На правах рукописи

Фукина Диана Георгиевна

Синтез, строение и свойства новых соединений со структурой β -пирохлора $A_8(X_4Z_{12})O_{48}$

02.00.01 - неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Нижний Новгород – 2020

Работа выполнена на кафедре химии твердого тела химического факультета Федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Научный руководитель:	Сулейманов Евгений Владимирович		
	доктор химических наук, профессор, заведующий		
	кафедры химии твердого тела химического		
	факультета Федерального государственного		
	автономного образовательного учреждения высшего		
	образования «Национальный исследовательский		
	Нижегородский государственный университет		
	им. Н.И. Лобачевского»		
Официальные оппоненты:	Пушкин Денис Валерьевич, доктор химических		
	наук, доцент, заведующий кафедры неорганической		
	химии химического факультета Федерального		
	государственного автономного образовательного		
	учреждения высшего образования «Самарский		
	национальный исследовательский университет		
	им. академика С.П. Королева»		
	Балабанов Станислав Сергеевич, кандидат		
	химических наук, ведущий научный сотрудник		
	лаборатории высокочистых оптических материалов		
	Федерального государственного бюджетного		
	учреждения науки «Институт химии высокочистых		
	веществ им. Г.Г. Девятых Российской академии		
	наук»		
Ведущая организация:	Федеральное государственное бюджетное		
	образовательное учреждение высшего образования		
	«Нижегородский государственный технический		
	университет им. Р.Е. Алексеева»		

Защита диссертации состоится «<u>12» ноября</u> 2020 года в <u>12.00</u> на заседании диссертационного совета Д 212.166.08 на базе Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского по адресу: 603959, Нижний Новгород, просп. Гагарина 23, корп. 5.

С диссертацией можно ознакомиться в библиотеке Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского и на сайте https://diss.unn.ru/1034

Автореферат разослан _____ 2020 года

Ученый секретарь диссертационного совета, кандидат химических наук

Е.Н. Буланов

To

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. Одной из важных задач современной химии является синтез новых материалов с заданными свойствами. Для решения данной задачи требуется большой объем информации о структуре и свойствах различных соединений. Установление закономерностей в ряду изоморфных соединений и проведение их систематического исследования является одним из основных подходов к получению такой информации и прогнозированию их физических свойств. В этом плане сложные оксиды как класс неорганических соединений представляют большой интерес для исследования благодаря тому, что они проявляют различные практически-важные свойства: сегнетоэлектрические, каталитические, оптические, ионную и электронную проводимость, что делает их перспективными материалами для применения в качестве конденсаторов, сверхпроводников, полупроводников, в пьезоэлектрических устройствах. Среди таких сложных оксилов выделяют несколько наиболее представительных рядов на основе устойчивых структурных типов минералов перовскита, флюорита, пирохлора, корунда, рутила и др. Кристаллическая решетка этих соединений построена из полиэдрического металл-кислородного каркаса, внутри которого располагаются низкозарядные катионы. Таким образом, меняя элементный состав с сохранением общей кристаллической структуры, можно управлять различными полезными свойствами соединений.

Имеется значительное число работ о соединениях перечисленных структурных типов, и наибольшее их количество посвящено веществам со структурой перовскита и производным от неё. Вместе с тем, не меньший научный интерес представляет структурный тип минерала пирохлора (Ca, Na)₂Nb₂O₆F. Активное исследование данных соединений началось примерно в 1970-х годах, и к настоящему моменту подробно исследованы особенности структуры α -пирохлоров с общими формулами $A_2^{3+}M_2^{4+}O_7$, $A_2^{2+}M_2^{5+}O_7$ и $A_2^{+}M_2O_6$, а также установлены структурные взаимосвязи между структурными типами флюорита и пирохлора. Установлено, что соединения как со структурой α -пирохлора, так и со структурой β -пирохлора обнаруживают различные полезные физические свойства: магнитно-спиновые эффекты и фотокаталитические свойства, а также могут быть использованы для иммобилизации актиноидов. В настоящее время интерес к новым функциональным неорганическим материалам увеличивается, поэтому материалы со структурой пирохлора представляют интерес.

Необходимо отметить, что систематической информации о ряде структур $A^IM_2O_6$, относящихся к структурному типу β -пирохлора, гораздо меньше по сравнению с информацией об α -пирохлорах, и ряд вопросов об их структурообразовании не решен. Один из основных вопросов, касающихся

структуры β-пирохлора, связан с их симметрией. Сложилось представление, что структура кислородосодержащего β-пирохлора преимущественно характеризуется кубической сингонией, однако в последнее время появляются работы, которые показывают возможность их кристаллизации в других сингониях. В практическом отношении вопрос об управлении симметрией кристаллической структуры таких соединений является актуальным, так как некоторые востребованные физические свойства являются симметрийнозависимыми (нелинейно-оптические, пьезоэлектрические).

Таким образом, возникает необходимость как систематического исследования областей существования и структурных особенностей βпирохлоров, так и выявление полезных физических свойств этих соединений и способов управлениями ими.

Цель работы. Синтез, выполнение комплексного исследования и анализ структурных особенностей соединений, принадлежащих к структурному типу β -пирохлора $A^{I}M_{2}O_{6}$ в системах $0.5A^{I}_{2}O$ -(TeO₂/TeO₃)-(Mo/W)O₃ и $0.5A^{I}_{2}O$ -1/2(Nb/Ta)₂O₅-MoO₃ (A^{I} =Na, K, Rb, Cs), а также выявление закономерностей структурообразования индивидуальных веществ и твердых растворов на их основе. В рамках заявленной цели необходимо было решить перечисленные ниже задачи:

1. Разработать методики синтеза и выращивания монокристаллов соединений со структурой β -пирохлора в системах $0.5A_2^{I}O$ -(TeO₂/TeO₃)-(Mo/W)O₃ и $0.5A_2^{I}O$ -0.5(Nb/Ta)₂O₅-MoO₃.

2. Определить элементный состав и морфологию полученных соединений методом электронной растровой микроскопии с использованием рентгеновского микроанализа.

3. Установить кристаллические структуры полученных монокристаллов и твердых растворов методами рентгеноструктурного и рентгенофазового анализа.

4. Выявить закономерности влияния катионов в позиции A и M на структурообразование β-пирохлоров.

5. Исследовать термическую устойчивость и фазовые переходы полученных соединений методами высокотемпературной рентгенографии, дифференциального термического анализа, термогравиметрии и дифференциальной сканирующей калориметрии.

6. Установить методами рентгеновской фотоэлектронной спектроскопии и спектрофотометрией в УФ и видимой области расположение электронных уровней полученных соединений: край валентной зоны и дно зоны проводимости.

<u>Научная новизна</u>. Разработаны методики синтеза соединений $A^{I}M^{V}{}_{x}Mo_{2-x}O_{6-y}$ ($A^{I} = Rb$, Cs; $M^{V} = Nb$, Ta) и $A^{I}Te^{IV}{}_{0.5}(M^{VI}{}_{x}Te^{VI}{}_{1.5-x})O_{6}$ ($A^{I} = Na$, K,

4

Rb, Cs; $M^{VI} = Mo$, W) со структурой β-пирохлора. Разработаны методики вырашивания монокристаллов соединений Na₁₅Te₂Mo₀₅O₆₂₅, $RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6,$ $K_6(Te_9^{4+}Te^{6+})Mo_6O_{42}$, $C_{s}Te_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_{6},$ $RbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{6+})O_{6},$ $CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6,$ $Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}$ CsNbMoO₆, CsTaMoO₆. Установлены кристаллические структуры всех выращенных монокристаллов. Изучена термическая устойчивость и фазовые переходы. Определено положение краев уровня валентной зоны и зоны проводимости. На основании литературных и полученных в данной работе сведений о строении и свойствах полученных соединений, проведено обобщение структурной информации соединений со структурой β-пирохлора.

Практическая ценность выполненной работы. Работа представляет собой комплексное исследование сложных неорганических систем состава $A^{I}M^{V}_{x}Mo_{2-x}O_{6-y}$ (A^{I} = Rb, Cs; M^{V} = Nb, Ta) и $A^{I}Te^{IV}_{0,5}(M^{VI}_{x}Te^{VI}_{1,5-x})O_{6}$ (A^{I} = Na, K, Rb, Cs; $M^{VI} = Mo$, W). Получены новые химические соединения и разработаны методики выращивания монокристаллов, что расширило круг объектов современной неорганической химии. Проведено исследование кристаллической структуры полученных соединений, установлены фундаментальные кристаллографические и термические характеристики и положения края уровня валентной зоны и дна зоны проводимости, которые могут быть использованы в научном учебном процессах. Проведен анализ И закономерностей структурообразования фаз β-пирохлора на границах существования структурного типа: исследованы причины изменения стехиометрии и симметрии в структуре βпирохлора.

<u>Достоверность результатов</u> подтверждается использованием современных физических методов исследования, воспроизводимостью экспериментальных результатов, а также их согласием с полученными в других научных группах.

<u>Личный вклад автора</u> состоит в постановке задач, изучении литературных данных по обозначенной проблеме, непосредственном участии и личном проведении экспериментов, анализе полученных результатов, их обобщении и формулировании выводов.

Основные положения, выдвигаемые на защиту.

1. Методики синтеза поликристаллических образцов $A^{I}M^{V}{}_{x}Mo_{2-x}O_{6-y}$ ($A^{I} = Rb$, Cs; $M^{V} = Nb$, Ta) и $A^{I}Te^{IV}{}_{0.5}(M^{VI}{}_{x}Te^{VI}{}_{1.5-x})O_{6}$ ($A^{I} = Na$, K, Rb, Cs; $M^{VI} = Mo$, W) и выращивания монокристаллов $Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}$, CsNbMoO₆, CsTaMoO₆, Na_{1.5}Te₂Mo_{0.5}O_{6.25}, K₆(Te₉⁴⁺Te⁶⁺)Mo₆O₄₂, RbTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo_{0.75})O₆, CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆, RbTe_{0.5}⁴⁺(Te⁶⁺W_{0.5}⁶⁺)O₆, CsTe_{0.5}⁴⁺(Te_{1.125}⁶⁺W_{0.375}⁶⁺)O₆ со структурой β-пирохлора;

2. Сведения о кристаллографических и термических характеристиках структур полученных соединений $Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}$, CsNbMoO₆, CsTaMoO₆, Na_{1.5}Te₂Mo_{0.5}O_{6.25}, K₆(Te₉⁴⁺Te⁶⁺)Mo₆O₄₂, RbTe_{0.5}⁴⁺(Te_{0.75}⁶⁺Mo_{0.75})O₆, CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆, RbTe_{0.5}⁴⁺(Te⁶⁺W_{0.5}⁶⁺)O₆, CsTe_{0.5}⁴⁺(Te_{1.125}⁶⁺W_{0.375}⁶⁺)O₆ и изучение особенностей их структуры;

3. Структурные изменения и связанные с ними процессы изменения стехиометрии и симметрии в соединениях со структурой β -пирохлора CsNbMoO₆, CsTaMoO₆ и рядах твердых растворов Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x} (x=1.31–1.625), RbTe_{2-x}Mo_xO₆ (x=0.5–0.75), CsTe_{2-x}Mo_xO₆ (x=0.875–1.06), RbTe_{2-x}W_xO₆ (x=0.25–0.625) и CsTe_{2-x}W_xO₆ (x=0.125–0.5);

4. Сведения о расположении края валентной зоны и дна зоны проводимости полученных соединений относительно окислительновосстановительных потенциалов разложения воды методами рентгеновской фотоэлектронной спектроскопии и исследованием спектров поглощения в видимой области и УФ.

<u>Апробация работы и публикации.</u> Результаты работы докладывались на конференциях международного и всероссийского уровня: Первый Российский кристаллографический конгресс (Москва, 2016), XXVI Российская конференция по электронной микроскопии (РКЭМ-2016) (Москва, 2016), XIX International Meeting on Crystal Chemistry, X-Ray Diffraction and Spectroscopy of Minerals (Апатиты, 2019).

Всего по теме диссертационной работы опубликовано 5 научных статей в ведущих научных изданиях, рекомендованных ВАК РФ («Журнал неорганической химии», Journal of Solid State Chemistry) и 3 публикации в сборниках трудов и тезисах докладов российских и международных научных конференций.

<u>Структура и объем диссертации.</u> Диссертация состоит из введения, обзора литературы, экспериментальной части, раздела с основными результатами и их обсуждением, выводов, списка сокращений и списка использованной литературы (133 источника). Общий объем диссертации составляет 168 страниц печатного текста, включая 68 рисунка и 30 таблиц.

Благодарности. Ряд исследований проведен при финансовой поддержке Министерства науки и образования Российской Федерации (госзадание 0729-2020-0053) и с использованием оборудования ЦКП «Новые материалы и ресурсосберегающие технологии» (ННГУ им. Н.И. Лобачевского). Автор выражает глубокую признательность д.х.н. Е.В. Сулейманову, д.х.н. Г.К. Фукину, к.ф.-м.н. А.В. Борякову, к.ф.-м.н. А.В. Нежданову, к.ф.-м.н. Н.В. Волковой, к.ф.м.н. А.П. Горшкову, к.х.н. С.В. Телегину и другим участникам исследований – студентам, аспирантам, сотрудникам ННГУ за содействие при выполнении работы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулирована актуальность исследования и основная цель, определены задачи, которые необходимо решить для достижения цели, и научная новизна полученных результатов.

1. Обзор литературы

Глава I посвящена обзору имеющейся литературы по теме диссертационного исследования. Рассмотрены обзорные работы, описывающие кристаллическую структуру α -пирохлора $A_2^{1}M_2O_7$ и его структурные взаимосвязи со структурой β -пирохлора $A^{1}M_2O_6$. Представлены исследования, дающие наиболее полное представление о современном состоянии исследований кристаллической структуры β -пирохлоров с общими формулами $A^{1}M^{V}M^{V1}O_6$ и $A^{1}M^{1V}_{0.5}M^{V1}_{1.5}O_6$. Особое внимание уделяется описанию структурообразования соединений CsTe₂O_{6-x}, что связано с их нетипичной некубической симметрией.

Представленный обзор литературы подчеркивает, что на данный момент структуру β -пирохлора $A^IM_2O_6$ принято описывать в виде трехмерного октаэдрического каркаса из связанных октаэдров [MO₆] с кубической сингонией и пр.гр. *Fd-3m*. Однако, такое представление структуры не позволяет объяснить причины изменения симметрии и стехиометрии с сохранением структурного типа β -пирохлора у некоторых обнаруженных недавно соединений.

Также в литературном обзоре дается представление о физических свойствах, которыми обладают представители структурного типа β-пирохлора (нелинейно-оптические, фотокаталитические, матрицы для иммобилизации радиоактивных отходов, ионная проводимость), что делает их перспективными материалами для исследований. Основное внимание уделяется описанию нелинейно-оптических и фотокаталитических свойств, которые были исследованы и оценены в рамках данной работы.

2. Экспериментальная часть

В главе II представлено описание используемых реактивов и методов исследования полученных соединений. Приведены подробные описания условий синтеза и выращивания монокристаллов.

Морфологию и элементный состав полученных соединений контролировали методом растровой электронной микроскопии с использованием рентгеновского микроанализа на микроскопе JSM-IT300LV (JEOL) с детектором X-Max^N 20 (Oxford Instruments).

Исследование степеней окисления и положения края уровня валентной зоны полученных образцов проводили методом рентгеновской фотоэлектронной спектроскопии на электронном спектрометре Kratos AXIS Ultra DLD и на вакуумном комплексе Omicron Multiprobe RM с источниками излучения AlKa (1486.6 эВ, 15 кВ, 20мА). Подтверждение отсутствия в образце ионов Mo^{5+} проводилось методом электронного парамагнитного резонанса на спектрометре Bruker EMX-plus 10/12 X-band при комнатной температуре.

Исследование кристаллической структуры монокристаллических образцов проводили рентгеноструктурным методом анализа (PCA) с использованием дифрактометров Bruker D8 Quest и Agilent Xcalibur Eos (MoK_{σ} c λ = 0.71073Å, T = 100 К, графитовый монохроматор). Структуры были решены прямым методом и уточнены методом наименьших квадратов по F_{hkl}^2 с использованием SHELX в анизотропном приближении для неводородных атомов. Уточнение структур проведено с использованием программного комплекса SHELXTL v. 6.10 для массива данных с дифрактометра Agilent Xcalibur Eos. и программы SADABS 2016/2 для массива данных с дифрактометра Bruker D8 Ouest.

Съемку рентгенограмм для фазового анализа и уточнения кристаллических структур по порошковым данным при комнатной температуре проводили на рентгеновском дифрактометре Shimadzu XRD-6100 (CuKa, геометрия съемки на отражение) с шагом сканирования 0.024°, в интервале 20 10-90°. Уточнение структур проводили методом Ритвельда с использованием программного пакета Тораз 3. Для описания профиля пиков применяли модифицированную функцию псевдо-Войта. Исходное положение атомов для уточнения структурных и кристаллографических параметров задавали на основании известных литературных данных по аналогичной структуре. Уточнение кристаллической структуры проводили путем постепенного добавления определяемых параметров при постоянном графическом моделировании фона до стабилизации значений R-факторов. Исследования высокотемпературной рентгенографии проводили с использованием высокотемпературной приставки Shimadzu в диапазоне температур 30-800°С.

Исследования термической устойчивости проводили методами дифференциально термического анализа (DTG-60H Shimadzu) и дифференциально сканирующей калориметрии (NETZSCH DSC 204 F1 Phoenix) (скорость нагрева 5 град/мин).

Определение края поглощения полученных образцов проводили с использованием спектрометра Agilent Carry 5000-UV-Vis-NIR, измерения проводили по схемам на отражение и пропускание.

8

Возбуждение генерации второй гармоники проводили по схеме «на отражение» с использованием лазера Nd:YAG LQ 115 (СоларЛС, $\lambda = 1064$ нм) и Mira Optima 900-D фирмы "Coherent" с акусто-оптическим модулятором PulseSwitch для длин волн 749–902 нм.

3. Результаты и их обсуждение

Глава III «Результаты и их обсуждение» состоит из 5 частей. Во вступительной части дается представление о проведенных синтезах и влиянии катиона в позиции А на формирование соединений со структурой В-пирохлора А^IМ₂О₆. Первые три части главы последовательно и подробно описывают области формирования, кристаллические структуры и термическую устойчивость полученных новых тройных соединений и соединений со структурой β-пирохлора в областях $A^{I}Te_{2,x}Mo_{x}O_{6}$ (x=0-1, A^{I} = Na, K, Rb, Cs), $A^{I}Te_{2,x}W_{x}O_{6}$ (x=0-1, A^{I} = Na, K, Rb, Cs) и $A^{I}M^{V}{}_{x}Mo_{2-x}O_{6-v}$ ($A^{I} = Rb$, Cs, $M^{V} = Nb$, Ta). Часть 4 посвящена обобщению полученных структурных результатов, в ней предлагается слоевая модель для описания структуры β-пирохлора, которая позволяет объяснить причины понижения симметрии и изменения стехиометрии. Часть 5 посвящена исследованию взаимного расположения краев уровня валентной зоны и уровня исследованных соелинений относительно окислительнопроводимости восстановительных потенциалов разложения воды.

3.1. Фазообразование в области $A^{I}Te_{2\text{-}x}Mo_{x}O_{6}$ (x=0–1), где A^{I} = Na, K, Rb, Cs

В исследуемой области $A^{I}Te_{2-x}Mo_{x}O_{6}$ (x=0–1) при A^{I} = Na, K были обнаружены два новых тройных соединения $Na_{1.5}Te_{2}Mo_{0.5}O_{6.25}$ и $K_{6}(Te_{9}^{4+}Te^{6+})Mo_{6}O_{42}$. Детальное исследование их структуры и состава показало, что они формируются вблизи области существования фазы со структурой β -пирохлора и имеют некоторые структурные сходства с ним.

В случае, когда $A^{I} = Rb$, Cs, обнаружены ряды твердых растворов $RbTe_{0.5}^{4+}(Te_{1.5-x}^{6+}Mo_x)O_6$ (x=0.5–0.75) и $CsTe_{0.5}^{4+}(Te_{1.5-x}^{6+}Mo_x)O_6$ (x=0.875–1.06) со структурой β -пирохлора. Для исследования структурных особенностей полученных соединений были подобраны условия выращивания монокристаллов $RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6$ и $CsTe_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_6$, и методом PCA расшифрована их структура (таблица 1).

Вероятно, что из-за расположения в кристаллической ячейке β пирохлоров более крупного иона Te⁴⁺ (r_{ион}=0.97 Å) по сравнению с Te⁶⁺ (r_{ион}=0.56 Å) и Mo⁶⁺ (r_{ион}=0.59 Å), в структуре возникают локальные геометрические напряжения, приводящие к смещению части атомов кислорода из частной позиции 48f, которая характерна для классических β -пирохлоров, в общую позицию 192i, но не понижающие общую симметрию кристаллической ячейки. Заселенность позиций 48f атомами O(1) понижается до 50%, а заселенность позиций 192i атомами кислорода O(2) составляет 12.5%.

0.5100.5 (100.5 100)06.		
Формула	$RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6$	$CsTe_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_6$
М, г/моль	412.93	452.45
Сингония, пр.гр., Z	Кубическая, <i>Fd</i> 3 <i>m</i> , 8	Кубическая, <i>Fd</i> 3 <i>m</i> , 8
<i>a</i> , Å	10.4421 (2)	10.5892 (5)
Объем V , Å ³	1138.58(7)	1187.38(17)
Рассчитанная плотность d_{calc} , г/см ³	4.818	5.062
Поглощение µ, мм ⁻¹	16.508	13.027
Область съемки	-15 <h -14="" <15,="" <15,<br="" <k="">-15<l<15< td=""><td>-19 <h -19="" <19,="" <19,<br="" <k="">-19<l<19< td=""></l<19<></h></td></l<15<></h>	-19 <h -19="" <19,="" <19,<br="" <k="">-19<l<19< td=""></l<19<></h>
Количество измеренных рефлексов/независимых	5529/122, R _{int} = 0.2118	6669/239, R _{int} = 0.0637
$S(F^2)$	1.171	1.130
R (все данные)	R ₁ =0.0783	R ₁ =0.0573

Таблица 1. Данные РСА для $RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6$ и $CsTe_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_6$.

Детализированное изображение позиций, которые могут занимать атомы кислорода в соединениях $RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6$ и $CsTe_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_6$, приведено на рисунке 1 Видно, что вблизи каждого атома кислорода O(1) расположены 4 позиции 192i, которые могут занимать атомы кислорода O(2). Для наглядности атомы O(1) соединены нами с ближайшими к ним атомами O(2) пунктирной линией.

Из четырёх возможных позиций атома O(2) две находятся очень близко к атому Te/Mo на расстоянии 1.81(3) Å и 1.483(9) Å для RbTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo_{0.75})O₆ и CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆, соответственно. Значение дины связи 1.483(9) Å для CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆ значительно меньше суммы ионных радиусов Te, O и Mo, O, поэтому эти позиции, очевидно, не могут быть заселены.

Исследование термической устойчивости соединений показало наличие областей нестабильности фаз: от 381 до 466°С для RbTe_{0.5}⁴⁺(Te_{0.75}⁶⁺Mo_{0.75})O₆ и от 449 до 521°С для CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆. В этих областях фаза β-пирохлора разрушается, однако после плавления смеси продуктов распада, она снова восстанавливается.

Рисунок 1. Кристаллическая структура (*a*) и координационный октаэдр [Te/MoO₆] соединений RbTe_{0.5}⁴⁺(Te_{0.75}⁶⁺Mo_{0.75})O₆ (*б*) и CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆ (*в*).

3.2. Фазообразование в области $A^{I}Te_{2-x}W_{x}O_{6}$ (x=0–1), где A^{I} = Na, K, Rb, Cs

В области фаз $A^{I}Te_{2-x}W_{x}O_{6}$ (x=0–1), где A^{I} = Na, K, фазы со структурой β-пирохлора также не были обнаружены во всех пределах значений «х».

Твердофазным методом получены твердые растворы RbTe_{0.5}⁴⁺(Te_{1.5-x}⁶⁺W_x)O₆ (x=0.25–0.63) и CsTe_{0.5}⁴⁺(Te_{1.5-x}⁶⁺W_x)O₆ (x=0.13–0.55) со структурой β-пирохлора. Для детального исследования структуры полученных соединений выращены монокристаллы соединений RbTe_{0.5}⁴⁺(Te⁶⁺W_{0.5}⁶⁺)O₆ и CsTe_{0.5}⁴⁺(Te_{1.125}⁶⁺W_{0.375}⁶⁺)O₆, а методом PCA установлены их структуры (таблица 2).

	Таблица	2.	Данные	PCA	для	$RbTe_{0.5}^{4+}(Te^{0+}W_{0.5}^{0+})O_6$	И
CsTe _{0.5} ⁴	$^{+}(\text{Te}_{1.125}^{6+}\text{W}_{0.5})$	₃₇₅ ⁶⁺)(О ₆ .				

Формула	$RbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{6+})O_6$	$CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6$
М, г/моль	464.79	505.20
Сингония, пр.гр., Z	Кубическая, <i>Fd</i> 3 <i>m</i> , 8	Кубическая, <i>Fd</i> 3 <i>m</i> , 8
<i>a</i> , Å	10.3949(3)	10.5437(2)
Объем V , Å ³	1123.20(10)	1172.14(7)
Рассчитанная плотность d_{calc} , г/см ³	5.497	5.726
Поглощение μ , мм ⁻¹	26.592	21.523
Область съемки	-14 <h<14, -14<k<14,="" -<br="">14<l<14< td=""><td>-12< h <12, -12 <k<12, -<br="">12<l<12< td=""></l<12<></k<12,></td></l<14<></h<14,>	-12< h <12, -12 <k<12, -<br="">12<l<12< td=""></l<12<></k<12,>
Количество измеренных рефлексов/независимых	4499/111	3758/74
$\mathbf{S}(\mathbf{F}^2)$	1.270	1.259
R (все данные)	R ₁ =0.0215	R ₁ =0.0217

ячейки $RbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{6+})O_{6}$ Обший вид элементарной $CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6$ аналогичен виду элементарной ячейки RbTe_{0.5}⁴⁺(Te_{0.75}⁶⁺Mo_{0.75})O₆ и CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆ (рисунок 1*a*). Обе структуры обладают кубической симметрией, однако атомы кислорода в них смещены из стандартной кристаллографической позиции 48f в 32e. 96h, 96g. Детализированные изображения каждой позиции атома кислорода показаны на рисунке 2. Вблизи двух противоположных граней октаэдра [Te/WO(1)₆] расположены по три позиции 32e. Рядом с каждым атомом кислорода O(1) находятся по две позиции 96g, а также по 4 позиции 96h, которые для наглядности соединены нами пунктирной линией O(1)-O(3).

Из четырёх возможных позиций атома O(3) две позиции располагаются от атома Te/W на расстоянии 3.183 Å и 3.228 Å для $BbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{6+})O_6$ и $CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6$, что является слишком большим значением для химической связи, поэтому, вероятно, эти две позиции остаются не заселенными.

Рисунок 2. Позиции атомов кислорода в октаэдрах [Te/WO₆]: 48f, 32e, 96h и 96g.

Соединения $RbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{-6+})O_6$ и $CsTe_{0.5}^{4+}(Te_{1.125}^{-6+}W_{0.375}^{-6+})O_6$ плавятся без разложения при достаточно низких температурах 476°C и 555°C, соответственно.

3.3. Фазообразование в области А^IM^VMoO₆ (А^I=Rb, Cs, M^V=Nb, Ta)

Методом спонтанной кристаллизации из раствора в расплаве выращены монокристаллы CsNbMoO₆ и CsTaMoO₆. Методом PCA установлено, что CsNbMoO₆ и CsTaMoO₆ принадлежат к классу β-пирохлора и имеют кубическую сингонию с пр. гр. $F\overline{4}3m$ (таблица 3). Оба соединения характеризуются искажением полиэдров [MO₆] (M^V=Nb, Ta, Mo), которого достаточно, чтобы понизить симметрию всей структуры с центросимметричной пр.гр. $Fd\overline{3}m$ до нецентросимметричной пр.гр. $F\overline{4}3m$. Это приводит к возникновению нелинейнооптической активности соединений CsNbMoO₆ и CsTaMoO₆ - генерации второй гармоники.

Формула	CsNbMoO ₆	CsTaMoO ₆
М, г/моль	417.76	505.80
Сингония, пр. гр., Z	Кубическая, F43m, 8	Кубическая, F43m, 8
<i>a</i> , Å	10.41039(8)	10.3999(2)
Объем ячейки V , Å ³	1128.24(3)	1124.85(5)
Плотность d_{calc} , г/см ³	4.919	5.973
Коэффициент поглощения µ, мм ⁻¹	10.569	28.004
Область съемки	-15< h <14, -15 <k<15, -<br="">14<l<15< td=""><td>-14<h -15="" -<br="" <15,="" <k<15,="">15<l<15< td=""></l<15<></h></td></l<15<></k<15,>	-14 <h -15="" -<br="" <15,="" <k<15,="">15<l<15< td=""></l<15<></h>
Количество рефлексов всего/независимых	5823/241	5965/240
S по F ²	1.412	1.256
R (все данные)	R ₁ =0.0387	R ₁ =0.0393

Таблица 3. Данные РСА для CsNbMoO₆ и CsTaMoO₆

Исследование термической устойчивости показало, что соединения CsNbMoO₆ и CsTaMoO₆ претерпевают обратимый фазовый переход из низкотемпературной модификации в высокотемпературную модификацию $F\overline{4}3m \leftrightarrow Fd\overline{3}m$, при котором прекращается генерация второй гармоники, при температурах 412 °C и 376 °C, соответственно. Дальнейшее нагревание приводит к плавлению соединений без разложения при 834°C и 871°C, соответственно.

Обнаружено, что в случае составов $Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x}$ (x=1.31– 1.625) и $Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69}$ фазы со структурой β-пирохлора образуются в области, обогащенной атомами ниобия и тантала. Изменение стехиометрии от (Nb,Ta):Mo=1:1 приводит к возникновению кислородных вакансий в полученных структурах и, в случае соединений $Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x}$ (x=1.31–1.625), это ведет к понижению сингонии с кубической до орторомбической. Соединение $Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69}$ было получено только в виде нанопорошка, а его рентгенограмма индицируется в классической кубической сингонии с пр.гр. $Fd\overline{3}m$ для β-пирохлора. Поэтому больший интерес для данного исследования представляют Nb-содержащие β-пирохлоры. Кристаллическая структура $Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}$ была уточнена методом Ритвельда (таблица 4).

Особенностью структуры $Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}$ по сравнению с классическим кубическим β -пирохлором является наличие упорядоченных цепочек из октаэдров, преимущественно заселенных атомами Мо. Кислородные вакансии возникают в положениях общих для двух октаэдров [MoO₆], что говорит об образовании групп [MoO₅] (рисунок 3).

Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79} Формула М, г/моль 1426.327 Орторомбическая, Рпта, 4 Сингония, пр.гр., Z a, Å 7.399(79) b, Å 7.391(79) *c*. Å 10.224(54) Объем V. Å³ 559.089(95) Рассчитанная плотность d_{calc} , г/см³ 4.269 Количество рефлексов 255 Факторы достоверности R_{p} ; R_{wp} ; R_{exp} ; GOF 5.42; 7.18; 1.87; 3.85

Таблица 4. Результаты расшифровки структуры Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79} методом Ритвельда.

При x= 1.44, 1.5 и 1.56 в ряду твердых растворов $Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x}$ (x=1.31–1.625) параметры ячейки *а* и *b* имеют близкие значения, а параметр *с* принимает наименьшие значения, что может говорить о возникновении псевдотетрагональной симметрии.

Рисунок 3. Кристаллическая структура (*a*) и структурная единица (δ) и группа октаэдров [MoO₅] (*b*) соединения Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}.

Октаэдрический каркас β -пирохлора [(Nb,Ta)/MoO₆] стабилизируется небольшими атомами Rb хуже по сравнению с атомами Cs, поэтому фазы Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x} (x=1.31–1.625) и Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69} распадаются в интервале температур 748–760°С.

3.4. Кристаллохимические закономерности образования

Общепринятая модель описания структуры β -пирохлора в виде трехмерного октаэдрического каркаса не позволяет объяснить причины, приводящие к нестандартной стехиометрии атомов в позиции М ($A^{I}M_{2}O_{6}$) или изменению симметрии элементарной ячейки. Поэтому графически структуру β -пирохлора можно разделить на два фрагмента – слоевой и межслоевой (рисунок 4). При этом атомы М в одной элементарной ячейке будут распределяться в пропорции 12 к 4 на слоевое и межслоевое положение, соответственно, тогда как на одну стандартную элементарную ячейку β -пирохлора с кубической сингонией и пр.гр. $Fd\overline{3}m A^{I}_{8}M_{16}O_{48}Z=8$ приходится всего 16 атомов М.

Вследствие этого общую формулу можно записать как $A^{I}X_{0.5}Z_{1.5}O_{6}$, где Х и Z – это межслоевая и слоевая кристаллографические позиции, соответственно. Так как в позициях X и Z могут находиться атомы в различных степенях окисления, то электронейтральность элементарной ячейки достигается изменением количества атомов кислорода, поэтому, одна формульная единица структуры β-пирохлора может быть записана как $A^{I}X_{0.5}Z_{1.5}O_{6-y}$. В общем виде, структура будет представлять собой слои перпендикулярно оси [111], построенные из октаэдров Z, которые соединены в трехмерный каркас через вершины октаэдров X.

Рисунок 4. Стандартная элементарная ячейка кубического β-пирохлора, представленная как трехмерный октаэдрический каркас (*a*) и как слоевая структура (*б*).

Так, обобщая, можно сказать, что слоевая модель позволяет рассматривать структуру β-пирохлора как некубическую с нестандартной стехиометрией, причем кубический β-пирохлор также описывается этой моделью как частный случай, где позиции X и Z будут кристаллографически неразличимы.

Такой способ перераспределения позиций 4 к 12 в структуре βпирохлора объясняет возникновение сложной стехиометрии и понижения симметрии в полученных в данной работе и ранее в нашей научной группе пирохлороподобных структур: $A^{I}Te^{IV}_{0.5}(M^{VI}_{x}Te^{VI}_{1.5-x})O_{6-x}$ (A^{I} =Na, K, Rb, Cs, M^{VI} =Mo, W), $Rb_{0.95}Nb_{x}Mo_{2-x}O_{6.475-0.5x}$ (x=1.31–1.625), $Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69}$, $CsTe_{2}O_{6}$, $CsTe_{2}O_{5.75}$ и $K_{8}V_{6}Te_{10}O_{49}$, $Rb_{8}V_{7}Te_{9}O_{48.5}$, $Cs_{8}V_{6}Te_{10}O_{49}$ (формулы приведены из расчета элементарной ячейки, Z=8).

На рисунке 5 показаны области формирования фаз со структурой β-пирохлора, где r_{cp} – это средний радиус катиона в позиции М ($A^IM_2O_6$). Отсюда видно, что в области $r_{cp} \sim 0.62{-}0.56$ Å преимущественно формируются типичные структуры β-пирохлора с кубической сингонией и классической стехиометрией $A^IM^V O_6.$

Фазы, полученные в данной работе и имеющие неклассическую стехиометрию или симметрию, хотя и располагаются в граничных положениях структурного типа β-пирохлора, все таки занимают значительную область, что говорит об устойчивости структурного типа β-пирохлора в очень широких пределах изменения состава и симметрии.

Рисунок 5. Диаграмма фазообразования структуры β-пирохлора в различных областях.

3.5 Электронная структура полученных соединений

Ширину запрещенной зоны E_g оценивали по краю поглощения методом Тауца. Положения уровня валентной зоны (E_v) материалов были определены линейным приближением края полосы валентной зоны, полученной методом РФЭС (таблица 5).

Таблица 5. Значения ширины запрещенной зоны и положения уровней валентной зоны для исследованных соединений относительно уровня вакуума. Значение E_v (вак) получено методом РФЭС, E_v (вода) рассчитано из эмпирического приближения.

Соединение	E _g , эВ	Е _v (вак), эВ	Е _v (вода),
			эВ
$RbTe_{0.5}^{4+}(Te_{0.75}^{6+}Mo_{0.75})O_6$	2.07	-6.40	-7.00
$CsTe_{0.5}^{4+}(Te_{0.5}^{6+}Mo)O_6$	2.02	-7.24	-6.90
$RbTe_{0.5}^{4+}(Te^{6+}W_{0.5}^{6+})O_6$	2.51	-6.62	-7.35
$CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6$	2.52	-6.89	-7.33
Rb _{0.95} Nb _{1.375} Mo _{0.625} O _{5.79}	3.24	-6.99	-7.35
CsNbMoO ₆	3.04	-8.14	-7.20
CsTaMoO ₆	3.07	-7.48	-7.25

Положения электронных уровней соединений существенно зависят не только от материала и его кристаллической структуры, на энергии уровней края

валентной зоны и зоны проводимости оказывает влияние среда, в которую помещен фотокатализатор. В случае использования фотокатализатора на воздухе, положения энергетических уровней будет наиболее близко к измеренным положениям уровней в вакууме методом РФЭС. Однако использование фотокатализаторов в водных растворах приводит к возникновению границы раздела фаз «фотокатализатор/электролит», и изменению положений энергетических уровней фотокатализатора.

На основании теории, разработанной для сложных оксидов, которая связывает потенциал плоских зон полупроводника Ufb, его сродство к электрону EA и его атомную электроотрицательность (χ), были оценены смещения электронных уровней соединений в водной среде ($\Delta E=\pm 0.5$ эВ):

 $EA = E_0 + U_{fb} + \Delta_{fc} + \Delta_{pH} = \chi - 1/2E_g \tag{1}$

где E₀ – константа, связывающая электрод сравнения и уровень вакуума (E₀ = -4.5 В для NHE – стандартного водородного электрода), Δ_{fc} – корректировочный коэффициент между уровнем Ферми легированного полупроводника и дном зоны проводимости (~ 0.1 эВ для оксидов металлов легированных более чем, на 10 %), Δ_{pH} – падение потенциала через слой Гельмгольца из-за специфической адсорбции ионов ОН и H⁺ (Δ_{pH} ~ 0 в точке, в которой число положительно и отрицательно заряженных ионов, определяющих потенциал, на границе раздела фаз одинаково).

Рассчитанные значения края валентной зоны соединений приведены в таблице 5. Схематичная энергетическая зонная диаграмма полученных соединений представлена на рисунке 6.

Рисунок 6. Схематичная зонная диаграмма полученных соединений.

Из рисунка 6 видно, что способностью к фотокаталитическому разложению органических примесей на воздухе и в воде будут обладать все

соединения. Это связано с тем, что соединения могут фотокатализировать процессы O₂/H₂O (1.23 B), H₂O₂/H₂O (1.77 B) или O₃/H₂O (2.07 B), в результате которых выделяются активные радикалы, разлагающие органические примеси.

Однако, ожидается, что способностью фотокаталитическому к разложению воды до водорода в рабочей среде будут обладать Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79}, CsNbMoO₆ и CsTaMoO₆, так как потенциал 2H⁺/H₂ (0.00 В) располагается внутри их запрещенной зоны.

Таким образом, полученные в работе соединения со структурой βпирохлора обладают хорошим потенциалом для использования в качестве фотокатализаторов как в воздушной, так и в водной среде. Однако для установления их фактической фотокаталитической активности требуется проведение эксперимента.

выводы

1. Установлены области существования фаз со структурой β-пирохлора в системах $0.5A_2^{1}O(TeO_2/TeO_3)(Mo/W)O_3$ и $0.5A_2^{1}O(0.5(Nb/Ta)_2O_5-MoO_3$ ($A^{1} = Rb$, Cs) и разработаны методики синтеза твердых растворов RbTe_{2-x}Mo_xO₆ (x=0.5–0.75), CsTe_{2-x}Mo_xO₆ (x=0.875–1.06), RbTe_xW_{2-x}O₆ (x=1.28–1.77), CsTe_xW_{2-x}O₆ (x=1.46–1.86), Rb_{0.95}Nb_xMo_{2-x}O_{6.475-0.5x} (x=1.31–1.625) и соединения Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69}.

2. Разработаны условия выращивания монокристаллов RbTe_{0.5}⁴⁺(Te_{0.75}⁶⁺Mo_{0.75})O₆, CsTe_{0.5}⁴⁺(Te_{0.5}⁶⁺Mo)O₆, RbTe_{0.5}⁴⁺(Te⁶⁺W_{0.5}⁶⁺)O₆, CsTe_{0.5}⁴⁺(Te^{1.125})O₆, CsTe_{0.5}⁴⁺(Te^{1.125})O₆, для которых методом PCA расшифрованы структуры (куб. син., пр.гр. $Fd\overline{3}m$). Для остальных членов ряда твердых растворов RbTe₂₋ _xMo_xO₆ (x=0.5-0.75), CsTe_{2-x}Mo_xO₆ (x=0.875-1.06), RbTe_xW_{2-x}O₆ (x=1.28-1.77) и CsTe_xW_{2-x}O₆ (x=1.46-1.86) методом PФА проведено индицирование и найдены параметры элементарных ячеек.

3. Показано, что в системах $0.5A^{I}_{2}O$ -(TeO₂/TeO₃)-(Mo/W)O₃ и $0.5A^{I}_{2}O$ - $0.5(Nb/Ta)_{2}O_{5}$ -MoO₃ (A^{I} =Na, K) фазы со структурой β -пирохлора не образуются твердофазным методом синтеза. Вблизи области формирования структуры β пирохлора были получены новые тройные соединения Na_{1.5}Te₂Mo_{0.5}O_{6.25} и K₆(Te₉⁴⁺Te⁶⁺)Mo₆O₄₂, выращены их монокристаллы и методом PCA установлена их кристаллическая структура. Обнаружены их структурные сходства со структурой β -пирохлора.

4. Выращены монокристаллы соединений $CsM^{v}MoO_{6}$ ($M^{v}=Nb$, Ta) и расшифрована их структура методом PCA. Установлено, что они претерпевают обратимый фазовый переход при температурах 412°C и 376°C, ниже которых реализуется нецентросимметричная пр.гр. $F\overline{4}3m$, что приводит к возникновению нелинейно-оптической активности. При нагревании выше температур фазового

перехода происходит повышение симметрии до пр.гр. $Fd\overline{3}m$. Превращения в ходе фазового перехода связаны с искажением кислородного окружения октаэдров [Nb/Ta/MoO₆].

5. Кристаллическая структура соединения Rb_{0.95}Nb_{1.375}Mo_{0.625}O_{5.79} была определена методом полнопрофильного рентгенофазового анализа, и характеризуется орторомбической сингонией с пр.гр. *Рпта.* Установлено, что кислородные вакансии возникают преимущественно в положениях, общих для октаэдров [MoO₆]. Для остальных членов ряда твердых растворов Rb_{0.95}Nb_xMo_{2.} xO_{6.475-0.5x} (x=1.31–1.625) методом РФА найдены параметры элементарных ячеек.

6. На основании полученных структурных данных предложена слоевая модель описания структуры β -пирохлора, где атомы слоя распределены по позициями Z (12 позиций на эл. ячейку) и соединены в трехмерный каркас межслоевыми позициями X (4 позиций на эл. ячейку), с общей формулой $A^{I}X_{0.5}Z_{1.5}O_{6-y}$. Использование такой модели объясняет отклонения от традиционной стехиометрии ($M^{V}:M^{VI}=1:1$) и симметрии (куб. син., пр.гр. $Fd\overline{3}m$) с сохранением структурного типа β -пирохлора.

7. Установлены термической устойчивости пределы полученных соединений: Те-содержащие фазы плавятся при температурах 500-600°С, а Nb/Taсодержащие соединения – при 800-900°С. Соединения RbTe_{0.5}⁴⁺(Te⁶⁺W_{0.5}⁶⁺)O₆ и $CsTe_{0.5}^{4+}(Te_{1.125}^{6+}W_{0.375}^{6+})O_6$ плавятся без разложения, тогда как RbTe₀₅⁴⁺(Te₀₇₅⁶⁺Mo₀₇₅)O₆ и CsTe₀₅⁴⁺(Te₀₅⁶⁺Mo)O₆ разлагаются, однако после плавления и кристаллизации фазы β-пирохлора восстанавливаются. Сsсодержащие соединения Cs(Nb/Ta)MoO₆ более устойчивы, чем их Rb-содержащие аналоги Rb_{0.95}Nb_xMo_{2-x}O_{6.475.05x} (x=1.31-1.625) и Rb_{0.75}Ta_{1.375}Mo_{0.625}O_{5.69}, которые претерпевают термораспад в интервале температур T=748-760°C.

8. Установленные методом РФЭС и спектроскопии поглощения в области УФ и видимого излучения взаимные положения края валентной зоны и дна зоны проводимости полученных соединений показывают, что соединения обладают хорошим потенциалом для проведения реакций фотокаталитического разложения воды и окисления органических примесей.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ АВТОРА

Статьи в журналах и сборниках:

1. **Фукина** Д.Г., Сулейманов Е.В., Фукин Г.К., Боряков А.В., Титаев Д.Н. Кристаллическая структура CsNbMoO₆ // ЖНХ – 2016 – Т. 61, № 6. – С. 803–808.

2. **Fukina D.G.,** Suleimanov E.V., Yavetskiy R.P., Fukin G.K., Boryakov A.V., Borisov E.N. Single crystal structure and SHG of defect pyrochlores $CsB^{V}MoO6$ ($B^{V}=Nb,Ta$) // J. Solid State Chem. – 2016. – T. 41. – C. 64–69. 3. **Fukina D.G.,** Suleimanov E.V., Fukin G.K., Boryakov A.V., Protasova S.G., Ionov A.M., Guseinov D.V., Istomin L.A. Crystal structure and thermal behavior of pyrochlores $CsTeMoO_6$ and $RbTe_{1.25}Mo_{0.75}O_6$ // J. Solid State Chem. – 2019. – T. 272. – C. 47-54.

4. **Fukina D.G.,** Suleimanov E.V., Nezhdanov A.V., Istomin L.A. The new tellurium compounds: $Na_{1.5}Te_2Mo_{0.5}O_{6.25}$ and $K_6(Te_9^{4+}Te^{6+})Mo_6O_{42}$ // J. Solid State Chem. – 2019. – T. 277. C. 337–345.

5. **Fukina D.G.,** Suleimanov E.V., Fukin G.K., Boryakov A.V., Zubkov S.Yu., Istomin L.A. Crystal structure features of the mixed-valence tellurium β pyrochlores: CsTe_{1.625}W_{0.375}O₆ and RbTe_{1.5}W_{0.5}O₆ // J. Solid State Chem. – 2020. – T. 286. C. 121267.

Тезисы конференций

1. Фукина Д.Г., Явецкий Р.П., Сулейманов Е.В., Фукин Г.К., Боряков А.В., Борисов Е.Н. Структура и нелинейно-оптические свойства микрокристаллов на основе дефектных пирохлоров CsBMoO₆ (B = Nb, Ta) // XXVI Российская конференция по электронной микроскопии (РКЭМ - 2016), 30 мая – 3 июня 2016 года, г. Москва, Зеленоград / Сборник тезисов. – Москва, 2016. – С. 644-645.

 Фукина Д.Г., Сулейманов Е.В., Фукин Г.К., Титаев Д.Н., Боряков А.В., Лякаев Д.В., Борисов Е.Н. Особенности кристаллической структуры CsMMoO₆ (M = Nb, Ta) // Первый Российский кристаллографический конгресс, 21–26 ноября 2016 года, г. Москва / Сборник тезисов. – Москва, 2016. – С.109.

3. **Fukina D.G.**, Suleimanov E.V., Boryakov A.V., Fukin G.K., Protasova S.G., Ionov A.M. Mixed-valent tellurium oxides $ATe_{1-x}B_xO_6$ (A= Rb, Cs, B=Mo, W) with Pyrochlore-related structure // XIX International meeting on crystal chemistry, X-ray diffraction and spectroscopy of minerals, 2– 5 июля 2019 года, г. Апатиты / Сборник тезисов. – Апатиты, 2019. – С. 156.