036(3)	0.5295	0.3445	0.64/0	0./566
NOYZUW	Sbl	0.2062(2)	0.2787(2)	0.7/17(6)	0.6636	0.3733	0.8838	0.8729
NOZBAF	Sbl	0.1752(3)	0.2282(3)	0.6455(9)	0.5111	0.3221	0.8523	0.8814
NOZBAF	Sb2	0.1667(2)	0.2316(2)	0.6///(6)	0.5768	0.2935	0.8668	0.8487
NUHSOY	Sbl	0.14702(18)	0.17451(18)	0.4430(2)	0.5652	0.3641	0.6682	0.9100
NUHSOY	Sb2	0.13689(18)	0.18361(19)	0.4733(2)	0.4434	0.4388	0.6941	0.8956
NUMLAI	Sb1	0.1726(2)	0.2173(3)	0.5030(6)	0.5279	0.2728	0.7086	0.8270
NUMPER	Sb1	0.3351(2)	0.3368(2)	0.5315(3)	0.5891	0.4319	0.6799	0.5644
NUMQOD	Sb1	0.4782(9)	0.4937(9)	0.2263(4)	0.4953	0.5014	0.3778	0.0069
NUYNIE	Sb1	0.22778(17)	0.30855(17)	0.39072(17)	0.4624	0.3941	0.5222	0.6114
NUYNOK	Sb1	0.19485(17)	0.23766(17)	0.47668(17)	0.4616	0.4753	0.5700	0.7229
NUYNUQ	Sb1	0.18230(17)	0.26802(17)	0.46848(17)	0.5220	0.3505	0.5707	0.7722
OFUJUW	Bi1	0.2244(3)	0.2362(3)	0.5151(7)	0.5386	0.2788	0.6380	0.6294
OFUKAD	Sb1	0.21008(18)	0.27181(19)	0.6915(2)	0.5907	0.4408	0.8563	0.8801
PABJEH	Bi1	0.2863(4)	0.2989(4)	0.4613(7)	0.5666	0.4138	0.6566	0.576
PABJIL	Sb1	0.1805(2)	0.2502(2)	0.6578(5)	0.5822	0.4479	0.8698	0.8506
PAPLEX	Sb1	0.2315(3)	0.2558(3)	0.6640(8)	0.6034	0.3217	0.8680	0.8495
PCATSB	Sb2	0.22857(17)	0.53279(17)	0.24754(17)	0.3465	0.6739	0.4061	0.1235
PEHGEQ	Bi1	0.3673(4)	0.3583(4)	0.3958(5)	0.5796	0.536	0.5835	0.3942
PETKUU	Bi1	0.2897(8)	0.4160(12)	0.2248(6)	0.3938	0.4924	0.3920	0.2406
PETLAB	Bi1	0.2986(8)	0.3788(10)	0.1929(5)	0.4068	0.5746	0.3629	0.1800
PETLEF	Bi1	0.3247(8)	0.3923(10)	0.2388(6)	0.4317	0.4510	0.3677	0.2686
PHENSB	Sb1	0.23904(17)	0.52984(17)	0.28622(17)	0.3883	0.7228	0.4157	0.2687
PHENSB01	Sb1	0.32383(17)	0.68224(17)	0.33670(17)	0.3508	0.7640	0.3541	0.2455
PPHSBC	Sb1	0.18053(17)	0.22239(17)	0.74821(17)	0.5806	0.256	0.9391	0.9506
PROSBA	Sb1	0.20157(17)	0.24133(17)	0.80908(17)	0.5911	0.2592	0.9624	0.9388
PTOLSB	Sb1	0.24240(17)	0.29279(17)	0.66908(17)	0.5860	0.4181	0.8302	0.8006
PUFTIT	Sb1	0.4110(6)	0.4080(6)	0.4116(6)	0.5693	0.5421	0.6090	0.4608
PUFZAS	Sb1	0.19869(17)	0.23919(17)	0.8184(2)	0.5394	0.4440	0.9116	0.9248
PUFZAS01	Sb1	0.19412(17)	0.23322(17)	0.8052(2)	0.5363	0.2809	0.9081	0.9192
PUFZOG	Sb1	0.3269(2)	0.3366(2)	0.5292(3)	0.5853	0.4216	0.6825	0.5667
PUPBEI	Sb1	0.1631(2)	0.1951(2)	0.5583(5)	0.5225	0.2809	0.7119	0.9398
PUPBIM	Sb1	0.4601(9)	0.4550(9)	0.4544(9)	0.6206	0.5485	0.6381	0.4583
PUPBIM01	Sh1	0.4616(2)	0.4451(2)	0.4413(2)	0.6180	0 5469	0.6779	0 4421
PUPBOS	Sb1	0.1485(2)	0.2574(3)	0.4956(5)	0.3858	0.3490	0.6500	0.7556
PUPRITY	Sh1	0 3136(2)	0.2373(3)	0 5548(3)	0 5726	0 4181	0 7240	0 5873
PUYPUII	Sh1	0 14216(18)	0 18293(18)	0 4753(2)	0.4996	0 3442	0.6900	0.913
OEONAB	Sb1	0.0986(3)	0.1351(3)	0.2618(7)	0.3342	0.4105	0.3906	0.8797
<_ <								

			162	2				
QEVMOT	Sb1	0.2161(2)	0.2573(2)	0.6847(3)	0.6432	0.3722	0.8568	0.8292
QEYVEW	Sb1	0.2207(2)	0.2817(2)	0.6259(3)	0.5681	0.3824	0.8004	0.7967
QEYVIA	Sb1	0.2145(2)	0.2759(3)	0.6449(6)	0.5626	0.3805	0.8267	0.8106
QEYVOG	Sb1	0.1857(4)	0.2461(6)	0.6941(17)	0.5593	0.2987	0.8782	0.8735
QEYVUM	Sb1	0.1854(2)	0.2457(3)	0.7520(8)	0.5696	0.2604	0.9330	0.9217
QEYWAT	Sb1	0.20439(19)	0.2736(2)	0.7184(3)	0.5686	0.4070	0.8970	0.8529
Õ EYWAT	Sb2	0.1999(2)	0.2778(2)	0.6859(4)	0.5599	0.4125	0.8678	0.8393
OIRVES	Sb1	0.15499(19)	0.1930(2)	0.4740(3)	0.5012	0.3587	0.6759	0.8654
OIRVIW	Sb1	0.4399(2)	0.4329(2)	0.4430(2)	0.6669	0.5460	0.6263	0.4427
ÒOLJIL	Sb1	0.1752(2)	0.2558(3)	0.6957(9)	0.5923	0.2911	0.8233	0.8528
OOLJIL01	Sb1	0.1742(2)	0.2507(3)	0.6922(8)	0.5955	0.3427	0.8249	0.8566
OOLLUZ	Sb1	0.1660(3)	0.2080(4)	0.5520(10)	0.4469	0.3887	0.7514	0.8844
OOLLUZ	Sb2	0.1654(2)	0.1870(2)	0.4678(6)	0 4737	0 3155	0.6594	07753
RAFCAC	Sb1	0.07957(17)	0.09962(17)	0.2519(2)	0 3574	0 3147	0 3728	0 9870
REBZEF	Sb1	0.2282(2)	0.0728(2)	0.2618(2)	0.4825	0 5234	0 4409	0.4857
REBZU	Bi1	0.2202(2) 0.2706(4)	0.2720(2) 0.3511(6)	0.4397(7)	0.4597	0.5289	0.6378	0 5818
REBZII	Bi2	0.2966(4)	0.4403(6)	0.3869(5)	0 4490	0.6348	0.5095	0.4578
REDCIO	Sb1	0.2500(1) 0.3541(3)	0.3591(3)	0.5053(4)	0.5966	0.5016	0.6744	0.1378
REPYLIG	Bi1	0.2428(7)	0.2528(8)	0.4479(14)	0.5262	0.3537	0.6313	0.6269
REPZER	Bil	0.3308(14)	0.3243(13)	0.4104(17)	0.4503	0.4905	0 5046	0.4120
REYOUH	Sb1	0.0883(3)	0.1329(4)	0 2432(8)	0.3256	0 3581	0 3991	0 7980
REYRAO	Sb1	0.17332(18)	0.3110(2)	0.4902(2)	0.3230 0.4522	0.4359	0.6265	0.6698
RIOYOG	Sb1	0.1946(2)	0.2304(2)	0.8450(8)	0.5445	0.2594	0.9293	0.9548
RODMAA	Bi1	0.1810(2)	0.2546(2)	0.6521(5)	0.5859	0.4741	0.8420	0.8587
RODMOO	Sb1	0.2208(2)	0.2350(2)	0.6181(3)	0.5934	0.2987	0.7929	0.7229
RODMUU	Bi1	0.1777(2)	0.2036(2)	0.6074(6)	0.4764	0.2277	0.7670	0.7645
RODNII	Sb1	0.14038(18)	0.19160(18)	0.3769(2)	0.3930	0.4100	0.5560	0.8038
RODNII	Sb2	0.13027(17)	0.18286(17)	0.4765(2)	0.4718	0.3548	0.7088	0.8633
RODNOO	Sb1	0.14101(18)	0.16509(18)	0.4913(2)	0.5465	0.2782	0.7067	0.9071
RODNOO	Sb2	0.14074(18)	0.16342(18)	0.4386(2)	0.5528	0.3280	0.6626	0.9080
RODNOO	Sb3	0.1222(2)	0.1651(2)	0.4246(4)	0.3997	0.3121	0.6491	0.8953
RODNOO	Sb4	0.1803(2)	0.1761(2)	0.3676(4)	0.4055	0.3998	0.5559	0.7317
RODZUH	Sb1	0.2083(2)	0.2650(2)	0.7751(4)	0.5805	0.4118	0.9308	0.9066
RUFNAI	Sb1	0.38370(19)	0.38196(19)	0.5176(2)	0.6112	0.4889	0.7029	0.5395
SAKZUZ	Bi1	0.33370(17)	0.71123(17)	0.32936(17)	0.3357	0.7641	0.3404	0.2206
SARGOH	Bi1	0.2332(8)	0.5287(17)	0.2767(9)	0.2847	0.6858	0.2787	0.2639
SARGUN	Bi1	0.2478(14)	0.624(3)	0.2139(12)	0.2616	0.8046	0.2723	0.0835
SARHAU	Bi1	0.2469(9)	0.641(2)	0.2738(10)	0.3045	0.8125	0.2984	0.1835
SARHAU	Bi2	0.2705(16)	0.510(3)	0.2985(18)	0.3698	0.6660	0.4196	0.2898
SEBCOR	Sb1	0.3892(7)	0.3881(7)	0.4076(8)	0.6687	0.4964	0.6423	0.5131
SEBCOR01	Sb1	0.3934(4)	0.3926(4)	0.4123(5)	0.6089	0.5258	0.6762	0.5178
SEBJAL	Bi1	0.21538(19)	0.2498(2)	0.8498(3)	0.6958	0.2748	0.9128	0.9547
SETNAG	Bi1	0.310(3)	0.465(5)	0.384(4)	0.4547	0.5887	0.4735	0.4236
SETNEK	Bi1	0.2691(11)	0.597(2)	0.3346(14)	0.3287	0.7058	0.4132	0.2915
SETNIO	Bi1	0.2363(9)	0.4068(15)	0.4104(16)	0.3921	0.4470	0.4631	0.4799
SETNIO	Bi2	0.2355(17)	0.394(2)	0.363(2)	0.3618	0.4797	0.3961	0.3622
SETYOF	Bi1	0.3284(6)	0.5363(10)	0.3348(6)	0.4161	0.6550	0.4161	0.3270
SETYUL	Bi1	0.2039(11)	0.2332(13)	0.499(2)	0.5269	0.3828	0.6980	0.7652
SEZXOK	Sb1	0.1718(2)	0.2110(3)	0.4908(6)	0.4851	0.3930	0.6920	0.8428
SEZXOK	Sb2	0.1319(2)	0.1904(2)	0.5197(5)	0.4414	0.3812	0.7311	0.915
SEZXUQ	Sb1	0.1805(2)	0.2043(2)	0.5819(5)	0.6256	0.3189	0.7863	0.9421
SUBNUA	Sb1	0.3914(3)	0.3352(2)	0.1849(2)	0.6057	0.5180	0.4926	0.0737
SUBNUA	Sb2	0.3760(3)	0.3529(3)	0.1758(2)	0.5683	0.5480	0.4534	0.0495
SUKZAZ10	Bi1	0.4375(10)	0.00000(17)	0.0789(2)	0.4849	0.4728	0.2672	0.0142
SUKZIH	Bi1	0.5218(9)	0.1191(2)	0.0997(2)	0.5277	0.1628	0.3156	0.0451
SUKZIH10 SUMPIA	Bil Sbl	0.5136(9) 0.1984(2)	0.00000(17) 0.3727(2)	0.0974(2) 0.5628(3)	$0.5078 \\ 0.4865$	0.4561 0.3989	$0.2780 \\ 0.5985$	0.0446 0.6592

			163	5				
SUMPOG	Sb1	0.14683(17)	0.3732(2)	0.4318(2)	0.2725	0.4764	0.5124	0.5575
SUMPUM	Sb1	0.16443(19)	0.3268(2)	0.5778(3)	0.4719	0.3695	0.6621	0.7330
SUXFEW	Sb1	0.2587(2)	0.3065(2)	0.4184(2)	0.4351	0.4967	0.5698	0.5566
TAHGIT	Sb1	0.4491(3)	0.4490(3)	0.4877(4)	0.6235	0.5391	0.7010	0.5001
TAHGOZ	Sb1	0.1847(4)	0.2092(4)	0.3178(7)	0.5519	0.4691	0.5817	0.6300
TAJYUZ	Sb1	0.18963(17)	0.26474(18)	0.5686(2)	0.5540	0.3463	0.7475	0.8251
TAJZAG	Sb1	0.16350(17)	0.19557(18)	0.5394(2)	0.5520	0.2806	0.7731	0.8863
TAJZEK	Sb1	0.18554(17)	0.23640(17)	0.42101(18)	0.4940	0.3742	0.6058	0.7620
TAKBEN	Sb1	0.11940(18)	0.16405(18)	0.3529(2)	0.4340	0.3164	0.5354	0.8581
TAKNEZ	Sb1	0.11338(18)	0.14650(19)	0.3880(2)	0.3980	0.3348	0.5944	0.9400
TAKNEZ	Sb2	0.13487(18)	0.16374(18)	0.4382(2)	0.4330	0.3085	0.6444	0.8937
TARXOA	Bi1	0.2176(3)	0.2882(3)	0 7916(9)	0.6585	0 4061	0.9255	0.8811
TRPXSB	Sh1	0.17892(17)	0.28796(17)	0.56360(17)	0.5250	0 3495	0.6815	0.7377
TEDMIY	Sb1	0.17092(17) 0.1538(2)	0.20790(17) 0.2923(4)	0.50500(17) 0.6783(8)	0.5250	0.3455	0.8266	0.8260
TEDMOE	Sb1	0.1558(2) 0.1658(9)	0.2525(4)	0.0705(0)	0.3410 0.4555	0.3390	0.0200	0.0200
TEDMUK	Sb1	0.1630(3)	0.2917(5)	0.071/8(12)	0.4333	0.3520	0.7705	0.7042
TEYZUT	Sb1	0.1044(3) 0.0835(2)	0.2917(3) 0.1000(2)	0.7140(12) 0.2173(4)	0.3207	0.3520	0.3231	0.0202
TEXZUT	501 Sh2	0.0833(2)	0.1090(2) 0.1030(2)	0.2173(4) 0.2161(4)	0.2870	0.3350	0.3224	0.9233
	502 Sh1	0.0829(2) 0.21000(17)	0.1030(2) 0.22310(17)	0.2101(4)	0.290	0.3402	0.3263	0.9470
	501	0.21000(17)	0.22319(17) 0.22240(19)	0.0390(2)	0.5709	0.3073	0.0110	0.7370
	SD2	0.22212(18)	0.23349(18)	0.0759(2)	0.5254	0.2749	0.8112	0./310
TEZJUF	SD3	0.2135(2)	0.2618(2)	0.6704(4)	0.0301	0.4100	0.8007	0.8180
IMSBMP	SD1	0.06/8/(17)	0.08552(17)	0.217/6(17)	0.2834	0.3009	0.3292	0.9903
TPHSBF	SDI	0.16/41(17)	0.19328(17)	0.51930(17)	0.5026	0.2762	0.6834	0.8820
TPHSBH	Sbl	0.16404(17)	0.22452(17)	0.5/486(17)	0.4853	0.3154	0.7772	0.8596
TPSBDA	Sbl	0.43431(17)	0.43234(17)	0.47/12(17)	0.6056	0.5375	0.6788	0.4653
TPSBDA01	Sb1	0.4170(5)	0.4147(5)	0.4674(6)	0.6539	0.5343	0.6653	0.4574
TULQOI	Sbl	0.1662(2)	0.2892(3)	0.4316(5)	0.3561	0.3391	0.5182	0.6758
TULQOI	Sb2	0.14377(19)	0.2685(2)	0.3774(2)	0.3784	0.3989	0.4980	0.5911
TUMPUO	Sb1	0.09841(19)	0.1673(2)	0.2982(2)	0.3928	0.3904	0.5373	0.7967
TUMPUO	Sb2	0.10911(19)	0.1441(2)	0.3764(3)	0.4324	0.3258	0.5711	0.9108
TUVBIX	Bi1	0.20650(17)	0.33945(18)	0.4899(2)	0.4451	0.5036	0.6020	0.6681
TUVBOD	Bi1	0.2030(2)	0.2665(2)	0.5379(3)	0.5489	0.5845	0.7328	0.7901
TUVBUJ	Bi1	0.3674(2)	0.3614(2)	0.3915(2)	0.5546	0.5397	0.6192	0.4193
TUVCAQ	Bi1	0.2843(2)	0.2829(2)	0.4236(3)	0.5268	0.4382	0.5394	0.4615
TUVCEU	Bi1	0.2750(2)	0.2820(2)	0.4397(2)	0.5154	0.4183	0.6098	0.5185
TUVCIY	Bi1	0.3141(2)	0.3041(2)	0.3884(2)	0.5409	0.4889	0.5394	0.4155
TUVCOE	Bi1	0.3106(2)	0.3080(2)	0.4290(2)	0.5336	0.4674	0.5310	0.4399
TUVCUK	Bi1	0.3183(2)	0.3127(2)	0.3794(2)	0.5435	0.5083	0.6233	0.4505
TUVDAR	Bi1	0.3005(2)	0.3031(2)	0.4390(2)	0.5316	0.4475	0.6221	0.4963
TUVDEV	Bi1	0.29194(19)	0.28707(19)	0.3854(2)	0.4588	0.4733	0.4525	0.3905
TUVFUN	Bi1	0.3130(2)	0.3120(2)	0.4344(3)	0.5093	0.4681	0.5665	0.4625
UBIYUZ	Sb1	0.1383(2)	0.2438(3)	0.3945(4)	0.3841	0.3914	0.5320	0.6725
UCAGEK	Sb1	0.1381(2)	0.1670(3)	0.4426(6)	0.5416	0.2866	0.6177	0.9546
UCAGEK	Sb2	0.1429(3)	0.1981(4)	0.5407(10)	0.5581	0.3223	0.8009	0.9064
UHEROO	Sb1	0.17320(18)	0.2623(2)	0.7467(3)	0.6020	0.2971	0.8667	0.8640
UJEFUL	Sb1	0.21366(19)	0.5022(2)	0.20581(19)	0.3431	0.6742	0.3250	0.0453
UJEFUL	Sb2	0.19453(18)	0.4894(2)	0.21322(18)	0.3192	0.6019	0.3353	0.0590
UMAZIR	Sb1	0.1356(2)	0.2658(4)	0.4376(6)	0.3524	0.3860	0.5959	0.7027
UMAZIR	Sb2	0.1404(2)	0.2724(3)	0.4607(5)	0.4333	0.3801	0.6058	0.7076
UMAZIR01	Sb1	0.1385(2)	0.2713(2)	0.4516(4)	0.3496	0.3803	0.5947	0.7065
UMAZIR02	Sb1	0.13730(17)	0.26824(17)	0.44738(17)	0.4329	0.3795	0.5978	0.7057
VEWJOW	Sb1	0.2573(3)	0.2758(3)	0.6353(8)	0.5748	0.2834	0.7965	0.7085
VEWJOW	Sb2	0.1996(3)	0.2431(3)	0.7153(9)	0.6265	0.4810	0.8840	0.9019
VOHOUF	Bi1	0.12188(19)	0.1550(2)	0.3515(3)	0.4132	0.3245	0.4879	0.9120
VOHREO	Bi1	0.16242(17)	0.17975(17)	0.39008(17)	0.4792	0.2679	0.5339	0.8498
VOHREO	Bi2	0.13762(17)	0.19492(17)	0.35850(17)	0.4249	0.3788	0.4904	0.8071
VUFNOZ	Sb1	0.1689(3)	0.2134(4)	0.6535(11)	0.5442	0.2492	0.8311	0.9827
			· · · ·		-			-

			164	Ļ				
VUFNOZ	Sb2	0.1806(5)	0.2315(7)	0.6330(19)	0.5422	0.2815	0.8472	0.9042
VUFNOZ	Sb3	0.1740(2)	0.2085(2)	0.6521(7)	0.5467	0.2936	0.8147	0.9910
WEZGUF	Sb1	0.16611(17)	0.21230(18)	0.4425(2)	0.4636	0.3489	0.6079	0.8035
WEZHAM	Sb1	0.19114(19)	0.2389(2)	0.4581(2)	0.5124	0.3250	0.6088	0.7943
WEZHEQ	Sb1	0.10020(18)	0.14004(19)	0.3357(2)	0.4096	0.3344	0.4965	0.9708
WEZHIU	Sb1	0.19471(17)	0.24439(17)	0.50111(19)	0.5140	0.3386	0.6729	0.8158
WEZHOA	Sb1	0.16460(18)	0.21392(18)	0.5494(2)	0.5163	0.3663	0.7052	0.9291
WEZHUG	Sb1	0.15219(18)	0.18585(18)	0.4899(2)	0.5382	0.3264	0.6640	0.9468
WEZJAO	Bi1	0.1700(2)	0.2036(2)	0.6574(7)	0.6185	0.4707	0.8672	0.9094
WEZJES	Bi1	0.28320(18)	0.29512(18)	0.43067(19)	0.5148	0.4380	0.5935	0.5004
WEZJIW	Bi1	0.39809(19)	0.37084(18)	0.36197(18)	0.5875	0.5461	0.6020	0.3503
WEZJOC	Bi1	0.24540(18)	0.24598(18)	0.4470(2)	0.5132	0.3783	0.5886	0.5359
WEZJUI	Bi1	0.31800(18)	0.30978(18)	0.39184(18)	0.5066	0.5003	0.4968	0.3903
WEZKAP	Bi1	0.3241(2)	0.3180(2)	0.4036(2)	0.4878	0.5029	0.5340	0.4084
WEZKET	Sb1	0.35652(17)	0.36083(17)	0.51221(18)	0.6394	0.5039	0.6471	0.5192
WEZKOD	Sb1	0.1916(2)	0.2186(2)	0.6897(4)	0.5924	0.2641	0.8292	0.9504
WEZLAQ	Sb1	0.14776(18)	0.21261(19)	0.6385(3)	0.5352	0.3206	0.8164	0.9464
WEZLEU	Sb1	0.19241(18)	0.24258(18)	0.6201(2)	0.5107	0.4048	0.7825	0.8687
WEZLEU	Sb2	0.18256(18)	0.24041(19)	0.6933(2)	0.4959	0.3700	0.8180	0.9321
WOKPUH	Sb1	0.1790(2)	0.2372(2)	0.6211(4)	0.6149	0.3125	0.8053	0.9201
WOKQAO	Sb1	0.1925(2)	0.2383(2)	0.5224(3)	0.5707	0.3268	0.6979	0.8390
WOKRAP	B11	0.3556(4)	0.3442(4)	0.3437(4)	0.4882	0.5430	0.5399	0.3365
WOKRAP01	B11	0.3403(2)	0.3281(2)	0.3705(2)	0.5215	0.5176	0.5798	0.3977
WOKRAP01	B12	0.3130(2)	0.3064(2)	0.407/(3)	0.5360	0.4587	0.5444	0.4312
WOKRET	Sbl	0.17212(18)	0.2017/(18)	0.5168(2)	0.5295	0.2772	0.7053	0.8704
WUYYUM	Sbl	0.3290(4)	0.0881(2)	0.06826(19)	0.5768	0.2114	0.3262	0.0204
XAFZOT	Sbl	0.1399(2)	0.1760(2)	0.4432(5)	0.4845	0.2994	0.62/1	0.9226
XAJIEJ	SDI	0.62555(19)	0.41208(18)	0.37025(18)	0.7211	0.4482	0./14/	0.329
XAJYEO	SDI Sh1	0.2049(2)	0.3612(4)	0.1/14(2) 0.4471(2)	0.3282	0.6065	0.2139	0.0321
XAQBIC	SDI Sh1	0.4435(3)	0.4398(3)	0.4471(3)	0.0093	0.5849	0.6694	0.4482
ACEOSB	SD1	0.10500(17) 0.12515(17)	0.14848(17) 0.16208(17)	0.3/00/(17)	0.3/81	0.4278	0.5959	0.9414
ACEUSD	502 Sh1	0.13313(17) 0.12659(19)	0.10508(17)	0.40082(17)	0.4701 0.4145	0.5199	0.3821	0.9341
VECSII	501 Sh2	0.13030(18) 0.12344(17)	0.2073(2)	0.4021(2) 0.4534(2)	0.4143	0.4548	0.5509	0.7233
VEMDIO	502 Sh1	0.12344(17) 0.21759(19)	0.23440(19) 0.22142(19)	0.4334(2) 0.6612(2)	0.5505	0.4004	0.3035	0.7094
VEMPIO	501 Sh2	0.21736(18) 0.2704(2)	0.23143(18) 0.2822(2)	0.0013(2) 0.6273(5)	0.5220	0.2744	0.0117 0.7747	0.7520
VEDDED	502 Sh1	0.2704(2) 0.18720(10)	0.2822(2) 0.2375(2)	0.0273(3) 0.4530(2)	0.3702	0.3152	0.7747	0.0805
XEPREP01	Sb1	0.18729(19) 0.18149(17)	0.2373(2) 0.23309(18)	0.4539(2) 0.4511(2)	0.4920	0.3238	0.0054	0.7800
XEPRIT	Bi1	0.10449(17) 0.1270(9)	0.23309(10) 0.1776(12)	0.4311(2) 0.416(2)	0.4717	0.3242	0.0052	0.7520
XEPRIT	Bi2	0.1270(9)	0.1770(12) 0.2331(19)	0.460(3)	0.3003	0.3583	0.0007	0.8047
XEPTAN	Sh1	0.1200(10) 0.1662(2)	0.2331(17) 0.2144(2)	0.400(3) 0.5978(5)	0.4241 0.5455	0.3303	0.0400	0.0047
XEPTAN	Sb1	0.1002(2) 0.1731(2)	0.2144(2) 0.2306(2)	0.5978(3) 0.5404(3)	0.3433	0.2255	0.7730	0.9230
XEPTER	Sb1	0.1731(2) 0.1484(3)	0.2300(2) 0.2334(5)	0.6129(14)	0.4007	0.3030	0.8192	0.8869
XIFKEC	Sb1	0.16260(17)	0.2233(18)	0.6129(11) 0.6138(2)	0.5057	0.2807	0.8333	0.8474
XIFKIG	Sb1	0.10200(17) 0.17274(17)	0.22273(10) 0.22511(18)	0.5306(2)	0.5172	0.3191	0.0333	0.8788
XURUF	Sb1	0.1899(2)	0.2551(2)	0.7039(4)	0.4689	0.4392	0.8141	0.8249
XINNOX	Sb1	0.1934(2)	0.2676(3)	0.5835(7)	0.5155	0.3762	0.7314	0.8189
XOPRIE	Sb1	0.12950(17)	0.22625(18)	0.3967(2)	0.4119	0.4470	0.6420	0.6700
XORSIG	Bi1	0.3555(4)	0.3412(4)	0.3841(4)	0.522	0.519	0.5874	0.3979
XORSIG	Bi2	0.3970(7)	0.3631(6)	0.3652(6)	0.6406	0.5392	0.6544	0.3951
XULHUH	Sb1	0.07729(17)	0.09154(17)	0.22999(18)	0.2855	0.3477	0.3638	0.9798
XULHUH	Sb2	0.07918(17)	0.12173(18)	0.23532(19)	0.2934	0.3514	0.3998	0.8484
XULHUH01	Sb1	0.06904(18)	0.09034(19)	0.2045(2)	0.3193	0.4244	0.3569	0.9647
XULHUH01	Sb2	0.0953(2)	0.1409(2)	0.2660(4)	0.3730	0.3585	0.4299	0.8816
XULHUH02	Sb1	0.07241(17)	0.09032(17)	0.21364(18)	0.3091	0.3667	0.3202	0.9707
XULHUH02	Sb2	0.09709(17)	0.14470(18)	0.27324(19)	0.3766	0.3584	0.4335	0.8834
XULJOD	Sb1	0.19247(19)	0.2102(2)	0.4208(2)	0.5128	0.3349	0.5980	0.7909

XUPVUZ	Sb1	0.1980(3)	0.3935(5)	0.3810(5)	0.3875	0.4561	0.4853	0.4340
XUTNAD	Sb1	0.15903(19)	0.2155(2)	0.4601(3)	0.4738	0.3494	0.6555	0.8219
XUTNAD	Sb2	0.1713(2)	0.2091(2)	0.3291(3)	0.4513	0.3483	0.5135	0.7221
XUTNEH	Sb1	0.09395(17)	0.13074(18)	0.2536(2)	0.3730	0.3443	0.4023	0.9060
XUZJIL	Sb1	0.1928(2)	0.2851(3)	0.6377(5)	0.5820	0.4249	0.8465	0.8093
XUZJOR	Sb1	0.1813(4)	0.3050(7)	0.7285(16)	0.5127	0.3890	0.8018	0.7769
YIKKEI	Sb1	0.20694(18)	0.25597(18)	0.6892(2)	0.5743	0.2834	0.8815	0.8540
YOBZUM	Sb1	0.1982(2)	0.3061(4)	0.6074(7)	0.4847	0.4920	0.7197	0.7511
YOCBAV	Sb1	0.2073(2)	0.3365(3)	0.5903(5)	0.4151	0.5883	0.6306	0.7275
YOCBEZ	Sb1	0.1759(3)	0.2570(4)	0.6805(11)	0.5269	0.4240	0.8093	0.8322
YOTGAQ	Sb1	0.3262(3)	0.3372(3)	0.5429(5)	0.6658	0.4121	0.7122	0.6010
YOYLII	Sb1	0.2041(2)	0.2071(2)	0.3283(3)	0.4654	0.3613	0.5723	0.6477
YOYLOO	Sb1	0.1909(2)	0.2071(2)	0.3331(2)	0.389	0.3634	0.5747	0.6703
YUDCAC	Sb1	0.2079(5)	0.2112(5)	0.3037(7)	0.3979	0.3622	0.5022	0.6248
YUDCAC	Sb2	0.1836(5)	0.2047(5)	0.3092(8)	0.4381	0.3591	0.5240	0.6651
YUSSAG	Sb1	0.1785(2)	0.2873(2)	0.6297(5)	0.5963	0.3200	0.7415	0.8248
YUSSEK	Sb1	0.1463(2)	0.2949(4)	0.6373(8)	0.4989	0.3391	0.7327	0.8180
ZAQHUU	Sb1	0.1351(2)	0.2390(2)	0.5366(5)	0.367	0.4381	0.7012	0.7484
ZAQHUU	Sb2	0.2282(2)	0.2847(2)	0.5473(4)	0.6267	0.4567	0.6973	0.7335
ZAQJAC	Sb1	0.1176(2)	0.2359(4)	0.4919(8)	0.3478	0.3116	0.6615	0.6353
ZAQJAC	Sb2	0.3394(5)	0.4932(8)	0.3507(6)	0.4846	0.6120	0.5224	0.3633
ZAQJAC	Sb3	0.1441(2)	0.3143(5)	0.4068(6)	0.3591	0.4399	0.5327	0.4569
ZAQJEG	Sb1	0.1210(5)	0.2425(9)	0.4723(18)	0.3877	0.4767	0.6176	0.6241
ZAQJEG	Sb3	0.1390(4)	0.3018(8)	0.3989(11)	0.325	0.4103	0.5384	0.4693
ZASNEM	Sb1	0.17406(19)	0.2313(2)	0.5566(3)	0.5335	0.3596	0.7240	0.8909
ZASNIQ	Sb1	0.1625(2)	0.2454(2)	0.5184(3)	0.4384	0.3214	0.6609	0.8209
ZASNIQ01	Sb1	0.15950(18)	0.24394(19)	0.5031(2)	0.4796	0.3382	0.6176	0.8152
ZASVUK	Sb1	0.1367(2)	0.1866(2)	0.4502(4)	0.5042	0.3669	0.6088	0.9315
ZASVUK01	Sb1	0.13811(17)	0.18858(18)	0.4512(2)	0.5095	0.3677	0.6115	0.9326
ZASWAR	Sb1	0.15418(19)	0.2069(2)	0.5227(3)	0.5242	0.3271	0.7194	0.9066
ZASWAR01	Sb1	0.15411(19)	0.2068(2)	0.5224(3)	0.5242	0.3289	0.7192	0.9066
ZERFIN	Sb1	0.17401(17)	0.23207(17)	0.6006(2)	0.4815	0.3045	0.7679	0.8991
ZERFOT	Sb1	0.16400(19)	0.3041(2)	0.3535(2)	0.4474	0.4071	0.4894	0.5808
ZERFOT	Sb2	0.1590(2)	0.3086(2)	0.3648(3)	0.3709	0.4839	0.5640	0.5541
ZERFUZ	Sb1	0.1799(2)	0.2531(3)	0.6038(6)	0.5157	0.3166	0.7651	0.8329
ZERFUZ	Sb2	0.1970(2)	0.2509(3)	0.7112(7)	0.6192	0.379	0.8547	0.8804
ZERGAG	Sb1	0.1924(2)	0.2426(2)	0.7223(4)	0.5838	0.2869	0.8604	0.8429
ZEZMUO	Sb1	0.2200(2)	0.2837(2)	0.7187(5)	0.6516	0.4471	0.8238	0.8140
ZEZNAV	Sb1	0.2176(2)	0.2610(2)	0.7316(4)	0.653	0.2677	0.8567	0.8372
ZIZZEN	Sb1	0.1575(2)	0.2301(2)	0.6295(6)	0.5555	0.3165	0.8352	0.9231
ZUCKAJ	Bi1	0.6602(7)	0.1715(2)	0.1402(2)	0.7730	0.2003	0.5022	0.0282
ZUHDIP	Sb1	0.2026(8)	0.2423(10)	0.827(3)	0.5436	0.2747	0.9136	0.9338
ZULKEW	Sb1	0.2648(7)	0.3199(9)	0.3506(10)	0.4559	0.4762	0.5862	0.5527
ZUXVOF	Bi1	0.4196(8)	0.1139(2)	0.0950(2)	0.5761	0.2522	0.3918	0.1356
ZUZMEO	Sb1	0.19539(19)	0.2385(2)	0.8007(4)	0.6758	0.2685	0.9157	0.9444