На правах рукописи

Леньшина Нина Александровна

СИНТЕЗ И МОДИФИКАЦИЯ ПОРИСТЫХ И БЛОЧНЫХ ПОЛИМЕРНЫХ МАТРИЦ ПОД ДЕЙСТВИЕМ ВИДИМОГО ИЗЛУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ *О*-ХИНОНОВ В КАЧЕСТВЕ ФОТО-АКТИВНЫХ КОМПОНЕНТОВ

02.00.06 – высокомолекулярные соединения (химические науки)

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Нижний Новгород 2019 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте металлоорганической химии им. Г.А. Разуваева Российской академии наук

Научный Чесноков Сергей Артурович

руководитель: доктор химических наук

Официальные Ильин Александр Алексеевич

оппоненты: доктор химических наук, профессор,

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный технический университет», заведующий кафедрой химической технологии органических покрытий

Курский Юрий Алексеевич

доктор химических наук, профессор,

Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им. Р.Е. Алексеева», профессор кафедры технологии электрохимических производств и химии органических веществ

Ведущая Федеральное государственное бюджетное учреждение науки **организация:** «Институт проблем химической физики Российской академии наук»

Защита состоится «28» июня 2019 г. в 14^{00} на заседании диссертационного совета Д 999.130.02 на базе ННГУ им. Н.И. Лобачевского и Института металлоорганической химии им. Г.А. Разуваева РАН по адресу: г. Нижний Новгород, 603950, ГСП-20, пр. Гагарина 23.

С диссертацией можно ознакомиться на сайте https://diss.unn.ru/files/2019/922/diss-Lenshina-922.pdf и в библиотеке Национального исследовательского Нижегородского государственного университета им. Н. И. Лобачевского.

Автореферат разослан «» 20	1	9			J	J	J								•	,	,	,	,	1	1	1	1	1	1	1	,	,	,	,	,	,	,	,	,	,	,	,	,	1	1	7	>	7					-																																																															L	I	J		,	J	Ĺ	١	•	_	4	4		,																					
----------------------------	---	---	--	--	---	---	---	--	--	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	--	---	---	---	---	---	---	---	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Ученый секретарь диссертационного совета, доктор химических наук

Tynqua

А.В. Гущин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Получение функционализированных полимеров и полимерных материалов является одним из активно развивающихся направлений полимерной химии, постоянно ищущей новые методы и приемы для решения разнообразных задач. Особый интерес представляют фотоактивные соединения, использование которых позволяет синтезировать новые функционализированные полимеры И осуществлять локальную оптически управляемую функционализацию полимерных материалов. Перспективными для использования в качестве таких фотоактивных соединений являются о-хиноны. оспособны к фотовосстановлению до пирокатехинов. о-Хиноны пирокатехины образуют металлокомплексы, о различных свойствах которых накоплен значительный объём информации, создающий задел для получения на их основе материалов c ценными свойствами (магнитными, оптическими, абсорбционными и др.). При этом механизмы образования металлокомплексов из охинонов и пирокатехинов принципиально различны. Это позволяет светом формировать в о-хинон-содержащем полимерном материале области с заданным соотношением о-хинона и пирокатехина и далее получать металлосодержащие, в том числе, градиентные гетерометаллические полимеры. Кроме того, в настоящее время распространенным способом вторичной функционализации поверхности полимерных материалов является прививочная полимеризации, инициируемая УФ-излучением. Это позволяет получать модифицированные поверхности с заданным рисунком различных функциональных зон, что является важной задачей при изготовлении устройств, применяемых в микробиологии и микрофлюидике. В то же время, УФинициирование определяет и недостатки данного метода: ограничение процесса фотополимеризации тонкими слоями (~ 0.1 мм), необходимость использования специального оборудования и УФ-прозрачных матриц; отсутствие поглощения реагентов в спектральной области УФ-диапазона, совпадающей с «рабочей» областью фотоинициатора, ограничение на использование метода в биомедицине и при использовании нестойких к УФ реагентов. Эти недостатки могут быть преодолены при использовании фотоинициаторов чувствительных к видимому излучению. Использование инициаторов видимого диапазона делает возможным полимеризацию толщиной миллиметров, перестраиваемых слоях несколько применение

компьютерных масок, генерируемых стандартным проекционным оборудованием. Это же относится и к процессам получения металлсодержащих полимерных материалов. К настоящему времени в литературе имеется ограниченное число публикаций по инициируемым видимым излучением способам получения металлсодержащих полимеров и поверхностно-инициируемой полимеризации. Поэтому поиск фотоактивных соединений, способных инициировать эти процессы под действием видимого излучения, является актуальной задачей.

работы. диссертационной Разработка получения методов функционализированных пористых И блочных полимерных матриц из способности диметакриловых олигомеров cиспользованием О-ХИНОНОВ фотохимическим превращениям под действием видимого излучения. Сравнение реакционной способности о-хинон- и катехолатсодержащих функциональных групп в составе молекул мономеров и полимеров в растворе, в полимерном блоке и на поверхности пор.

В связи с поставленной целью работы решались следующие задачи:

- 1. Исследование процесса одностадийного синтеза методом фотополимеризации инициируемой системой *о*-хинон амин пористых полимеров с поверхностью функционализированной гидроксильными группами; исследование реакций вторичной функционализации поверхности *о*-хиноновыми фрагментами и затем катехолатными комплексами сурьмы.
- 2. Сравнительные исследования реакционной способности *о*-хиноновых фрагментов и катехолатных комплексов сурьмы на поверхности пор, в полимерном блоке и в молекулярном растворе соответствующих мономеров и полимеров.
- 3. Исследование условий избирательного введения металлов в *о*-хинонсодержащие сополимерные плёнки, основанное на реакции фотовосстановления *о*-хинонового фрагмента.
- 4. Исследование активности 9,10-фенантренхинона в реакции отрыва атома водорода под действием видимого излучения от пористых полимерных матриц из диметакриловых олигомеров различной природы.
- 5. Нахождение условий осуществления оптически управляемой гидрофобизации пористых полимерных матриц из диметакриловых олигомеров с использованием реакции фотовосстановления 9,10-фенантренхинона.

Объекты и предмет исследования. Мономеры и полимеры: диметакрилаты ДМЭГ, ТГМ-3, ДМПЭГ-550, ОКМ-2 и МДФ-2; ГЭМА; *о*-хинонметакрилат и полихинонметакрилат; блочные и пористые полимерные монолиты на их основе. Фотоактивные компоненты: 9,10-фенантренхинон, *о*-бензохиноновые фрагменты в молекулах хинонметакрилата, полихинонметакрилата и сополимеров хинонметакрилата с ГЭМА, ДМПЭГ-550 и ОКМ-2.

<u>Научная новизна работы, теоретическая и практическая значимость</u> работы заключается в следующем:

- 1. Впервые с использованием фотоинициирующей системы o-хинон амин получен сурьмасодержащий пористый монолитный полимерный материал, в котором комплексы сурьмы на поверхности полимера обладают способностью К количественному обратимому присоединению молекулярного кислорода co скоростью, близкой к скорости процесса в растворе.
- 2. Установлено, что реакции фотовосстановления под действием видимого излучения 3,6-ди-*трет*-бутил-*о*-бензохиноновых фрагментов на поверхности пор, в полимерном блоке и в растворах *о*-хинонсодержащего мономера и его полимера проходят с близкими по величине эффективными константами скоростей реакций.
- 3. Получен фоточувствительный сополимерный материал на основе *о*-хинонметакрилата, в объём которого введены комплексы молибдена и сурьмы в соотношении, задаваемом фотолитически.
- 4. Показано, что сшитые полимеры из ДМЭГ, ТГМ-3, ОКМ-2 и МДФ-2, образующие поверхность пор выступают донорами водорода для фотовозбуждённой видимым излучением молекулы 9,10-фенантренхинона. Установлено, что эффективная константа скорости фотовосстановления 9,10-фенантренхинона в порах не зависит от природы диметакрилата и размера пор в пределах десятки сотни нанометров.
- 5. Разработан способ локальной оптически управляемой гидрофобизации под действием видимого излучения поверхности пористых полидиметакрилатов с использованием 9,10-фенантренхинона в качестве фотоинициатора процесса. Получены полимеры, для которых краевой угол смачивания водой θ = 150°. В пористом материале с использованием стандартной проекционной аппаратуры

получена «решётка» с минимальной шириной гидрофобного и гидрофильного участков 30 мкм.

На защиту выносятся следующие положения:

- Экспериментальные данные о получении с использованием метода фотополимеризации и инициирующей системы «*o*-хинон амин» полимерных пористых монолитов с привитыми на поверхность пор комплексами катехолата трифенилсурьмы и изучении кинетики обратимого присоединяет молекулярного кислорода пористыми полимерами и комплексами катехолата трифенилсурьмы в растворе.
- Экспериментальные данные о сравнении кинетики прохождения реакции фотовосстановлении 3,6-ди-*трет*-бутил-*о*-бензохиноновых фрагментов в присутствии N,N-диметиланилинов на поверхности пор, в полимерном блоке и в растворах хинонсодержащего мономера и его полимера.
- Экспериментальные данные о кинетике фотовосстановления 9,10-фенантренхинона в объёме пор сшитых полимеров из диметакрилатов ДМЗГ, ТГМ-3, ОКМ-2 и МДФ-2, размер которых варьируется от десятков до сотен нанометров.
- Экспериментальные данные о получении сополимерного материала на основе o-хинонметакрилата с оптически заданным соотношением металлокомплексов Mo(VI) и Sb(V).
- Экспериментальные данные о проведении локальной оптически управляемой гидрофобизация поверхности пор полидиметакрилатов на основе реакции фотовосстановления 9,10-фенантренхинона.

<u>Личный вклад автора.</u> Автор принимал участие во всех этапах диссертационной работы, включая постановку целей и задач исследования, планирование и выполнение экспериментов, анализ и интерпретацию полученных данных, оформление и подготовку публикаций по результатам исследований. Автор выражает искреннюю благодарность сотрудникам ИМХ РАН, принимавшим участие в работе и обсуждении результатов: Арсеньеву М.В. (регистрация спектров ЯМР), к.х.н. Батенькину М.А. (АСМ-исследования), к.х.н. Куликовой Т.И (определению величин удельных поверхностей), к.ф.-м. н. Полуштайцеву Ю.В. (оптические эксперименты), к.х.н. Хамалетдиновой Н.М. (регистрация ИК-спектров), Чулковой Т.И. (элементный анализ).

Электронная Методы исследования. спектроскопия (кинетические И фотохимические исследования); атомно-силовая микроскопия (качественная количественная оценка пористой структуры полимеров); тепловая десорбция азота в рамках метода БЭТ (определение удельной поверхности пористых полимеров); метод (определение смачивания); ЯМР-спектроскопия, капли углов спектроскопия И элементный анализ (подтверждение строения полученных соединений).

Степень достоверности и апробация результатов. Основное содержание работы опубликовано в 4 статьях и 7 тезисах докладов. Результаты исследований были представлены на международных конференциях: Шестая всероссийская Каргинская конференции «Полимеры - 2014» (г. Москва, 2014); Х, ХІ и ХІІ Санкт-Петербургской конференции молодых ученых «Современные проблемы науки о полимерах» (г. Санкт-Петербург, 2014, 2015 и 2016), V Международная конференцияшкола по химии и физикохимии олигомеров «Олигомеры 2015» (г. Волгоград, 2015), на XVIII и ХІХ Нижегородских сессиях молодых ученых (2013 и 2014 гг.), а также на семинарах в ИМХ РАН.

Структура диссертации. Диссертационная работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов и списка цитируемой литературы из 234 наименований. Работа изложена на 133 страницах машинописного текста и включает 5 таблиц, 34 схем и 47 рисунков.

Изложенный материал и полученные результаты соответствуют пунктам 2, 4, 9 паспорта специальности 02.00.06 – высокомолекулярные соединения.

Работа выполнена при финансовой поддержке грантов РФФИ: 13-03-97064-р-поволжье-а, 13-03-12225-офи-м, 14-03-31256-мол-а, 15-43-02603-р-поволжье-а, 15-33-20858-мол а вед.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

На Рисунке 1 приведенные формулы соединений, являющихся объектами исследования в данной работе: o-хиноны – 3,6-ди-mpem-бутил-o-бензохинон (3,6-БХ), хинонметакрилат 2,5-ди-mpem-бутил-3,4-диоксициклогекса-1,5-диенил метакрилат (ХМ), его полимер (поли-ХМ), 9,10-фенантренхинон (ФХ); олигоэфиракрилаты: диметакрилаты этиленгликоля (ДМЭГ), триэтиленгликоля (ТГМ-3) и полиэтиленгликоля (ДМПЭГ-550); α , ω -бис-(метакрилоилоксиэтилен-

оксикарбонилокси)этиленоксиэтилен (ОКМ-2), α -метакрилоил- ω -метакрилоил-диэтиленгликольокси-олиг(диэтиленгликольфталат) (МДФ-2); функционализирующие мономеры: изодецилметакрилат (ИДМА) и 2-гидроксиэтил метакрилат (ГЭМА).

Рисунок 1. Объекты исследования.

1. Синтез и модификация полимерных материалов, содержащих 3,6-ди*трет*-бутил-*o*-бензохиноновый фрагмент

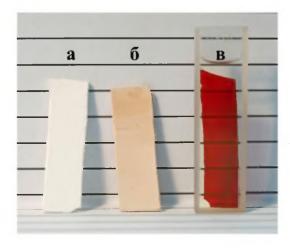

Для синтеза пористых полимеров с поверхностью пор, функционализированной хиноновыми фрагментами, использовали двухстадийный метод (Схема 1).

Схема 1.

Первая стадия – формирование пористой матрицы с этилгидроксильными группами на поверхности (Схема 1-а) фотополимеризацией видимым излучением смеси диметакрилата ОКМ-2, ГЭМА и метанола с фотоинициирующей системой «хинон – амин». Облучение видимым светом исходно прозрачной композиции

зелёного цвета в форме из двух силикатных стёкол с демпфирующей прокладкой между ними приводит к отверждению композиции, сопровождающемуся её обесцвечиванием и помутнением. Удаление из полученного полимерного монолитного образца метанола приводит к образованию белого пористого сополимера.

Предложен механизм процесса, В соответствии которым фотополимеризации композиции менее активный мономер ГЭМА в процессе микрофазового расслоения при образовании пор преимущественно вытесняется из трёхмерной сетки границу «полимер полимерной на растворитель». Соответственно, на поверхности пор образуется сополимер ОКМ-2 и ГЭМА и полиГЭМА, которые функционализируют, таким образом, поверхность этилгидроксильными группами. Вторая стадия присоединение этилгидроксильным группам о-хиноновых фрагментов (Схема 1-б) по реакции алкоксилирования молекул 3,6-БХ и функционализация, таким образом, хиноновыми фрагментами поверхности пор. Установлено, что оптимальное содержание ГЭМА в композиции составляет 15 мас.%.

Рисунок 2. Фотографии пористых образцов: (а) сразу после изготовления; (б) после прививки на поверхность пор *о*хиноновых фрагментов на воздухе и (в) в толуоле.

Показатель преломления (n_D) полиОКМ-2 равен 1.501. Помещение полученных пористых сополимерных образцов (h = 200 мкм) в толуол ($n_D = 1.497$) делает их прозрачными (Рисунок 2-в). Сопоставление спектров поглощения модифицированного пористого сополимера со спектрами поглощения раствора ХМ и плёнки сополимера XM с ГЭМА и ДМПЭГ-550 (Рисунок 3) показывает, что образующийся после вторичной функционализации пористый полимер содержит 4алкокси-3,6-ди-трет-бутил-о-бензохиноновые фрагменты (как XMИ его сополимер).

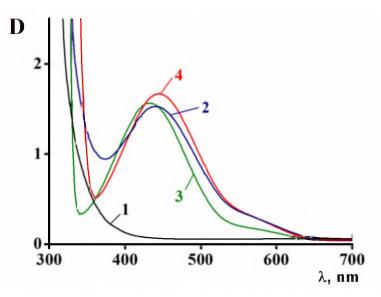


Рисунок 3. Электронные спектры поглощения: пористый полимер из композиции ОКМ-2 – метанол – ГЭМА до (1) и после функционализации o-хиноном (2) (h = 200 мкм, толуол); хинонметакрилат (3) (8×10⁻⁴ моль/л, 1 = 1 см, толуол) и сополимер хинонметакрилата с ГЭМА и ДМПЭГ-550 (4) (плёнка, h = 200 мкм).

Наличие мономера, полимера, плёночного и пористого полимерных материалов, содержащих одинаковый *о*-бензохиноновый фрагмент, позволяет провести сравнение реакционной способности *о*-бензохинонового фрагмента в растворе, полимерной матрице и в привитом слое на поверхности пор.

Фотовосстановление о-бензохинонового фрагмента в XM, поли-XM и на поверхности пор полимерной матрицы

Облучение видимым светом растворов XM и поли-XM в органических растворителях (толуол, ТГФ, 1,2-дихлорбензол) в присутствии третичных аминов приводит к обесцвечиванию растворов. Методом ЯМР-спектроскопии установлено, что XM и поли-XM фотовосстанавливаются до пирокатехина и полипирокатехина, соответственно (Схема 2).

Для получения в одинаковых условиях величин констант скорости фотовосстановления $k_{\rm H}$ o-хиноновых фрагментов в мономере XM, в поли-XM и на

поверхности пор в качестве растворителя использовали смесь ТГФ с 1,2-ДХБ в соотношении 40:60 (об.%). В такой смеси растворимы мономер и полимер, и она является иммерсионной жидкостью для пористого полимера, что позволяет спектрофотометрически исследовать кинетику фотовосстановления o-бензохиноновых фрагментов на поверхности пор.

При переходе от мономера XM к полимеру поли-XM скорость реакции фотовосстановления o-бензохиноновых фрагментов в присутствии аминов уменьшается. Так, при фотовосстановлении XM в смеси ТГФ - 1,2-ДХБ в присутствии p-CH₃-DMA (мольное соотношение 1:50) величина $k_{\rm H}$ составляет $17.6\times 10^{-4}~{\rm c}^{-1}$, для поли-XM (MM $\sim 32\times 10^3$) $k_{\rm H}=7.6\times 10^{-4}~{\rm c}^{-1}$. Уменьшение величины $k_{\rm H}$ более чем в 2 раза при переходе от раствора мономера к раствору полимера, вероятно, связано с затруднением подхода молекул амина к фотовозбуждённым o-хиноновым фрагментам в полимерной макромолекуле.

Показатель преломления смеси ТГФ - 1,2-ДХБ (40 : 60 об.%) близок к показателю преломления полимерной матрицы ($n_{\rm D}\sim 1.5$). Поэтому при заполнении пор указанной смесью растворителей пористый полимер становится прозрачным, и это позволяет также спектрофотометрически исследовать кинетику фотовосстановления o-бензохиноновых фрагментов в поверхностном слое пор. На Рисунке 4 приведены изменения спектра поглощения o-хинонсодержащего пористого полимера в растворе p-CH₃-DMA в смеси ТГФ - 1,2-ДХБ. Как и в растворах ХМ и поли-ХМ, наблюдается убывание интенсивности полосы поглощения o-хинонового фрагмента в области 435 нм по мере увеличения времени облучения.

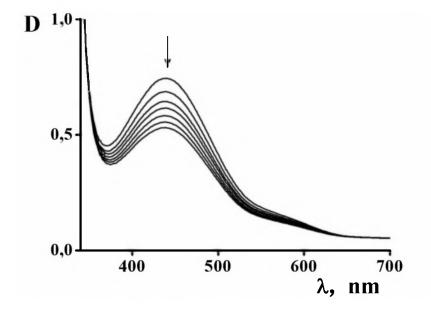
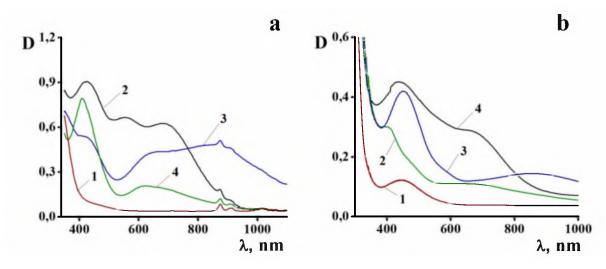


Рисунок 4. Спектральные наблюдаемые изменения, облучении при бензохинонсодержащего пористого полимера (h = 200 мкм) в растворе в смеси $T\Gamma\Phi$ – 1,2-ДХБ (40 : 60 об.%) в присутствии p-CH₃-DMA (воздух, лампа KГМ-24-150, облучение через равные промежутки времени 180 с).

Для исследования кинетики фотовосстановления o-бензохиноновых фрагментов в плёночных сополимерах термополимеризацией были получены полимерные плёнки двух композиций: (I) — 1.6 весовые части (в.ч.) XM на 50 в.ч. ДМПЭГ-550 и 50 в.ч. ГЭМА; (II) — 1.6 в.ч. XM на 50 в.ч. ОКМ-2 и 50 в.ч. ГЭМА (h = 200 мкм). Плёнки помещали в раствор ТГФ в присутствии аминов, облучали их на воздухе светом лампы КГМ-24-150. В Таблице 1 приведены сравнительные значения $k_{\rm H}$ o-бензохиноновых фрагментов в мономере, сополимерных плёнках и на поверхности пор.


Таблица 1. Величины $k_{\rm H}$ при фотовосстановлении o-бензохиноновых фрагментов в мономере, сополимерных плёнках и на поверхности пор в присутствии DMA и p-CH₃-DMA в мольном соотношении «хинон / амин» = 1:50.

		$k_H \times 1$	10 ⁴ , c ⁻¹	
Амин	Раствор ХМ	Плёнка сопо.	лимера (ТГФ)	Поры
	$(T\Gamma\Phi/1,2-$ ДХБ = 2 : 3)	композиция (I)	композиция (II)	$(T\Gamma\Phi/1,2$ - ДХБ = 2 : 3)
p-CH ₃ -DMA	17.6	3.4	0.5	11.0
DMA	3.3	3.0	0.6	10.0

Видно, что в плёнках сополимеров и на поверхности пор влияние природы амина незначительно. Нивелирование влияния природы амина на k_H может быть связано с ограничением диффузии молекул амина к фотовозбуждённым фрагментам o-бензохинона и увеличением вероятности протекания реакции фотовосстановления за счёт атомов водорода полимерной матрицы. Для эффективного переноса протона реагирующие молекулы должны расположиться в ион-радикальной паре так, чтобы карбонильная группа находилась под аминогруппой на минимальном расстоянии. Наблюдаемая низкая эффективность фотовосстановления o-хиноновых фрагментов в плёнке может быть связана как с уменьшением времени жизни возбужденной молекулы o-хинона, так и с менее выгодной конфигурацией переходного состояния. Наблюдаемое в пористом полимере быстрое фотовосстановление хиноновых фрагментов может быть связано с сорбцией полярных молекул амина на полярной поверхности пор (фрагменты XM и гидроксиэтильные фрагменты).

Синтез сурьма- и молибденсодержащих полимеров

Известно, что при обработке толуольных растворов 3,5-ди-*трет*-бутилпирокатехина водными растворами некоторых солей металлов в органической фазе образуются металлокомплексы соответствующих катехолатов или семихинонов. Сопоставление спектров комплексов солей (NH₄)₂MoO₄, NH₄VO₃ и (NH₄)₂Fe(SO₄)₂ с продуктами фотовосстановления XM в толуоле (Рисунок 5-а) и спектров поглощения плёнки, полученной из композиции (II), после фотовосстановления в ней *о*-хиноновых фрагментов и обработки водными растворами тех же солей в течение 1 часа (Рисунок 5-б) говорит об образовании металлокомплексов в плёнке.

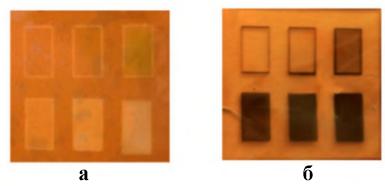


Рисунок 5. Спектры поглощения раствора XM в толуоле (а) и полимерных плёнок (сополимер XM – ДМПЭГ-550 – ГЭМА, h = 200 мкм) (b): после облучения (в присутствие DMA, лампа КГМ-24-150, воздух) (1); после обработки облучённых образцов водными растворами (NH₄)₂MoO₄ (2), NH₄VO₃ (3), (NH₄)₂Fe(SO₄)₂ (4).

Не полная идентичность спектров может объясняться тем, что по реакции пирокатехина с солями металлов возможно образование сразу нескольких комплексов, различающихся числом атомов кислорода, наличием в координационной сфере молекул растворителя, амина, а также катехолатной или семихиноновой формой восстановленного o-бензохинонового фрагмента. Очевидно, что в растворе и в полимерной плёнке соотношение между металлокомплексами разного строения будет различным. Наблюдаемое при этом нарастание полосы поглощения o-бензохинонового фрагмента ($\lambda_{\text{max}} = 435\,$ нм), возможно, связано с частичным окислением пирокатехина при проведении процессов на воздухе.

При облучении полимерной плёнки через фотошаблон с набором «окон», в которых интенсивность актиничного излучения, проходящего через каждое,

увеличивается в последовательности: 0, 0.2, 0.4, 0.6, 0.8, 1.0 видно, что с ростом интенсивности света увеличивается степень «выгорания» окраски полимера, связанной с наличием o-бензохиноновых фрагментов в полимере (Рисунок 6-а).

Рисунок 6. Фотографии плёнки $XM - ДМПЭГ-550 - ГЭМА после облучения через фотошаблон (а) и после обработки водным раствором <math>(NH_4)_2MoO_4$ (б).

При обработке экспонированной плёнки в растворе молибдата аммония происходит последовательное увеличение оптической плотности изображения. Рост дозы актиничного излучения соответствует росту содержания металлокомплекса в облучённом участке полимерного слоя (Рисунок 6-б).

Фотовосстановлением половины o-бензохиноновых фрагментов на одном участке плёнки сополимера ХМ — ДМПЭГ-550 — ГЭМА и дальнейшей её обработке в водном растворе соли молибдата аммония и затем в деаэрированном растворе Ph_3Sb в ТГФ было реализовано введение в полимерную матрицу двух металлов — сурьмы и молибдена (Схема 3).

Спектр поглощения плёнки сразу после обработки в растворе Ph_3Sb содержит полосу поглощения молибденового комплекса в области 650 - 700 нм (Рисунок 7, спектр 1). Выдержка плёнки на воздухе приводит к нарастанию поглощения в синей и УФ-областях спектра (Рисунок 7, спектр 2). Вычитание спектра 1 из спектра 2 даёт

спектр 3, содержащий одну полосу поглощения с максимумом в области 380 - 390 нм, что соответствует спектру поглощения пероксидного комплекса трифенилсурьмы в полимере. После прогрева такой плёнки в инертной атмосфере в спектре поглощения плёнки спектр 2 превращается в спектр 1. После повторной выдержки плёнки на воздухе в спектре поглощения полимера спектр 1 снова меняется на спектр 2.

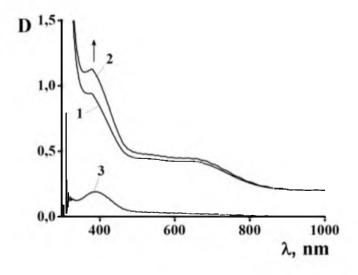


Рисунок 7. Спектры поглощения облучённой обработанной водным раствором $(NH_4)_2MoO_4$ плёнки ДМПЭГ-550 - ГЭМА (h = 200)мкм): 1) после взаимодействия с Ph₃Sb; 2) после выдержки материала воздухе, 3) на «расчетный» спектр, полученный вычитанием спектра 1 из спектра 2.

Такой подход дает принципиальную возможность получения полимерных материалов с оптически заданным распределением содержания одного или нескольких металлов.

Получение кислородактивных полимерных катехолатных комплексов сурьмы на поверхности пор

Сурьмасодержащий пористый полимер (Схема 4-б) был получен обработкой хинонсодержащего пористого полимера раствором трифенилсурьмы в толуоле в инертной атмосфере.

В спектре поглощения наблюдается исчезновение полосы поглощения o-хинонового фрагмента $\lambda_{\text{макс}} = 435$ нм (Рисунок 8, спектры 1 и 2). Введение в систему воздуха приводит к пожелтению полимера. В УФ-спектре появляется полоса

поглощения $\lambda_{\text{макс}} = 390$ нм (Рисунок 8, спектр 3) спироэндопероксида трифенилсурьмы (Схема 5-в).

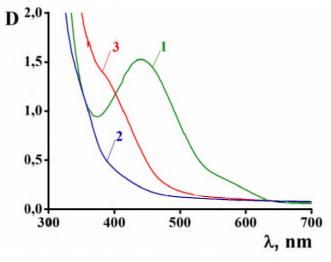
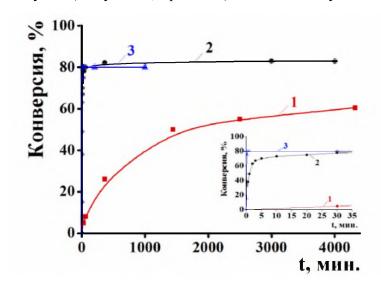
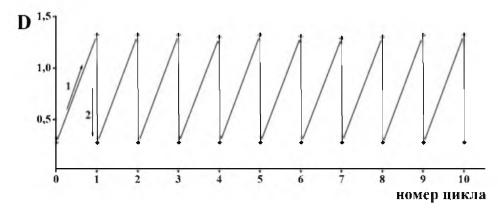



Рисунок 8. Спектры поглощения: 1) о-хинонсодержащего пористого полимера; 2) сурьмасодержащего полимера в инертной атмосфере; 3) сурьмасодержащего полимера через 5 мин выдержки на воздухе.


Кинетические кривые поглощения кислорода комплексом сурьмы, привитым на поверхность пор (Рисунок 9, кривая 2), и молекулярным комплексом в растворе толуола (Рисунок 9, кривая 3) близки между собой.

9. Рисунок Кинетические кривые поглощения кислорода катехолатным воздуха комплексом трифенилсурьмы в объёме полимерной матрицы (плёнка h = 200мкм) (кривая 1), поверхности пор (кривая 2) и толуольном растворе (кривая 3).

В обоих случаях предельная конверсия $\sim 80\%$. В растворе процесс поглощения кислорода молекулами комплекса завершается к 80 секунде. В пористом материале конверсия 80% достигается за 30 мин. Поглощение кислорода комплексом, встроенным в полимерную 3-х мерную сетку (Рисунок 9, кривая 1) идёт существенно медленнее. Конверсия 15 % в пористом и плёночном материалах достигается за 10 с и 150 минут, соответственно, т.е. различаются в 900 раз. Прогревание полимера при температуре 90°C с откачиванием в течении 30 мин приводит к обесцвечиванию полимера. На воздухе снова появляется полоса поглощения $\lambda_{\text{макс}} = 390$ нм и т.д., что говорит об обратимости реакции присоединения кислорода. Для полученного

материала было проведено 10 циклов присоединения кислорода – деоксигенирования. Реакционная способность находящихся на поверхности пор полимера катехолатных комплексов сурьмы между первым и десятым циклом не изменяется (Рисунок 10).

Рисунок 10. Изменение оптической плотности пористого сурьмасодержащего полимера при λ =390 нм в цикле сорбции (1) – десорбции (2) кислорода в атмосфере воздуха.

Эти результаты означают, что в синтезированных полимерах соединения, привитые к поверхности пор, обладают реакционной способностью, сопоставимой с реакционной способностью данных соединений в растворах.

2. Синтез и фотогндрофобнзация пористых полимеров с использованием реакции фотовосстановления 9,10-фенантренхинона.

Под действием видимого света в присутствии метакрилатов и диметакрилатов ФХ способен фотовосстанавливаться и инициировать их свободнорадикальную полимеризацию. Инициирование происходит за счет радикалов, образующихся в результате реакции фотовосстановления ФХ, в соответствии с механизмом фотополимеризации виниловых мономеров бинарной инициирующей системой «карбонилсодержащее соединение – донор водорода». Было предположено, что облучение раствора ФХ в смеси диметакрилата с порообразующим компонентом должно приводить к образованию пористой полимерной структуры. Кроме того, проведение фотовосстановления ФХ в растворе в объёме пор должно сопровождаться возникновением углерод-центрированных радикалов, способных инициировать привитую полимеризацию на поверхности пор. При наличии в такой системе функционализирующего мономера он будет полимеризоваться и обеспечит заданную функционализацию поверхности пористого полимера (Схема 5).

Экспериментально с использованием ФХ как фотоинициатора были получены серии пористых полимерных монолитов толщиной 2 и 4 мм из композиций на основе диметакрилатов МДФ-2, ДМЭГ, ТГМ-3 и ОКМ-2 с метанолом, н-бутанолом, нгексанолом и н-октанолом в качестве порогенов. Для нахождения условий реализации процесса фотофункционализации поверхности пор в качестве модельного процесса была исследована фотогидрофобизация пористой матрицы за счёт образования полиалкилметакрилата в объёме и на поверхности пор, что проявляется, в частности, в изменении краевого угла смачивания полимера водой. Для нахождения условий функционализации поверхности пор исследована кинетика фотовосстановления ФХ (и, соответственно, фотогенерации свободнорадикальных центров на поверхности пор) в пористой матрице, насыщенной инертным растворителем. Процессы фотовосстановления ФХ и фотофункционализации в объёме пор полимерных монолитов проводили в среде иммерсионных жидкостей, состав которых был подобран в ходе специально выполненных экспериментов. При исследовании реакции фотовосстановления ФХ пористыми матрицами использовали смеси бензол – 1,2-ДХБ при следующих соотношениях (об.%): для полиДМЭГ и полиТГМ-3 – 60 : 40; для полиOKM-2-90:10; для поли $MД\Phi-2-23:77$, соответственно. При исследовании фотогидрофобизации пористых матриц использовали смеси ИДМА и 1,2-ДХБ при следующих соотношениях (об.%): для полиДМЭГ и полиТГМ-3 - 25 : 75; для полиOKM-2-45:55; для поли $MД\Phi-2-5:95$, соответственно.

Для определения влияния на $k_{\rm H}$ природы полимерной цепи и характеристик пористых полимеров использованы пористые полимерные матрицы с размером пор от десятков до сотен нанометров. Установлено, что в порах полиДМЭГ, полиТГМ-3, полиОКМ-2 и полиМДФ-2 величина $k_{\rm H}$ не зависит от природы диметакрилата, образующего стенки поры. Средние значения $k_{\rm H}$ равны для полиДМЭГ – $1.1 \times 10^3 \ {\rm c}^{-1}$; для полиТГМ-3 – $1.2 \times 10^3 \ {\rm c}^{-1}$; для полиОКМ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$; для полиМДФ-2 – $1.3 \times 10^3 \ {\rm c}^{-1}$;

 10^3 с⁻¹. Таким образом, в отличие от жидких мономеров и их растворов, на поверхности пор доступность -CH₂- фрагментов всех четырёх мономеров одинакова. Кроме того, увеличение размера пор от десятков до сотен нанометров не оказывает влияния на величину $k_{\rm H}$. Время жизни возбуждённого триплетного состояния ΦX т $\sim 5 \times 10^{-4}$ с. За это время молекула должна успеть встретиться с молекулой донора водорода и прореагировать с ней. Из уравнения Эйнштейна – Смолуховского следует, что за $\tau \sim 5 \times 10^{-4}$ с среднее смещение молекулы ΦX $\Delta \sim 1200$ нм (принято, что коэффициент диффузии молекулы ΦX в растворителе $D = 1.5 \times 10^{-5}$ см²/с). Это означает, что в порах размером ~ 100 нм все фотовозбуждённые молекулы ΦX за время τ успевают достичь стенки поры и вступить в реакцию фотовосстановления. Таким образом, пористые полимеры на основе ДМЭГ, ТГМ-3, ОКМ-2 и МДФ-2 являются донорами водорода для фотовозбуждённой молекулы ΦX , что может быть использовано для фотогидрофобизации полимеров.

Для проведения фотогидрофобизации пластинку пористого полимера помещали в спектрофотометрическую кювету, заполненную гидрофобизирующим раствором, и экспонировали при освещённости 150 кЛк светом лампы КГМ-24-150. Далее образцы промывали ацетоном и хлороформом, сушили при 70°С и определяли краевой угол смачивания полимера водой (θ). На Рисунке 11 приведена зависимость θ образца из ФПК состава МДФ-2 (50 мас.%) – μ -октанол (50 мас.%) от концентрации ФХ в гидрофобизирующем растворе при различных временах экспонирования.

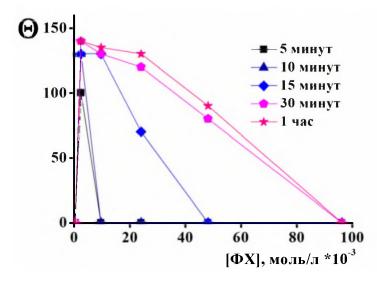


Рисунок 11. Зависимость краевого угла смачивания пористого полиМДФ-2 водой от концентрации ФХ в модифицирующем растворе при различном времени облучения полимера (мин): 1) 5; 2) 10; 3) 15; 4) 30 и 5) 60.

При $[\Phi X] = 4.8 \times 10^{-4}$ моль/л вода впитывается в полимер, т.е. полимер не гидрофобен; при $[\Phi X] = 2.4 \times 10^{-3}$ моль/л после 5 минут облучения $\theta = 100^\circ$ и $\theta = 135^\circ$

при облучении 30 минут. С увеличением концентрации ΦX эффект уменьшается, что свидетельствует об ингибировании процесса избытком ΦX , и при $[\Phi X] = 96 \times 10^{-3}$ моль/л гидрофобизации поверхности образца не происходит. Аналогичные зависимости $\theta = f([\Phi X])$ наблюдаются и для образцов из ОКМ-2, ДМЭГ и ТГМ-3.

Известно, что смачиваемость поверхности зависит не только от её химических свойств, но и от рельефа: для полимеров одного химического состава гидрофобные свойства увеличиваются при переходе от гладкой поверхности к пористым структурам. На Рисунке 12 приведена зависимость θ фотогидрофобизированных образцов полимера на основе МДФ-2 от среднего размера неоднородностей на поверхности образцов. При увеличении размера неоднородностей от 0.3 до 0.7, 10 и 20 мкм величина θ взрастает с 60° до 105, 135 и 148°, соответственно.

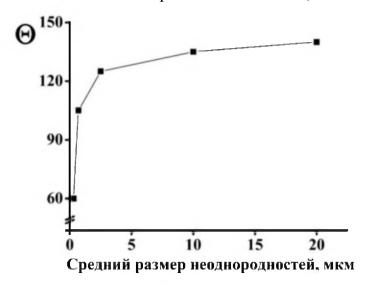


Рисунок 12. Зависимость угла смачивания поверхности гидрофобизированных пористых полимеров из полиМДФ-2 от среднего размера пор.

Локальная фотолитическая гидрофобизация пористых монолитов

Возможность осуществления фотогидрофобизации толстых пористых материалов видимым излучением делает возможной локальную гидрофобизацию образца с помощью стандартной проекционной аппаратуры. На Рисунке 13-а представлена фотография образца полиТГМ-3, толщиной 2 мм, в кювете сразу после облучения через фотошаблон в форме восьмиконечной звезды с толщиной луча 1 мм; облученная область полимера непрозрачна. На Рисунке 13-б — фотография образца после промывки в хлороформе, высушивания и обработки водным раствором тиоцианата железа(III). Необлучённая часть образца осталась гидрофильной и окрасилась водорастворимым красителем. Облучённая часть образца не окрасилась, следовательно, полимер в этой части образца стал гидрофобным, при этом форма

данной области на образце точно повторяет фотошаблон. На срезе образца видно, что функционализация проходит по всей его толщине (Рисунке 13-в).

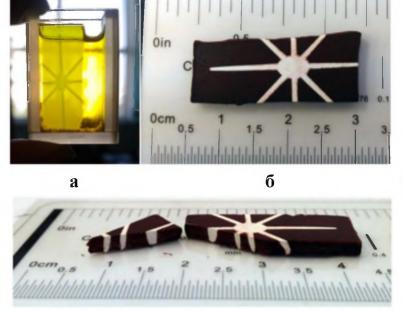
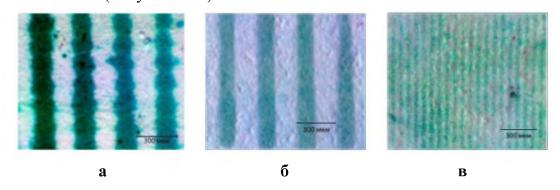



Рисунок 13. Фотогидрофобизация образца полиТГМ-3 толщиной 2 мм: (а) после экспонирования через маску в иммерсионной жидкости состава 1,2-ДХБ (75 об.%) -ИДМА (25 об.%), $[\Phi X] = 2.4 \times 10^{-1}$ (проектор моль/л MP622c, I = 100 кЛк, 30 мин); (б) после пропитки В водном растворе тиоцианата железа(III); (в) разрезанный образец.

R

Для экспериментального определения разрешающей способности пористых полимерных монолитов при их локальной фотогидрофобизации на образец с помощью DLP проектора проецировали изображение решётки с чередующимися пробельными и чёрными полями заданной ширины. Использовали систему фокусировки, которая обеспечивала дополнительной разрешение полю изображения 5×5 мм не хуже 900 лин/мм. Пористый образец помещали в кювету с раствором для гидрофобизации, экспонировали, промывали, сушили и обрабатывали в растворе бриллиантового зелёного. Фотографии образцов приведены на Рисунке 14. Образец на Рисунке 14-а получен с помощью проектора без дополнительной фокусировки. Минимальная ширина гидрофобизированной области, которая была получена – 30 мкм (Рисунок 14-в).

Рисунок 14. Фотографии образцов, полученных экспонированием через фотошаблоны с чередующимися освещенными и темными полосами с шириной полос 150 (a, б) и 30 (в) мкм и обработанных водным раствором бриллиантового зеленого.

Выводы

- 1. Предложен метод одностадийного синтеза под действием видимого излучения пористых полимерных монолитов с функционализированной поверхностью пор. Фотополимеризацией композиции диметакрилат ОКМ-2 метанол ГЭМА (инициатор о-хинон амин) получены пористые полимерные монолиты функционализированные алкоксигруппами. Из них синтезированы полимеры с о-хиноновыми фрагментами на поверхности пор и далее с комплексами катехолата трифенилсурьмы. Материал количественно и обратимо присоединяет кислород. Скорость абсорбции О2 пористым материалом в 900 раз выше, чем аналогичным плёночным материалом и сопоставима со скоростью процесса в растворе. Предельная конверсия комплекса в порах, как и в растворе, составляет 80%.
- Показано, что о-хиноновые фрагменты В хинонметакрилате полихинонметакрилате под действием видимого излучения в присутствии аминов восстанавливаются до моно- и полипирокатехинов. Установлено, что в присутствии N,N-диметаиланилинов эффективная константа скорости фотовосстановления $k_{\rm H}$ oхиноновых фрагментов на поверхности пор полиОКМ-2 увеличивается с ростом электронодонорной способности амина. При этом, константы скорости фотовосстановления о-хиноновых фрагментов на поверхности пор полиОКМ-2 сопоставимы с константами скорости фотовосстановления о-хиноновых фрагментов в хинонметакрилате и полихинонметакрилате в растворах.
- 3. В плёнку сополимеров хинонметакрилата за счёт реакции фотовосстановления *о*-хинонового фрагмента введены Mo(VI), Fe(II), V(V). Получены молибденсодержащие полимерные плёнки, в которых содержание металлокомплекса определяется степенью фотовосстановления *о*-хинона. В объём сополимерного материала введены комплексы молибдена и сурьмы, соотношение между которыми задаётся фотолитически.
- 4. Установлено, что пористые полимеры на основе диметакрилатов ДМЭГ, ТГМ-3, ОКМ-2, МДФ-2 являются донорами водорода для фотовозбуждённой молекулы 9,10-фенантренхинона. В исследованном ряду полимеров эффективная константа скорости фотовосстановления 9,10-фенантренхинона в объёме пор не зависит от природы мономера и остаётся постоянной при изменении размера пор от десятков до сотен нанометров.

5. На основе реакции фотовосстановления 9,10-фенантренхинона впервые осуществлена локальная оптически управляемая объёмная гидрофобизация пористых полимерных монолитов толщиной до 4 мм. Прививочной фотополимеризацией *изо*-децилметакрилата проведена гидрофобизация полиДМЭГ, полиТГМ-3, полиОКМ-2 и полиМДФ-2. Эффект максимален для полиМДФ-2; краевой угол смачивания водой θ = 135°. При использовании фторированных метакрилатов θ = 150°. В пористом материале с использованием стандартной проекционной аппаратуры сформировна «решётка» с минимальной шириной гидрофобного и гидрофильного участков 30 мкм.

Список публикаций по теме диссертации

- 1. **Lenshina N.A.** Optically controlled distribution of o-quinonemethacrylate metal complexes in polymer material / M.P.Shurygina, M.V. Arsenyev, Lenshina N.A. A.I. Poddel'sky, S.D. Zaitsev, S.A. Chesnokov, G.A. Abakumov // J. Coord. Chem. 2015. V. 68. I. 23. P. 4159–4169.
- 2. **Lenshina N.A.** Preparation of new dioxygenactive triphenylantimony(V) catecholate-containing porous polymer / S.A. Chesnokov, **N.A. Lenshina**, M.V. Arsenyev, R.S.K ovylin, M.A. Baten'kin, A.I. Poddel'sky, G.A. Abakumov // Appl. Organometal. Chem. DOI: 10.1002/aoc.3553.
- 3. **Леньшина Н.А.** Фотовосстановление *о*-бензохинонового фрагмента в монои полихинометакрилате и на поверхности пор полимерной матицы / **Н.А. Леньшина,** М.П. Шурыгина, М.В. Арсеньев // Химия Высоких Энергий. — 2017. — Т.51. — № 3. — С. 224-229.
- 4. **Леньшина Н.А.** Фотовосстановление 9,10-фенантренхинона в присутствии диметакриловых олигомеров и их полимеров / **Н. А. Леньшина**, М. Ю. Захарина, Р. С. Ковылин, М. А. Батенькин, Т. И. Куликова, М. В. Арсеньев, С. А. Чесноков // Химия Высоких Энергий. − 2018. − T.52. − № 5. − С. 1-6.
- 5. **Леньшина Н.А.** Избирательное введение металлов в полимерную матрицу на основе *о*-хинонметакрилатов / **Н.А. Леньшина,** М.П. Шурыгина // Шестая всероссийская Каргинская конференция «Полимеры 2014». Том ІІ. Сборник тезисов стендовых докладов в 2 частях. Часть первая, Москва. 2014. С. 458.
- 6. **Леньшина Н.А.** Фотовосстановление *о*-хиноновых фрагментов в гомогенных и гетерогенных средах / **Н.А. Леньшина,** М.П. Шурыгина, Арсеньев

- М.В., Чесноков С.А. // Сборник тезисов докладов XIX Нижегородской сессии молодых ученых, Нижний Новгород. 2014. С. 86.
- 7. **Lenshina N.A.** Photoinduced reduction of *o*-benzoquinone fragments in solution, polymer, matrix and in the grafted layer / **N.A. Lenshina**, M.P. Shurygina, R.S. Covylin, M.A. Arsenyev, S.A. Chesnokov // X International Saint-Petersburg Conference of Young Scientists «Modern problems of polymer science». Program and Abstract Book, Saint Petersburg. 2014. C. 79.
- 8. **Леньшина Н.А.** Кислородактивные сурьмусодержащие пористые полимеры / **Н.А. Леньшина**, М.А. Арсеньев, Р.С. Ковылин, С.А. Чесноков // V Международная конференция-школа по химии и физикохимии олигомеров «Олигомеры 2015». Тезисы докладов, Волгоград. 2015. С. 154.
- 9. **Lenshina N.A.** Optically controlled distribution of o-quinonemethacrylate metal complexes in polymer material / **N.A. Lenshina**, M.A. Arsenyev, M.P. Shurygina, Poddel'sky A.I., S.A. Chesnokov // XII International Saint-Petersburg Conference of Young Scientists « Modern problems of polymer science». Program and Abstract Book, Saint Petersburg. 2016. P. 49.
- 10. **Леньшина Н.А.** Фотогидрофобизация пористых полимерных материалов с использованием 9,10-фенантренхинона в качестве фото-активного компонента / **Н.А. Леньшина**, М.А. Арсеньев, Ю.В. Полуштайцев, С.А. Чесноков // Олигомеры-2017: сборник трудов XII Международной конференции по химии и фозикохимии олигомеров. Тезисы докладов. Т.2, Черноголовка. 2017. С. 150.
- 11. **Lenshina N.A.** Photoreduction of 9,10-phenanthrenequinone in the presence of dimethacrylic oligomers and their porous polymers / **N.A. Lenshina,** E.R. Zhiganshina, M.Yu. Zakharina, M.A. Baten'kin, M.V. Arsenyev, S.A. Chesnokov // XIV International Saint-Petersburg Conference of Young Scientists. «Modern problems of polymer science». Program and Abstract Book, Saint Petersburg. 2018. C. 47.