ОТЗЫВ
на автореферат диссертации Концевой Татьяны Сергеевны
«ГИДРИДЫ АЛЮМИНИЯ И ГАЛЛИЯ С АЦЕНАФТЕНДИИМИНОВЫМ ЛИГАНДОМ»,
представленной на соискание ученой степени кандидата химических наук по специальности
02.00.08 – химия элементоорганических соединений

Всестороннее изучение комплексов металлов с редокс-активными лигандами представляет собой востребованную и интенсивно развивающуюся область химического знания благодаря наличию множества интересных аспектов фундаментального и прикладного характера. Комбинирование редокс-активного лиганда с непереходным металлом открывает перспективы применения таких соединений в качестве катализаторов различных реакций за счет непосредственного участия лигандов в процессах переноса электрона и образования и разрыва связей с субстратами.

С другой стороны, в настоящее время достаточно много работ посвящены изучению гидридов элементов главных групп. Подобные соединения вызывают значительный интерес с точки зрения их практического применения, а также решения фундаментальных вопросов. В частности, данные соединения могут использоваться в реакциях гидрирования кратных связей органических субстратов, очистке металлов, хранении и генерировании молекулярного водорода. Дальнейшие исследования в данной области, безусловно, являются актуальными.

Автором предпринята удачная попытка объединения в одной молекуле редокс-активного аценафтенидииминоового и высокореакционного гидридного центров. Это позволило впервые получить гидриды алюминия и галлия с редокс-активным дииминовым лигандом в дианонной и анион-радикальной формах. Богатая реакционная способность полученных гидридов была продемонстрирована на примере взаимодействия с ненасыщенными органическими и неорганическими субстратами и металлоорганическими соединениями. Выделено около 25 новых соединений, строение большинства из которых установлено посредством рентгеноструктурного анализа.

Значимость представленной работы состоит в том, что новые комплексы алюминия и галлия с редокс-активным dpp-bian лигандом дополняют базовые представления о строении и свойствах координационных соединений подобного класса, а так же могут являться удобными стартовыми реагентами для синтеза ряда новых комплексов данных металлов. На основе полученных соединений и их производных могут быть созданы новые типы эффективных, доступных и малотоксичных реагентов для химического синтеза.

Автореферат аккуратно оформлен и тщательно вычитан, однако имеется вопрос к автору:

- На странице 10 автореферата написано, что «...конформационно-жесткий дииминовый лиганд пассивирует связь Al–H в комплексе 6.» В то же время, сравнивая строение комплексов 1 и 6 можно заключить, что в обоих случаях геометрические и электронные характеристики dpp-bian лиганда аналогичны. Не может ли различие в реакционной способности этих
соединений быть обусловлено наличием коорднированного высокореакционного гидрида лития в комплексе 1?

Высказанное замечание ни в коей мере не снижает значимости проделанной работы.

Результаты исследования хорошо представлены научной общественности: опубликованы в 4 статьях (1 в зарубежном издании) и многократно доложены на профильных конференциях. Можно заключить, что данная научно-квалификационная работа, существенно расширяющая представления о методах синтеза и свойствах комплексов элементов 13 группы с редоксактивными аценафтендиаминовыми лигандами, соответствует критериям, установленным пп. 9-14 Положения «О порядке присуждения ученых степеней» (Постановление Правительства РФ от 24.09.2013 № 842), а ее автор, Концева Т.С., заслуживает присуждения искомой ученой степени кандидата химических наук по специальности 02.00.08 – химия элементоорганических соединений (химические науки).

20 ноября 2019 г.

Главный научный сотрудник
НИИ физической и органической химии
Южного федерального университета,
Доктор химических наук
02.00.04 – Физическая химия (химические науки)

Научный сотрудник
НИИ физической и органической химии
Южного федерального университета,
Кандидат химических наук
02.00.08 – Химия элементоорганических соединений (химические науки)

344090 г. Ростов-на-Дону, пр. Стачки 194/2,
НИИ ФОХ ЮФУ, т. (863)2184000, доб. 11543
e-mail: andr@ipoc.sfedu.ru
e-mail: mchegerev@sfedu.ru

Подпись д.х.н. А.Г. Старикова и к.х.н. М.Г. Чегерева (удостоверено):

Директор НИИ физической и органической химии
Южного федерального университета, д.х.н.  

А.В. Метелица