Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

На правах рукописи

# АКСЕНОВА НАТАЛЬЯ АЛЕКСЕЕВНА

# СИНТЕЗ АРЕНХРОМТРИКАРБОНИЛЬНЫХ КОМПЛЕКСОВ С ГЕТЕРОЦИКЛИЧЕСКИМИ ЛИГАНДАМИ

Специальность: 1.4.3. Органическая химия Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель доктор химических наук, профессор Артемов Александр Николаевич

Нижний Новгород, 2021

# СОДЕРЖАНИЕ

| Список ис                               | спользованных сокращений5                                        |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------|--|--|--|--|
| Введение                                |                                                                  |  |  |  |  |
| ГЛАВА I.                                | ЛИТЕРАТУРНЫЙ ОБЗОР11                                             |  |  |  |  |
| 1 1,3-Ок                                | сазолидины                                                       |  |  |  |  |
| 1.1 Методы получения 1,3-оксазолидинов  |                                                                  |  |  |  |  |
| 1.1.1                                   | Взаимодействие аминоспиртов с альдегидами и кетонами11           |  |  |  |  |
| 1.1.2                                   | Другие методы получения 1,3-оксазолидинов                        |  |  |  |  |
| 1.2 Химі                                | ические свойства 1,3-оксазолидинов24                             |  |  |  |  |
| 1.2.1                                   | Гидролиз24                                                       |  |  |  |  |
| 1.2.2                                   | Ацилирование                                                     |  |  |  |  |
| 1.2.3                                   | N-нитрозирование                                                 |  |  |  |  |
| 1.2.4                                   | Восстановление                                                   |  |  |  |  |
| 1.2.5                                   | Реакции окисления                                                |  |  |  |  |
| 1.2.6                                   | Процессы с участием элементорганических соединений               |  |  |  |  |
| 1.3 Биол                                | огическая активность 1,3-оксазолидинов                           |  |  |  |  |
| 2 1,3-Ок                                | сазинаны                                                         |  |  |  |  |
| 2.1 Метс                                | оды получения 1,3-оксазинанов40                                  |  |  |  |  |
| 2.1.1                                   | Синтез из аминоспиртов и карбонильных соединений40               |  |  |  |  |
| 2.1.2                                   | Взаимодействие аминоспиртов с непредельными соединениями44       |  |  |  |  |
| 2.1.3                                   | Реакция первичных нитроалканов с формальдегидом и аминами45      |  |  |  |  |
| 2.1.4                                   | Взаимодействие олефинов с формальдегидом, хлоридом аммония или   |  |  |  |  |
|                                         | хлоридом первичного амина47                                      |  |  |  |  |
| 2.1.5                                   | Реакция сочетания аминоспиртов с формальдегидом и пропиоловыми   |  |  |  |  |
|                                         | кислотами в условиях реакции декарбоксилирования                 |  |  |  |  |
| 2.1.6                                   | Синтез тетрагидро-1,3-оксазинов из N-замещенных аминоальдегидов, |  |  |  |  |
|                                         | полученных из α- аминокислот                                     |  |  |  |  |
| 2.1.7                                   | Другие методы получения                                          |  |  |  |  |
| 2.2 Химические свойства 1,3-оксазинанов |                                                                  |  |  |  |  |
| 2.2.1                                   | Реакции с раскрытием цикла55                                     |  |  |  |  |

|                                              | 2.2.2                                                                                            | Превращ                                                                                                                                            | ения, про                                                                       | отекающие без ра                                                                                                           | скрытия цикл                                                           | a                                                           | 62                                                                                         |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| 2.3 Биологическая активность 1,3-оксазинанов |                                                                                                  |                                                                                                                                                    |                                                                                 |                                                                                                                            |                                                                        |                                                             |                                                                                            |  |
| 3 Дигидро-3,1-бензоксазины                   |                                                                                                  |                                                                                                                                                    |                                                                                 |                                                                                                                            |                                                                        |                                                             |                                                                                            |  |
|                                              | 3.1 Методы получения дигидро-3,1-бензоксазинов                                                   |                                                                                                                                                    |                                                                                 |                                                                                                                            |                                                                        |                                                             |                                                                                            |  |
|                                              | 3.1.1                                                                                            | Синтеза                                                                                                                                            | дигидро                                                                         | э-3,1-бензоксазин                                                                                                          | ов на основ                                                            | ве о-амино                                                  | бензилового                                                                                |  |
|                                              |                                                                                                  | спирта и                                                                                                                                           | его произ                                                                       | зводных                                                                                                                    |                                                                        |                                                             | 68                                                                                         |  |
|                                              | 3.1.2                                                                                            | Синтез д                                                                                                                                           | игидро-3                                                                        | ,1-бензоксазинов                                                                                                           | из производн                                                           | ых антрани.                                                 | повой                                                                                      |  |
|                                              |                                                                                                  | кислоты.                                                                                                                                           | •••••                                                                           |                                                                                                                            |                                                                        |                                                             | 71                                                                                         |  |
|                                              | 3.1.3                                                                                            | Синтез д                                                                                                                                           | игидро-3                                                                        | ,1-бензоксазинов                                                                                                           | из других гет                                                          | ероцикличе                                                  | ских                                                                                       |  |
|                                              |                                                                                                  | соединен                                                                                                                                           | ий                                                                              |                                                                                                                            |                                                                        |                                                             | 75                                                                                         |  |
|                                              | 3.2 Хим                                                                                          | иические с                                                                                                                                         | войства ;                                                                       | дигидро-3,1-бенз                                                                                                           | оксазинов                                                              |                                                             | 76                                                                                         |  |
|                                              | 3.3 Био                                                                                          | логическа                                                                                                                                          | я активно                                                                       | ость дигидро-3,1-                                                                                                          | -бензоксазино                                                          | В                                                           | 80                                                                                         |  |
| Г                                            | ΠΛΡΛΙ                                                                                            | Ι ΡΕЗΛΠΙ                                                                                                                                           |                                                                                 |                                                                                                                            | ЧИЕ                                                                    |                                                             | 86                                                                                         |  |
| 1                                            |                                                                                                  |                                                                                                                                                    |                                                                                 | пил овс у жде                                                                                                              | банны на раз                                                           |                                                             | ·····00                                                                                    |  |
| 1                                            |                                                                                                  |                                                                                                                                                    | сации ам                                                                        | иноспиртов с кар                                                                                                           |                                                                        | кооролилии                                                  | ми00                                                                                       |  |
|                                              |                                                                                                  | пез аренх                                                                                                                                          | ромтрика                                                                        | ароонильных ком                                                                                                            | плексов 1,5-0.                                                         | ксазолидин                                                  | ови 1,5-                                                                                   |  |
|                                              |                                                                                                  | <u>a di tita tita d</u>                                                                                                                            |                                                                                 |                                                                                                                            |                                                                        | • • • • • • • • • • • • • • • •                             |                                                                                            |  |
|                                              | 1.2 Cm                                                                                           | азинанов.                                                                                                                                          |                                                                                 |                                                                                                                            |                                                                        | -22                                                         |                                                                                            |  |
|                                              | оке<br>1.2 Син                                                                                   | азинанов.<br>нтез аренх                                                                                                                            | ромтрика                                                                        | арбонильных ком                                                                                                            | плексов диги                                                           | цро-3,1-                                                    | 102                                                                                        |  |
| 2                                            | окс<br>1.2 Син<br>бен                                                                            | азинанов.<br>нтез аренх<br>зоксазино                                                                                                               | ромтрика                                                                        | арбонильных ком                                                                                                            | плексов диги<br>                                                       | цро-3,1-                                                    |                                                                                            |  |
| 2                                            | 1.2 Си<br>бен<br>Взаим                                                                           | азинанов.<br>нтез аренх<br>зоксазино<br>одействие                                                                                                  | ромтрика<br>98е                                                                 | арбонильных ком<br>гетероцикличе                                                                                           | пплексов дигид                                                         | цро-3,1-<br><br>соединени                                   | 103<br>й с                                                                                 |  |
| 2                                            | 1.2 Син<br>бен<br>Взаим<br>триам                                                                 | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт                                                                                      | ромтрика<br>ове<br>рикарбон                                                     | арбонильных ком<br>гетероцикличес<br>илом                                                                                  | пплексов дигид<br><br>ских                                             | цро-3,1-<br>соединени                                       | 103<br>й с<br>120                                                                          |  |
| 2                                            | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син                                                      | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен                                                                         | ромтрика<br>ове<br>рикарбон<br>хромтрик                                         | арбонильных ком<br>гетероцикличес<br>иломкарбонильных ко                                                                   | пплексов диги)<br>ских<br>омплексов 1,3                                | цро-3,1-<br>соединени<br>3-оксазолид                        | 103<br>й с<br>120<br>инов и 1,3-                                                           |  |
| 2                                            | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс                                               | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.                                                            | ромтрика<br>ове<br>рикарбон<br>хромтрик                                         | арбонильных ком<br>гетероцикличес<br>илом<br>сарбонильных ко                                                               | плексов дигид<br>ских<br>омплексов 1,3                                 | цро-3,1-<br>соединени<br>3-оксазолид                        | 103<br>й с<br>120<br>инов и 1,3-<br>120                                                    |  |
| 2                                            | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс<br>2.2 Син                                    | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.<br>нтез                                                    | ромтрика<br>ов<br>рикарбон<br>хромтрик<br>аренхром                              | арбонильных ком<br>гетероцикличес<br>илом<br>карбонильных ко<br>итрикарбонильны                                            | плексов диги)<br>ских<br>омплексов 1,3                                 | цро-3,1-<br>соединени<br>3-оксазолид<br>ексов               | 103<br>й с<br>120<br>инов и 1,3-<br>120<br>дигидро-3,1-                                    |  |
| 2                                            | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс<br>2.2 Син<br>бен                             | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.<br>нтез<br>зоксазино                                       | ромтрика<br>ове<br>рикарбон<br>хромтрик<br>аренхром                             | арбонильных ком<br>гетероцикличес<br>илом<br>карбонильных ко<br>итрикарбонильны                                            | плексов диги)<br>ских<br>омплексов 1,3<br>іх компл-                    | цро-3,1-<br>соединени<br>3-оксазолид<br>ексов               | 103<br>й с<br>120<br>инов и 1,3-<br>120<br>дигидро-3,1-<br>130                             |  |
| 2<br>Г.                                      | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс<br>2.2 Син<br>бен<br>ЛАВА I                   | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.<br>нтез<br>зоксазино<br>Ш ЭКСПЕ.                           | ромтрика<br>ов<br>рикарбон<br>хромтрик<br>аренхром<br>ов<br>РИМЕНТ              | арбонильных ком<br>гетероцикличес<br>илом<br>сарбонильных ко<br>птрикарбонильны<br>ГАЛЬНАЯ ЧАСТ                            | пплексов дигид<br>ских<br>омплексов 1,3<br>іх компл-                   | цро-3,1-<br>соединени<br>3-оксазолид<br>ексов               | 103<br>й с<br>120<br>инов и 1,3-<br>120<br>дигидро-3,1-<br>130<br>134                      |  |
| 2<br>Γ.<br>1                                 | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс<br>2.2 Син<br>бен<br>ЛАВА I<br>Подго          | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.<br>нтез<br>зоксазино<br>II ЭКСПЕ<br>товка исхо             | ромтрика<br>ово<br>рикарбон<br>хромтрик<br>аренхром<br>ово<br>РИМЕНТ            | арбонильных ком<br>гетероцикличес<br>илом<br>карбонильных ко<br>птрикарбонильны<br>ГАЛЬНАЯ ЧАСТ<br>ществ                   | плексов дигид<br>ских<br>омплексов 1,3<br>их компл<br>Ь                | цро-3,1-<br>соединени<br>3-оксазолид<br>ексов               | 103<br>й с<br>120<br>инов и 1,3-<br>120<br>дигидро-3,1-<br>130<br>134<br>134               |  |
| 2<br>Г.<br>1<br>2                            | 1.2 Син<br>бен<br>Взаим<br>триам<br>2.1 Син<br>окс<br>2.2 Син<br>бен<br>ЛАВА I<br>Подго<br>Выдел | азинанов.<br>нтез аренх<br>зоксазино<br>одействие<br>минхромт<br>нтез арен<br>азинанов.<br>нтез<br>зоксазино<br>II ЭКСПЕ<br>товка исхо<br>ение син | ромтрика<br>ов<br>рикарбон<br>хромтрик<br>аренхром<br>ов<br>РИМЕНТ<br>одных вен | арбонильных ком<br>гетероцикличес<br>илом<br>карбонильных ко<br>птрикарбонильны<br>ГАЛЬНАЯ ЧАСТ<br>ществ<br>нных веществ и | плексов диги)<br>ских<br>омплексов 1,3<br>и компл<br>Б<br>и методики г | цро-3,1-<br>соединени<br>3-оксазолид<br>ексов<br>проведения | 103<br>й с<br>120<br>инов и 1,3-<br>120<br>дигидро-3,1-<br>130<br>134<br>134<br>анализа их |  |

| 3 | Получение аренхромтрикарбонилсодержащих спиртов                | (06           | щая  |
|---|----------------------------------------------------------------|---------------|------|
|   | методика)                                                      | •••••         | .136 |
| 4 | Синтез хромтрикарбонильных производных 1,3-оксазолидинов       | И             | 1,3- |
|   | оксазинанов                                                    | •••••         | .138 |
|   | 4.1 Конденсация альдегидов с аминоспиртами в запаянной ампуле  | • • • • • • • | .138 |
|   | 4.2 Реакция триамминхромтрикарбонила с 1,3-оксазациклоалканами |               | .143 |
| 5 | Синтез хромтрикарбонильных производных 1,4-дигидро-3,1-бензо   | ксази         | інов |
|   | (общие методики)                                               | •••••         | 146  |
| B | ЫВОДЫ                                                          |               | 153  |
| Π | РИЛОЖЕНИЯ                                                      |               | 154  |
| C | ПИСОК ЛИТЕРАТУРЫ                                               |               | .156 |

# СПИСОК СОКРАЩЕНИЙ

ВЭЖХ – высокоэффективная жидкостная хроматография

- ИК инфракрасная спектроскопия
- РСА рентгеноструктурный анализ
- $\mathbf{V} \mathbf{\Phi}$  ультрафиолетовая спектроскопия
- **ЯМР** <sup>1</sup>**H** спектроскопия ядерного магнитного резонанса на ядрах  $^{1}$ H
- ТГФ тетрагидрофуран
- Alk алкил
- Ar арил
- Bu бутил
- $Bu^t mpem. бутил$
- Me-метил
- Et этил
- Ph фенил
- Cycloalk циклоалкил
- Bn бензил
- **Т**s тозил
- $Pr^i$  изопропил
- Ру пиридинил
- Furyl фуранил
- **РТЅА** *n*-толуолсульфокислота
- ТСХ тонкослойная хроматография

#### введение

Актуальность темы исследования. Гетероциклы являются важными структурными фрагментами в молекулах различных органических соединений, обладающих биологической активностью [1, 2]. Наличие металлтрикарбонильных фрагментов, в частности хромтрикарбонильной группы, способно существенно расширить область применения данных соединений. Известны производные, содержащие (п<sup>6</sup>-бензол)хромтрикарбонильные группы и гетероциклические фрагменты, которые обладают свойствами, делающими их перспективными для применения в молекулярной биотехнологиии и биомедицине. В частности, получены пептидные нуклеиновые кислоты, реагенты для мечения белков,  $(\eta^6$ биозонды, трейсеры лля лекарственных веществ, содержащие арен)хромтрикарбонильные фрагменты. Использование хромтрикарбонильных комплексов в биомедицинских целях обусловлено прежде всего их уникальными спектроскопическими характеристиками, В частности наличием очень интенсивных характеристических полос поглощения СО-групп в средней ИКобласти, что позволяет проводить чувствительное детектирование даже в сложных биологических матрицах [3].

Гетероциклические (η<sup>6</sup>-бензол)хромтрикарбонильные производные находят широкое применение в тонком органическом синтезе, что связано с большим химическим потенциалом как гетероциклических колец, так и хромтрикарбонильной группы, способной за счет большого объема и выраженных электроноакцепторных свойств способствовать протеканию высокодиастерео- и энантиоселективных синтезов [4-9].

**Цель работы:** получение новых 1,3-оксазолидинов, 1,3-оксазинанов и дигидро-3,1-бензоксазинов и их  $\eta^6$ -(арен)хромтрикарбонильных комплексов методом конденсации аминоспиртов с карбонильными соединениями, а также по реакции свободных гетероциклов с триамминхромтрикарбонилом.

Для достижения этой цели решались следующие задачи:

1. Синтез как ранее известных, так и новых производных 1,3-оксазолидинов, тетрагидро-1,3-оксазинов, а также 1,3-дигидробензоксазинов с помощью

реакций конденсации соответствующих аминоспиртов с карбонильными соединениями.

- Изучение реакции координации полученных лигандов с гексакарбонилом хрома или триамминхромтрикарбонилом с целью получения их новых η<sup>6</sup>-(арен)хромтрикарбонильных комплексов.
- Выделение и очистка получаемых гетероциклических соединений, а также их η<sup>6</sup>-(арен)хромтрикарбонильных комплексов, и установление их состава и структуры ВЭЖХ, ИК-, УΦ-, <sup>1</sup>Н ЯМР-спектроскопией и массспектрометрией, а в некоторых случаях рентгеноструктурных анализом.
- Исследование применимости данных методов для получения η<sup>6</sup>-(арен)хромтрикарбонильных комплексов различных производных 1,3оксазолидинов, тетрагидро-1,3-оксазинов и 1,3-дигидробензоксазинов.
- Изучение влияния хромтрикарбонильной группы на процесс конденсации аминоспиртов с карбонильными соединениями.

Объекты исследования. В реакциях конденсации использовались следующие карбонильные соединения: формальдегид (источником формальдегида параформ), бензальдегид,  $(\eta^{6}$ служил ацетальдегид, бензальдегид)хромтрикарбонил, 2-пиридинальдегид, фурфурол, кротоновый альдегид, ацетон, метилэтилкетон и циклогексанон. В качестве аминоспиртов применялись 2-аминоэтанол, 3-аминопропанол-1, 2-(N-фениламино)этанол, 1-(Nфениламино)пропанол-2, 3-(N-фениламино)пропанол-1, n<sup>6</sup>a также ИХ (арен)хромтрикарбонильные комплексы.

Методы исследования. При выполнении работы использовался комплексный подход к решению поставленных задач. В частности, для получения исходных реагентов и целевых продуктов применялись современные и

классические методы органического и элементоорганического синтеза. Анализ структуры и состава получаемых соединений осуществлялся такими методами, как ультрафиолетовая (УФ), инфракрасная спектроскопия (ИК), спектроскопия ядерного магнитного резонанса (ЯМР), высокоэффективная жидкостная хроматография (ВЭЖХ), масс-спектрометрия и рентгеноструктурный анализ (PCA).

# Научная новизна и практическая значимость работы.

- Реакцией конденсации 2-аминоэтанола, 3-аминопропанола-1, их N-фенил- и N-фенилхромтрикарбонильных производных с различными альдегидами синтезированы свободные и координированные оксазолидины и оксазинаны.
- Реакцией конденсации 2-аминобензилового спирта и (η<sup>6</sup>-2аминобензилового спирта)хромтрикарбонила с рядом альдегидов и кетонов получены 1,4-дигидро-3,1-бензоксазины, а также их новые η<sup>6</sup>-(арен)хромтрикарбонильные комплексы.
- Взаимодействием N-фенилпроизводных оксазолидинов и оксазинанов с триамминхромтрикарбонилом получены их η<sup>6</sup>-(арен)хромтрикарбонильные производные.
- 4. Взаимодействием 1,4-дигидро-3,1-бензоксазинов с триамминхромтрикарбонилом синтезированы их новые производные, содержащие η<sup>6</sup>-(фенил)хромтрикарбонильную группу в своем составе.
- 5. Показана возможность синтеза оксазолидинов и оксазинанов, содержащих η<sup>6</sup>-фенилхромтрикарбонильный заместитель во втором положении гетероциклов за счет предварительного введения блокирующих ацетильной и трет.бутоксикарбонильной групп при атоме азота.
- Все полученные соединения были выделены и очищены, установлены их состав и структура ВЭЖХ, УФ-, ИК-, ЯМР <sup>1</sup>Н - спектроскопией и массспектрометрией, а в некоторых случаях рентгеноструктурным анализом.
- Показана полная региоселективность эквимолярной реакции 2,3дифенилоксазолидина с триамминхромтрикарбонилом.

 Изучено влияние хромтрикарбонильной группы на процессы конденсации аминоспиртов с карбонильными соединениями, где один компонент или оба содержат фенилхромтрикарбонильный фрагмент.

## На защиту выносятся следующие положения:

- Синтез новых свободных и координированных оксазолидинов и оксазинанов реакцией конденсации 2-аминоэтанола, 3-аминопропанола-1, их N-фенил- и N-фенилхромтрикарбонильных производных с различными альдегидами.
- Синтез новых η<sup>6</sup>-(арен)хромтрикарбонильные комплексов 1,4-дигидро-3,1бензоксазинов реакцией 2-аминобензилового спирта и (η<sup>6</sup>-2аминобензилового спирта)хромтрикарбонила с рядом альдегидов и кетонов.
- Синтез новых η<sup>6</sup>-(арен)хромтрикарбонильных производных оксазолидинов и оксазинанов взаимодействием их N-фенилпроизводных с триамминхромтрикарбонилом.
- 4. Синтез новых оксазолидинов и оксазинанов, содержащих η<sup>6</sup>фенилхромтрикарбонильный заместитель во втором положении гетероцикла путем предварительного введения блокирующих ацетильной и трет.бутоксикарбонильной групп при атоме азота.
- 5. Характеристика состава и строения полученных гетероциклов группой методов физико-химического анализа.

Личный вклад автора. Диссертант принимал непосредственное участие во всех этапах работы, включая планирование целей и задач исследования, выполнение экспериментов, анализ и интерпретацию полученных данных, написание и оформление публикаций по результатам исследования. Регистрация ЯМР <sup>1</sup>Н-спектров выполнена к.х.н. Малышевой Ю.Б. (ННГУ им. Н.И. Лобачевского), регистрация масс-спектров проведена к.х.н. Фаерманом В.И. (ННГУ им. Н.И. Лобачевского), регистрация ИК-спектров выполнена Лиогонькой Т. И. (ННГУ им. Н.И. Лобачевского), рентгеноструктурные исследования выполнены д.х.н. Фукиным Г.К. (ИМХ РАН). Апробация работы. Полученные результаты представлены диссертантом на конференциях регионального, всероссийского и международного уровня, в том числе на 27th International Chugaev Conference on Coordination Chemistry (2017 г.), XX, XXII-XXIII Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов» (2017, 2019-2020 гг.), XXI-XXIII Всероссийской конференции молодых ученых-химиков (с международным участием) (2018-2020 гг.), 23й-24й Нижегородской сессии молодых ученых (2018-2019 гг.), XXI Менdeleev Congress on General and Applied Chemistry (2019 г.), IV Всероссийская молодежная конференция "Проблемы и достижения химии кислород- и азотсодержащих биологически активных соединений"(2020 г.).

Публикации. Основное содержание исследования опубликовано в виде 13 научных работ, в том числе 3 научных статей, рекомендованных ВАК РФ для публикации результатов диссертационных исследований, и 10 тезисов докладов научных конференций международного, всероссийского и регионального уровня.

Структура диссертации. Диссертационная работа включает в себя введение, обзор литературы, результаты и их обсуждение, экспериментальную часть, выводы и список цитируемой литературы из 389 наименований. Работа изложена на 197 страницах машинописного текста и включает 18 таблиц, 60 рисунков, 23 схемы. Диссертационная работа по своей актуальности, целям, решаемым задачам и полученным результатам соответствует п. 1, 2, 7, 8 и 10 паспорта специальности 1.4.3. – органическая химия.

Литературный обзор посвящен синтезу, анализу реакционной способности по отношению к различным реагентам, а также биологической активности 1,3оксазолидинов, 1,3-оксазинанов и дигидро-3,1-бензоксазинов.

Неугасающий интерес к химии данных соединений заключается во многом за счет их огромного потенциала как агентов фармацевтики. Большая часть статей, посвященным гетероциклическим соединениям, связана с их биологической активностью и поиском возможностей их применения как лекарств. В связи с этим химики-исследователи, в том числе, активно занимаются вопросом их синтеза и изучением их химической активности.

# 1. 1,3-Оксазолидины

1,3-Оксазолидины – это пятичленные насыщенные гетероциклические соединения, содержащие в своем составе кислород и азот в положениях 1 и 3, соответственно (рисунок **1.1**)



Рисунок 1.1.

#### 1.1. Методы получения 1,3-оксазолидинов

# 1.1.1. Взаимодействие аминоспиртов с альдегидами и кетонами

Впервые 1,3-оксазолидины были получены восстановлением некоторых оксазолов [10, 11] и сравнительно долгое время этот класс соединений считался весьма труднодоступным. Первые сообщения о новом синтезе 1,3-оксазолидинов появились в работах [12], посвященных взаимодействию аминоспиртов с альдегидами и кетонами, и с тех пор эта реакция является надежным способом синтеза этих веществ (уравнение 1). Реакция проходит в большинстве органических растворителей: бензоле, толуоле, эфире, спиртах, диоксане, хлороформе и даже без растворителей.



где R, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> = Alk, Ar, H

Впервые взаимодействие β-аминоспиртов с карбонильными соединениями изучалось Кнорром [12], который проводил реакцию в эфире с карбонатом калия в качестве катализатора. Позднее метод Кнорра был несколько раз модифицирован. Наиболее часто используются две модификации этой реакции. Согласно первому методу [13], реагенты кипятятся в бензоле в колбе с насадкой Дина-Старка с непрерывной азеотропной отгонкой воды. Использовался также метод конденсации альдегидов с этаноламином при нагревании в среде бутилового спирта или без растворителя [14]. Конечный продукт реакции обычно выделялся вакуумной перегонкой. Наиболее легко в реакцию с аминоспиртами вступает формальдегид. В настоящее время конденсация аминоспиртов с карбонильными соединениями является универсальным методом, позволяющим получать различные гетероциклические соединения с двумя гетероатомами (азота и кислорода) в β-положении по отношению друг к другу. Им получено подавляющее большинство оксазолидинов. Особенно большое количество оксазолидинов было синтезировано в поисках биологически и фармакологически активных соединений.

При конденсации аминоспиртов, содержащих первичную аминогруппу, с карбонильными соединениями, кроме циклических продуктов, возможно образование таутомерной линейной формы – основание Шиффа (уравнение **2**). [15]



Вопросам таутомерии в ряду оксазолидинов посвящен ряд работ с применением ИК-спектроскопии [15, 16], спектроскопии Н<sup>1</sup>ЯМР [18, 19] и массспектрометрии [20]. Это равновесие, как правило, сдвинуто в сторону образования циклического продукта, однако, в ряде случаев параллельно образуются основания Шиффа.

Некоторую проблему представляет синтез простейшего оксазолидина с помощью конденсации моноэтаноламина с формальдегидом, которая почти всегда приводит к «тримеру» - 1,3,5-трис-(2-оксиэтил)гексагидро-S-триазину (1.2) [21] или метилен-N,N`-бисоксазолидину [22]. Выход последнего увеличивается с увеличением содержания CH<sub>2</sub>O в реакционной смеси и достигает максимума при соотношении моноэтаноламина к формальдегиду 1:1,5. Однако, при быстрой конденсации моноэтаноламина с формальдегидом образуется незамещенный оксазолидин 1.1, который медленно полимеризуется в триазин 1.2. Но при температуре -20°C в отсутствие влаги он может храниться несколько недель. [21]



В работе [23] было осуществлено взаимодействие хиральных βоксипроизводных α-аминоуксусной кислоты (1.3) с паральдегидом (CH<sub>2</sub>O)<sub>n</sub> в растворе толуола с образование оксазолидина 1.4 (уравнение 4).



R = Ph, t-Bu, Bn

Изучены реакции с серином и треонином, приводящие к образованию соответствующих оксазолидинов 1.5.



R = H, Me

Структуры полученных соединений были подтверждены данными <sup>1</sup>Н- и <sup>13</sup>С ЯМР-спектроскопии и рентгеноструктурного анализа [24-26].

Также в реакции аминоспиртов с формальдегидом были синтезированы подобные структуры соединений **1.6** (X = H, F; Y = H, Cl) (рисунок **1.2**). [27]



Рисунок 1.2.

Показано [28], что в случае избытка формальдегида образуются димерные соединения 1.7.

Наряду с формальдегидом в качестве электрофильного реагента были использованы разнообразные альдегиды [29-32]. Взаимодействие пропионового и масляного альдегидов с соединениями **1.8** получены оксазолидины **1.9**. [33]



Солиман с сотрудниками [34, 35] синтезировали ряд 2-арилоксазолидинов конденсацией (-)-эфедрина и (+)-псевдоэфедрина с альдегидами.



R = H, p-CH<sub>3</sub>, p-OCH<sub>3</sub>, p-NO<sub>2</sub>, m-Cl, m-I, m-NO<sub>2</sub> и т.д.

Ими было показано, что в зависимости от природы реагирующих веществ, растворителя и др. факторов, процесс может протекать с образованием либо одного [36], либо смеси стереоизомеров [37]. Например, конденсация ароматических альдегидов с (-)-эфедрином или с (+)-псевдоэфедрином протекает с высокой стереоселективностью с образованием, в основном, изомера, в котором сохраняется прежняя конфигурация. Так, взаимодействие (-)-эфедрина с бензальдегидом или метоксибензальдегидом в среде хлороформа или метанола приводит к образованию изомера **1.10**, который имел цис-конфигурацию при C<sub>2</sub>-атоме, в то время как содержание транс-изомера **1.11** не превышало 10 %, тогда как

с ацетальдегидом (-)-эфедрин образует оба изомера в приблизительно равном соотношении (рисунок 1.3).







транс-изомер 1.11

# Рисунок 1.3.

Методом <sup>1</sup>Н ЯМР-спектроскопии показано [38] образование смеси оксазолидинов **1.12** и иминов **1.13** (R = Me, Pr, Ph) при взаимодействии аминоспирта с альдегидами.



Отношение (1.12:1.13), по мнению авторов, зависит от природы заместителя R в молекуле альдегида – увеличение его объема препятствует гетероциклизации.

В работе [31] описано взаимодействие непредельных альдегидов 2алкоксипропеналей с 2-аминоспиртами; получена таутомерная смесь иминоалкоголей **1.14** и 2-(1-алкоксивинил)оксазолидинов **1.15** (R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> = H, Me, Et).



Наряду с приведенными ниже условиями авторами использовано микроволновое излучение (1-5 мин). Вклад иминной таутомерной формы возрастает с увеличением полярности растворителя (CDCl<sub>3</sub>, CD<sub>3</sub>OD, DMSO-D<sub>6</sub>, D<sub>2</sub>O) и ростом температуры. Присутствие алкильных заместителей увеличивает стабильность циклического таутомера [31].

Р.Бейтс с сотрудниками [39] использовали защищенные по азоту аминоалкоголи **1.16** (n = 1, 2, PG = Ts, CO<sub>2</sub>Me) и закрепленный на полимере катализатор.



# 1.16

Поскольку особый интерес привлекли соединения с карбонильной группой у атома C<sub>2</sub> в молекулах оксазолидинов, в работах [40, 41] изучены реакции аминоспиртов с этилглиоксилатом и фенилглиоксалем (уравнение **12** и **13**). Последнюю реакцию проводили также в толуоле при кипячении в присутствии ионообменной смолы (2 часа, азеотропная отгонка воды).



Был описан также синтез стереохимически однородных оксазолидинов **1.17**, проведенный с помощью последовательных реакций альдегидов ароматического и алифатического рядов.



 $R^1 = Alk, Ar$ 

Наряду с альдегидами различных групп при получении оксазолидинов используют также кетоны. Реакции эфедрина и псевдоэфедрина с кетонами **1.18** (R = Alk, Ar) завершаются с высоким выходом в следующих условиях. [42].

18





Взаимодействие обоих аминоспиртов с метилизопропилкетоном в указанных условиях продолжается две недели, а при кипячении в дихлорэтане – 2 дня. Также было описано взаимодействие упомянутых аминоспиртов с обширной группой кетонов **1.18** (R = Et, i-Pr, циклогексил, Ph, Bn, 2-пиридил) в присутствии Sc(OTf)<sub>3</sub>, BF<sub>3</sub>\*Et<sub>2</sub>O, а также в условиях микроволнового облучения в отсутствии растворителя при 100°C. Наряду с эфедрином и псевдоэфедрином в реакции изучен 1,2,3,4-тетрагидроизохинолин-3-илметанол (уравнение **16**). [43]



В [44] предложена твердофазная методика образования оксазолидинов. Новые оксазолидины **1.19** (X = Br, I, R = Ph, 4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>, 4-Py, EtO<sub>2</sub>C) описаны в [45] как результат взаимодействия приведенных соединений по следующей схеме:



В работе [46] описано получение оксазолидинов, включающих во второе положение различные заместители, с участием ацетона, диэтилкетона, циклопентанона в однореакторном процессе.



Как и в других подобных реакциях, авторы предполагают равновесие двух таутомерных форм имина и оксазолидина.



Предложенным путем получают фторированные бензоксазолидины **1.20** (Rf = CF<sub>3</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F). [47]



1.20

Новый оригинальный однореакторный четырехкомпонентный синтез оксазолидинов **1.21** ( $R^1 = H$ , Me, t-Bu;  $R^3 = Me$ , Et, i-Pr, Ph(CH<sub>2</sub>)<sub>2</sub>, NC(CH<sub>2</sub>)<sub>2</sub>) разработан на основе аминоэтанолов, кетонов, сероуглерода и галогенидов (уравнение **21**) [48]. Получены также соединения **1.22** и **1.23** (рисунок 1.4).



Рисунок 1.4.

В более мягких условиях протекает взаимодействие о-аминофенола с другими фторированными кетонами **1.24** (уравнения **22** и **23**).



# 1.1.2 Другие методы получения 1,3-оксазолидинов

Наряду с альдегидами и кетонами в качестве электрофильных реагентов для трансформации аминоспиртов в оксазолидины успешно проявили себя 2,2диалкоксипропаны, триметилортоформиаты, и их аналоги. [49-55]



 $R = COOMe; R^1 = Cbz$ 

В современной литературе в реакциях с 2,2-диметоксипропаном (DMP) в качестве катализатора часто используют эфират трехфтористого бора [49-51, 56]. Первый пример относится к одному из вариантов «сборки» β-гидрокси-α-аминокислот. [56]



Высокая биологическая активность характерна для оксазолидинов **1.26** (R = Alk), получаемых из аминоспиртов **1.25** [57-59].



С помощью этого метода были получены многие другие оксазолидины, на основе которых разработана серия биологически активных веществ [60-62].

В качестве конденсирующего агента часто используют триметилортоформиат, при этом получают циклические аминоацетали **1.27**. [63]



Успешно осуществлен синтез фторсодержащих оксазолидинов 1.28 [64-65].



1.28

 $R^1 = Et$ , i-Pr, i-Bu, Bu, t-Bu;  $R = CF_3$ , CHF<sub>2</sub>, CF<sub>2</sub>CF<sub>3</sub>

В 2004 году был опубликован обзор по получению хиральных 2станнилоксазолидинов [66] и их аналогов с помощью (диэтоксиметил)трибутилстаннана. Для этого защищенные по атому азота аминоспирты кипятили в циклогексане или толуоле с эквивалентным количеством (диэтоксиметил)трибутилстаннана в течение 18 часов, в качестве катализаторов использовали птолуолсульфокислоту (PTSA) или камфорсульфокислоту (CSA).



 $PG = Ts, Ms, COCF_3, COOR$ 

Таким образом, реакция конденсации α-аминоспиртов с карбонильными соединениями демонстрирует большие возможности ее применения для получения широкого ряда производных оксазолидинов. Реакции проходят в мягких условиях и с высокими выходами, что делает их пригодными для синтеза соединений с высокой биологической активностью.

# 1.2 Химические свойства 1,3-оксазолидинов1.1.1 Гидролиз

Гидролиз оксазолидинов с образованием карбонильных соединений и аминоспиртов обычно легко осуществляется водой [67] и катализируется как кислотами, так и щелочами [68]. В эту реакцию вступают многие замещенные оксазолидины [69, 56, 70].



Гидролиз легко проходит под действием п-толуолсульфокислоты [71, 72], уксусной кислоты [73], триэтилсилана [74], соляной и серной кислоты [75]. Например, гидролиз соединения **1.29** приводит к получению аминокислоты, которая представляет интерес как препарат для лечения заболеваний ЦНС. [56, 76, 77]



Таким же образом в присутствии трифторуксусной кислоты был получен псевдопептидный антибиотик (+)-негатицин (рисунок 1.5) [78].



Рисунок 1.5

В некоторых случаях использовались специальные катализаторы, в частности бромид висмута (III) (уравнение **32**) [79].



В работе [80] описан гидролиз оксазолидина, содержащего диоксалановые фрагменты, который протекает в метаноле с участием ионообменной смолы.



Использование солянокислого гидроксиламина позволило также синтезировать ряд ценных аминоспиртов **1.30** ( $R^1 = Alk$ , Ph, H,  $R^2 = i$ -Pr, i-Bu, Me, PhCH<sub>2</sub>) [81].



Гидролиз особенно важен, как способ хемоселективного снятия N-защиты. Так, дециклизация Вос-замещенного оксазолидина позволяет одновременно снять защиту у атома азота. [83]



# 1.1.2 Ацилирование

Одной из важных реакций N,O-гетероциклических соединений является ацилирование оксазолидинов, которое осуществляется действием различных реагентов. Обычно оно протекает по атому азота. В работе [84] ацилирование осуществлялось действием необычного агента - кетена.



Ацилирование оксазолидинов проходит путем их взаимодействия с карбоновыми кислотами, а также их производными – ангидридами и хлорангидридами [46, 84].





 $R^1$ ,  $R^2 = H$ , Me, Et, Pr, Ph

### 1.2.3. N-нитрозирование

Помимо ацильной группы возможно замещение водорода на нитрозогруппу под действием оксида азота (II), протекающее диастереоселективно и с высокими выходами N-нитрозо-(2S,3S)-1,3-оксазолидинов **1.31** (R = Bn, Ph, X = H, p-Cl, p-NO<sub>2</sub>, p-OMe, p-Me). [85]



Исходные незамещенные гетероциклы получали конденсацией соотвествующего аминоспирта с замещенным бензальдегидом в среде ТГФ в присутствии MgSO<sub>4</sub>. Далее через раствор реакционной смеси при перемешивании пропускали NO при 0°C в течение приблизительно 2 часов. После завершения реакции, определяемого с помощью TCX, смесь концентрировали в вакууме. Продукты после выделения и очистки колоночной хроматографией на силикагеле

(этилацетат-петролейный эфир), а также перекристаллизации из этилацетата, представляли собой бесцветные кристаллы.

### 1.2.4. Восстановление

Среди реакций с раскрытием гетероциклического кольца хорошо известны реакции восстановления оксазолидинов. Гидрирование молекулярным водородом осуществлялось с помощью катализатора – родиевого комплекса (уравнения 40 и 41) [86]. Восстановление протекает в мягких условиях (50 атм. H<sub>2</sub>, комнатная температура), в результате приводящее к образованию с количественными выходами диалкиламиноэтанолов.



В работе [87] исследован гидразинолиз соединений (**1.32** и **1.33**) в этаноле в течение 40 часов при комнатной температуре. Они реагировали с гидразином с раскрытием цикла, количественно превращаясь в соответствующие аминодиолы **1.34** (R = H, CH<sub>2</sub>Ph) (рисунок 1.6).



Рисунок 1.6

Восстановление оксазолидинов также успешно проходит с помощью комплексных гидридов металлов и, прежде всего, литийалюминийгидрида [84, 88, 89].



Присутствие в молекуле оксазолидина ацильных групп предопределяет возможность их хемоселективного восстановления алюмогидридом лития до алкильных или аралкильных производных с последующим раскрытием цикла (схема 1.1). [84, 90]

29



Схема 1.1

С помощью дибутилалюмогидрида лития (DIBAL) проведено восстановление внециклических карбметоксигрупп и получен известный альдегид Гарнера (1.35) – идеальный стартовый материал для синтеза ряда природных антибиотиков в энантиомерно чистой форме [49].



Этот восстановитель, как и алюмогидрид лития, был использован для получения третичных аминоспиртов [91]. На примере оксазолидинов, полученных из псевдоэфедрина и эфедрина и различных кетонов, обнаружена высокая диастереоселективность расщепления гетероциклического фрагмента, происходящего с сохранением конфигурации хиральных центров, подтвержденным с помощью PCA [42].



По мнению авторов, передача гидрид-иона от восстановителя к субстрату происходит внутримолекулярно, переходное состояние имеет структуру (рисунок 1.7), в которой связь С–О удлинена и ослаблена, но формально оксазолидиновый фрагмент сохраняется нетронутым [42].



Рисунок 1.7

В работах [81, 92-94] описано восстановление оксазолидинов боргидридом натрия. По данным работы [92], этот восстановитель способен не только к расщеплению цикла соединения (1.36), но и удалению силильной защиты гидроксильной группы соединения (1.37). Однако освобождение аминогруппы нуждается в действии водорода на палладиевом катализаторе (синтез соединения 1.38) (схема 1.2).



Схема 1.2

В работе [95] в качестве восстановителя использовалось цианопроизводное боргидрида натрия.



С использованием боргидрида кальция получены ценные диаминопропанолы, которые необходимы как стартовые блоки в медицинской химии. [52]



Боран ВН<sub>3</sub>•ТГФ оказался пригодным для хемоселективного восстановления некоторых заместителей, присоединенных к циклу. [96]



1.2.5. Реакции окисления

Оксазолидины вступают в реакции окисления. В качестве окислителей используют пероксикислоты. 2-Арил-3-алкилоксазолидины окисляются мхлорпероксибензойной кислотой (МХПБК), давая оксазолид-N-оксиды, которые после термической обработки перегруппировываются, образуя 2-алкил-6-арил-3,4дигидро-2H-1,5,2-диоксазины (уравнение **48**). [97]



Некоторые окислители, будучи инертными по отношению к оксазолидиновому фрагменту, трансформируют функциональные группы, входящие в структуру соединений [98]. К таким соединениям относятся ойодоксибензойная кислота (IBX) [99], известная как окислитель аминоспиртов. [100]



Этот окислитель успешно использован в синтезах целого ряда природных соединений. [101-103]

# 1.2.6. Процессы с участием элементорганических соединений

Взаимодействие 1,3-оксазолидинов с металлорганическими соединениями протекают с раскрытием цикла по лабильной связи С-О с образованием Nзамещенных аминоспиртов, в том числе вицинальных. [68, 104-108]



 $R^1$ ,  $R^2$ ,  $R^3 = Alk$ , Ar

Подобным образом к 1,3-оксазолидинам присоединяются литийорганические соединения. [64]



На базе этих реакций был разработан метод стереоселективного синтеза аминоспиртов **1.39** (R = Et, i-Pr, t-Bu, CH<sub>2</sub>Ph) с соотношением изомеров от 35:1 до 100:1.



#### 1.3. Биологическая активность

Наиболее значительная область применения оксазолидинов заключается в использовании их как агентов фармацевтической химии. На данный момент имеется обширная часть химии оксазолидинов, связанная с их биологической активностью, поиском потенциальной возможности их использования как пролекарств и подтверждением фактической. Однако находятся все новые свидетельства их потенциала в этом плане и по сей день.

В 2009-2010 гг. оксазолидины были использованы для создания мощных непептидных ингибиторов ренина [109], биологически активных у-аминокислот, в у-аминофосфорных стереоселективных синтезах [110. 1111. кислот Определяющими видами биологической активности представляются антираковая, [112], антибактериальная [113], противовирусная анксиолитическая. Оксазолидиновые структурные фрагменты входят в состав антираковых пролекарств доксазолидина, доксоформа и доксазкарбамата [114] и в структуру антиракового антибиотика тетразомина [115, 116].

Синтез аналога (**1.40**) доксорубицина, в 40 раз более активного антилейкемического агента, приводит к образованию побочного продукта (**1.41**) со структурой оксазолидина (рисунок 1.8) [117].



1.40

1.41

Рисунок 1.8

Новая серия ингибиторов ВИЧ-протеазы, имеющая структуру С2симметричных аминодиолов **1.42**, получена разрушением оксазолидинового фрагмента **1.43** [54].



В работах [54, 118-123] описано использование оксазолидинов для синтеза лекарств. С использованием 3-мезил-4-(бензоилоксиметил)-1,3-оксазолидина получены азааналоги ганцикловира, пригодные для борьбы с различными вирусами [124].


Схема 1.3

В [122] приведены результаты разработки антибиотика флорфеникола (1.44) из оксазолидина 1.45 (рисунок 1.9).



Рисунок 1.9

В [125] подробно описаны методики получения двух представителей обширного семейства, включающих более тридцати β-адренергических антагонистов, необходимых для терапии гипертензии, глаукомы и ангины из соответствующих оксазолидинов (рисунок 1.10).



#### Рисунок 1.10.

Препарат для восстановления сердечно-сосудистой системы тимолол, являющийся высокоактивным неизбирательным β-адреноблокатором, пригодным для лечения глаукомы, получают на основе соединения **1.46** – (5S)-5-ацетоксиметил-3-трет.бутил-2-фенилоксазолидина (рисунок 1.11) [121]. Установлены кардиотропные, антивирусные, противоопухолевые свойства карбамоилсодержащих оксазолидинов **1.47** (X = Br, NO<sub>2</sub>) (рисунок 1.11).



1.46

1.47

#### Рисунок 1.11.

В [126] приведен синтез оксазолидинов **1.48** ( $R^1 = H$ , Alk, AlkHal;  $R^2 =$  замещенные фенил, нафтил, хинолил;  $R^3 = H$ , замещенный алкил, алкокси, алкилкарбонил, алкоксикарбонил, фенил и др.; R = NY; Y = H, NO<sub>2</sub>, CN и др.), проявляющих противоспалительное, антиаллергическое и анальгезирующее действие (рисунок 1.12). В [127] описано создание нейротропних агентов. 3,5-Ди-и 2,3,5-тризамещённые оказолидины **1.49**,  $R^1 = Pr$ , t-Bu, i-Bu,  $R^2 = H$ , Et, Pr, Ph, CH<sub>2</sub>CH<sub>2</sub>CHMe<sub>2</sub>, R = циклогептил, циклопентил) проявляют антиаритмическую активность. Наивысшей активностью обладают соединения **1.50** и **1.51** (рисунок 1.12) [128].



Рисунок 1.12.

Ряд замещенных тетрагидрокса(тиа)золов **1.52-1.55** (рисунок 1.13) был синтезирован из аминоспиртов или аминотиолов и кетокислот. Они показали биологическую активность против гипогликемии в серии экспериментов на мышах. [129, 130].



Рисунок 1.13.

На основе *мезо*-тригидроксилированного глутарового альдегида и различных аминоспиртов получены ингибиторы глюкозидазы, включающие оксазолидиновые фрагменты в составе бициклических структур, в частности, изомеры **1.56** и **1.57** (рисунок 1.14), существенно различающиеся по активности [131]. Ценные ингибиторы протеазы получены с использованием в качестве синтона оксазолидина **1.58** (рисунок 1.14) [92]. Свойства фунгицидов обнаружены при исследовании оксазолидинов **1.59** и **1.60** (рисунок 1.14) [132, 133].



Рисунок 1.14.

#### 2 1,3-Оксазинаны

1,3-Оксазинаны или тетрагидро-1,3-оксазины – это шестичленные насыщенные гетероциклические соединения, содержащие в своем составе кислород и азот в положениях 1 и 3, соответственно (рисунок 1.15).



Рисунок 1.15.

#### 2.1 Методы получения 1,3-оксазинанов

#### 2.1.1 Синтез из аминоспиртов и карбонильных соединений

Впервые об образовании производных 1,3-оксазина сообщил Кон [134]. Метод заключался в циклизации производных 3-аминопропанола-1 с альдегидами с получением производных тетрагидро-1,3-оксазина **1.61** (уравнение **54**). К водному раствору альдегида прикапывали аминоспирт, при этом реакционная смесь сильно нагревалась. Смеси давали постоять при комнатной температуре в течение 3 часов, после чего очищали продукт экстрагированием и перегонкой.



R, R' = Alk, Ar, H

Реакция была изучена рядом авторов, и в качестве циклизующего агента использовались как альдегиды, так и кетоны. [135-144]

Метод конденсации аминоспиртов с карбонильными соединениями является и по сей день наиболее универсальным и надежным способом синтеза 1,3оксазинов.

В большинстве случаев циклизация осуществляется в таких растворителях, как бензол, толуол, эфир, спирт, диоксан, хлороформ, но иногда она легко протекает и без растворителя. Данные процессы, как правило, характеризуются хорошими выходами и позволяют получать широкий круг 1,3-оксазинанов.

Было обнаружено [135, 136, 145-150], что наиболее легко реагируют те производные 3-аминопропанола-1, которые содержат вторичные амино- и гидроксигруппы, как и в синтезе соединения **1.61**. Реакция может быть катализирована щелочными реагентами, например, небольшими количествами гидроксида калия.

Стоит отметить, что при конденсации аминоспиртов, содержащих первичную аминогруппу, с карбонильными соединениями кроме целевых циклических продуктов возможно образование их таутомерной линейной формы – оснований Шиффа (1.62).



1.62

Это равновесие, как правило, сдвинуто в сторону циклического продукта. Но при циклизации незамещенных аминоспиртов с ароматическими альдегидами выход иминов может быть существенным. [151, 152]

3-Аминопропанол-1 может реагировать с формальдегидом с образованием тетрагидро-1,3-оксазина **1.63**, что ожидаемо. Однако если взять формальдегид в избытке, получится бициклическое соединение **1.64** (рисунок 1.16). [140, 153]



Рисунок 1.16.

Было показано [154, 155], что на первой стадией реакции между 3аминопропанолом-1 и альдегидом образуется основание Шиффа. При действии кислотных хлоридов, например, тозилхлорида на основание Шиффа образуется Nацильное производное тетрагидро-1,3-оксазина.

После создания новых способов синтеза разветвленных *γ*- аминоспиртов [156] стало возможным получение ранее малодоступных полизамещенных 1,3- оксазинанов **1.65**, что явилось качественным скачком в синтезе фармакологических препаратов. [157]



2-Замещенные 5-нитропроизводные 1,3-оксазинанов **1.66** также могут быть получены взаимодействием альдегидов с производными 2-алкил-2-нитро-3аминопропанола-1 **1.67**. Был синтезирован ряд 1,3-оксазинов, замещенные в 3 положении. [158-169]



R, R<sup>`</sup> = Alk, Ar, H

Данный метод был применен и в синтезе ряда производных 4,4,6-триметил-1,3-тетрагидрооксазинов **1.69**, содержащих во 2 положении фрагмент фосфордиамидной кислоты. Процесс осуществлялся за счет взаимодействия соответствующего фосфорсодержащего альдегида с 4-метил-4-аминопентанолом-2. [170] Альдегид получался *in situ* из бутен-3-илфосфордиамидата **1.68** путем его озонолиза и последующего восстановления диметилсульфидом.



1.68

1.69

 $R = Et, C_2H_4Cl$  $R' = H, Et, Et_2O, C_2H_4Cl$ R'' = H, Ph

Еще одной модификацией метода конденсации γ-аминоспиртов с карбонильными соединениями является взаимодействие амидсодержащего спирта с параформальдегидом в присутствии кислоты в качестве катализатора (уравнение **59**). Продукт реакции – 1,3-оксазинон-4, содержащий оксогруппу, получается в соответствии с данным методом с высокими выходом. [171]



Кетоны **1.70** также вступают в реакцию с амидсодержащими спиртами **1.71** в тех же условиях, образуя 2,2-дизамещенные соединения **1.72.** [172]



#### 2.1.2 Взаимодействие аминоспиртов с непредельными соединениями

Помимо конденсации аминоспиртов с карбонильными соединениями первые могут циклизоваться, образуя 1,3-оксазины, по реакции с непредельными соединениями, например, ацетиленом. [173, 174]



В отсутствие катализаторов ацетилен реагирует с аминоспиртами RNH(CR<sub>2</sub>)<sub>3</sub>OH (R = H или Alk) при давлении 400-500 psi и температуре 100-200°C с образованием 2-метилтетрагидро-1,3-оксазина. Ввиду нестабильности полученных продуктов в условиях высокой температуры выходы в лучшем случае достигают 10-30%. Исследование этой реакции показало, что в ходе ее протекания «in situ» образуется виниловый эфир, который сам по себе может реагировать с аминоспиртами, давая тетрагидрооксазины.

Например, винилбутоксиэтиловый эфир в реакции с 3-аминопропанолом в присутствии солей ртути также дает 2-метилтетрагидро-1,3-оксазин. [174]



44

Также было установлено, что в присутствии каталитических количеств комплексов паладия или платины протекает внутримолекулярное гидроаминирование 3-аминопропилвинилового эфира с образованием 2-метил-1,3-тетрагидрооксазина. [175]



Ряд последующих работ [176-182] посвящены кинетическим исследованиям данной реакции получения оксазинанов с использованием различных катализаторов, на основе комплексов различных переходных металлов. Рассмотрена ИХ каталитическая активность И описаны предполагаемые каталитические циклы.

Аналогичный продукт был получен из винилового эфира 3-аминопропанола-1 в условиях ацилирования N,N-диметикарбамилхлоридом. [173]



#### 2.1.3 Реакция первичных нитроалканов с формальдегидом и аминами

Нитропроизводные представляют собой широко исследованную группу производных тетрагидро-1,3-оказинов. Впервые они были получены из 1нитропропана, водного раствора формальдегида и аммиака Херстом с др. [183] и одновременно с ними другой группой ученых под руководством Сенкуса из смеси других первичных нитропарафинов, формальдегида и первичных аминов. [158, 159]. Ими было показано, что первичные нитроалканы, начиная с нитроэтана легко реагируют с 3 молями формальдегида и 1 молем аммиака или с 1 молем первичного амина, давая 5-нитротетрагидро-1,3-оксазины **1.73**.



$$R^1 = Me$$
, Et, NO<sub>2</sub>, CH<sub>2</sub>OH

 $R^2 = Me, Et, NO_2, CH_2OH, N, N, 5$ -триметилгексагидропиримидил-5, 5-метил-1,3-диоксанил-5, циклогексил

Уже при смешивании исходных компонентов происходит спонтанная экзотермическая реакция с получением вязкой смеси продуктов за счет побочного образования в реакции полимерных смол. Из этой смеси тетрагидро-1,3-оксазины могут быть выделены дистилляцией или осаждением в виде кристаллических гидрохлоридов.

Реакционная способность нитроалканов в данном процессе обусловлена наличием у них активных атомов водорода, способных замещаться в реакции с формальдегидом. Предполагают, что первичной стадией этой реакции является образование 2-нитробутанола и 2-нитро-2-этилпропандиола-1,3 (1.74). В присутствии аммиака из 1.74 образуется основание 1.75, которое затем вновь реагирует с формальдегидом, давая N-гидроксиметил производное 1.76, которое циклизуется, давая тетрагидро-1,3-оксазин 1.77 (R = Alk).



Было установлено, что высокочистый продукт с наиболее высоким выходом получается, когда в качестве исходного соединения вместо нитроалканов использовался готовый 2-алкил-2-нитропропандиол-1,3 (1.74). В настоящее время с помощью реакции диолов типа 1.74 с формальдегидом и первичными аминами

получено большое число нитропроизводных тетрагидро-1,3-оксазинов. [160-165, 184-189]





Кроме того, было показано, что в ходе многих реакций конденсации диолов **1.74** с формальдегидом и аминами в качестве промежуточного продукта образуется производное S-триазина **1.78**. Эксштейном [190, 191] было установлено, что соединение **1.78** может действовать как источник формальдегида и амина в реакции с 2-нитропропан-1,3-диолом.



 $R = Alk, R'=CH_2C_6H_4X,$ где X = Hal

### 2.1.4 Взаимодействие олефинов с формальдегидом, хлоридом аммония или хлоридом первичного амина

Аминометилирование соединений с активной метиленовой группой действием формальдегида, аммиака или аминов носит название реакции Манниха [192]. Хартоу с сотр. [193, 194] показали, что реакция олефиновых соединений, таких как стирол, изобутилен и др. с формальдегидом, хлоридом аммония или с

солями первичных аминов приводит к получению производных тетрагидро-1,3-оксазинов.

Например, реакция стирола, формальдегида и хлорида аммония в водной среде приводит к образованию смеси продуктов, из которой соединения **1.79** и **1.80** удается выделить перекристаллизацией из этанола.

При использовании в этом процессе гидрохлоридов первичных аминов получается ряд N-замещенных тетрагидро-1,3-оксазинов.



 $R^2 = H$ , Alk, Cycloalk, Ar, OH

Недавно Фаттаховым и др. [195] была подробно изучена реакция между αметилстиролом, формальдегидом и метиламином.





При этом они исходили из того, что наблюдаемые в реакции продукты могут образовываться как путем аминометилирования алкена аминометилкарбокатионом (уравнение **71**), так и путем превращения первоначально образующегося 1,3диоксана (уравнение **72**).

Определение структуры полученного вещества показало, что единственным продуктом в реакции α-метилстирола с формальдегидом и метиламином является 3,6-диметил-6-фенил-1,3-оксазин (уравнение 71). Теоретические расчёты, а также экспериментальный характер накопления 1,3-диоксана в реакционной среде подтверждают вывод о том, что механизм данной реакции протекает как результат превращения 4-метил-4-фенил-1,3-диоксана (уравнение 72), который является продуктом реакции Принса.

# 2.1.5 Реакция сочетания аминоспиртов с формальдегидом и пропиоловыми кислотами в условиях реакции декарбоксилирования

Благодаря легкодоступным исходным материалам, простоте операции и «экономии атомов» (единственным побочным продуктом является CO<sub>2</sub>), декарбоксилирующее сочетание становится весьма привлекательным методом в синтетической органической химии. Среди таких реакций, катализируемых медью, хорошо известны синтезы пропаргиловых аминов.

В последнее время получил распространение новый эффективный метод синтеза гетероциклических бутинов-2 [196]. Метод основан на «one pot» сочетании

49

аминоспирта, формальдегида и пропиоловой кислоты в условиях, обеспечивающих ее декарбоксилирование. Подробная схема реакции представлена на схеме **1.4**.



 $R^1 = H$ , Me, Et, i-Pr, Ph, Bn,  $CO_2Me$ ;  $R^2 = Ar$ 

#### Схема 1.4.

[196], Предполагают что первоначально процесс проходит через конденсацию 1,3-аминоспирта 1.81 с формальдегидом (1.82) с образованием имина **1.86**. Затем следует внутримолекулярное присоединение с образованием оксазинового кольца 1.87, которое может в дальнейшем вновь реагировать с формальдегидом, давая иминиевое промежуточное соединение 1.88. В данном процессе пропиоловая кислота атакует амин 1.88, давая промежуточный продукт 1.89, который легко декарбоксилируется, последовательно элиминируя СО<sub>2</sub>, что ведет к конечному продукту реакции – N-пропаргиловому производному тетрагидро-1,3-оксазина 1.84. Показано [196], что наилучшим растворителем в этом процессе является дихлорэтан, при применении которого выходы колеблются в пределах от 68 до 94%.

Описанный выше метод был существенно усовершенствован и была разработана новая эффективная методика синтеза 1,4-дигетероциклических бутинов-2. Метод включает «one pot» Cu(I)/Cu(II) – катализируемое сочетание декарбоксилирующей пропиоловой кислоты в присутствии формальдегида и

аминоспирта, приводящее к замещенным 1,4-бис-(1,3-оксазинанил)бутинам-2. [197] (уравнение 73)



 $R^1$ ,  $R^2 = H$ , Me, Et, i-Pr, Bn

Если реакцию сочетания проводить с добавлением воды, то образуется терминальный N-пропаргиловый оксазолидин с высоким выходом. Оба метода были использованы для получения молекул, обладающих биологической активностью.

# 2.1.6 Синтез тетрагидро-1,3-оксазинов из N-замещенных аминоальдегидов, полученных из α-аминокислот

Поскольку альдегиды являются основными веществами при создании 1,3оксазинов, их получению уделялось большое внимание. Показано [198-200], что активным источником альдегидов могут быть α-аминокислоты благодаря их коммерческой доступности и природной хиральности. Исходя из широкого ряда хиральных аминокислот, были разработаны методы синтеза N-замещенных аминоальдегидных строительных блоков (схема 1.5).



#### $R^1 = Fmoc, Cbz$

#### $R^2 = H, Me$

 $R^3 = H$ , Me, Bn, i-Pr, CH<sub>2</sub>Ph(*p*-OBu<sup>t</sup>), CH<sub>2</sub>indo-2-yl(*N*-Boc), CH<sub>2</sub>CO<sub>2</sub>Bu<sup>t</sup>

(i) Карбонилдиимидазол, потом MeONHMe; (ii) N-этиламид малеиновой кислоты, i-BuOCOCl, ТГФ, 0°С, потом NaBH<sub>4</sub>, H<sub>2</sub>O; (iii) LiAlH<sub>4</sub>, 78°С; (iv) периодинан Десс-Мартина, CH<sub>2</sub>Cl<sub>2</sub>; (v) 3-аминопропанол, Na<sub>2</sub>SO<sub>4</sub>, толуол, потом Boc<sub>2</sub>O.

#### Схема 1.5.

Для этого использовались два различных подхода. Первый метод состоял в частичном восстановлении амидов [201] **1.90**, используя LiAlH<sub>4</sub> в качестве восстанавливающего агента. Этот метод дает с очень высокими выходами чистые продукты, которые не требуют хроматографической очистки, поскольку было известно [202, 203], что α-аминоальдегиды рацемизуются на силикагеле.

Во втором методе синтеза N-замещенные α-аминоальдегиды **1.92** получались из соответствующих спиртов **1.91**, используя окисление периодинаном Десса-Мартина [204]. Полученные таким образом α-аминоальдегиды **1.92** были немедленно защищены, так как являются нестабильными, способными эпимеризоваться при хранении [205, 206].

Далее альдегиды **1.92** обрабатывались 3-аминопропанолом в присутствии безводного сульфата натрия с образованием тетрагидро-1,3-оксазина **1.93**. Восзамещенные 1,3-оксазины являются стабильными и могут быть очищены на силикагеле; для них также не наблюдается ни разложения, ни эпимеризации при хранении в холодильнике более 1 года.

#### 2.1.7 Другие методы получения

Любопытный метод получения был предложен в работе [207], который представляет собой модифицированную реакцию Принса – циклизацию непредельных аминов дисульфидами, приводящую к образованию новых сульфенильных производных 1,3-оксазинанов (схема 1.6). Специфика данного процесса в том, что сборка функционализированных N,O-гетероциклов

запускается дисульфидами, которые существенно отличаются от типичных для этой реакции карбонильных электрофилов.



Схема 1.6.

В работе [208] описан метод энантиоселективного однореакторного синтеза 1,3-оксазолидинов и 1,3-оксазинанов (уравнение 74). Реакция протекает через образование полуаминальных промежуточных продуктов, полученных энантиоселективным добавлением соответствующих спиртов к иминам, с последующей внутримолекулярной циклизацией в слабощелочных условиях.



$$R = F, Cl, Br, Me, CF_3$$

Был получен широкий спектр хиральных гетероциклических продуктов с высокими выходами и с превосходной энантиоселективностью.

Сообщается [209] об интересном синтезе 1,3-оксазинанов, который представляет собой электроокислительную циклизацию аминоспиртов, содержащих бензильную группу. В качестве исходных субстратов использовались N-бензил-2-пиперидинэтанол (уравнение **75**) и 3-диалкиламино-1-фенилпропанолы (уравнение **76**); процесс проводился в метаноле в мягких условиях.



Исследован синтез тетразольных производных тетрагидро-1,3-оксазинов [210], который проводили под действием ультразвука, без катализатора, с высокой эффективностью по времени. Реакция также показала превосходную диастереоселективность и применимость к широкому ряду субстратов.



В работе [211] синтез 1,3-оксазинанов путем циклоприсоединения по типу [4+2] азетидинов и карбонильных соединений.



R = Me, Pr, Bn, Ph, -CH=CH-Ph, furyl

54

Продукты реакции представляют собой широко востребованные в прикладной и фундаментальной химии энантиочистые гетероциклические соединения с высокими выходами.

#### 2.2 Химические свойства 1,3-оксазинанов

#### 2.2.1 Реакции с раскрытием цикла

Общей чертой тетрагидро-1,3-оксазинов является их способность гидролизоваться с раскрытием цикла. В частности, это легко происходит с метанолом или этанолом в присутствии разбавленных минеральных кислот (уравнение **79**). [150, 166, 212-216] Данный процесс значительно ускоряется и увеличивается выход продукта при действии УФ-излучения. [150, 160]



Наиболее широко изучен гидролиз 5-нитротетрагидро-1,3-оксазинов **1.94**, который протекает с образованием 3-амино-2-нитропропанолпроизводных **1.95**. [134, 160-166, 168, 184, 185]



1.94

1.95

R`, R`` = H, Alk, Ar, Cycloalk

Реакция является обратимой, и соединение **1.95** можно циклизовать с альдегидами в нейтральных или слабоосновных условиях. [165]

Высвобожденный альдегид R"СНО может быть определен количественно с помощью динитрофенилгидразина. В случае формальдегида (R"=H) было обнаружено, что образование динитрофенилгидразона в спиртово-кислой среде

является относительно медленным процессом. Это, по-видимому, указывает на то, что формальдегид первоначально отщепляется в форме ацеталя, который постепенно дает формальдегид под действием динитрофенилгидразина.

Раскрытие гетероциклического кольца вдоль связи О-С предполагает, что эта связь имеет характер ацеталя или, точнее, полуацеталя. Это было предложено Урбанским, [218] и позже подтверждено его коллегами с помощью инфракрасной спектроскопии. Еще одно доказательство гемиацетального характера связи О-С можно найти в каталитическом восстановлении: раскрытие кольца происходит под действием водорода на палладии или никеле, взятых в качестве катализатора (уравнение **81**) [219, 220] амальгамы натрия [221] или литийалюминийгидрида. [222]



Если же кислотный гидролиз производных 1,3-оксазина сопровождается действием фенилизотиоцианата, то могут образовываться производные тиомочевины. [223]

2-Оксотетрагидро-1,3-оксазиновые производные типа **1.96** могут быть преобразованы в изоцианаты в результате раскрытия гетероциклического кольца. [224]



1.96

Раскрытие кольца некоторых тетрагидро-1,3-оксазиновых производных также может происходить при нагревании с водным гидроксидом натрия. [225]



В работе [226] описано превращение цис-1,3-оксазинанов в син-1,3аминоспирты двумя способами (схема 1.7). В первом случае 1,3-оксазинаны 2 обрабатывали NH<sub>2</sub>OH·HCl во влажном метаноле, а во втором – LiAlH<sub>4</sub>, в результате чего образовывались N-H и син-N-метил-1,3-аминоспирты, соответственно.



#### Схема 7.

Описано раскрытие 1,3-оксазинанового кольца монозамещенными ацетиленами с образованием ацетиленовых аминоспиртов. Реакция проводилась в диоксане в присутствии Cu<sub>2</sub>Cl<sub>2</sub> при комнатной температуре и давлении 3–5 атм. [227]



R = Alk, Ar

Мейерс и его научная группа [228, 229] показали, что тетрагидро-1,3оксазины существуют в таутомерных кольцевых цепочках (уравнение **84**). Когда 5,6-дигидро-1,3-оксазин восстанавливается до тетрагидро-1,3-оксазина, 3аминоспирт также может образовываться посредством восстановления иминоформы с открытой цепью (уравнение **84**). Чтобы избежать этого, восстановление следует проводить с боргидридом натрия при -40 ° C.



Раскрытие кольца тетрагидро-1,3-оксазинов до альдегидов нашло широкое применение благодаря работам Мейерса [230, 231]. 2-Алкилидентетрагидро-1,3-оксазины, полученные из легкодоступных 5,6-дигидро-4H-1,3-оксазинов, обладают сильными нуклеофильными свойствами и могут реагировать с алкилгалогенидами и карбонильными соединениями. Полученные таким образом производные могут быть восстановлены до тетрагидро-1,3-оксазинов, и через раскрытие цикла последние могут давать ациклические, алициклические и α,β-ненасыщенные альдегиды, а также их дейтерированные в положении C-1 производные. [228, 229, 232, 233]

Первый этап состоит в образовании солей лития путем обработки 5,6дигидрооксазинов фенил-, н-бутил- или трет-бутиллитием в тетрагидрофуране при -78°C [231, 232, 234]. Литиевые соли могут быть легко алкилированы алкилгалогенидами до **1.97**, и продукт может быть восстановлен водным боргидридом натрия (или бордейтеридом) при рН 7 в смеси тетрагидрофуранэтанол-вода и температуре от -35 до -45°C до тетрагидро-1,3-оксазина **1.98** с количественным выходом. Последние [233, 235-239] при гидролизе водным раствором щавелевой кислоты дают альдегиды **1.99** (уравнение **85**).



Литиевая соль **1.100** может реагировать с различными электрофилами, например, с кетонами, давая **1.101**, которые после восстановления и гидролиза дают ненасыщенные альдегиды **1.102** (уравнение **86**). [236]



Дальнейшее протекание реакции приводит к циклоалканкарбоксальдегидам [229, 233]. Карбанион **1.97** может реагировать с α,ω-дибромалканами в присутствии основания, давая продукт **1.103** после восстановления и гидролиза (уравнение **87**).



59

Из 1 моля дибромалканов и 2 молей литиевой соли **1.97** с последующим действием боргидрида и кислотным гидролизом образуются диальдегиды (рисунок 1.17). [235]



Рисунок 1.17.

ү-Гидроксиальдегиды **1.104** могут быть получены также из 5,6-дигидро-4H-1,3оксазинов и эпоксидов (уравнение **88**). [237]



Возможности данного синтетического метода были расширены с использованием в качестве реагента 2-винилоксазина, который приводил к образованию производных пропионового альдегида [237]. В другом варианте синтеза альдегидов прекурсом были четвертичные соли, которые обрабатывались гидридом натрия, алкилировались, а затем восстановливались с помощью боргидрида натрия до тетрагидро-1,3-оксазинов. [240]

Помимо альдегидов из тетрагидрооксазинов получают кетоны с разветвленными заместителями в положении 2 (уравнение **89**). [241-244]



Промежуточное соединение кетенимин 105 приводит к образованию замещенных кетонов путем добавления металлоорганических соединений.

Другой синтез тетрагидро-1,3-оксазинов с двумя заместителями в положении 2 [239, 245-248] основан на повышенной электрофильности связи C=N при кватернизации. Взаимодействие с ними металлоорганических соединений, таких как литийорганические соединения и реактивы Гриньяра, происходит при комнатной температуре (уравнение **90**).



В ряде работ [249, 250] приведены более подробные сведения о переходе от дигидро- к тетрагидро-1,3-оксазинам с последующим раскрытием кольца. Методы были использованы для синтеза систем, связанных с природными продуктами [251], в том числе с пирролом. [252-254]

61

#### 2.2.2 Превращения, протекающие без раскрытия цикла

Простое раскрытие цикла производных тетрагидро-1,3-оксазина - не единственно возможная реакция этих гетероциклических соединений, катализируемая минеральными кислотами. Шмидл и Мэнфилд [255-257] обнаружили интересную кислотную перегруппировку 6-арил-6-алкилтетрагидро-1,3-оксазинов в присутствии соляной кислоты (схема 1.8). [258-263]



Схема 1.8.

В основной среде производные 5-нитро-5-гидроксиметилтетрагидро-1,3оксазина могут реагировать с арилдиазониевыми солями с образованием арилазопроизводных с выделением молекулы формальдегида. [264]



Тетрагидро-1,3-оксазины, содержащие атом водорода при азоте могут вступать в реакции N-ацилирования [265-268] и N-нитрозирования [269-274]. N-Замещенные производные тетрагидро-1-3-оксазинов также могут реагировать с уксусным ангидридом, приводя к образованию их ацетильных производных [255, 256, 265]. Большинство тетрагидро-1,3-оксазинов взаимодействуют с йодистым метилом с образованием четвертичных солей. [151, 172, 258, 275-278]

Обработка 2-этилтетрагидро-1,3-оксазина нитритом натрия в концентрированной HCl приводит к 2-этил-3-нитрозотетрагидро-1,3-оксазину. [144]

#### 2.3 Биологическая активность

Производные оксазинов представляют важный класс гетероциклических соединений, чье значение в фармацевтической и биологической области постоянно растет. Они интересны, прежде всего, за счет большого спектра проявляемой ими биологической активности и особенно важны в контексте острой проблемы развития резистентности к лекарственным препаратам.

Например, оксазиномицин (1) [279] — это 1,3-оксазиновый антибиотик, действием. обладающий антилейкемическим Есть еще ПЯТЬ других антилейкемических антибиотиков-макролидов с фрагментом структуры тетрагидро-1,3-оксазин-2-она. Среди них майтанзин, майтанприн и майтанбутин были обнаружены Купчаном и сотр. [280-282] и Мейерсом и др. [283]. Калубринол и ацетатом калубринола были выделены Вани и др. [284]

Макролиды *Maytenus* можно представить общей формулой, представленной на рисунке 1.18 (R = Me, Et, i-Pr).



Рисунок 1.18.

Кори и Бокк [285] разработали схему синтеза майтанзина с подобной структурой, содержащий фрагмент 1,3-оксазинового кольца. Райс [286] выделил лейкогененол, метаболит *Pénicillium gilmanii*, и отнес его к структуре спиро-2H-1,3-оксазина (рисунок 1.19). Он также содержится в печени крупного рогатого скота и человека. [287]



Рисунок 1.19.

Производные 5-нитротетрагидро-1,3-оксазинов проявляют противоопухолевое действие в отношении подкожных опухолей у мышей [288, 289]. Соединение (рисунок 1.20) снижает количество опухолей на 70%. Получение этих соединений описано в патентах. [276]



Рисунок 1.20.

Также есть примеры 1,3-оксазинов, не содержащих нитрогруппы, которые показали себя как противоопухолевые агенты [290]. Ряд майтанзиноидов обладает противолейкемическим и противоопухолевым действием [280-284, 291] за исключением майтанзинола [282]. 1,3-Оксазин, имеющий клиническое применение, это 5,5-диэтилтетрагидро-1,3-оксазин-2,4-дион (рисунок 1.21), известный под торговыми названиями Dioxone, Dietadion и Diethadion. Его синтез был описан в патентах. [292]



Рисунок 1.21.

Он эффективен против отравления барбитуратами, [292, 293] как аналептическое и судорожное средство действует сильнее, чем Кардиазол [294-298].

В работе [299] провели синтез серии производных 6-хлор-2,4-дифенил-3,4дигидро-2H-1,3-бензоксазинов ( $R^1 = Ph$ , 4-OCH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>, CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) (рисунок 1.22), которые были исследованы на антимикробную активность. Было выяснено, что метоксизамещенные производные обладают большей антимикробной активностью, чем их незамещенные аналоги.



Рисунок 1.22.

Занатта с сотрудниками сообщили [300] о получении оксазинов (рисунок 1.23), которые проявили значительную противомикробную активность против тестируемых штаммов дрожжеподобных грибов.



X = F, Cl; R = H, Me, Ph, 4-MePh

#### Рисунок 1.23.

У множества новых *цис*-5-алкокси-4-арил-1,3-оксазинанов (рисунок 1.24) была выявлена противомалярийная активность. [141]



Рисунок 1.24.

В работе [301] описан синтез, антимикробная активность, цитотоксичность и стабильность в водных растворах различных 5- и 6-членных кольцевых Nхлоргетероциклов, среди которых в том числе встречается оксазинон-2 (рисунок 1.25).



Рисунок 1.25.

В статье [302] было показано, что молекула N-оксазинометилбензотиазолин-2-тиона (рисунок 1.26) обладает лучшей ингибирующей эффективностью в отношении активности изофермента hCA I.



#### Рисунок 1.26.

Циннамоиловое производное 1,3-оксазинана (рисунок 1.27) показало среднюю активность как ингибитора тканевой трансглутаминазы. [142]



Рисунок 1.27.

#### 3 Дигидро-3,1-бензоксазины

1,2-Дигидро-4H-3,1-бензоксазины представляют собой бициклические системы, в которых насыщенное 1,3-оксазиновое кольцо аннелировано с бензольным кольцом (рисунок 1.28).



Рисунок 1.28.

### 3.1 Методы получения дигидро-3,1-бензоксазинов

### 3.1.1 Синтеза дигидро-3,1 -бензоксазинов на основе о-аминобензилового спирта и его производных

Основным методом получения 1,2-дигидро-4H-3,1-бензоксазинов является конденсация о-аминобензиловых спиртов с карбонильными соединениями с использованием различных растворителей и кислотных катализаторов. [303-308]

Эти соединения были впервые получены в 1862 году [305]. Пааль и Лауденгеймер конденсировали о-аминобензиловый спирт с целым рядом альдегидов и кетонов. Ввиду отсутствия в то время методов спектрального анализа авторы статьи предположили, что здесь образовались азометины, не приняв во внимание возможность существования циклической структуры 3,1-бензоксазина.

Затем Холли и Коуп [306] разработали общую методику для этой конденсации, проводя ее в присутствии уксусной кислоты как катализатора и удаляя образующуюся в реакции воду путем азеотропной перегонки с бензолом. На основании спектрографических, а также химических данных они пришли к заключению, что ряд таких продуктов конденсации в действительности является 1,2-дигидро-4H-3,1-бензоксазинами. Эти вещества как аналоги полуацеталей легко гидролизуются разбавленными кислотами, распадаясь на исходные компоненты.



R = H, Alk, Ar Схема 9

Наиболее подходящей средой для получения дигидробензоксазинов из оаминофенилкарбинолов была уксусная кислота, которая действует как в качестве растворителя, так и в качестве катализатора [309, 310]. Осуществляя конденсацию при комнатной температуре, можно было получить ранее труднодоступные фурилзамещенные дигидробензоксазины. [309]

Было установлено, что замещенные о-аминофенилкарбинолы реагируют с альдегидами любой структуры с образованием соответствующих дигидробензоксазинов [309, 310]. Реакция же карбинолов с кетонами и ацеталями зависит от структуры исходных соединений. Так, о-аминофенилдифенилкарбинол (1.106) реагирует только с простейшими алифатическими кетонами (ацетон, метилэтилкетон, циклогексанон) и линейными ацеталями (с n=2), но не вступает в реакцию с ароматическими кетонами или с кетонами и ацеталями разветвленной структуры.



R = Me;  $R^1 = Me$ , Et,  $\beta$ -(fur-2-yl)ethyl;  $R+R^1 = (CH_2)_5$ ;  $R^2 = Me$ , Et

Механизм реакции конденсации карбинолов с карбонильными соединениями, был установлен с использованием меченых атомов [311]. Начальная стадия реакции, т.е. атака аминогруппы карбинола электрофильного атома углерода альдегида осуществляется по механизму S<sub>N</sub>2.

Карбинол способен вступать в реакцию с ацетилфенилацетиленом, содержащим активную тройную связь [312]. Было установлено, что здесь, помимо образования бензоксазина **1.107**, аминогруппа карбинола присоединяется к

тройной связи, приводя к образованию аминовинилкетона **1.108** (уравнение **94**). Выходы продуктов **1.107** и **1.108** составляют 55 и 25% соответственно.



N-алкил-1,4-дигидро-2H-3,1-Известны методы синтеза И другие бензоксазинов [309, 313]. Например, способ, предложенный учеными в работе [309], окисление N,N-дизамещенных 2-(гидроксиметил)анилинов включает оксидом марганца, что приводит смеси соответствующих N-К алкилдигидробензоксазинов и альдегидов (уравнение 95).



 $R = Me, Et; R_1, R_2, R_3 = H, Me, Cl$ 

Конденсация производных о-аминобензилового спирта с фосгеном дает 2-оксо-3,1-бензоксазин (уравнение **96**). N-Метилпроизводное 3,1- бензоксазин-2-она было предложено [314, 315] в качестве препарата с противоконвульсивным действием.



R = H, Me

В работе [316] описан синтез ингибитора обратной транскриптазы ВИЧ-1 – 3,1-бензоксазинона-2 из COCl<sub>2</sub> и орто-аминобензилового спирта, полученного конденсацией 2-(трифторацетил)анилина с ацетиленидом лития (уравнение **97**).



# 3.1.2 Синтез дигидро-3,1-бензоксазинов из производных антраниловой кислоты

Более многочисленны производные кето-3,1-бензоксазинов. Виллигер [317, 318] проводил конденсацию целого ряда хлорпроизводных антраниловой кислоты с формальдегидом, например, синтез соединений **1.109** и **1.110** (уравнения **98** и **99**) [319].





Было замечено [317, 318], что, когда конденсацию проводили в спирте, природа продуктов зависит от отношения формальдегида к антраниловой кислоте; таким образом, при соотношении 1:1 продукт представляет собой формалид, при 3:2 - метиленбисформалид (1.111), а при 2:1 - диформалид (1.112) (рисунок 1.29).



1.111

1.112

Рисунок 1.29.

Важным производным дигидробензоксазина является изатовый ангидрид (1.113). Это вещество было получено впервые Фридлендером и Влюгелем [320] при действии хлоругольного эфира на антранил, а в следующем году Кольбе [321-323] оксилением изатина (1.114) хромовым ангидридом (схема 1.10). Оба процесса протекают через стадию образования антраниловой кислоты или ее эфира.


Схема 1.10

Наиболее удобный метод синтеза вещества **1.113** состоит в пропускании фосгена через раствор антраниловой кислоты в разбавленной соляной кислоте (схема 1.11) [324]. Также подходящим способом его получения является длительное кипячение антраниловой кислоты с хлормуравьиным эфиром (схема 1.11) [325, 326].



Схема 1.11

Их N-замещенные изатовые ангидриды получали из N-замещенных антраниловых кислот [327-330].

В работе [331] синтезировали изоцианатное производное изатового ангидрида из 2,4-диаминобензойной кислоты (уравнение **100**), служащий интермедиатом в производстве красителей. Были также описаны [332-333] синтезы красителей, содержащих дигидробензоксазиновый фрагмент.



В патенте [334] описан синтез 2-диалкиламино-3,1-бензоксазина по реакции антраниловой кислоты с N,N-диметиламиноформальдегидом (уравнение **101**). Продукт был предложен авторами в качестве интермедиата для получения красителей.



Реакция производного тиомочевины, образованного взаимодействием соли антраниловой кислоты с фенилизотиоцианатом, с оксидом ртути (II) приводила к образованию 2- фенилимино-3,1-бензоксазина (уранвение **102**) [335].



Исследован [336] синтез многочисленных 2-трифторметилимино-3,1бензоксазин-4-онов (уравнение **103**), обладающих фунгицидной активностью и активно применяющихся в сельском хозяйстве в виде гербицидов.



R = H, Me, Et, Bu X = H, 6-Br, 7-Cl

Lempert K. и Doleschall G. получили 2-имино-3,1-бензоксазин [337, 338], по реакции антраниловой кислоты или ее натриевой соли с бромцианом (уравнение **104**). Реакцию проводили при температуре 60°С, в течении 9 часов, выход продукта составил 32% (уравнение **104**). Полученное соединение применяется, как регулятор роста растений.



# 3.1.3 Синтез дигидро-3,1-бензоксазинов из других гетероциклических соединений

Также в качестве прекурсора для образования бензоксазинов могут служит и другие гетероциклические системы. В частности, в работе [339] реакция фталевого ангидрида с Me<sub>3</sub>SiN<sub>3</sub> приводила к образованию двух изомеров дигидро-3,1бензоксазинов (уравнение **105**). Соотношение изомеров зависит от заместителя в бензольном кольце.



Если же подействовать на 3,3-дифенил-2-индолинон оксидом хрома (VI) в присутствии уксусной кислоты, то образуется 4,4-дифенил-3H-бензоксазин-2-он с выходом 70% (уравнение **106**). [340]



Стабильные озониды, образующиеся под действием озона на индолы также являются бензоксазинами (1.114 и 1.115) [341-343]. В нейтральном растворе они существуют в виде оксазингидропероксидов (1.114), а в кислоте они существуют в форме изоозонидов (1.115).



#### 3.2 Химические свойства дигидро-3,1-бензоксазинов

1,2-Дигидро-4H-3,1-бензоксазины являются оригинальными химическими системами, определенное своеобразие реакционной способности и строение которых обусловлено аннелированием 1,3-оксазинового цикла с бензольным ядром.

Незамещенные в 4 положении дигидробензоксазины способны к таутомерному превращению в линейную азометиновую форму (основания Шиффа) [344-347]. Наиболее ярко эта тенденция выражена у соединений, где непредельная структура таутомера стабилизирована внутримолекулярной водородной связью. Например, для 2-(о-гидроксифенил)-1,2-дигидро-4H-3,1-бензоксазина (1.116) таутомерное равновесие с соответствующим салицилиденамином (1.117) смещено в сторону открытой формы (уравнение 108).



X = H, Br

Реакцией дигидробензоксазинов (1.116) с формальдегидом авторами [347, 348] были получены тетрациклические бензоксазины (1.118) (уравнение 108). 2,4-Дизамещенные 1,2-дигидро-4H-3,1-бензоксазины таутомерным превращениям в обычных условиях не подвергаются [349]. Для ряда таких структур описаны реакции с разрушением гетероцикла [304, 309, 350].

Так, на 2-дифенилметил-4,4-дифенил-1,2-дигидро-4H-3,1-бензоксазине (1.119) изучалось расщепление гетероцикла в зависимости от условий эксперимента на анилид (1.120), акридан (1.121) и имидоэфир (1.122) [304, 351]. Дигидробензоксазин (1.119) при нагревании в дифениловом эфире в присутствии кислот образует анилид (1.120). В аналогичных условиях, но только в отсутствии кислоты это соединение превращается в акридан (1.121). А при нагревании исследуемого дигидробензоксазина в спирте, где R содержит от 5-и до 8-и атомов углерода, образуется имидоэфир (1.122) (схема 1.12).



1.121

2,4-Дизамещенные дигидробензоксазины при нагревании В среде органических кислот претерпевают разрушение и трансформацию гетероцикла с образованием соответствующих 4Н-3,1-бензоксазинов [309, 313]. 4,4-Дифенил-4Н-(R'= H) 3,1-бензоксазин водной В среде гидролизуется В 0-(формиламинофенил)карбинол (уравнение 109).



 $R = Me, Et; R^1 = H, Me$ 

78

В среде сильных оснований 1,2-диметил-2,4-дифенил-1,2-дигидро-4H-3,1бензоксазин (1.123) подвергается перегруппировке Виттига с образованием 3 – гидроксииндолина (1.124) (уравнение 110).



В зависимости от заместителей во 2-ом и 4-ом положениях гетероцикла может протекать при нагревании реакция с образованием кетонов (1.125) и азаксилилена (1.126) или рециклизация гетерокольца, давая акридан (1.127) и акридин (1.128) с выходами 8 и 47% соответственно (схема 1.13). [350]





1.128

К реакциям с сохранением гетероцикла относятся замещения в ароматическом и гетероциклическом кольцах. Реакции замещения в гетероцикле 2,4-замещенных дигидробензоксазинов представлены N-алкилированием и N-ацилированием [352].



Анализ литературных данных показал, что для молекул 1,2-дигидро-4H -3,1бензоксазинов изучены также реакции по бензольному кольцу, в частности, бромирование [353].

Также из 2,2-диалкил-1,2-дигидро-3,1-бензоксазинов возможно получение нитроксильных радикалов (уравнение **112**). [307]



#### 3.3 Биологическая активность дигидро-3,1-бензоксазинов

Бензоксазины и их производные используются в органическом синтезе для создания природных и синтетических соединений, а также в качестве подходящих структурных единиц для создания биологически активных веществ. Далее будут рассмотрены наиболее активные производные бензоксазинов, которые, как будет показано, обладают значительными фармакологическим действием. Они обладают противомикробной, антимикробактериальной, антидиабетической, антигиполипидемической и антидепрессантной активностью. Исследование и синтез данных производных может помочь в решении проблемы поиска биологических агентов, являющихся более совершенными с точки зрения эффективности и безопасности.

Новые 3,1-бензоксазиноны (рисунок 1.30) были синтезированы Бессоном и др. [354] путем кипячения в толуоле антраниловой кислоты с диазолиумхлоридом и пиридином. Антибактериальная активность их некоторых производных *in vitro* 

была оценена против грамотрицательных бактерий и грамположительных бактерий. Изучена также противогрибковая активность некоторых производных.



R = H, Cl

#### Рисунок 1.30.

В работе [355] были синтезированы четырнадцать гетероциклических соединений, содержащие фрагмент сульфонат-сложноэфирной группы, посредством взаимодействия 2-бензолсульфонилоксифенил-3,1-бензоксазинона-4 (рисунок 1.31) с некоторыми нуклеофильными реагентами. Заданные структуры полученных новых соединений подтверждены на основе элементных и спектральных данных. Была протестирована и обсуждена оценка антимикробной активности этих продуктов по сравнению со стандартными антибиотиками.



Рисунок 1.31.

Серия 2,8-дизамещенных бензоксазинонов (рисунок 1.32) была синтезирована [356] и подвергнута антитромбоцитарной агрегации, ингибированию образования супероксид-аниона и ингибированию высвобождения нейтрофильной эластазы. Все полученные соединения были более эффективны, чем аспирин, в отношении агрегации тромбоцитов.



2-Амино-замещенные бензоксазиноны (рисунок 1.33) были получены группой ученых [357]. Они являются потенциальными ингибитороми протеазы человека *in vitro*.



 $R = H, CH_3, Ph$ 

### Рисунок 1.33.

Производные 2-втор-амино-4H-3,1-бензоксазин-4-онов (рисунок 1.34) были оценены [357] в качестве ингибиторов ацил-ферментов химазы человека.



 $R, R^1, R^2, R^3, R^4, R^5 = H$ , Me, Et

## Рисунок 1.34.

2-Винил-4Н-3,1-бензоксазин-4-он (рисунок 1.35) был синтезирован [358] и протестирован на их ингибирующую активность эластазу лейкоцитов человека.

Соединение продемонстрировало активность как in vitro в отношении эластазы мокроты человека, так и in vivo в геморрагическом анализе.



Рисунок 1.35.

Группа 2-замещенных бензоксазинонов (рисунок 1.36) была получена в работе [359]. Данные вещества показали значительный эффект на ингибирование экспрессии коронавируса человека.



2-Арил-4H-3,1-бензоксазин-4-оны (рисунок 1.37) были получены [360] и протестированы на ингибирующую активность в отношении сериновой протеазы. Среди синтезированных соединений некоторые показали себя лучше эталонного соединения.



R = Ph, Cycloalk

#### Рисунок 1.37.

Новые 6-арилбензоксазины (рисунок 1.38) были получены [361] и исследовали их как модуляторы рецепторов прогестерона. Было обнаружено, что 2,4,4-триметил-1,4-дигидро-2H-3,1-бензооксазин является наиболее сильным агонистом прогестерона.



 $R^3 = Me, CF_3, i-Pr$ 

 $R^4 = H$ , Me

#### Рисунок 1.38.

В работе [362] установили, что 30 производных бензоксазинона (рисунок 1.39) действуют как антагонисты рецептора нейропептида.



Ученые [363] ранее сообщали о 6-арилбензоксазин-2-онах (рисунок 1.40) в качестве модуляторов прогестерона. В продолжение этой работы они исследовали SAR новых 6-ариламинобензоксазинонов и обнаружили соединения с бензоксазин-2-тионовым ядром в качестве антагонистов этого гормона.



До сих пор было замечено, что соединения с бензоксазиновыми фрагментами проявляют ценную биологическую активность, и могут быть использованы для разработки потенциально активных агентов в будущем. Таким образом, поиски множества других модификаций бензоксазиновой группы является перспективной исследовательской задачей.

#### ГЛАВА II. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показал литературный обзор синтез 1,3-оксазациклоалканов представляет интерес ввиду их широкого применения в качестве биологически активных соединений, линкерных веществ, а также хиральных лигандов, необходимых для конструирования молекул большого ряда значимых органических продуктов. Перспективными агентами тонкого органического синтеза являются также комплексы переходных металлов, содержащие в своей координационной сфере 1,3оксазациклоалкановые лиганды. На данный момент в литературе практически отсутствуют примеры аренхромтрикарбонильных комплексов 1,3-оксазолидинов, 1,3-оксазинанов и дигидро-3,1-бензоксазинов. В связи с этим целью данной исследовательской работы являлось получение новых 1,3-оксазолидинов, 1,3оксазинанов и дигидро-3,1-бензоксазинов и их η<sup>6</sup>-(арен)хромтрикарбонильных комплексов методом конденсации аминоспиртов с карбонильными соединениями, а также по реакции свободных гетероциклов с триамминхромтрикарбонилом.

#### 1 Реакции конденсации аминоспиртов с карбонильными соединениями

Как следует из приведенных в литературном обзоре данных, наиболее распространенным и широко используемым методом построения гетероциклических колец, содержащих атомы азота и кислорода в β-положении относительно друг друга, является реакция конденсации разнообразных карбонильных соединений с аминоспиртами.

## 1.1 Синтез аренхромтрикарбонильных комплексов 1,3-оксазолидинов и 1,3-оксазинанов

Данный подход был использован нами для синтеза оксазолидинов и оксазинанов. Он заключался в проведении процесса конденсации между альдегидами (**2.1a-d**) и β- (**2.2a-d**) либо γ- (**2.3a, b**) аминоспиртами, в которых один или оба из компонентов содержали в своем составе (арен)хромтрикарбонильную группу (схема **2.1**). Реакции с участием β-аминоспиртов приводили к образованию 1,3-оксазолидинов (**2.4a-i**), а процессы между γ-аминоспиртами и альдегидами давали 1,3-оксазинаны (**2.5a-c**).

86



2.5a-c

**2.1**: 
$$R = H(a)$$
; Me (b); Ph (c); Ph[Cr(CO)<sub>3</sub>] (d)  
**2.2**:  $R^1 = Ph, R^2 = H(a)$ ;  $R^1 = Ph, R^2 = Me(b)$ ;  $R^1 = Ph[Cr(CO)_3], R^2 = H(c)$ ;  $R^1 = Ph(c)$ 

 $Ph[Cr(CO)_3], R^2 = Me (d)$ 

**2.3**:  $R^1 = Ph(a)$ ,  $Ph[Cr(CO)_3](b)$ 

| Соединение | R  | $\mathbb{R}^1$ | $\mathbb{R}^2$ |
|------------|----|----------------|----------------|
| 2.4a       | Н  | Ph             | Η              |
| 2.4b       | Me | Ph             | Н              |
| 2.4c       | Ph | Ph             | Η              |
| 2.4d       | Н  | Ph             | Me             |
| 2.4e       | Me | Ph             | Me             |
| 2.4f       | Н  | $Ph[Cr(CO)_3]$ | Η              |
| 2.4g       | Me | $Ph[Cr(CO)_3]$ | Η              |
| 2.4h       | Н  | $Ph[Cr(CO)_3]$ | Me             |
| 2.4i       | Me | $Ph[Cr(CO)_3]$ | Me             |
| 2.5a       | Н  | Ph             |                |
| 2.5b       | Ph | Ph             |                |
| 2.5c       | Н  | $Ph[Cr(CO)_3]$ |                |

В качестве альдегидов в проводимых нами синтезах были использованы формальдегид (2.1a) (источником формальдегида служил параформ), ацетальдегид (2.1b), бензальдегид (2.1c) и (η<sup>6</sup>-бензальдегид)хромтрикарбонил (2.1d). В качестве аминоспиртов применялись следующие соединения: 2-(N-фениламино)этанол (2.2a), 1-(N-фениламино)пропанол-2 (2.2b), их хромсодержащие аналоги (соединения 2.2c и 2.2d соответственно), а также 3-(N-фениламино)пропанол-1 (2.3a) и его хромтрикарбонильный комплекс 2.3b.

Синтез хромтрикарбонильных комплексов **2.2с**, **2.2d**, **2.3d** осуществлялся путем термической реакции соответствующего арена с триаминхромтрикарбонилом в соответствии с методом Рауша [364] (схема 2.2).



2.2c,d, 2.3b

R = CH<sub>2</sub>OH (**2.2а,с**); CH(Me)OH (**2.2b,d**); (CH<sub>2</sub>)<sub>2</sub>OH (**2.3а,b**) Схема **2.2** 

Комплексы 2.2c, 2.2d, 2.3b получены впервые, они представляют собой воздухе. Ha ВЭЖХжелто-коричневые масла, окисляющиеся на ИХ хроматограммах присутствует один пик (табл. 1). В ИК-спектрах соединений 2.2с, 2.2d, 2.3b присутствуют полосы поглощения характерные для аминоспиртов, а колебаний CO также интенсивные полосы валентных связей хромтрикарбонильных фрагментов в области 1853-1952 см<sup>-1</sup> (см. табл. 1). В их масс-спектрах имеются ожидаемые молекулярные (см. табл. 1), а также осколочные ионы.

Известно, что на выход продуктов и возможность протекания процессов конденсации между аминоспиртами и карбонильными соединениями большое влияние оказывает природа заместителей в молекулах реагирующих веществ [17].

Так, реакции 2-(N-фениламино)этанола (2.2а) с формальдегидом (2.1а), ацетальдегидом (2.1b) и бензальдегидом (2.1c) протекают с образованием соответствующих дизамещенных 1,3-оксазолидинов [139, 365] (соединения 2.4а-с, см. схему 2.1). В то же время взаимодействие аминоспирта 2.2а с ( $\eta^6$ бензальдегид)хромтрикарбонилом (2.1d) в толуоле при 120 °C не дает ожидаемого гетероциклического продукта. По-видимому, при введении объемной группы Cr(CO)<sub>3</sub> в молекулу бензальдегида возрастающие стерические препятствия сказываются неблагоприятным образом на успешное протекание конденсации.

**Таблица 1**. Некоторые характеристики хромтрикарбонильных комплексов (N-ариламино)алканолов **2.2с**, **2.2d**, **2.3b** 

| Аминоспирт   | вэжх   | ВЭЖХ,<br>т, мин | ИК анактр                     | Масс-спектр ЭУ,               |
|--------------|--------|-----------------|-------------------------------|-------------------------------|
|              | DJMA,  |                 |                               | 70 эВ,                        |
|              | τ, мин |                 | v(C=O)/см <sup>-1</sup> , КВr | $m/z$ ( $I_{\text{oth}}$ (%)) |
| 2.2c         | 4.9    | 54              | 1949, 1853                    | 273 [M] <sup>+</sup> (65)     |
| <b>2.2</b> d | 5.1    | 65              | 1952, 1853                    | 287 [M] <sup>+</sup> (20)     |
| 2.3b         | 5.0    | 33              | 1947, 1861                    | 287 [M] <sup>+</sup> (2)      |

Аналогично аминоспирту 2.2а 1-(N-фениламино)пропанол-2 (2.2b) не взаимодействует с ( $\eta^6$ -бензальдегид)хромтрикарбонилом (2.1d), но реагирует с альдегидами, свободными от хромтрикарбонильной группы. В реакции 2.2b с формальдегидом (2.1a) образуется индивидуальный продукт 2.4d [139], а использование ацетальдегида (2.1b) приводит к образованию смеси двух диастереомеров *cis-* и *trans-*4e с различным расположением метильных заместителей относительно гетероциклического кольца. Соединения *cis-* и *trans-*2.4e (рис. 2.1) выделены нами в виде смеси. Методом ЯМР <sup>1</sup>Н-спектроскопии показано, что их соотношение составляет 1:1.



Рисунок 2.1. Соединения cis- и trans-2.4e

На следующем этапе работы нами были изучены реакции конденсации хромсодержащих аминоспиртов **2.2с, d** с альдегидами **2.1а-d** (см. схему 2.1). Все полученные в этих реакциях 1,3-оксазолидины выделены в чистом виде колоночной хроматографией с последующей перекристаллизацией и идентифицированы методами ВЭЖХ, УФ-, ИК-, ЯМР <sup>1</sup>Н-спектроскопии и массспектрометрии. Условия реакций и некоторые характеристики продуктов представлены в таблице 2.

Реакция 2-(η<sup>6</sup>-фенилхромтрикарбониламино)этанола-1 (2.2c) с избытком параформа (2.1а) в среде толуола при 120 °С в течение 4 часов дает два продукта, которые были разделены колоночной хроматографией. Первый продукт (выход 35%) имел структуру ожидаемого 1,3-оксазолидина 2.4f. Второй продукт по данным масс-спектра имел массовое число молекулярного иона 315. В его спектре  $^{1}\mathrm{H}$ ЯМР имелись протонов четырех метиленовых сигналы групп гетероциклического кольца и фенилхромтрикарбонильной группы. Полученные данные позволили предположить, что этим веществом является гексагидро-1,3диокса-5-(η<sup>6</sup>-фенилхромтрикарбонил)азепин (**2.6**) (схема 2.3).



Схема 2.3

| Альдегид     | Амино-      | Продукт                  | τ, ч <sup>b</sup> | Выход <sup>с</sup> | Т.пл./°С | ИК-спектр (KBr),<br>$v(C=O)/cM^{-1}$ | Масс-спектр ЭУ (70 эВ),<br>m/z (I (%)) |
|--------------|-------------|--------------------------|-------------------|--------------------|----------|--------------------------------------|----------------------------------------|
| <b>2.1</b> a | 2.2c        | 2.4f                     | 4                 | 35                 | 127-128  | 1957, 1883                           | 1000000000000000000000000000000000000  |
| 2.1b         | 2.2c        | 2.4g                     | 6                 | 31                 | 70–71    | 1948, 1882                           | 299 [M] <sup>+</sup> (10)              |
| 2.1c         | 2.2c        | d                        | 6                 |                    |          | _                                    | _                                      |
| <b>2.1d</b>  | 2.2c        | d                        | 6                 |                    |          |                                      |                                        |
| <b>2.1</b> a | <b>2.2d</b> | 2.4h                     | 6                 | 30                 | 131-132  | 1947, 1852                           | 299 [M] <sup>+</sup> (2)               |
| <b>2</b> 1k  | 2.2.4       | <i>cis</i> - <b>2.4i</b> | (                 | 18                 | 84-85    | 1938, 1855                           | 313 [M] <sup>+</sup> (2)               |
| 2.10         | 2.20        | trans-2.4i               | 0                 | 53                 | 105-106  | 1935, 1849                           | 313 [M] <sup>+</sup> (5)               |
| <b>2.1</b> a | 2.3a        | 2.5a                     | 2                 |                    | Масло    |                                      |                                        |
| 2.1c         | 2.3a        | 2.5b                     | 4                 |                    | 23-24    |                                      |                                        |
| 2.1d         | 2.3a        | d                        | 4                 |                    |          |                                      |                                        |
| 2.1c         | 2.3b        | d                        | 4                 |                    |          |                                      |                                        |
| <b>2.</b> 1a | 2.3b        | 2.5c                     | 1.5               |                    | 114–115  | 1948, 1848                           |                                        |

**Таблица 2.** Реакции альдегидов **2.1а-d** с аминоспиртами **2.2с, d** и **2.3а, b** и некоторые характеристики 1,3-оксазолидинов **2.4f-i** и 1,3-оксазинанов **2.5а-с**<sup>*a*</sup>

<sup>*a*</sup> Температура реакции во всех случаях 120°С. τ<sup>*b*</sup> — продолжительность реакции. <sup>*c*</sup> Выход рассчитан после выделения и очистки веществ. <sup>*d*</sup> Целевые продукты не образуются.

Структура 2.6 была подтверждена методом РСА (рис. 2.2, табл. 3). Основу молекулы 2.6 составляет семичленный гетероатомный цикл, в состав которого входит один атом азота и два атома кислорода. Длины связей N(1)-C(10) и N(1)-C(13) равны 1.444(3) и 1.470(3) Å соответственно. Гибридизация атома N(1) близка к sp<sup>2</sup>: углы C(4)–N(1)–C(10), C(4)–N(1)–C(13) и C(10)–N(1)–C(13) равны 120.2(2), 120.1(2) и 118.9(2)° соответственно. Расстояния О-С лежат в узком интервале значений 1.409(3)-1.426(3) Å. Длина связи C(12)-C(13) составляет 1.520(3) Å. Карбонильные группы Cr(CO)<sub>3</sub>-фрагмента расположены в заслоненной ориентации относительно фенильного кольца. Расстояния Cr-Carene и Cr-(CO) лежат В интервалах значений 2.206(2)-2.327(2) и 1.831(2)-1.842(2) Å соответственно (см. табл. 3). Углы С-Сr-С в хромтрикарбонильном фрагменте близки к 90° (87.66(9)-89.82(9)°).



Рисунок. фенилхромтрикарбонил)азепина (2.6).

| Связь       | d/Å      | Связь      | d/Å      | Угол             | ω/град   |
|-------------|----------|------------|----------|------------------|----------|
| N(1)-C(10)  | 1.444(3) | Cr(1)-C(9) | 2.257(2) | C(4)-N(1)-C(10)  | 120.2(2) |
| N(1)-C(13)  | 1.470(3) | Cr(1)-C(1) | 1.831(2) | C(4)-N(1)-C(13)  | 120.1(2) |
| C(12)-C(13) | 1.520(3) | Cr(1)-C(2) | 1.842(2) | C(10)-N(1)-C(13) | 118.9(2) |
| O(5)-C(12)  | 1.423(3) | Cr(1)-C(3) | 1.837(2) | N(1)-C(10)-O(4)  | 112.3(2) |
| O(5)-C(11)  | 1.409(3) | C(4)-C(9)  | 1.423(3) | C(11)-O(4)-C(10) | 112.3(2) |
| O(4)-C(11)  | 1.415(3) | C(4)-C(5)  | 1.424(3) | O(4)-C(11)-O(5)  | 113.5(2) |
| O(4)-C(10)  | 1.426(3) | C(5)-C(6)  | 1.408(3) | C(11)-O(5)-C(12) | 114.0(2) |
| Cr(1)-C(4)  | 2.327(2) | C(6)-C(7)  | 1.413(3) | O(5)-C(12)-C(13) | 112.3(2) |
| Cr(1)-C(5)  | 2.245(2) | C(7)-C(8)  | 1.405(3) | N(1)-C(13)-C(12) | 112.3(2) |
| Cr(1)-C(6)  | 2.206(2) | C(8)-C(9)  | 1.410(3) | C(3)-Cr(1)-C(1)  | 88.04(9) |
| Cr(1)-C(7)  | 2.235(2) |            |          | C(3)-Cr(1)-C(2)  | 89.82(9) |
| Cr(1)-C(8)  | 2.222(2) |            |          | C(1)-Cr(1)-C(2)  | 87.66(9) |

**Таблица 3**. Основные длины связей (d) и углы ( $\omega$ ) в структуре комплекса **2.6** 

Образование в исследуемой реакции продукта **2.6** можно объяснить с учетом постадийного характера реакции конденсации (см. схему 2.3): продукт присоединения аминоспирта к карбонильной группе формальдегида может либо претерпевать отщепление молекулы воды с образованием 1,3-оксазолидина **2.4f**, либо вступать в конкурирующую реакцию со следующей молекулой формальдегида, образуя семичленный продукт **2.6** путем дегидратации.

Взаимодействие соединения **2.2с** с уксусным альдегидом (**2.1b**) в среде толуола при 120 °С в течение 6 часов дает ожидаемый 2-метил-3-(η<sup>6</sup>- фенилхромтрикарбонил)-1,3-оксазолидин (**2.4g**) с выходом 31%. В его ИК-спектре присутствуют интенсивные полосы СО-колебаний хромтрикарбонильного

фрагмента. Масс-спектр комплекса **2.4g** содержит ожидаемый молекулярный ион (см. табл. 2) и характерные осколочные ионы. Спектр ЯМР <sup>1</sup>Н также подтверждает строение 1,3-оксазолидина **2.4g** (рис. 2.3): в спектре присутствует дублет от протонов метильного заместителя при 1.40 м.д., взаимодействующих с протоном при втором атоме углерода, мультиплеты протонов гетероциклического кольца при 3.34-3.45, 3.46-3.58, 3.98-4.11, 4.11-4.23 и 4.97-5.09 м.д. соответственно, а также сигналы фенилхромтрикарбонильного фрагмента (4.97-5.83 м.д.).



Рисунок. 2.3. Фрагмент ЯМР <sup>1</sup>Н – спектра (400 МГц, acetone-d<sup>6</sup>) оксазолидина 2.4g. Многочисленные попытки осуществления реакций хромсодержащего аминоспирта 2.2c с бензальдегидом (2.1c) либо его комплексом 2.1d оказались безуспешными: анализы демонстрируют отсутствие в реакционных смесях после протекания реакций хромсодержащих 1,3-оксазолидинов. Таким образом, когда объемные заместители присутствуют как в молекуле аминоспирта, так и в альдегиде, процесс конденсации не осуществляется по стерическим причинам.

В свою очередь реакция между 1-(η<sup>6</sup>фенилхромтрикарбониламино)пропанолом-2 (2.2d) и параформальдегидом (2.1a) дает целевой 1,3-оксазолидин 2.4h (рис. 2.4). Также удается осуществить и взаимодействие аминоспирта **2.2d** с ацетальдегидом (**2.1b**), приводящее к образованию двух диастереомеров *cis*- и *trans*-**2.4i** в соотношении 1:3 (рис. 2.4).



Рисунок 2.4. Соединения 2.4h, cis- и trans-2.4i

Оксазолидины 2.4h, cis- и trans-2.4i представляют собой ярко-желтые кристаллы с четкими температурами плавления, физико-химические методы анализа подтверждают чистоту и строение данных веществ (см. табл. 2). Соединение 2.4h охарактеризовано также с помощью РСА (рис. 2.5, табл. 4). Согласно этим данным оксазолидиновый цикл молекулы 2.4h разупорядочен по двух положениям и имеет конформацию конверта. Атом кислорода при этом отклоняется от плоскости СNCC на 0.34–0.58(2) Å. Длины связей N–C и O–C в гетероциклическом кольце лежат в интервалах значений 1.462(2)-1.467(2) Å и 1.389(3)–1.45(2) Å соответственно. Расстояние С(11)–С(13) близко к таковому в алканах и равно 1.505(4) Å. Как и в соединении **2.6**, карбонильные группы Cr(CO)<sub>3</sub>фрагмента расположены в заслоненной ориентации относительно фенильного Cr-C<sub>arene</sub> и Cr-(CO) составляют 2.203(2)-2.353(2) кольца. Расстояния И 1.824(2)-1.842(2) Å соответственно (см. табл. 4).



**Рисунок 2.5**. Молекулярное строение 5-метил-3-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3оксазолидина (**2.4h**).

| Связь      | d/Å      | Связь       | d/Å      | Угол             | ω/град   |
|------------|----------|-------------|----------|------------------|----------|
| Cr(1)-C(4) | 2.257(2) | C(5)-C(6)   | 1.405(3) | C(9)-N(1)-C(10)  | 121.9(2) |
| Cr(1)-C(5) | 2.208(2) | C(6)-C(7)   | 1.408(2) | C(9)-N(1)-C(12)  | 123.4(2) |
| Cr(1)-C(6) | 2.221(2) | C(7)-C(8)   | 1.403(2) | C(12)-N(1)-C(10) | 109.1(2) |
| Cr(1)-C(7) | 2.203(2) | C(8)-C(9)   | 1.426(3) | O(4)-C(10)-N(1)  | 105.2(2) |
| Cr(1)-C(8) | 2.262(2) | N(1)-C(10)  | 1.467(2) | C(10)-O(4)-C(11) | 103.2(2) |
| Cr(1)-C(9) | 2.353(2) | N(1)-C(12)  | 1.462(2) | O(4)-C(11)-C(12) | 104.4(2) |
| Cr(1)-C(1) | 1.838(2) | C(11)-C(12) | 1.542(3) | N(1)-C(12)-C(11) | 100.1(2) |
| Cr(1)-C(2) | 1.824(2) | O(4)-C(11)  | 1.445(3) | C(3)-Cr(1)-C(1)  | 90.97(8) |
| Cr(1)-C(3) | 1.842(2) | C(10)-O(4)  | 1.389(3) | C(3)-Cr(1)-C(2)  | 85.97(7) |
| C(4)-C(9)  | 1.421(2) | C(11)-C(13) | 1.505(4) | C(1)-Cr(1)-C(2)  | 89.34(8) |

**Таблица 4**. Основные длины связей (d) и углы ( $\omega$ ) в структуре соединения **2.4h** 

C(4)-C(5) 1.412(2)

Также удалось охарактеризовать и структуру комплекса *trans*-2.4i (рис. 2.6). Гетероциклическое кольцо находится в конформации конверта, как и в случае 2.4h. Длины связей N–C и O–C в гетероциклическом кольце лежат в интервалах значений 1.468(3)– 1.475(4) Å и 1.389(3)–1.45(2) Å соответственно. Расстояние C(10)–C(13) и C(11)-C(14) близко к таковому в алканах и равно 1.497(2) Å. Как и в других аренхромтрикарбонильных комплексов оксазолидинов, карбонильные группы Cr(CO)<sub>3</sub>-фрагмента расположены в заслоненной ориентации относительно фенильного кольца. (табл. 5).



фенилхромтрикарбонил)-1,3-оксазолидина (*trans*-2.4i).

**Таблица 5.** Основные длины связей (*d*) и углы ( $\omega$ ) в структуре соединения *trans*-2.4i

| Связь        | d/Å      | Связь       | d/Å      | Угол                | ω/град    |
|--------------|----------|-------------|----------|---------------------|-----------|
| Cr(1)-C(3)   | 1.832(3) | C(3) –O(3)  | 1.157(3) | C(3) –Cr(1) –C(2)   | 87.54(12) |
| Cr(1) –C(2)  | 1.838(3) | C(4) –C(5)  | 1.408(4) | C(3) - Cr(1) - C(1) | 87.83(12) |
| Cr(1) - C(1) | 1.840(3) | C(4) –C(9)  | 1.424(4) | C(2)- Cr(1)- C(1)   | 90.37(12) |
| Cr(1) - C(7) | 2.202(3) | C(5) –C(6)  | 1.391(4) | C(9)-N(1)-C(12)     | 121.0(2)  |
| Cr(1) –C(5)  | 2.212(3) | C(6) –C(7)  | 1.406(4) | C(9)-N(1)-C(10)     | 120.7(2)  |
| Cr(1) - C(6) | 2.215(3) | C(7) –C(8)  | 1.402(4) | C(12)-N(1)-C(10)    | 109.4(2)  |
| Cr(1)-C(8)   | 2.250(3) | C(8) –C(9)  | 1.418(4) | O(4)- C(10)- N(1)   | 104.5(2)  |
| Cr(1) –C(4)  | 2.269(3) | C(9) –N(1)  | 1.371(3) | C(10)-O(4)-C(11)    | 107.4(2)  |
| Cr(1)–C(9)   | 2.325(2) | N(1) –C(12) | 1.468(3) | O(4)-C(11)- C(12)   | 103.2(2)  |
| C(1) –O(1)   | 1.157(3) | N(1) –C(10) | 1.475(4) | N(1)-C(12)-C(11)    | 101.8(2)  |
| C(2) –O(2)   | 1.159(3) |             |          |                     |           |

Получение шестичленных гетероциклических веществ – 1,3-оксазинанов 2.5ас осуществлялось по реакции γ-аминоспиртов 2.3а,b с параформальдегидом (2.1а), бензальдегидом (2.1с) и (η<sup>6</sup>-бензальдегид)хромтрикарбонилом (2.1d) (см. схему 2.1). Реакции проводились при нагревании в растворе толуола, продукты выделяли хроматографически на колонке, заполненной силикагелем. Условия реакции и некоторые характеристики продуктов представлены в таблице 2.

Так, кипячение 3-(N-фениламино)пропанола-1 (2.3а) с твердым параформом (2.1а) в течение 2 часов в толуоле дает 3-фенил-1,3-оксазинан (2.5а) с выходом 61%. Подобным образом из аминоспирта 2.3а и бензальдегида (2.1с) за 4 часа получен 2,3-дифенил-1,3-оксазинан (2.5b), но уже с существенно меньшим

выходом (28%). Вещество было выделено в виде вязкого белого продукта с температурой плавления 23–24 °C. Таким образом, при переходе от формальдегида к бензальдегиду скорость конденсации заметно снижается. Попытки осуществить взаимодействие между 3-(N-фениламино)пропанолом-1 (**2.3a**) и (η<sup>6</sup>-бензальдегид)хромтрикарбонилом (**2.1d**), а также между хромсодержащим спиртом **2.3b** с альдегидом **2.1c**, даже при длительном нагревании, не увенчалось успехом, очевидно, по стерическим причинам.

(η<sup>6</sup>-Арен)хромтрикарбонильное производное 1,3-оксазинана получено в реакции  $3-(\eta^6-\phi$ енилхромтрикарбониламино)пропанола-1 (**2.3b**) с параформом (2.1а). Продукт 2.5с представляет собой желтое кристаллическое вещество с температурой плавления 114–115 °C. Максимум поглощения в УФ-спектре при 318 нм и интенсивные полосы в районе валентных карбонильных колебаний при 1848 и 1948 см<sup>-1</sup> в ИК-спектре соединения 2.5с подтверждают наличие в его составе хромтрикарбонильной группы. В масс-спектре 1,3-оксазинана 2.5с присутствует ожидаемый молекулярный ион с массовым числом 299. В его спектре ЯМР <sup>1</sup>Н в сильном поле при 1.79 м.д. присутствует квинтет метиленовой группы C(5)H<sub>2</sub>, при 3.50 и 3.85 м.д. располагаются сигналы фрагментов C(4)H<sub>2</sub> и C(6)H<sub>2</sub>, в более слабом поле (4.82 м.д.) находится синглет метиленовой группы, заключенной между двумя области 5.12 - 5.78сигналы гетероатомами, а в м.д. располагаются координированного с атомом хрома ароматического кольца (рис. 2.7).



Рисунок 2.7. Фрагмент ЯМР <sup>1</sup>Н – спектра (400 МГц, acetone-d<sup>6</sup>) оксазинана 2.5с. Молекулярное строение полученного гетероциклического соединения 2.5с подтверждено методом рентгеноструктурного анализа (рис.2.8). Длины связей О–С в оксазолидиновом кольце 2.5с равны 1.42(2)–1.452(3) Å, расстояния N–C составляют 1.442(2)–1.460(2) Å. Углы в гетероциклическом кольце близки к тетраэдрическим и лежат в интервале 108.9(2)–111.3(2)° (см. табл. 6). Расстояния Cr–C(Arene) в 2.5с близки к аналогичным в 2.6, 2.4h и лежат в интервале значений 2.193(2)–2.389(2) Å, что является типичным для аренхромтрикарбонильных комплексов [366]. Как и для соединений 2.6, 2.4h углы в Cr(CO)<sub>3</sub>-фрагменте в 2.5с близки к 90° (см. табл.6). Cr(CO)<sub>3</sub>-фрагмент расположен со стороны оксазинанового кольца относительно ароматического цикла C(4)–C(9).



**Рисунок 2.8**. Молекулярное строение 3-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3оксазинана (**2.5c**).

| Связь      | d/Å      | Связь       | d/Å      | Угол              | ω/град   |
|------------|----------|-------------|----------|-------------------|----------|
| Cr(1)-C(4) | 2.246(2) | N(1)-C(13)  | 1.460(2) | C(9)-N(1)-C(10)   | 121.2(2) |
| Cr(1)-C(5) | 2.193(2) | N(1)-C(10)  | 1.451(9) | C(9)-N(1)-C(13)   | 122.8(2) |
| Cr(1)-C(6) | 2.215(2) | C(11)-C(12) | 1.527(9) | C(10)-N(1)-C(13)  | 109.7(2) |
| Cr(1)-C(7) | 2.202(2) | C(12)-C(13) | 1.523(2) | O(4)-C(10)-N(1)   | 111.0(2) |
| Cr(1)-C(8) | 2.261(2) | C(4)-C(9)   | 1.423(2) | O(4)-C(11)-C(12)  | 111.3(2) |
| Cr(1)-C(9) | 2.389(2) | C(4)-C(5)   | 1.399(2) | C(10)-O(4)-C(11)  | 108.9(2) |
| Cr(1)-C(1) | 1.820(2) | C(5)-C(6)   | 1.407(2) | C(11)-C(12)-C(13) | 109.3(2) |
| Cr(1)-C(2) | 1.829(2) | C(6)-C(7)   | 1.397(2) | N(1)-C(13)-C(12)  | 109.6(2) |
| Cr(1)-C(3) | 1.820(2) | C(7)-C(8)   | 1.416(2) | C(3)-Cr(1)-C(1)   | 88.51(8) |
| O(4)-C(11) | 1.452(3) | C(8)-C(9)   | 1.416(2) | C(3)-Cr(1)-C(2)   | 86.15(7) |

**Таблица 6**. Основные длины связей (*d*) и углы ( $\omega$ ) в структуре соединения **2.5**с

| O(4)-C(10) | 1.426(2) |
|------------|----------|
|------------|----------|

Таким образом, в результате проведенного исследования [367] были впервые получены хромсодержащие аминоспирты и с их помощью удалось синтезировать, выделить в чистом виде и охарактеризовать несколько представителей новых  $(\eta^{6}$ -арен)хромтрикарбонильных производных классов азот-И кислородсодержащих гетероциклических соединений – 1,3-оксазолидинов и 1,3-(η<sup>6</sup>-фенил)хромтрикарбонильные Показано, производные оксазинов. что аминоспиртов очень чувствительны к возрастанию объема заместителей в карбонильном соединении, вследствие чего реакция конденсации легко протекает только с простейшими алифатическими альдегидами (формальдегидом и ацетальдегидом).

# 1.2 Синтез аренхромтрикарбонильных комплексов дигидро-3,1бензоксазинов

Данный метод был также распространен на синтез (η<sup>6</sup>арен)хромтрикарбонильных комплексов бензоксазинов. Он заключался в проведении процесса конденсации между хромсодержащим аминоспиртом **2.3c** и альдегидами **2.1а-c, e-l** (схема 2.4) в присутствии безводного MgSO<sub>4</sub> в тетрагидрофуране.



**2.1**: R<sup>1</sup> = H, R<sup>2</sup> = H (**a**), Me (**b**), Ph (**c**), Et (**e**), Bu (**f**), propen-1-yl-1 (**g**), 2-furyl (**h**), 2-py (**i**), spirocyclohexane (**j**);

| 2.7: | $\mathbb{R}^1$ | R <sup>2</sup> | <b>2.7</b> : | $\mathbb{R}^1$ | <b>R</b> <sup>2</sup> |
|------|----------------|----------------|--------------|----------------|-----------------------|
| a    | Н              | Н              | g            | Η              | Bu                    |
| b    | Me             | Me             | h            | Н              | propen-1-yl-1         |
| c    | spi            | iro-           | i            | Н              | Ph                    |
| d    | cycloł<br>Me   | nexane<br>Et   | j            | Н              | 2-furyl               |
| e    | Н              | Me             | k            | Н              | 2-ру                  |
| f    | Н              | Et             |              |                |                       |
|      |                |                |              |                |                       |

 $R^{1} = Me, R^{2} = Me (k), Et (l)$ 

Схема 2.4

В качестве карбонильных соединений в проводимых синтезах были использованы альдегиды – формальдегид (2.1а) (источником формальдегида служил параформ), ацетальдегид (2.1b), бензальдегид (2.1c), пропионовый альдегид (2.1e), валериановый альдегид (2.1f), 2-пиридинальдегид (2.1i), кротоновый альдегид (2.1g), фурфурол (2.1h), а также кетоны – ацетон (2.1k), метилэтилкетон (2.1l) и циклогексанон (2.1j).

Стоит отметить, что (2-аминобензиловый спирт)хромтрикарбонил **2.3с** был получен и охарактеризован впервые. Его синтез осуществлялся при взаимодействии триамминхромтрикарбонила с 2-аминобензиловым спиртом в среде кипящего диоксана в течение 1.5 часов (схема 2.5). Продукт **2.3с**, полученный с выходом 91%, представлял собой желтое кристаллическое вещество с т.пл. = 113—114 °C. Его спектральные характеристики приведены в экспериментальной части.



Схема 2.5

Выходы конечных продуктов варьировались в диапазоне 25-85%. Наличие хромтрикарбонильной группы в молекуле аминоспирта существенно не повлияло на протекание реакций конденсации в сравнении с реакциями получения свободных бензоксазинов.

Так как большинство из целевых гетероциклов 2.7 содержат два ассиметричных центра (один ИЗ которых находится В положении 2 гетероциклического кольца и имеет тетраэдрическую хиральность, а другой, обладающий планарной хиральностью, располагается в бензольной части лиганда), то данные вещества могут существовать В виде двух рацемических диастереомеров, которые для соединений 2.7e-k мы обозначили как *транс* - и *цис*изомеры, отражая взаимное расположение заместителя R<sup>2</sup> и Cr(CO)<sub>3</sub>-группы относительно гетероциклического кольца (рисунок 2.9).



trans-2.7e-k

*cis***-2.7e-k** 

#### Рисунок 2.9. Транс- и цис- диастереомеры соединений 2.7е-к.

Проведение синтеза соединений **2.7** методом конденсации показало, что доля *транс*-изомеров в смеси продуктов как правило была выше (см. табл. 7). Наибольшее влияние на соотношение диастереомеров оказало наличие объемных

фенильной (i), 2-фурильной (j) и 2-пиридильной (k) групп в составе карбонильных соединений (см. табл. 7).

| Соединение               | Соотношение<br>trans /cis | Соединение | Соотношение<br>trans /cis |
|--------------------------|---------------------------|------------|---------------------------|
| <b>2.7d</b> <sup>b</sup> | 1.0:1.0                   | 2.7h       | 1.2:1.0                   |
| 2.7e                     | 1.3:1.0                   | 2.7i       | 3.0:1.0                   |
| <b>2.7f</b>              | 1.6:1.0                   | 2.7j       | 3.3:1.0                   |
| 2.7g                     | 2.0:1.0                   | 2.7k       | C                         |

Таблица 7. Соотношение диастереомеров соединений 2.7d-k<sup>*a*</sup>

<sup>*a*</sup> Определено по соотношению площадей пиков продуктов на хроматограммах ВЭЖХ. <sup>*b*</sup> Приведены данные для диастереомеров **2.7d**. <sup>*c*</sup> Образовался только *транс*изомер.

Выделение комплексов 2.7а-к из реакционных смесей осуществлялось с помощью колоночной хроматографии при использовании силикагеля и смеси гексан—этилацетат в качестве элюента. Нам удалось выделить в чистом виде и охарактеризовать с помощью ВЭЖХ, УФ-, ИК-, ЯМР <sup>1</sup>Н-спекроскопии, массспектрометрии соединения, представленные в таблице 8. Цис-изомеры продуктов 2.7e-k (за исключением соединения *cis*-2.7i) выделялись колоночной хроматографией в смесях, содержащих некоторое количество соответствующих *транс*-продуктов. В ряде случаев удалось описать ЯМР <sup>1</sup>Н-спектры *цис*-изомеров на основании спектра смеси диастереомеров. Например, для **2.7**е Н<sup>1</sup>ЯМР-спектр грубого продукта показывает, что его спектр представляет собой суперпозицию двух близких по структуре веществ, так как почти каждый резонансный пик «дублируется» с небольшим химическим сдвигом, что свидетельствует о присутствии в продукте реакции двух изомерных веществ (рис. 2.10).

| Соединение               | Выход (%) <sup><i>a</i></sup> | Т.пл./°С | ИК-спектр,<br>v(C≡O)/см <sup>-1</sup> , KBr |
|--------------------------|-------------------------------|----------|---------------------------------------------|
| 2.7a                     | 35                            | 117—119  | 1940, 1866, 1848                            |
| 2.7b                     | 85                            | 130—132  | 1936, 1860, 1835                            |
| 2.7c                     | 81                            | 160—162  | 1938, 1855,1832                             |
| <b>2.7d</b> <sup>b</sup> | 33                            | 120—122  | 1937, 1878, 1841                            |
| trans-2.7e               | 25                            | 111—112  | 1947, 1859                                  |
| trans-2.7f               | 43                            | 141—142  | 1941, 1865                                  |
| trans-2.7g               | 42                            | 116—117  | 1962, 1894                                  |
| <i>trans</i> -2.7h       | 30                            | 98—100   | 1957, 1865                                  |
| trans-2.7i               | 56                            | 150—152  | 1967, 1874                                  |
| <i>cis</i> <b>-2.7i</b>  | 18                            | 163—165  | 1947, 1869, 1844                            |
| trans-2.7j               | 52                            | 123—125  | 1950, 1865, 1850                            |
| trans-2.7k               | 33                            | 137—138  | 1947, 1881, 1854                            |

Таблица 8. Некоторые характеристики соединений 2.7а-к

<sup>*a*</sup> Указан выход очищенного продукта после стадии колоночной хроматографии и перекристаллизации. <sup>*b*</sup> Приведены данные для выделенного диастереомера **2.7d** 



**Рисунок 2.10.** Фрагмент ЯМР <sup>1</sup>Н-спектра (400 МГц, acetone-d<sup>6</sup>) соединений *cis*-2.7е и *trans*-2.7е
Все выделенные соединения **2.7а-к** представляли собой желтые кристаллические вещества относительно устойчивые на воздухе, чистота которых подтверждена ВЭЖХ. В их ИК-спектрах обнаружены интенсивные полосы поглощения валентных колебаний СО-групп хромтрикарбонильных фрагментов в районе 1832—1967 см<sup>-1</sup> (см. табл. 8), а также другие полосы поглощения, характерные для исследуемых гетероциклов.

ЯМР <sup>1</sup>Н-спектроскопия также позволила установить строение 1,4-дигидро-3,1-бензоксазинов 2.7a-k: обнаружены В спектрах сигналы протонов  $\mathbb{R}^1$  $\mathbb{R}^2$ , гетероциклического заместителей И кольца, а также (арен)хромтрикарбонильных фрагментов. Очень информативными оказались сигналы метиленовой группы С(4)-атома углерода гетероциклического кольца, которые позволили нам распознать диастереомеры соединений 2.7е-к. Как видно из таблицы 9, для OCH<sub>2</sub>-группы *цис*-изомерных продуктов наблюдается 2 дублета с константой спин-спинового взаимодействия 14.1—14.5 Гц и разницей в значениях химических сдвигов данных протонов на уровне 0.32—0.46 м.д. В то время как для *транс*-изомеров характерен либо 1 сигнал (синглет или дублет), либо два близко расположенных дублета с разницей в значении химических сдвигов не более 0.09 м.д. В частности, у полученного нами индивидуального цис-изомера 2.7і разница в химических сдвигах протонов при атоме углерода С-4 составляет 0,46 м.д., в то время как для его *транс*-изомера она уменьшается до 0,04 м.д. (см. рис. 2.11).



**Рисунок. 2.11.** Фрагменты ЯМР <sup>1</sup>Н-спектров (400 МГц, acetone-d<sup>6</sup>) соединений *cis*-2.7i (а) и *trans*-2.7i (б)

Причиной такого различия является пространственное расположение рассматриваемых протонов (см. рис. 2.9). В *цис*-изомере один из OCH<sub>2</sub> протонов экранирован одновременно как хромтрикарбонильной группой, так и заместителем  $R^2$  при атоме C(2), что в конечном счете приводит к существенно большей разнице в значениях химических сдвигов данных протонов по сравнению с *транс*изомером, в котором такое двойное экранирование отсутствует и протоны являются более эквивалентными. Для диастереомеров **2.7d** OCH<sub>2</sub>-протоны неэквивалентны как в случае одного, так и другого соединения, по причине экранирования хромтрикарбонильной группой и метильным, либо этильным заместителем одного протона из пары. Это выражается в расхождении дублетов данных протонов в ЯМР <sup>1</sup>H-спектрах на ~0.3 м.д. для каждого диастереомера.

Для полученной серии (арен)хромтрикарбонильных производных **2.7а-к** были зарегистрированы масс-спектры электронного удара и изучена их фрагментация. Как и в случае других карбонильных комплексов переходных металлов [368] первичная фрагментация молекулярных ионов [M]<sup>+</sup> заключалась в постадийной диссоциации трех карбонильных групп, что приводило к образованию фрагментов [ $\Phi_1$ ]<sup>+</sup> (см. схему 2.6). Далее для всех анализируемых образцов основным направлением распада было отщепление молекулы воды с получением [ $\Phi_2$ ]<sup>+</sup> и дальнейшее элиминирование заместителя R<sup>2</sup> (в случае соединения **2.7с** — отщепление фрагмента С<sub>5</sub>H<sub>10</sub>) с образованием [ $\Phi_3$ ]<sup>+</sup> (см. схему 2.6, табл. 10). Отщепление воды и заместителя при С(2)-атоме углерода от молекул дигидро-3,1-бензоксазинов в процессе фрагментации под действием электронного удара находит свое подтверждение в литературе [369].

| Соедин      | δ(ОСН <sub>2</sub> ), м.д., <i>J</i> , Гц   |                                  |                            |                                  |  |
|-------------|---------------------------------------------|----------------------------------|----------------------------|----------------------------------|--|
| ения<br>2.7 | trans                                       | Δ(δ(ОСН <sub>2</sub> )),<br>м.д. | cis                        | Δ(δ(OCH <sub>2</sub> )),<br>м.д. |  |
|             |                                             |                                  | 4.38                       |                                  |  |
|             | 4.71                                        | <u>_</u>                         | (д, 1 Н, J = 14.1);        |                                  |  |
| e           | (д, 2 Н, Ј=5.5)                             | 0                                | 4.77                       | 0.39                             |  |
|             |                                             |                                  | (д, 1 Н, <i>J</i> = 14.1)  |                                  |  |
| f           | 4.72                                        | 0                                | а                          | а                                |  |
| 1           | (c, 2 H)                                    | 0                                |                            | u                                |  |
|             |                                             |                                  | 4.41                       |                                  |  |
| σ           | 4.72                                        | 0                                | (д, 1 Н, J = 14.1);        | 0.36                             |  |
| 5           | (c, 2 H)                                    | Ū                                | 4.77                       | 0.50                             |  |
|             |                                             |                                  | (д, 1 Н, J=14.1)           |                                  |  |
| h           | 4.71                                        | 0                                | a                          | a                                |  |
|             | (д, 2 Н, J = 2.0)                           |                                  |                            |                                  |  |
|             | 4.78                                        | 0.09                             | 4.57                       | 0.46                             |  |
| i           | (д, 1 Н, J = 14.5);                         |                                  | (д, 1 Н, J = 14.5);        |                                  |  |
|             | 4.87                                        |                                  | 5.03                       |                                  |  |
|             | (д, 1 Н, J = 14.5)                          |                                  | (д, 1 Н, J=14.5)           |                                  |  |
|             | 4.64                                        |                                  | 4.52                       |                                  |  |
| j           | (д, 1 Н, <i>J</i> = 14.5);                  | 0.05                             | (д, 1 Н, <i>J</i> = 14.5); | 0.46                             |  |
| -           | 4.69                                        |                                  | 4.98                       |                                  |  |
|             | (д, 1 Н, <i>J</i> = 14.5)                   |                                  | (д, 1 Н, <i>J</i> = 14.5)  |                                  |  |
|             | 4.90                                        |                                  |                            |                                  |  |
| k           | ( $\mathcal{I}, 1 \mathcal{H}, J = 14.5$ ); | 0.08                             | b                          | b                                |  |
|             | 4.98                                        |                                  |                            |                                  |  |
|             | (д, I H, <i>J</i> = 14.5)                   |                                  |                            |                                  |  |

**Таблица 9**. Значения химических сдвигов протонов ОСН<sub>2</sub> *транс*- и *цис*-изомеров гетероциклов **2.7е-к** 

<sup>*а*</sup> Спектр *cis*-изомера не зарегистрирован. <sup>*b*</sup> Получен только *trans*-изомер

$$[M]^{+} \longrightarrow [M-CO]^{+} \longrightarrow [M-2CO]^{+} \longrightarrow [M-3CO]^{+} \longrightarrow [\Phi_{2}]^{+} \longrightarrow [\Phi_{3}]^{+}$$

$$\begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Схема 2.6

**Таблица 10.** Данные масс-спектров соединений **2.7а-к** (ЭУ, 70 эВ), m/z ( $I_{\text{отн}}$  (%))

| Соединение                      | $[M]^+$   | $\left[\Phi_1 ight]^+$ | $\left[ \Phi_2  ight]^+$ | $\left[ \Phi_3  ight]^+$ |
|---------------------------------|-----------|------------------------|--------------------------|--------------------------|
| 2.7a                            | 271 (100) | 187 (15)               | 169 (29)                 | 168 (28)                 |
| 2.7b                            | 299 (33)  | 215 (100)              | 197 (68)                 | 182 (59)                 |
| 2.7c                            | 339 (23)  | 255 (100)              | 237 (46)                 | 167 (5)                  |
| <b>2.7d</b> <sup><i>a</i></sup> | 313 (37)  | 229 (100)              | 211 (54)                 | 182 (22)                 |
| trans-2.7e                      | 285 (67)  | 201 (100)              | 183 (51)                 | 168 (60)                 |
| trans-2.7f                      | 299 (36)  | 215 (40)               | 197 (52)                 | 168 (25)                 |
| trans-2.7g                      | 327 (64)  | 243 (100)              | 225 (28)                 | 168 (65)                 |
| trans-2.7h                      | 311 (52)  | 227 (98)               | 209 (100)                | 168 (25)                 |
| trans-2.7i                      | 347 (36)  | 263(76)                | 245 (28)                 | 168 (12)                 |
| <i>cis</i> <b>-2.7i</b>         | 347 (19)  | 263 (85)               | 245 (21)                 | 168 (6)                  |
| trans-2.7j                      | 337 (39)  | 253 (79)               | 235 (67)                 | 168 (52)                 |
| trans-2.7k                      | 348 (15)  | 264 (100)              | 246 (63)                 | 168 (43)                 |

<sup>*а*</sup> Приведены данные для выделенного диастереомера **2.7d** 

Например, в масс-спектре (2-метил-1,4–дигидро-4H–3,1бензоксазин)хромтрикарбонила (**2.7e**) наблюдается пик молекулярного иона [M]<sup>+</sup> -285 (68%), а так же пики, соответствующие элиминированию молекул моноокиси углерода (рис. 2.12).



Рисунок 2.12. Масс-спектр соединения 2.7е.

Максимальным является пик  $[\Phi 1]^+$  с m/z 201 (100%), который превращается в  $[\Phi 2]^+$  за счет отрыва от него нейтральной молекулы воды. В свою очередь  $[\Phi 2]^+$  подвергается дальнейшему распаду по азометиновой группе с отщеплением от неё органического радикала CH<sub>3</sub><sup>-</sup> и образованием устойчивого иона  $[\Phi 3]^+$ .

Строение соединений **2.7с**, *trans*-**2.7e** и *cis*-**2.7i**, содержащих спироциклогексановый, метильный и фенильный заместители при атоме углерода C(2) соответственно, подтверждено также PCA. Особенности структур соединений **2.7c** и *trans*-**2.7e** описаны ранее в работах [370, 371].

В частности, основу молекулы **2.7с** составляет шестичленный гетероатомный цикл, в состав которого входит один атом азота и один атом кислорода. Длина связей N(1)—C(4) равна 1.354(11) Å. Гибридизация атома N(1) близка к sp<sup>2</sup>: угол C(4)-N(1)-C(11) равен 122.77(7) Å. Карбонильные группы Cr(CO)<sub>3</sub>-фрагмента

расположены в заслоненной ориентации относительно фенильного кольца. Расстояния Cr—C<sub>arene</sub> и Cr—(CO) лежат в интервалах значений 2.204(9)—2.367(8) и 1.835(3)—1.838 (2) Å соответственно (см. табл. 10). Углы C—Cr—C в хромтрикарбонильном фрагменте близки к 90° (86.29(4)—90.38(4)°) (рис. 2.13, табл.11).



Рисунок 2.13. Молекулярное строение (1,2-дигидро-спиро[4Н-3,1-бензоксазин-

2,1'-циклогексан]) хромтрикарбонила (2.7с)

| Связь      | d/Å        | Угол             | ω/град    |
|------------|------------|------------------|-----------|
| Cr(1)-C(3) | 1.8350(9)  | C(3)-Cr(1)-C(1)  | 90.34(4)  |
| Cr(1)-C(1) | 1.8344(10) | C(3)-Cr(1)-C(2)  | 90.38(4)  |
| Cr(1)-C(2) | 1.8387(10) | C(1)-Cr(1)-C(2)  | 86.29(4)  |
| Cr(1)-C(6) | 2.1995(9)  | C(4)-N(1)-C(11)  | 122.77(7) |
| Cr(1)-C(8) | 2.2040(9)  | C(11)-O(4)-C(10) | 114.49(7) |
| Cr(1)-C(7) | 2.2183(9)  | C(8)-C(9)-C(4)   | 119.99(8) |

| Cr(1)-C(5)  | 2.2572(9)  | C(8)-C(9)-C(10)   | 122.60(8) |
|-------------|------------|-------------------|-----------|
| C(13)-C(14) | 1.521(2)   | C(4)-C(9)-C(10)   | 117.32(7) |
| C(11)-O(4)  | 1.4253(11) | C(12)-C(11)-C(16) | 110.88(7) |
| Cr(1)-C(9)  | 2.2680(8)  | C(11)-C(12)-C(13) | 112.14(9) |
| Cr(1)-C(4)  | 2.3677(8)  | C(12)-C(13)-C(14) | 111.45(9) |
| N(1)-C(4)   | 1.3540(11) | C(16)-C(15)-C(14) | 111.24(9) |
| N(1)-C(11)  | 1.4706(11) | C(6)-C(5)-C(4)    | 119.88(8) |
| C(4)-C(5)   | 1.4194(12) | C(6)-C(7)-C(8)    | 118.64(8) |
| C(4)-C(9)   | 1.4198(12) | C(9)-C(8)-C(7)    | 120.91(8) |
| C(5)-C(6)   | 1.4084(13) | C(1)-Cr(1)-C(6)   | 137.06(4) |
| C(14)-C(15) | 1.5279(18) | C(2)-Cr(1)-C(6)   | 88.33(4)  |
| C(10)-O(4)  | 1.4267(11) | C(3)-Cr(1)-C(8)   | 131.70(4) |
| C(6)-C(7)   | 1.4089(13) | C(1)-Cr(1)-C(8)   | 89.76(4)  |
| C(7)-C(8)   | 1.4113(12) | C(2)-Cr(1)-C(8)   | 137.79(4) |
| C(8)-C(9)   | 1.4088(12) |                   |           |
| C(9)-C(10)  | 1.4993(12) |                   |           |
| C(11)-C(12) | 1.5230(13) |                   |           |
| C(11)-C(16) | 1.5282(13) |                   |           |
| C(12)-C(13) | 1.5258(16) |                   |           |
| C(15)-C(16) | 1.5213(14) |                   |           |

Согласно данным РСА (рис. 2.14, табл. 12) комплекса *trans*-2.7е расположение метильная и Cr(CO)<sub>3</sub>-группы действительно соответствует *транс*-изомеру. Бензоксазиновый цикл молекулы имеет конформацию «полукресло»: все атомы, кроме атома кислорода, лежат практически в одной плоскости. Длины связей N—C и O—C в гетероциклическом кольце составляют 1.3702(17) Å и 1.4237(17)Å соответственно. Расстояние C(8)—C(9) ближе к таковому в алканах и равно 1.504(2) Å. Как и в 2.7с, карбонильные группы Cr(CO)<sub>3</sub>- фрагмента расположены в заслоненной ориентации относительно фенильного кольца. Расстояния Cr—C<sub>arene</sub> и Cr—(CO) составляют 2.2081(13)—2.3115(12) и

1.8351(15)—1.811(15) Å соответственно (см. табл. 12). Углы С—Сг—С в хромтрикарбонильном фрагменте близки к 90° (87.00(7)—90.03(7)°) (рис. 2.14, табл. 12).



Рисунок 2.14. Молекулярное строение транс-η<sup>6</sup>-(2-метил-1,2-дигидро-4H-3,1-

бензоксазин) хромтрикарбонила (2.7е)

| Габлица 12. Основные длин | ы связей ( <i>d</i> ) и углы | (ω) в структуре | комплекса 2.7е |
|---------------------------|------------------------------|-----------------|----------------|
|---------------------------|------------------------------|-----------------|----------------|

| Связь       | d/Å        | Угол              | ω/град     |
|-------------|------------|-------------------|------------|
| N(1)-C(1)   | 1.3702(17) | C(12)-Cr(1)-C(10) | 90.03(7)   |
| N(1)-C(8)   | 1.4558(17) | C(12)-Cr(1)-C(11) | 87.00(7)   |
| O(4)-C(8)   | 1.4237(17) | C(10)-Cr(1)-C(11) | 89.55(6)   |
| O(4)-C(7)   | 1.4362(17) | C(8)-O(4)-C(7)    | 111.44(10) |
| C(8)-C(9)   | 1.504(2)   | C(1)-N(1)-C(8)    | 117.59(11) |
| Cr(1)-C(3)  | 2.2081(13) | C(2)-C(3)-C(4)    | 120.75(12) |
| Cr(1)-C(5)  | 2.2103(13) | C(5)-C(4)-C(3)    | 118.82(12) |
| Cr(1)-C(2)  | 2.2427(13) | C(4)-C(5)-C(6)    | 121.20(12) |
| Cr(1)-C(6)  | 2.2619(12) | C(5)-C(6)-C(1)    | 119.63(12) |
| Cr(1)-C(1)  | 2.3115(12) | C(5)-C(6)-C(7)    | 121.20(12) |
| Cr(1)-C(12) | 1.8351(15) | C(1)-C(6)-C(7)    | 119.06(12) |

| Cr(1)-C(10) | 1.8454(15) | O(4)-C(8)-N(1)          | 108.13(11) |
|-------------|------------|-------------------------|------------|
| Cr(1)-C(11) | 1.8411(15) | N(1)-C(8)-C(9)          | 110.71(12) |
| C(1)-C(2)   | 1.4192(17) | O(4)-C(8)-C(9)          | 109.00(11) |
| C(3)-C(4)   | 1.4130(19) | O(4)-C(7)-C(6)          | 111.22(11) |
| C(4)-C(5)   | 1.4074(19) | C(10)- $Cr(1)$ - $C(3)$ | 87.03(6)   |
| C(5)-C(6)   | 1.4145(18) |                         |            |
| C(6)-C(7)   | 1.5130(18) |                         |            |
| Cr(1)-C(4)  | 2.2222(13) |                         |            |
| C(2)-C(3)   | 1.4064(19) |                         |            |
|             |            |                         |            |

В случае же соединения *cis*-2.7i рентгеноструктурный анализ (рис. 2.15, табл. 13) подтвердил, что фенильный заместитель и хромтрикарбонильная группа располагаются по одну сторону относительно гетероциклического кольца. Показано, гетероциклическая часть молекулы *cis*-2.7i что также имеет конформацию "полукресла". Гибридизация атома азота близка к sp<sup>2</sup> (угол C(9)-N(1)-C(11) равен 119.4(2)°). Длины связей гетероциклического кольца находятся в диапазоне 1.377(3)—1.497(5) Å, при этом расстояние C(8)–C(9) ближе к таковому в аренах и равно 1.398(4) Å. Расстояние между гетероциклическим кольцом и фенильным заместителем (C(11)—C(12)) составляет 1.502(5) Å. Длины связей Cr— Carene в cis-2.7i близки между собой и лежат в интервале 2.196(3)—2.331(3) Å. Расстояния Cr—C(CO) составляют 1.810(3)—1.819(4) Å, а величины углов в хромтрикарбонильном фрагменте близки к 90° (87.8(2)—91.2(2)°), что является типичным для ( $\eta^6$ -арен)хромтрикарбонильных комплексов [366].



Рисунок 2.15. Молекулярное строение *цис*-η<sup>6</sup>-(2-фенил-1,4–дигидро-2*H*–3,1бензоксазин)хромтрикарбонила (*cis*-2.7i).

| Таблица 13. | Основные длины | связей (d) и углы | (ω) I | в структуре <i>cis</i> - <b>2.7i</b> |
|-------------|----------------|-------------------|-------|--------------------------------------|
|-------------|----------------|-------------------|-------|--------------------------------------|

| Связь       | d/Å      | Связь      | d/Å      | Угол             | ω/град   |
|-------------|----------|------------|----------|------------------|----------|
| C(10)–O(1)  | 1.425(4) | C(4)–C(5)  | 1.389(5) | C(9)–N(1)–C(11)  | 119.4(2) |
| C(11)–O(1)  | 1.409(4) | C(5)–C(6)  | 1.396(4) | N(1)-C(11)-O(1)  | 109.3(3) |
| C(11)–N(1)  | 1.461(5) | C(6)–C(7)  | 1.396(5) | C(10)-O(1)-C(11) | 111.3(2) |
| C(9)–N(1)   | 1.377(3) | C(7)–C(8)  | 1.411(5) | C(8)–C(10)–O(1)  | 110.1(3) |
| C(8)–C(9)   | 1.398(4) | C(4)–Cr(1) | 2.242(3) | C(9)–C(8)–C(10)  | 118.5(3) |
| C(8)–C(10)  | 1.497(5) | C(5)–Cr(1) | 2.196(3) | C(8)–C(9)–N(1)   | 119.6(2) |
| C(11)–C(12) | 1.502(5) | C(6)–Cr(1) | 2.217(3) | C(1)–Cr(1)–C(2)  | 91.2(2)  |
| C(12)–C(13) | 1.387(5) | C(7)–Cr(1) | 2.205(3) | C(2)–Cr(1)–C(3)  | 87.8(2)  |
| C(13)–C(14) | 1.375(6) | C(8)–Cr(1) | 2.257(3) | C(1)–Cr(1)–C(3)  | 90.6(2)  |
| C(14)–C(15) | 1.355(8) | C(9)–Cr(1) | 2.331(3) |                  |          |
| C(15)–C(16) | 1.355(8) | C(1)–Cr(1) | 1.815(3) |                  |          |
| C(16)–C(17) | 1.377(6) | C(2)–Cr(1) | 1.810(3) |                  |          |
| C(12)–C(17) | 1.370(6) | C(3)–Cr(1) | 1.819(4) |                  |          |
| C(4)–C(9)   | 1.412(5) |            |          |                  |          |

Таким образом, получены 1,2-дигидро-4Н-3,1-бензоксазины путем реакции конденсации между 2-аминобензиловым спиртом с альдегидами и кетонами [372].

Был впервые получен хромсодержащий аминоспирт – (2-аминобензиловый спирт)хромтрикарбонил. Установлено, что в результате проведенных синтезов получаются цис- и транс-изомеры в разном соотношении. Полученные соединения были идентифицированы с помощью различных физико-химических методов анализа.

### 2 Взаимодействие гетероциклических соединений с триамминхромтрикарбонилом

В предыдущем разделе была рассмотрена конденсация аминоспиртов с карбонильными соединениями как метод получения различных гетероциклических веществ. В процессе исследования было выяснено, что стерически объемные хромтрикарбонильные группы затрудняют протекание процесса циклизации и в ряде случаев не позволяют получать ( $\eta^6$ -арен)хромтрикарбонильные производные 1,3-оксазациклоалканов. В связи с ограничениями данного метода был предложен другой путь их синтеза. Наиболее простым и удобным методом введения Cr(CO)<sub>3</sub>-группы в арены является непосредственное взаимодействие данных аренов с гексакарбонилом хрома или его производными, например, триамминхромтрикарбонилом (NH<sub>3</sub>)<sub>3</sub>Cr(CO)<sub>3</sub> [364].

### 2.1 Синтез аренхромтрикарбонильных комплексов 1,3-оксазолидинов и 1,3-оксазинанов

Известно. что для гетероциклов, неподеленная электронная пара гетероатомов которых доступна для взаимодействия, в реакциях с комплексами переходных металлов характерно образование  $\sigma$ -, а не  $\pi$ -комплексов [373], что в случае 1,3-оксазациклоалканов может приводить к разрыву гетероциклического кольца [1, 374, 375]. Мы предположили, что синтез (арен)хромтрикарбонильных π-1,3-оксазациклоалканов комплексов можно осуществить с сохранением гетероцикла, если защитить атом азота подходящими блокирующими группами. В качестве таких групп были выбраны ацетильная и трет-бутоксикарбонильная. Для их введения в NH-группу гетероциклов 2.4n и 2.5е использовали уксусный ангидрид (**2.8a**) [376] и ди-*трет*-бутилдикарбонат (**2.8b**) [377] (схема 2.7). Продуктами реакций оказались гетероциклы 2.12а-с, выделенные из реакционных

смесей в виде прозрачных жидкостей. Очевидно, нуклеофильность азота в полученных соединениях понижена по сравнению с исходными веществами **2.10а,b** за счет стягивания его электронной пары под действием  $\pi$ , р-сопряжения, а также из-за стерических факторов.



**2.8**:  $R = Me(a), R = OBu^{t}(b)$ 

| Соединение   | п | $\mathbb{R}^1$   |
|--------------|---|------------------|
| 2.40         | 1 | Me               |
| <b>2.4</b> q | 1 | IVIC             |
| 2.4p         | 1 | OBu <sup>t</sup> |
| 2.4r         | Ĩ | 0 Du             |
| 2.5f         | 2 | Me               |
| 2.5g         | - | 1.10             |

### Схема 2.7

Синтезированные 1,3-оксазациклоалканы 2.40,р, 2.5f далее были использованы в реакциях с триамминхромтрикарбонилом для получения ( $\eta^{6}$ арен)хромтрикарбонильных производных 2.4q,r, 2.5g (см. схему 2.7). Реакции проводили в кипящем диоксане, за ходом процессов следили по количеству выделяющегося аммиака. Соединения 2.4q,r, 2.5g выделяли методом колоночной хроматографии и очищали перекристаллизацией. Они представляли собой желтые кристаллические вещества, их чистота и строение подтверждались ВЭЖХ-, УФ-, ИК-, ЯМР <sup>1</sup>Н-спектроскопией и масс-спектрометрией. Некоторые характеристики синтезированных веществ приведены в таблице 14. На ВЭЖХ-хроматограмме каждого из соединений 2.4q,r, 2.5g присутствовал 1 пик. В их ИК-спектрах наблюдались интенсивные полосы валентных колебаний связей СО хромтрикарбонильных фрагментов в области 1857-1971 см<sup>-1</sup>, в масс-спектрах присутствовали ожидаемые молекулярные и осколочные ионы (табл.14, рис. 2.16). ЯМР <sup>1</sup>Н-спектроскопия также подтвердила строение полученных веществ: в спектрах обнаружены сигналы протонов гетероциклического и ароматического колец, а также протонов заместителей при атоме азота.



Рисунок 2.16. Масс-спектр комплекса 2.4r

Таблица 14. Некоторые характеристики комплексов 2.4q,r, 2.5g, 2.4f-i, 2.4k-l, 2.5c и 2.5d

|              |          |           | ИК-спектр,                | Масс-спектр                 |
|--------------|----------|-----------|---------------------------|-----------------------------|
| Соединение   | Т.пл./°С | Выход (%) | ν(С≡О)/см <sup>-1</sup> , | ЭУ, 70 эВ,                  |
|              |          |           | KBr                       | $m/z (I_{\text{oth}} (\%))$ |
| <b>2.4</b> q | 90–91    | 73        | 1948, 1857                | 327 [M] <sup>+</sup> (1)    |
| 2.4r         | 128-129  | 71        | 1902, 1873                | 385 [M] <sup>+</sup> (1)    |
| 2.5g         | 110-111  | 53        | 1971, 1894                | 341 [M] <sup>+</sup> (1)    |
| <b>2.4f</b>  | 127-128  | 44        | 1957, 1883                | 285 [M] <sup>+</sup> (7)    |
| 2.4g         | 70–71    | 31        | 1948, 1882                | 299 [M] <sup>+</sup> (10)   |
|              |          |           |                           |                             |

| 2.4h                     | 131–132 | 32 | 1947, 1852 | 299 [M] <sup>+</sup> (2)  |
|--------------------------|---------|----|------------|---------------------------|
| <i>cis</i> - <b>2.4i</b> | 84-85   | 24 | 1938, 1855 | 313 [M] <sup>+</sup> (2)  |
| trans-2.4i               | 105-106 | 27 | 1935, 1849 | 313 [M] <sup>+</sup> (5)  |
| 2.4k                     | 111-112 | 30 | 1942, 1869 | 313 [M] <sup>+</sup> (29) |
| <b>2.4</b> l             | 99–100  | 40 | 1948, 1855 | 361 [M] <sup>+</sup> (5)  |
| 2.5d                     | 116–117 | 19 | 1944, 1856 | 375 [M] <sup>+</sup> (2)  |
| 2.5c                     | 114–115 | 22 | 1948, 1848 | 299 [M] <sup>+</sup> (52) |
| 2.4m                     | 167–168 | 35 | 1956, 1873 | 497 [M] <sup>+</sup> (7)  |

Известно, что при наличии у атома азота ненасыщенных групп, например, фенильного заместителя, способность к координации по гетероатому для этих соединений резко падает за счет л, р-сопряжения [373]. Поэтому можно полагать, взаимодействие *N*-фенил-1,3-оксазациклоалканов что с триамминхромтрикарбонилом должно приводить к образованию желаемых комплексов. Действительно, реакции *N*-фенилзамещенных гетероциклов 2.4а-е, 2.4j, 2.5a и 2.5b с эквимольным количеством триамминхромтрикарбонила в среде диоксана дают продукты 2.4f-i, 2.4k-l, 2.5c и 2.5d с Ph[Cr(CO)<sub>3</sub>]-группой при атоме азота (схема 2.8). В случае 2,3-дифенильных производных 2.4с и 2.5b комплексообразование проходило строго по «анилиновому» бензольному кольцу с образованием моноядерных комплексов 2.4l и 2.5d. Полученные вещества были выделены в чистом виде и охарактеризованы с помощью физико-химических методов анализа (табл. 14).



| Соеди-       | п | $\mathbb{R}^1$ | R <sup>2</sup> | Соеди- | п | $\mathbb{R}^1$ | R <sup>2</sup> |
|--------------|---|----------------|----------------|--------|---|----------------|----------------|
| нение        |   |                |                | нение  |   |                |                |
| 2.4a         | 1 | Ц              | Ц              | 2.4e   | 1 | Ma             | Ma             |
| 2.4f         | 1 | 11             | 11             | 2.4i   | 1 | IVIC           | WIC            |
| 2.4b         | 1 | Me             | Ц              | 2.4j   | 1 | Ft             | Ц              |
| <b>2.4</b> g | 1 | IVIC           | 11             | 2.4k   | 1 | Εt             | 11             |
| 2.4c         | 1 | Dh             | Ц              | 2.5a   | 2 | н              | Ц              |
| 2.41         | 1 | 1 11           | 11             | 2.5c   | L | 11             | 11             |
| 2.4d         | 1 | Н              | Me             | 2.5b   | 2 | Ph             | н              |
| 2.4h         | I | 11             | IVIC           | 2.5d   |   |                | 11             |

**2.4m**: n = 1,  $R^1 = Ph[Cr(CO)_3]$ ,  $R^2 = H$ 

Схема 2.8

Во всех случаях за исключением реакции с веществами *cis-* и *trans-2.4e*, каждое из которых имеет два метильных заместителя в гетероциклическом кольце, взаимодействию с триамминхромтрикарбонилом подвергались индивидуальные вещества, в то время как вышеупомянутые изомеры использовались в виде неразделенной эквимольной смеси, полученной ранее по реакции конденсации [372]. Поэтому реакция данных веществ с триамминхромтрикарбонилом привела к смеси изомеров *cis-* и *trans-2.4i*, которую удалось разделить методом колоночной

хроматографии при использовании элюента, состоявшего из гексана и этилацетата в соотношении 10:1(рис. 2.17).



Рисунок 2.17. Соединения cis- и trans-2.4i

Стоит отметить, что соединения **2.4f-i** и **2.5c** также были получены по реакции конденсации хромтрикарбонильных комплексов фенилзамещенных аминоспиртов с соответствующими альдегидами [372]. Вместе с тем синтез таким путем веществ **2.4l** и **2.5d** осуществить не удалось [372], вероятно, по стерическим причинам, в то время как реакции **2.4c** и **2.5b** с триамминхромтрикарбонилом позволяют получить желаемые продукты.

**2.5b** 2,3-дифенил-1,3-оксазинана Так, взаимодействием с триамминхромтрикарбонилом при соотношении реагирующих веществ 1:1 после отгонки растворителя и перекристаллизации остатка из смеси гексана с этилацетатом (4:1) был получен индивидуальный продукт 2.5d с выходом 40%. На хроматограмме ВЭЖХ образца данного вещества присутствовал 1 пик со временем удерживания 8.3 мин. Его ИК-спектр содержал 2 интенсивные полосы поглощения при 1848 и 1955 см<sup>-1</sup>, характерных для валентных колебаний СО групп в хромтрикарбонильном фрагменте. В масс-спектре наблюдались сигналы, соответствующие молекулярному иону 361  $[M]^+$  (5), и осколочным ионам: 277  $[M]^+$  $-3CO]^{+}(72), 247 [M - 3CO - CH_2O]^{+}(100), 143 [M - 3CO - CH_2CH_2OCH(Ph)]^{+}(66),$ 52  $[Cr]^+$  (20). Строение соединения **2.5d** было также подтверждено рентгеноструктурным анализом (рис. 2.18, табл. 15).

Согласно данным РСА, конформацию гетероциклического кольца в структуре **2.5d** можно охарактеризовать как «конверт»: атомы N(1), C(10), C(11) и C(12) лежат практически в одной плоскости, тогда как атом кислорода выходит из неё. Угол между плоскостями C(11)C(10)N(1)C(12) и C(11)O(4)C(12) составляет 36.5(5)°. Фенильный заместитель при атоме С(12) и хромтрикарбонильная группа разные расположены стороны плоскости гетероцикла. B по от аренхромтрикарбонильном фрагменте расстояние Cr-Carene и Cr-(CO) составляют 2.177(9)-2.332(7) Å и 1.799(9)-1.844(8) Å соответственно (табл. 15). Длины всех С-С связей в нём близки между собой (1.38(2)-1.43(2) Å). Расстояние C(1)-O(1) незначительно длиннее (1.20(2) Å), чем длины связей С-О в двух других карбонильных лигандах (1.16(2) Å). Карбонильные группы находятся в заслонённой конформации, а углы C-Cr-C в хромкарбонильном фрагменте лежат в интервале значений 87.8(5)-91.1(4)°.



Рисунок 2.18. Молекулярная структура 2-фенил-3-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3-оксазолидина 2.5d

| Связь        | d/Å      | Связь       | d/Å      | Угол             | ω /град  |
|--------------|----------|-------------|----------|------------------|----------|
| Cr(1) - C(1) | 1.799(9) | N(1)-C(9)   | 1.363(9) | C(9)–N(1)–C(10)  | 122.2(6) |
| Cr(1)–C(2)   | 1.844(8) | N(1)-C(10)  | 1.454(9) | C(9)–N(1)–C(12)  | 122.8(6) |
| Cr(1)-C(3)   | 1.839(8) | N(1)–C(12)  | 1.473(9) | C(10)-N(1)-C(12) | 111.0(6) |
| Cr(1)-C(4)   | 2.249(7) | C(10)–C(11) | 1.53(2)  | O(4)-C(11)-C(10) | 103.7(6) |
| Cr(1) - C(5) | 2.210(8) | O(4)–C(11)  | 1.44(2)  | C(12)–O(4)–C(11) | 106.3(6) |
| Cr(1) - C(6) | 2.224(9) | O(4)–C(12)  | 1.425(8) | O(4)-C(12)-N(1)  | 103.3(5) |
| Cr(1)–C(7)   | 2.177(9) | C(12)–C(13) | 1.52(2)  | N(1)-C(10)-C(11) | 100.8(6) |
| Cr(1)–C(8)   | 2.235(8) |             |          | C(1)–Cr(1)–C(3)  | 87.8(5)  |
| Cr(1)–C(9)   | 2.332(7) |             |          | C(1)–Cr(1)–C(2)  | 90.1(4)  |
|              |          |             |          | C(3)-Cr(1)-C(2)  | 91.1(4)  |

Таблица 15. Основные длины связей (*d*) и углы (ω) в комплексе 2.5d

При проведении реакции между **2.4c** и избытком триамминхромтрикарбонила (при соотношении реагентов 1:2) была получена смесь, содержащая, два хроморганических соединения **2.4l** и **2.4m** (рис. 2.19). Продукту **2.4m** была приписана структура биядерного 2,3-бис-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3-оксазолидина.



Рисунок 2.19. Соединения 2.41 и 2.4т

Его масс-спектр содержал пики, соответствующие молекулярному иону 497 [M]<sup>+</sup> (7), а также осколочным ионам. В ИК-спектре **2.4m** имеются полосы поглощения при 1956 и 1873 см<sup>-1</sup>, что подтверждает наличие в молекуле СО групп.

В ЯМР <sup>1</sup>Н-спектре обнаружены сигналы протонов метиновой и двух метиленовых групп гетероциклического кольца, а также протонов двух фенилхромтрикарбонильных колец. Его структура была окончательно подтверждена методом РСА (рис. 2.20, табл. 16).

В соответствии с данными РСА, в структуре **2.4m**, как и в **2.4l**, все атомы гетероциклического кольца кроме атома кислорода лежат практически в одной плоскости: угол между плоскостями C(11)C(10)N(1)C(12) и C(11)O(4)C(12) равен  $37(2)^{\circ}$ . Длины связей О–С в 1,3-оксазолидиновом кольце равны 1.46(2) и 1.47(2) Å, расстояния N–C составляют 1.44(2) и 1.46(2) Å, а величины углов лежат в интервале значений 99(2)–111(2)° (см. табл. 16). Расстояния Cr–C<sub>arene</sub> в **2.4m** близки между собой (2.19(2)–2.24(2) Å) и сопоставимы с таковыми в **2.4l** (2.177(9)–2.332(7) Å). Длины связей Cr–(CO) лежат в широком интервале значений 1.74(2)–1.93(2) Å. Углы C–Cr–C в Cr(CO)<sub>3</sub>-фрагментах близки к 90° (см. табл. 16).



Рисунок 2.20. Молекулярная структура 2,3-бис-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3оксазолидина 2.4m.

| Связь       | d/Å     | Связь       | d/Å     | Угол              | ω/град  |
|-------------|---------|-------------|---------|-------------------|---------|
| Cr(1)–C(1)  | 1.74(2) | Cr(2)–C(18) | 2.24(2) | O(4)–C(12)–N(1)   | 106(2)  |
| Cr(1)–C(2)  | 1.85(2) | Cr(2)–C(19) | 1.86(2) | C(11)-O(4)-C(12)  | 101(2)  |
| Cr(1)-C(3)  | 1.80(2) | Cr(2)–C(20) | 1.84(2) | O(4)–C(11)–C(10)  | 105(2)  |
| Cr(1)-C(4)  | 2.24(2) | Cr(2)–C(21) | 1.93(2) | C(10)–N(1)–C(12)  | 111(2)  |
| Cr(1)-C(5)  | 2.22(2) | N(1)–C(9)   | 1.45(2) | N(1)-C(10)-C(11)  | 99(2)   |
| Cr(1)-C(6)  | 2.20(2) | N(1)–C(10)  | 1.46(2) | C(1)–Cr(1)–C(2)   | 91(2)   |
| Cr(1)–C(7)  | 2.20(2) | N(1)–C(12)  | 1.44(2) | C(2)–Cr(1)–C(3)   | 88(2)   |
| Cr(1)–C(8)  | 2.23(5) | C(10)–C(11) | 1.55(2) | C(1)–Cr(1)–C(3)   | 88(2)   |
| Cr(1)–C(9)  | 2.24(2) | O(4)–C(11)  | 1.47(2) | C(20)–Cr(2)–C(19) | 88(2)   |
| Cr(2)-C(13) | 2.22(2) | O(4)–C(12)  | 1.46(2) | C(20)–Cr(2)–C(21) | 85.3(9) |
| Cr(2)–C(14) | 2.20(2) | C(12)–C(13) | 1.52(2) | C(19)–Cr(2)–C(21) | 86(2)   |
| Cr(2)–C(15) | 2.19(2) |             |         |                   |         |
| Cr(2)–C(16) | 2.21(2) |             |         |                   |         |
| Cr(2)–C(17) | 2.23(2) |             |         |                   |         |

Таблица 16. Основные длины связей (*d*) и углы (ω) в комплексе 2.4m

проведенные Таким образом, исследования показали, ЧТО реакции триамминхромтрикарбонила с разнообразными 1,3-оксазациклоалканами, содержащими ацетильную, *трет*-бутилоксикарбонильную или фенильную группу при атоме азота, протекают с образованием соответствующих производных с ( $\eta^6$ фенил)хромтрикарбонильными заместителями. Установлено, что данные реакции могут давать продукты, получение которых альтернативным методом конденсации невозможно. Показано, что при наличии в молекуле исходного 1.3оксазациклоалкана двух фенильных заместителей координация протекает в первую очередь по *N*-фенильному кольцу (при эквимольном соотношении реагентов) и обоим ароматическим (в случае избытка далее по кольцам триамминхромтрикарбонила) [378].

# 2.2 Синтез аренхромтрикарбонильных комплексов дигидро-3,1бензоксазинов

На предыдущем этапе исследования было показано, что в случае реакции *N*-фенилзамещенными триамминхромтрикарбонила с оксазолидинами И свободной оксазинанами р,π-сопряжение электронной пары азота фенильным гетероциклического кольца с заместителем уменьшает нуклеофильность атома азота, что позволяет избежать образование σ-связи N—Cr и приводит, в конечном счете, к получению ( $\eta^6$ -арен)хромтрикарбонильных производных данных соединений. С учетом этого, мы предположили, что, выбрав в качестве лигандов бензоксазины, в которых атом азота находится в сопряжении с фениленовой частью, данный процесс также удастся осуществить.

С целью получения хромсодержащих 1,4-дигидро-3,1-бензоксазинов 2.7а-к на первом этапе работы мы распространили методику, описанную в работе [379], на получение гетероциклов 2.9а-к, которая состояла во взаимодействии аминоспиртов с карбонильными соединениями в среде ТГФ и присутствии сульфата магния. Продукты 2.9а-к [306, 380-383] были получены из карбонильных соединений 2.1а-с, е-I и 2-аминобензилового спирта в течение 3—10 часов при нагревании 50—100 °C с хорошими выходами (схема 2.9, таблица 17).



**2.1**: R<sup>1</sup> = H, R<sup>2</sup> = H (**a**), Me (**b**), Ph (**c**), Et (**e**), Bu (**f**), propen-1-yl-1 (**g**), 2-furyl (**h**), 2-py (**i**), spirocyclohexane (**j**);

 $R^{1} = Me, R^{2} = Me (k), Et (l)$ 

| <b>2.9</b> : | <b>R</b> <sup>1</sup> | R <sup>2</sup> | 2.9: | <b>R</b> <sup>1</sup> | R <sup>2</sup> |
|--------------|-----------------------|----------------|------|-----------------------|----------------|
| a            | Н                     | Н              | g    | Η                     | Bu             |
| b            | Me                    | Me             | h    | Η                     | propen-1-yl-1  |
| c            | spi<br>cvcloł         | ro-<br>lexane  | i    | Η                     | Ph             |
| d            | Me                    | Et             | j    | Η                     | 2-furyl        |
| e            | Н                     | Me             | k    | Н                     | 2-ру           |
| f            | Н                     | Et             |      |                       |                |

Схема 2.9

| 2.9 | $\tau/\mathbf{q}^a$ | $T/^{\circ}\mathrm{C}^{b}$ | Выход (%) |
|-----|---------------------|----------------------------|-----------|
| a   | 3                   | 50                         | 68        |
| b   | 7                   | 50                         | 91        |
| c   | 10                  | 50                         | 45        |
| d   | 10                  | 50                         | 43        |
| e   | 3                   | 60                         | 75        |
| f   | 10                  | 60                         | 74        |
| g   | 10                  | 60                         | 57        |
| h   | 10                  | 50                         | 55        |
| i   | 3                   | 100                        | 85        |
| j   | 10                  | 50                         | 48        |
| k   | 8                   | 50                         | 42        |

Таблица 17. Условия синтеза 2.9а-к и выходы

<sup>а</sup> Продолжительность. <sup>b</sup> Температура

Ha 2.9a-k втором взаимодействие гетероциклов с этапе триамминхромтрикарбонилом в среде диоксана при 120 °С и нагревании в течение 4—6 часов давало целевые продукты 2.7 (схема 2.10). При этом установлено, что соединения **2.7h, j, k**, содержащие заместители пропен-1-ил-1, 2-фурил и 2-пиридил соответственно, данным способом не образуются (из реакционных смесей удавалось выделить лишь исходные компоненты). Этот экспериментальный факт не вызывал удивления, так как известно [373, 384], что большинство непредельных углеводородов, а также некоторые гетероциклы, такие как производные фурана и взаимодействии с гексакарбонилом пиридина, при хрома или триамминхромтрикарбонилом не дают соответствующих хромтрикарбонильных πкомплексов.





Проведение синтеза соединений 2.7 данным методом показало, что диастереомеры образовывались в соотношении, близком к 1:1. Выделение данных комплексов осуществлялось с помощью колоночной хроматографии и в качестве элюента использовалась смесь гексана с этилацетатом. Выделить в чистом виде удалось те же комплексы, что и в случае реакции конденсации аминобензилового карбонильными соединениями. Выходы конечных спирта С продуктов варьировались в диапазоне 25-85%. Данные, полученные в результате их анализа методами ВЭЖХ, ИК-, УФ-, ЯМР <sup>1</sup>Н-спектроскопии, соответствуют тем, что получены при анализе этих веществ, синтезированных методом конденсации.

В заключение следует отметить, что в результате проведенного исследования были впервые синтезированы и охарактеризованы различными методами (η<sup>6</sup>-

арен)хромтрикарбонильные производные 1,4-дигидро-3,1-бензоксазинов 2.7а-k, которые получались двумя независимыми методами: реакцией свободных от металла гетероциклов 2.9а-k с триамминхромтрикарбонилом и конденсацией хромсодержащего аминоспирта 2.3с с карбонильными соединениями 2.1а-с,е-l.

Показано [372], что метод конденсации хромсодержащего аминоспирта **2.3с** с карбонильными соединениями **2.1а-с,е-I** по сравнению с реакцией свободных от металла гетероциклов **2.9а-k** с триамминхромтрикарбонилом позволяет синтезировать более широкий круг *N*-H-замещенных продуктов.

### ГЛАВА III ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования, результаты которых приведены в данной диссертационной работе, выполнены на кафедре химии нефти (нефтехимического синтеза) Нижегородского государственного университета им. Н.И. Лобачевского (Национальный исследовательский университет).

### 1 Подготовка исходных веществ

Растворители перегоняли над металлическим натрием при атмосферном давлении. Этилацетат сушили над хлористым кальцием и перегоняли [385]. Использовали коммерческие параформ и ацетальдегид («Sigma-Aldrich») без предварительной очистки. Альдегиды и кетоны очищали перегонкой при атмосферном или пониженном давлении. 2-(N-Фениламино)этанол (2.2а), 1-(N-(2.2b)фениламино)пропан-2-ол И 3-(*N*-фениламино)пропан-1-ол (2.3a)синтезировали арилированием соответствующих коммерческих аминоалканолов иодбензолом в присутствии хлорида меди (I) в соответствии с методикой [386]. 2-Аминобензиловый спирт («Sigma-Aldrich») очишали путем его перекристаллизации из смеси гексан-этилацетат (10:1). Соединения 2.9a-d,f,i [306], **2.9e** [380], **2.9g** [381], **2.9h**, **2.9j** [382], **2.9k** [383] получали конденсацией альдегидов и кетонов 2.1a-c,e-l с 2-аминобензиловым спиртом в среде ТГФ и присутствии сульфата магния по методике, аналогичной описанной в работе [379]. Температура, время синтеза и выходы соединений 2.9а-к представлены в таблице 16. Соединения 2.4a-с [139, 365], d [139], n, j и 2.5е [14] получали конденсацией 2-(N-(2.2a),фениламино)этанола 1-(N-фениламино)пропанола-2 (2.2b)И моноэтаноламина с альдегидами 2.1а-с,е в среде ТГФ и присутствии сульфата аналогичной описанной в работе [379]. магния по методике, Бензальдегидхромтрикарбонил (2.1d) получали по известной методике [387]. Соединения 2.12а,с получали ацилированием 1,3-оксазациклоалканов 1а, b уксусным ангидридом [376]. Синтез 1,3-оксазолидина 2.12b проводили по методике введения Вос-группы в сложные эфиры аминокислот под действием ди*трет*- бутилдикарбоната в хлороформе [377]. Триамминхромтрикарбонил  $(NH_3)_3Cr(CO)_3$  синтезировали по описанному в литературе методу [364].

# 2 Выделение синтезированных веществ и методики проведения анализа их чистоты и строения

Выделение и очистку продуктов осуществляли с помощью колоночной хроматографии с использованием силикагеля (СГ) марки «ACROS» 0.035-0.070 мм при использовании в качестве элюента смеси гексан-этилацетат, а также методом кристаллизации и перекристаллизации с использованием в качестве растворителей гексана, смеси гексана с этилацетатом, хлористым метиленом. Операции с металлосодержащими соединениями проводили в атмосфере аргона.

**ВЭЖХ** проводили на хроматографе «Knauer Smartline 5000» с PDA (УФ)детектором S 2600, колонкой Диасфер-110-С16 (5 мкм, 4.6×250 мм) при использовании элюента – ацетонитрил - вода (84:16). Скорость потока элюента составляла 0.8 или 1.0 мл/мин. Анализируемое вещество (реакционную смесь) массой 1-2 мг растворяли в 1 мл ацетонитрила и в количестве 0.1 мл вводили шприцем в инжектор хроматографа. Регистрация **УФ-спектров** элюатов проводилась в диапазоне 200-500 нм. Для контроля за ходом реакции применялся метод тонкослойной хроматографии с использованием стеклянных камер и элюента из смеси гексана и этилацетата в соотношении 4:1.

**ИК-спектры** записывались на приборе «Инфралюм ФТ – 801» в диапазоне 450 – 4000 см<sup>-1</sup> в смеси с КВr путем приготовления таблетки.

Спектры ЯМР <sup>1</sup>Н регистрировались на спектрометрах «Bruker DPX 200», «Bruker Avance DPX 400» и «Agilent DD2 NMR 400NB» (рабочие частоты 200, 400 и 400 МГц соответственно), растворитель – ацетон-d<sub>6</sub>, бензол-d<sub>6</sub>. Подстройка поля проводилась по сигналу ядер дейтерия растворителя. Ампулы с растворами аминоспиртов и гетероциклов, содержащих металлтрикарбонильные фрагменты, готовились непосредственно перед началом регистрации спектров.

Масс-спектрометрические исследования проводили на приборе «Trace DSQII» методом времяпролетной масс-спектрометрии при ионизации электронным ударом. При анализе металлсодержащих соединений несколько мкг исследуемого вещества помещались в микропробирку системы прямого ввода, которая через вакуумный шлюз вводилась непосредственно в ионный источник

масс-спектрометра, пробирка нагревалась от 50 до 450 °C со скоростью 100 °C/мин. При хромато-масс-спектрометрическом анализе некоординированных соединений использовалась капиллярная колонка TR-5 MS длиной 30 м и диаметром 0.25 мм. Пробы (раствор исследуемого вещества в гексане/диэтиловом эфире) объемом 0.1 мкл вводились шприцем в инжектор хроматографа, нагретый до 250 °C, скорость потока газа-носителя (гелий марки M-60) составляла 1 мл/мин. Колонка нагревалась от 60 до 250 °C со скоростью 15 °C/мин). Масс-спектры регистрировались в диапазоне массовых чисел 50-700 при энергии ионизирующих электронов 70 эВ.

Определение температуры плавления проводилось капилярным методом.

Рентгеноструктурный анализ проводился с использованием дифрактометра «Smart Apex» (графитовый монохроматор,  $\lambda$  (Mo-K $\alpha$ ) = 0.71073 Å, температура 100 K). Учет поглощения осуществлялся по программе SADABS [388]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по  $F^2_{hkl}$  с анизотропными тепловыми параметрами для всех неводородных атомов. Атомы водорода структур помещены в геометрически рассчитанные положения и уточнены в модели «наездника». Все расчеты выполнены на персональном компьютере с использованием комплекса программ SHELXTL [389].

#### 3 Получение аренхромтрикарбонилсодержащих спиртов (общая методика)

В предварительно дегазированную и далее заполненную аргоном двухгорлую колбу с обратным холодильником, снабженную газовой бюреткой с дибутилфталатом, помещали 41 ммоль фенилсодержащего аминоспирта (2.2с, 2.2d, 2.3b, 2.3c), 7.6 г (41 ммоль) триаминхромтрикарбонила и 60 мл диоксана. Реакционную смесь нагревали на масляной бане при температуре 120 °C до выделения 2.1 л аммиака, затем колбу охлаждали и заполняли аргоном. Полученную реакционную смесь отфильтровывали на фильтре Шотта в токе аргона через слой Al<sub>2</sub>O<sub>3</sub>. Растворитель отгоняли в вакууме. Продукт получали в виде вязкой маслянистой жидкости желто-коричневого цвета. В случае соединения 2.3c продукт перекристаллизовывали из смеси гексан—этилацетат (9 : 1) и получали в виде желтого порошка.

**2-(\eta^{6}-Фенилхромтрикарбониламино)этанол-1 (2.2с)**. Выход 54%, масло. ВЭЖХ: 1 пик,  $\tau = 4.9$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 314, 434. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3402 ( $\nu$ (O–H, N–H)); 3098 ( $\nu$ (C–H<sub>Ar</sub>)); 2936, 2875 ( $\nu$ (C–H)); 1949, 1853 ( $\nu$ (C=O)); 1633, 1555 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 758, 681, 633 ( $\omega$ (C–H<sub>Ar</sub>)). Масс-спектр (ЭУ, 70 эВ), m/z ( $I_{\text{отн}}$  (%)): 273 [M]<sup>+</sup> (65), 217 [M – 2CO]<sup>+</sup> (16), 189 [M – 3CO]<sup>+</sup> (90), 143 [M – 3CO – CH<sub>2</sub>CH<sub>2</sub>OH – H]<sup>+</sup> (100), 137 [M – Cr(CO)<sub>3</sub>]<sup>+</sup> (14), 52 [Cr]<sup>+</sup> (4).

**1-(\eta^6-Фенилхромтрикарбониламино)пропанол-2 (2.2d)**. Выход 65%, масло. ВЭЖХ: 1 пик,  $\tau = 5.1$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 216, 317, 434. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3458, 3295 ( $\nu$ (O–H, N–H)); 3106 ( $\nu$ (C–H<sub>Ar</sub>)); 2953, 2872 ( $\nu$ (C–H)); 1952, 1853 ( $\nu$ (C=O)); 1633, 1555 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 784, 691 ( $\omega$ (C–H<sub>Ar</sub>)). Масс-спектр (ЭУ, 70 эВ), *m*/*z* ( $I_{\text{отн}}$  (%)): 287 [M]<sup>+</sup> (20), 231 [M – 2CO]<sup>+</sup> (15), 203 [M – 3CO]<sup>+</sup> (80), 143 [M – 3CO – CH<sub>2</sub>CH(Me)OH – H]<sup>+</sup> (100), [Cr]<sup>+</sup> (10).

**3-(\eta^{6}-Фенилхромтрикарбониламино)пропанол-1 (2.3b)**. Выход 33%, масло. ВЭЖХ: 1 пик,  $\tau = 5.0$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 314, 434. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3383 ( $\nu$ (O–H, N–H)); 3052, 3024 ( $\nu$ (C–H<sub>Ar</sub>)); 2937, 2877 ( $\nu$ (C–H)); 1947, 1861 ( $\nu$ (C=O)); 1602, 1557, 1504 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 752, 694, 635 ( $\omega$ (C–H<sub>Ar</sub>)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 287 [M]<sup>+</sup>(2), 203 [M– 3CO]<sup>+</sup>(10), 151 [M – Cr(CO)<sub>3</sub>]<sup>+</sup>(35), 106 [M – Cr(CO)<sub>3</sub> – (CH<sub>2</sub>)<sub>2</sub>OH]<sup>+</sup>(100), 77 [M – Cr(CO)<sub>3</sub> – NH(CH<sub>2</sub>)<sub>3</sub>OH]<sup>+</sup>(12), 52 [Cr]<sup>+</sup> (56).

( $\eta^{6}$ -2-Аминобензиловый спирт)хромтрикарбонил (2.3с). Выход 91%, желтый порошок, т.пл. 113—114 °С. ВЭЖХ: один пик,  $\tau = 4.6$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 315. ИК-спектр (KBr), v/см<sup>-1</sup>: 3591, 3477, 3364 (v(N—H, O—H)); 3090 (v(C<sub>Ar</sub>—H); 2846 (v(C—H); 1956, 1855, 1836 (v(C=O)); 1630, 1547 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 671 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (ЭУ, 70 эВ), *m*/*z* (*I*<sub>отн</sub> (%)): 259 [M]<sup>+</sup> (31), 203 [M — 2CO]<sup>+</sup> (8,3), 175 [M — 3CO]<sup>+</sup> (25), 157 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (100), 52 [Cr]<sup>+</sup> (49). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 4.35—4.54 (м, 3 H, CH<sub>2</sub>OH); 4.90 (т.д, 1 H, H<sub>Ar</sub>, *J* = 6.3, *J* = 0.8); 5.14 (д.д, 1 H, H<sub>Ar</sub>, *J* = 6.7, *J* = 0.8); 5.27 (уш. с, 2 H, NH<sub>2</sub>), 5.69—5.74 (м, 1 H, H<sub>Ar</sub>); 5.88 (д.д, 1 H, H<sub>Ar</sub>, *J* = 6.3, *J* = 1.2).

# 4 Синтез хромтрикарбонильных производных 1,3-оксазолидинов и 1,3оксазинанов

#### 4.1 Конденсация альдегидов с аминоспиртами в запаянной ампуле

Общая методика. В стеклянную ампулу емкостью 30 мл помещали аминоспирт, альдегид и 20 мл толуола. Ампулу дегазировали в жидком азоте и запаивали в вакууме, затем нагревали на масляной бане при 120 °C. Ампулу охлаждали до комнатной температуры, вскрывали, реакционную смесь концентрировали в вакууме. Из остатка с помощью колоночной хроматографией выделяли продукты реакции.

**2,5-Диметил-3-фенил-1,3-оксазолидины 2.4е**, *цис-* и *транс-*изомеры (1:1), получены в соответствии с общей методикой из 0.500 г (3.3 ммоля) аминоспирта, 0.410 г (9.3 ммоля) ацетальдегида, продолжительность реакции 6 ч, элюент – гексан–этиацетат (2:1). Выход 58%, бесцветное вязкое масло. ВЭЖХ: 2 пика,  $\tau = 8.9$  и 9.1 мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 202, 247, 434. Масс-спектр (ЭУ, 70 эВ), *m/z* (*I*<sub>отн</sub> (%)): 177 [M]<sup>+</sup> (30), 162 [M – Me]<sup>+</sup> (25), 134 [M – CH<sub>2</sub>CHMe – H]<sup>+</sup> (100), 104 [M – MeCHOCH(Me) – H]<sup>+</sup> (45), 91 [M – MeCHOCH(Me)CH<sub>2</sub>]<sup>+</sup> (20), 77 [M – MeCHOCH(Me)CH<sub>2</sub>N]<sup>+</sup> (30). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 1.30–1.41 (м, 12 H, Me); 2.83, 3.14 (оба т, по 1 H, NC<u>H</u><sub>2</sub>CH, *J* = 8.6); 3.55 (д.д, 1 H, NC<u>H</u><sub>2</sub>CH, *J* = 8.6, *J* = 5.9); 3.64 (д.д., 1 H, NC<u>H</u><sub>2</sub>CH, *J* = 8.2, *J* = 5.9); 4.04–4.17, 4.45-4.56 (оба м, по 1 H, CH<sub>2</sub>C<u>H</u>O); 5.19 (кварт., 1 H, NCHO, *J* = 5.1); 5.26 (кварт., 1 H, NCHO, *J* = 5.5); 6.58 (т, 4 H, *м*-PhCr, *J* = 9.4); 6.63–6.73 (м, 2 H, *n*-PhCr,); 7.14–7.23 (м, 4 H, *o*-PhCr).

Соединения 2.4f и 2.6 получены в соответствии с общей методикой из 0.140 г (2.0 ммоля) аминоспирта 2с и 0.550 г параформа (1а). Продолжительность реакции 4 ч, элюент – гексан–этиацетат (3:1). Выделены кристаллические продукты реакции 2.4f и 2.6, которые перекристаллизовывали из смеси гексан–этилацетат (4:1) и сушили в вакууме.

**3-(η<sup>6</sup>-Фенилхромтрикарбонил)-1,3-оксазолидин (2.4f)**. Выход 35%, т.пл. 127–128 °С. ВЭЖХ: 1 пик, τ = 6.0 мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O), λ/нм: 219, 318,

435. ИК-спектр (КВг), v/см<sup>-1</sup>: 3082 (v(C<sub>Ar</sub>–H)); 2902, 2857 (v(C–H)); 1957, 1883 (v(C=O)); 1607, 1553 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 810, 775, 682, 671 ( $\omega$ (C<sub>Ar</sub>–H)). Macc-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 285 [M]<sup>+</sup> (7), 229 [M – 2CO]<sup>+</sup> (3), 201 [M – 3CO]<sup>+</sup> (100), 171 [M – 3CO – CH<sub>2</sub>O]<sup>+</sup> (65), 105 [M – Cr(CO)<sub>3</sub> – CH<sub>2</sub>CH<sub>2</sub>O]<sup>+</sup> (50), 52 [Cr]<sup>+</sup> (87). Спектр ЯМР <sup>1</sup>H (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 3.40 (т, 2 H, NC<u>H</u><sub>2</sub>CH<sub>2</sub>, *J* = 6.3); 4.13 (т, 2 H, OC<u>H</u><sub>2</sub>CH<sub>2</sub>, *J* = 6.3); 4.79 (c, 2 H, NCH<sub>2</sub>O); 4.99 (д, 2 H, *o*-PhCr, *J* = 6.7); 5.06 (т, 1 H, *n*-PhCr, *J* = 6.3); 5.83 (т, 2 H, *м*-PhCr, *J* = 6.3).

Гексагидро-1,3-диокса-5-( $\eta^6$ -фенилхромтрикарбонил)азепин (2.6). Выход 30%, т.пл. 111–112 °С. ВЭЖХ: 1 пик,  $\tau = 6.7$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 318, 434. ИК-спектр (KBr), v/см<sup>-1</sup>: 3013 (v(C<sub>Ar</sub>–H)); 2865 (v(C–H)); 1938, 1846 (v(C=O)); 1631, 1607, 1541 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 846, 756, 676, 633 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 315 [M]<sup>+</sup> (10), 231 [M – 3CO]<sup>+</sup> (8), 201 [M – 3CO – CH<sub>2</sub>O]<sup>+</sup> (80), 171 [M – 3CO – CH<sub>2</sub>OCH<sub>2</sub>O]<sup>+</sup> (50), 149 [M – Cr(CO)<sub>3</sub> – CH<sub>2</sub>O]<sup>+</sup> (90), 143 [M – 3CO – CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>OCH<sub>2</sub>]<sup>+</sup> (55), 105 [M – Cr(CO)<sub>3</sub> – CH<sub>2</sub>OCH<sub>2</sub>O]<sup>+</sup> (100), 52 [Cr]<sup>+</sup> (83). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 3.55, 3.98 (оба т, по 2 H, NC<u>H</u><sub>2</sub>CH<sub>2</sub>, OC<u>H</u><sub>2</sub>CH<sub>2</sub>, *J* = 5.1); 4.83, 4.97 (оба с, по 2 H, NCH<sub>2</sub>O, OCH<sub>2</sub>O); 5.10 (т, 1 H, *n*-PhCr, *J* = 6.3); 5.38 (д, 2 H, *o*-PhCr, *J* = 7.0); 5.81 (т, 2 H, *м*-PhCr, *J* = 7.0).

**2-Метил-3-(\eta^6-фенилхромтрикарбонил)-1,3-оксазолидин (2.4g)** получен в соответствии с общей методикой из 0.140 г (0.5 ммоля) аминоспирта **2.2с** и 0.550 г (12.5 ммоля) ацетальдегида (**2.1b**). Продолжительность реакции 6 ч, элюент – гексан–этиацетат (3:1). Продукт перекристаллизовывали из смеси гексан–этилацетат (6:1) и сушили в вакууме. Выход 31%, т.пл. 70–71 °С. ВЭЖХ: 1 пик,  $\tau$  = 7.3 мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 312, 435. ИК-спектр (KBr), v/см<sup>-1</sup>: 3088 (v(C<sub>Ar</sub>–H)); 2851, 2926 (v(C–H)); 1948, 1882 (v(C=O)); 1603 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 815, 667, 632 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m*/*z* ( $I_{oтн}$  (%)): 299 [M]<sup>+</sup> (10), 243 [M – 2CO]<sup>+</sup> (10), 215 [M – 3CO]<sup>+</sup> (48), 185 [M – 3CO – CH<sub>2</sub>O]<sup>+</sup> (100), 171 [M – 3CO – CH<sub>2</sub>CH<sub>2</sub>O]<sup>+</sup> (10), 143 [M – 3CO – CH<sub>2</sub>CH<sub>2</sub>OCHMe]<sup>+</sup> (28), 77 [M – Cr(CO)<sub>3</sub> – CH<sub>2</sub>CH<sub>2</sub>OCH(Me)N]<sup>+</sup> (10), [Cr]<sup>+</sup> (11). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д.,  $J/\Gamma$ П): 1.40 (д, 3 H, Me, J = 5.1); 3.34–3.45, 3.46–3.58, 3.98–4.11, 4.11–4.23 (все м, по

1 H, NCH<sub>2</sub>, NCH<sub>2</sub>, OCH<sub>2</sub>, OCH<sub>2</sub>); 4.97–5.09 (м, 3 H, C<u>H</u>Me, *м*-PhCr); 5.15 (д.д, 1 H, *n*-PhCr, *J* = 10.2, *J* = 4.7); 5.83 (т, 2 H, *o*-PhCr, *J* = 5.5).

**5-Метил-3-(\eta^6-фенилхромтрикарбонил)-1,3-оксазолидин (2.4h)** получен в соответствии с общей методикой из 0.170 г (0.6 ммоля) аминоспирта **2.2d** и 0.580 г параформа (**2.1a**). Продолжительность реакции 6 ч, элюент – гексан–этиацетат (4:1), продукт перекристаллизовывали из смеси гексан–этилацетат (4:1) и сушили в вакууме. Выход 30%, желтые кристаллы, т.пл. 131–132 °C. ВЭЖХ: 1 пик,  $\tau = 7.3$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 316, 432. ИК-спектр (KBr), v/см<sup>-1</sup>: 3048 (v(C<sub>Ar</sub>–H)); 2995 (v(C–H)); 1947, 1852 (v(C=O)); 1552 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 825, 674 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 299 [M]<sup>+</sup> (2), 243 [M – 2CO]<sup>+</sup> (4), 215 [M – 3CO]<sup>+</sup> (20), 171 [M – 3CO – MeCHO]<sup>+</sup> (100), 143 [M – 3CO – CH<sub>2</sub>CH(Me)OCH<sub>2</sub>]<sup>+</sup> (23), [Cr]<sup>+</sup> (29). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 1.35 (д, 3 H, Me, *J* = 5.9); 2.93 (т, 1 H, NCH<sub>2</sub>CH, *J* = 8.2); 3.53 (д.д, 1 H, NCH<sub>2</sub>CH, *J* = 8.2, *J* = 6.3); 4.72 (д, 1 H, NCH<sub>2</sub>O, *J* = 2.4); 4.89–5.00 (м, 3 H, NCH<sub>2</sub>O, PhCr); 5.04, 5.82 (оба т, по 1 H, PhCr, *J* = 5.9); 5.82 (т, 2 H, *м*-PhCr, *J* = 5.9).

**Изомеры комплекса 2.4і** получены по общей методике из 1.200 г (4.2 ммоля) аминоспирта **2.2d** и 1.760 г (40.0 ммолей) ацетальдегида (**2.1d**). Продолжительность реакции 6 ч, элюент: гексан–этиацетат (4:1). Изомеры были разделены с помощью хроматографической колонки при использовании силикагеля и смеси элюентов гексан–этилацетат. Сначала из колонки выходит *цис*-изомер *cis*-**2.4i**, затем *mpaнс*-изомер *trans*-**2.4i**. Изомеры перекристаллизованы из смеси гексан–этилацетат (6:1) и высушены в вакууме.

*щис*-2,5-Диметил-3-( $\eta^6$ -фенилхромтрикарбонил)-1,3-оксазолидин (*cis*-2.4i). Выход 18%, желтые кристаллы, т.пл. 84–85 °С. ВЭЖХ: 1 пик,  $\tau = 8.4$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 317, 432. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3052 ( $\nu$ (C<sub>Ar</sub>-H)); 2894 ( $\nu$ (C-H)); 1938, 1855 ( $\nu$ (C=O)); 1546 ( $\nu$ (C<sub>Ar</sub>-C<sub>Ar</sub>)); 789, 669 ( $\omega$ (C<sub>Ar</sub>-H)). Массспектр (ЭУ, 70 эВ), *m*/*z* ( $I_{\text{отн}}$  (%)): 313 [M]<sup>+</sup> (2), 257 [M – 2CO]<sup>+</sup> (2), 229 [M – 3CO]<sup>+</sup> (25), 185 [M – 3CO – MeCHO]<sup>+</sup> (100), 143 [M – 3CO – MeCHOCH(Me)CH<sub>2</sub>]<sup>+</sup> (38), 77 [M – Cr(CO)<sub>3</sub> – MeCHOCH(Me)CH<sub>2</sub>N]<sup>+</sup> (12), 52 [Cr]<sup>+</sup> (22). Спектр ЯМР <sup>1</sup>Н (ацетонd<sub>6</sub>, 400 МГц, δ, м.д., *J*/Гц): 1.32 (д, 3 H, Me, *J* = 5.9); 1.39 (д, 3 H, Me, *J* = 5.5); 2.84– 2.88 (м, 1 H, CH<sub>2</sub>); 3.63 (д.д, 1 H, CH<sub>2</sub>, *J* = 8.6, *J* = 5.5); 4.45–4.54 (м, 1 H, CH<sub>2</sub>C<u>H</u>Me); 4.98 (д, 2 H, *o*-PhCr, *J* = 7.0); 5.04 (т, 1 H, *n*-PhCr, *J* = 6.3); 5.25 (кварт., 1 H, NC<u>H</u>(Me)O, *J* = 5.5); 5.80–5.83 (т, 2 H, *м*-PhCr, *J* = 6.3).

### *транс*-2,5-Диметил-3-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3-оксазолидин

(*trans*-2.4i). Выход 53%, т.пл. 105–106 °С. ВЭЖХ: 1 пик,  $\tau = 7.8$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 317, 431. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3040 ( $\nu$ (C<sub>Ar</sub>–H)); 2921, 2852 ( $\nu$ (C–H)); 1935, 1849 ( $\nu$ (С≡O)); 1630, 1547 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 679, 799 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 313 [M]<sup>+</sup> (5), 257 [M – 2CO]<sup>+</sup> (5), 229 [M – 3CO]<sup>+</sup> (30), 185 [M – 3CO – MeCHO]<sup>+</sup> (100), 143 [M – 3CO – MeCHOCH(Me)CH<sub>2</sub>]<sup>+</sup> (31), 77 [M – Cr(CO)<sub>3</sub> – MeCHOCH(Me)CH<sub>2</sub>N]<sup>+</sup> (12), 52 [Cr]<sup>+</sup> (30). Спектр ЯМР <sup>1</sup>H (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 1.33 (д, 3 H, Me, *J* = 5.9); 1.44 (д, 3 H, Me, *J* = 4.7); 3.02–3.13 (м, 1 H, CH<sub>2</sub>); 3.31 (д, 1 H, CH<sub>2</sub>, *J*= 5.5); 3.55–3.62 (м, 1 H, CH<sub>2</sub>C<u>H</u>Me); 4.10-4.20 (м, 1 H, NC<u>H</u>(Me)O); 4.93 (д, 1 H, *o*-PhCr, *J* = 7.0); 5.00-5.11 (м, 2 H, *o*-PhCr, *n*-PhCr); 5.84 ( $\tau$ , 2 H, *м*-PhCr, *J* = 7.0).

**3-Фенил-1,3-оксазинан (2.5а)** получен в соответствии с общей методикой из 3.00 г (19.9 ммоля) аминоспирта **2.3а** и 2.460 г параформа (**2.1а**). Продолжительность реакции 2 ч, элюент – гексан–этиацетат (4:1). Выход 61%, масло. ВЭЖХ: 1 пик,  $\tau = 6.5$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda$ /нм: 202, 247, 282 нм. ИК-спектр (KBr),  $\nu/cm^{-1}$ : 3038, 3070 ( $\nu(C_{Ar}$ –H)); 2952, 2858 ( $\nu(C$ –H)); 1599 ( $\nu(C_{Ar}-C_{Ar})$ ); 835, 737, 694 ( $\omega(C_{Ar}$ –H)). Масс-спектр (ЭУ, 70 эВ), m/z ( $I_{отн}$  (%)): 163 [M]<sup>+</sup> (64), 162 [M – H]<sup>+</sup> (87), 134 [M – (CH<sub>2</sub>)<sub>2</sub> – H]<sup>+</sup> (30), 120 [M – (CH<sub>2</sub>)<sub>3</sub> – H]<sup>+</sup> (13), 105 [M – O(CH<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (100), 104 [M – O(CH<sub>2</sub>)<sub>3</sub> – H]<sup>+</sup> (71), 91 [M – CH<sub>2</sub>O(CH<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (9), 77 [M – NCH<sub>2</sub>O(CH<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (27). Спектр ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д.,  $J/\Gamma$ ц): 1.36 (квинт., 2 H, CH<sub>2</sub>CH<sub>2</sub>, J = 5.5); 3.56 (т, 2 H, NCH<sub>2</sub>CH<sub>2</sub>, J = 5.5); 3.89 (т, 2 H, NCH<sub>2</sub>CH<sub>2</sub>, J = 5.5); 4.90 (с, 2 H, NCH<sub>2</sub>O); 6.88 (т, 1 H, *n*-Ph, J = 7.4); 7.09 (д., 2 H, *o*-Ph, J = 8.2); 7.28 (т., 2 H, *м*-Ph, J = 8.2).

**2,3-Дифенил-1,3-оксазинан** (**2.5b**). В одногорлую круглодонную колбу, снабженную насадкой Дина-Старка, помещали 2.440 г (23.0 ммоль) бензальдегида

(2.1c), 3.410 г (22.6 ммоль) 3-фениламинопропанола-1 (2.3a) и 35 мл толуола. Реакционную смесь нагревали на масляной бане в течение 4 ч при температуре 120 °С, затем охлаждали до комнатной температуры и концентрировали в вакууме. Из остатка с помощью колоночной хроматографии (элюент: гексан-этилацетат, 4:1) выделили продукт 2.5b, который перекристаллизовывали смеси ИЗ гексан-этилацетат (4:1) и сушили в вакууме. Выход 28 %, т.пл. 23-24 °С. ВЭЖХ: 1 пик,  $\tau = 12.2$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda_{max}$ /нм: 205, 248 нм. ИК-спектр (KBr), v/cm<sup>-1</sup>: 3058, 3032 (v(C–H<sub>Ar</sub>)); 2950, 2922, 2850 (v(C–H)); 1598 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 757, 730, 698 (ω(C–H<sub>Ar</sub>)). Macc-спектр (ЭУ, 70 эВ), m/z ( $I_{0TH}$  (%)): 239 [M]<sup>+</sup> (22), 181 [M –  $O(CH_2)_3]^+$  (20), 162  $[M - Ph]^+$  (47), 132 [M - PhCHO - H] (25), 105 [M - PhCHO - H]PhCHO(CH<sub>2</sub>)<sub>2</sub>]<sup>+</sup>(100), 104  $[M - PhCHO(CH_2)_2 - H]^+(72)$ , 91  $[M - PhCHO(CH_2)_3]$  (13), 77 [M – PhCHO(CH<sub>2</sub>)<sub>3</sub>N]<sup>+</sup>(25). ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д.,  $J/\Gamma$ ц): 1.55–1.69, 1.69–1.82, 3.49–3.60, 3.81–3.96, 3.61–3.71, 4.00–4.16 (все м, по 1 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, NCH<sub>2</sub>, NCH<sub>2</sub>, OCH<sub>2</sub>, OCH<sub>2</sub>); 6.02 (c, 1 H, CHPh); 6.84 (T, 1 H, *n*-PhN, J = 7.0); 7.08–7.21 (м, 4 H, *о*,*м*-PhN); 7.25 (т, 1 H, *n*-Ph, *J* = 7.0); 7.33 (т, 2 H, *м*-Ph, *J* = 7.0); 7.48 (д, 2 H, *o*-Ph, *J* = 7.4).

**3-(** $\eta^6$ **-Фенилхромтрикарбонил)-1,3-оксазинан (2.5с)** получен в соответствии с общей методикой из 2.530 г (8.8 ммоля) аминоспирта **2.3b**, 1.720 г параформа (**2.1a**) и 35 мл толуола в ампуле емкостью 50 мл. Продолжительность реакции 1.5 ч, элюент гексан–этилацетат (2:1). Продукт 5с перекристаллизовывали из смеси гексан–этилацетат (4:1) и сушили в вакууме. Выход 22%, т.пл. 114–115 °C. ВЭЖХ: 1 пик,  $\tau = 6.6$  мин. УФ-спектр (CH<sub>3</sub>CN, H<sub>2</sub>O),  $\lambda_{max}$ /нм: 219, 318, 436. ИК-спектр (KBr),  $\nu/cm^{-1}$ : 3113 ( $\nu(C_{Ar}$ —H); 2919, 2854 ( $\nu(C$ —H)); 1948, 1848 ( $\nu(C$ =O)); 1613, 1540 ( $\nu(C_{Ar}$ —C<sub>Ar</sub>)); 677, 630 ( $\omega(C_{Ar}$ —H)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{oтн}$  (%)): 299 [M]<sup>+</sup> (52), 243 [M – 2CO]<sup>+</sup> (29), 215 [M – 3CO]<sup>+</sup> (76), 187 [M – 3CO – (CH<sub>2</sub>)<sub>2</sub>]<sup>+</sup> (32), 171 [M – 3CO – (CH<sub>2</sub>)<sub>3</sub> – 2H]<sup>+</sup> (28), 157 [M – 3CO – (CH<sub>2</sub>)<sub>3</sub>O]<sup>+</sup> (86), 121 [M – Cr(CO)<sub>3</sub> – (CH<sub>2</sub>)<sub>3</sub>]<sup>+</sup> (12), 120 [M – Cr(CO)<sub>3</sub> – (CH<sub>2</sub>)<sub>3</sub>-H]<sup>+</sup> (100), 52 [Cr]<sup>+</sup> (14). ЯМР <sup>1</sup>Н (ацетон-d<sub>6</sub>, 400 МГц,  $\delta$ , м.д., *J*/Гц): 1.79 (квинт., 2 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, *J* = 5.5); 3.50 (т, 2 H, NCH<sub>2</sub>2CH<sub>2</sub>,

*J* = 5.5); 3.85 (т, 2 H, OC<u>H</u><sub>2</sub>CH<sub>2</sub>, *J* = 5.5); 4.82 (с, 2 H, NCH<sub>2</sub>O); 5.12 (т, 1 H, *n*-PhCr, *J* = 6.3); 5.40 (д, 2 H, *o*-PhCr, *J* = 6.7); 5.78 (т, 2 H, *м*-PhCr, *J* = 6.3).

#### 4.2 Реакция триамминхромтрикарбонила с 1,3-оксазациклоалканами

Общая методика. В двухгорлую колбу с обратным холодильником, снабженную газовой бюреткой и заполненной дибутилфталатом, помещали 24 ммоля 1,3-оксазациклоалкана 2.4а-е, j, 2.5а, b, 24 ммоль триамминхромтрикарбонила и 60 мл диоксана. Реакционную смесь нагревали на масляной бане при температуре 120 °C до выделения 1.5 л аммиака, затем колбу охлаждали и заполняли аргоном. Полученную смесь отфильтровывали через фильтр Шотта, заполненный оксидом алюминия, и отгоняли растворитель. Из остатка колоночной хроматографией выделяли продукты реакции, которые перекристаллизовывали из смеси гексана с этилацетатом. Образующиеся желтые кристаллы отфильтровали на фильтре Шотта, после чего сушили в эксикаторе.

Выходы продуктов **2.4f-i, k-m, 2.5c, d** указаны в таблице 13, спектральные данные приведены в разделе 4.1 экспериментальной части.

**3-Ацетил-2-(\eta^6-фенилхромтрикарбонил)-1,3-оксазолидин (2.4q).** Выход 73%, т.пл. = 90–91 °С. ВЭЖХ: один пик,  $\tau$  = 5.2 мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 313. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3107 ( $\nu$ (C<sub>Ar</sub>–H)); 2974, 2907 ( $\nu$ (C–H)); 1948, 1857 ( $\nu$ (C=O)); 1651 ( $\nu$ (C=O)); 1490, 1440 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 860, 815 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m*/*z* ( $I_{\text{отн}}$  (%)): 327 [M]<sup>+</sup> (1), 299 [M – CO]<sup>+</sup> (2), 271 [M – 2CO]<sup>+</sup> (2), 243 [M – 3CO]<sup>+</sup> (20), 174 [M – Cr(CO)<sub>3</sub>– O – H]<sup>+</sup> (100), 77 [Ph]<sup>+</sup> (4), 52 [Cr]<sup>+</sup>(8)). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гп): 2.10 (с, 3 H, Me); 3.75 (уш. к, 1 H, NCH<sub>2</sub>, *J* = 7.0); 3.90–3.98 (м, 1 H, NCH<sub>2</sub>); 4.14 (к, 1 H, OCH<sub>2</sub>, *J* = 7.4); 4.34 (уш. д.д, 1 H, OCH<sub>2</sub>, *J* = 7.4, *J* = 5.1); 5.53 (д.д, 2 H, *м*-H<sub>PhCr</sub>, *J* = 9.8, *J* = 5.9); 5.66 (т, 1 H, *n*-H<sub>PhCr</sub>, *J* = 5.9); 5.82, 5.99 (оба д, по 1 H, *o*-H<sub>PhCr</sub>, *J* = 6.7); 6.02 (с, 1 H, C<u>H</u>(Ph)).

# **3**-*Трет*-бутилоксикарбонил-2-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3оксазолидин (2.4r). Выход 71%, т.пл. = 128–129 °С. ВЭЖХ: один пик, τ = 7.9 мин. УФ-спектр (MeCN, H<sub>2</sub>O), λ/нм: 219, 313. ИК-спектр (KBr), ν/см<sup>-1</sup>: 3086 (ν(C<sub>Ar</sub>-H));

3003, 2976, 2905 (v(C–H)); 1902, 1873 (v(C=O)); 1676 (v(C=O)); 1610, 1540 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 773, 670 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 385 [M]<sup>+</sup> (1), 357 [M – CO]<sup>+</sup> (1), 329 [M – 2CO]<sup>+</sup> (7), 301 [M – 3CO]<sup>+</sup> (26), 244 [M – 3CO – Bu<sup>t</sup>]<sup>+</sup> (69), 174 [M – Cr(CO)<sub>3</sub> – OBu<sup>t</sup> – 2H]<sup>+</sup> (100), 52 [Cr]<sup>+</sup> (12). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 1.45 (с, 9 H, Bu<sup>t</sup>); 3.46 (м, 1 H, NCH<sub>2</sub>); 3.82–3.87 (м, 1 H, NCH<sub>2</sub>); 4.03 (м, 1 H, OCH<sub>2</sub>); 4.20–4.25 (м, 1 H, OCH<sub>2</sub>); 5.53–5.57 (м, 2 H, *м*-H<sub>PhCr</sub>); 5.68 (т, 1 H, *n*-H<sub>PhCr</sub>, *J* = 6.3); 5.81 (д, 1 H, *o*-H<sub>PhCr</sub>, *J* = 6.7); 5.84 (с, 1 H, C<u>H</u>(Ph)); 5.88–5.92 (м, 1H, *o*-H<sub>PhCr</sub>).

**3-Ацетил-2-(\eta^6-фенилхромтрикарбонил)-1,3-оксазинан** (2.5g). Выход 53%, т.пл. = 110–111 °С. ВЭЖХ – 1 пик,  $\tau$  = 5.0 мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 217, 315, 430. ИК-спектр (KBr), v/см<sup>-1</sup>: 3103 (v(C<sub>Ar</sub>–H)); 2993, 2937, 2873 (v(C–H)); 1971, 1894 (v(C=O)); 1653 (v(C=O)); 1487 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 887, 800 ( $\omega$ (C<sub>Ar</sub>–H)). Macc-спектр (ЭУ, 70 эВ), *m/z* ( $I_{\text{отн}}$  (%)): 341 [M]<sup>+</sup> (1), 313 [M – CO]<sup>+</sup> (5), 285 [M – 2CO]<sup>+</sup> (26), 257 [M – 3CO]<sup>+</sup> (100), 229 [M – 3CO – (CH<sub>2</sub>)<sub>2</sub>]<sup>+</sup> (35), 158 [M – 3CO – (CH<sub>2</sub>)<sub>3</sub>N(CO)Me]<sup>+</sup> (32), 52 [Cr]<sup>+</sup> (28). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 2.18 (с, 3 H, Me); 1.62–1.78, 1.84–1.98 (оба м, по 1 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 3.72–3.82, 3.86–4.00 (оба м, по 2 H, NCH<sub>2</sub>, OCH<sub>2</sub>); 5.53–5.80 (м, 5 H, *o*,*m*,*n*-PhCr); 5.92 (уш. с, 1 H, CH(Ph)).

**3-(η<sup>6</sup>-Фенилхромтрикарбонил)-2-этил-1,3-оксазолидин (2.4k).** Выход 30 %, т.пл. 111–112 °С. ВЭЖХ: один пик, τ = 6.3 мин. УФ-спектр, λ/нм: 219, 317, 430. ИК-спектр (КВг), v/см<sup>-1</sup>: 3099 (v(C<sub>Ar</sub>–H)); 2955, 2935, 2876 (v(C–H)); 1942, 1869 (v(C≡O)); 1549, 1464 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 808, 682 (ω(C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ): 313 [M]<sup>+</sup> (29), 229 [M – 3CO]<sup>+</sup> (78), 199 [M – 3CO – CH<sub>2</sub>O]<sup>+</sup> (28), 148 [M – Cr(CO)<sub>3</sub> – Et]<sup>+</sup> (100), 52 [Cr]<sup>+</sup> (20). Спектр ЯМР <sup>1</sup>H (δ, м.д., *J*/Гц): 0.97 (т, 3 H, Me, *J*=7.4); 1.59–1.70, 1.79–1.90, 3.36–3.44, 3.47–3.55, 4.02–4.09, 4.11–4.18 (все м, по 1 H, С<u>H</u><sub>2</sub>Me, C<u>H</u><sub>2</sub>Me, NCH<sub>2</sub>, NCH<sub>2</sub>, OCH<sub>2</sub>, OCH<sub>2</sub>); 4.95–5.10 (м, 4 H, C<u>H</u>(Et), H<sub>PhCr</sub>); 5.80–5.85 (м, 2 H, H<sub>PhCr</sub>).

**2-Фенил-3-(η<sup>6</sup>-фенилхромтрикарбонил)-1,3-оксазолидин (2.41).** Выход 40 %, т.пл. 99–100 °С. ВЭЖХ: один пик, τ = 8.3 мин. УФ-спектр, λ/нм: 217, 317. ИК-спектр (KBr), v/см<sup>-1</sup>: 3094 (v(C<sub>Ar</sub>-H)); 2955, 2924, 2876 (v(C-H)); 1948, 1855
(v(C=O)); 1547, 1477 (v(C<sub>Ar</sub>-C<sub>Ar</sub>)); 810, 756, 683 ( $\omega$ (C<sub>Ar</sub>-H)). Масс-спектр (ЭУ, 70 эВ): 361 [M]<sup>+</sup> (5), 277 [M – 3CO]<sup>+</sup> (72), 247 [M – 3CO – CH<sub>2</sub>O]<sup>+</sup> (100), 143 [M – 3CO – CH<sub>2</sub>CH<sub>2</sub>OCH (Ph)]<sup>+</sup> (66), 52 [Cr]<sup>+</sup> (20). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 3.59 (д.д, 1 H, NCH<sub>2</sub>, *J* = 8.6, *J* = 6.7); 3.85 (д.т, 1 H, NCH<sub>2</sub>, *J* = 8.6, *J* = 6.3); 4.04-4.28 (м, 2 H, OCH<sub>2</sub>); 4.69 (д.д, 1 H, *м*-H<sub>PhCr</sub>, *J* = 7.0, *J* = 6.3); 5.01 (т, 1 H, *o*-H<sub>PhCr</sub>, *J* = 6.3); 5.14 (д.д, 1 H, *м*-H<sub>PhCr</sub>, *J* = 7.0, *J* = 6.3); 5.66 (т, 1 H, *o*-H<sub>PhCr</sub>, *J* = 6.3); 5.81 (с, 1 H, C<u>H</u>Ph); 5.83 (т, 1 H, *n*-H<sub>PhCr</sub>, *J* = 7.0); 7.36–7.47 (м, 3 H, *o*,*n*-H<sub>Ph</sub>); 7.48–7.58 (м, 2 H, *м*-H<sub>Ph</sub>).

**2-Фенил-3-(\eta^6-фенилхромтрикарбонил)-1,3-оксазинан (2.5d).** Выход 19%, т.пл. 116–117 °С. ВЭЖХ: один пик,  $\tau = 13.3$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 318, 436 нм. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3074 ( $\nu$ (C<sub>Ar</sub>–H)); 2918, 2853 ( $\nu$ (C–H)); 1944, 1856 ( $\nu$ (C=O)); 1606, 1532 ( $\nu$ (C<sub>Ar</sub>–C<sub>Ar</sub>)); 734, 692 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ), *m*/*z* ( $I_{\text{отн}}$  (%)): 375 [M]<sup>+</sup> (2); 291 [M – 3CO]<sup>+</sup> (20); 233 [M – 3CO – (CH<sub>2</sub>)<sub>3</sub>O]<sup>+</sup> (100); 91 [M – Cr(CO)<sub>3</sub> – (CH<sub>2</sub>)<sub>3</sub>OCHPh]<sup>+</sup> (16); 77 [M – Cr(CO)<sub>3</sub> – (CH<sub>2</sub>)<sub>3</sub>OCH(Ph)N]<sup>+</sup> (13); 52 [Cr]<sup>+</sup> (24). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д.,  $J/\Gamma$ ц): 1.60–1.70, 1.71–1.82, 3.50–3.61, 3.67–3.78, 3.89–4.01, 4.14–4.25 (все м, по 1 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, NCH<sub>2</sub>, NCH<sub>2</sub>, OCH<sub>2</sub>, OCH<sub>2</sub>); 5.52 (т, 1 H, *n*-H<sub>PhCr</sub>, *J* = 6.3); 5.55-5.64 (м, 1 H, H<sub>PhCr</sub>); 5.65–5.75 (м, 2 H, H<sub>PhCr</sub>); 5.80 (с, 1 H, CH(Ph)); 5.97 (д, 1 H, *o*-H<sub>PhCr</sub>, *J* = 6.7); 6.92–6.98 (м, 1 H, *м*-H<sub>Ph</sub>); 7.16–7.29 (м, 4 H, *o*,*м*,*n*-H<sub>Ph</sub>).

**2,3-Бис-(\eta^6-фенилхромтрикарбонил)-1,3-оксазолидин (2.4m)** получен в соответствии с общей методикой из 24 ммоль 2,3-дифенил-1,3-оксазолидина **2.4c** и 48 ммоль триамминхромтрикарбонила. В реакции образовалась смесь соединений **2.4l** и **2.4m**, разделенная колоночной хроматографией при элюировании смесью гексан–этилацетат (4:1). Выход **2.4m** составил 35%, т.пл. 167–168°С. ВЭЖХ: один пик,  $\tau = 8.1$  мин. УФ-спектр, (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 317. ИК-спектр (KBr), v/см<sup>-1</sup>: 3094 (v(C<sub>Ar</sub>–H)); 2961, 2889, 2854 (v(C–H)); 1956, 1873 (v(C=O)); 1543, 1472 (v(C<sub>Ar</sub>–C<sub>Ar</sub>)); 874, 800, 762 ( $\omega$ (C<sub>Ar</sub>–H)). Масс-спектр (ЭУ, 70 эВ): 497 [M]<sup>+</sup> (7), 413 [M – 3CO]<sup>+</sup> (9), 361 [M – Cr(CO)<sub>3</sub>]<sup>+</sup> (10), 329 [M – 6CO]<sup>+</sup> (38), 277 [M – 3CO – Cr(CO)<sub>3</sub>]<sup>+</sup> (100), 247 [M – 3CO – Cr(CO)<sub>3</sub> – CH<sub>2</sub>O]<sup>+</sup> (22), 225 [M – 2Cr(CO)<sub>3</sub>]<sup>+</sup> (21), 195 [M – 2Cr(CO)<sub>3</sub> – CH<sub>2</sub>O]<sup>+</sup> (15), 143 [M – 3CO – Cr(CO)<sub>3</sub> – CH<sub>2</sub>O]<sup>+</sup> (22), 2CF [M – 2Cr(CH)]<sup>+</sup> (18), 52 [Cr]<sup>+</sup>

(3). Спектр ЯМР <sup>1</sup>H (δ, м.д., *J*/Гц): 3.54 (д.д, 1 H, NCH<sub>2</sub>, *J* = 16.0, *J* = 7.8); 3.76–3.83
(м, 1 H, NCH<sub>2</sub>); 4.21–4.31 (м, 2 H, OCH<sub>2</sub>); 5.13 (т, 1 H, *n*-H<sub>NPhCr</sub>, *J* = 6.3); 5.19 (д, 2 H, *o*-H<sub>NPhCr</sub>, *J* = 7.0); 5.50 (т, 2 H, *м*-H<sub>NPhCr</sub>, *J* = 6.3); 5.80 (c, 1 H, C<u>H</u>(Ph)); 5.83–5.89 (м, 3 H, *o*, *n*-H<sub>CPhCr</sub>); 6.00 (т, 2 H, *м*-H<sub>CPhCr</sub>, *J* = 5.9).

# 5 Синтез хромтрикарбонильных производных 1,4-дигидро-3,1бензоксазинов (общие методики)

**Метод А.** В предварительно дезаэрированную и далее заполненную аргоном двухгорлую колбу с обратным холодильником, снабженную газовой бюреткой с дибутилфталатом, помещали 24 ммоля триамминхромтрикарбонила, 24 ммоля соединения **2.9а-к** и 60 мл диоксана. Реакционную смесь нагревали на масляной бане при температуре 120 °C в течение 4—6 часов, затем колбу охлаждали и заполняли аргоном. Полученную смесь отфильтровывали на фильтре Шотта, заполненным оксидом алюминия, и отгоняли растворитель. Из остатка с помощью колоночной хроматографии выделяли продукты реакции, которые перекристаллизовывали из смеси гексан—этилацетат. Образующиеся желтые кристаллы отфильтровали на фильтре Шотта, после чего сушили в эксикаторе.

**Метод В.** В стеклянную ампулу емкостью 10 мл помещали 1.6 г (6 ммоль) ( $\eta^{6}$ -2-аминобензиловый спирт)хромтрикарбонила (**2.3c**), 12 ммоль карбонильного соединения **2.1a,b** / 6 ммоль **2.1j-l,e-j,c** 2.0 г (16 ммоль) безводного MgSO<sub>4</sub> и 5 мл тетрагидрофурана. Ампулу дезаэрировали в жидком азоте, запаивали в вакууме и нагревали при температуре 25—80 °C в течение 5—9 часов. Затем ампулу охлаждали до комнатной температуры, вскрывали и реакционную смесь концентрировали в вакууме. Дальнейшее выделение продуктов проводилось в соответствии с процедурой, описанной в методе А.

Выходы и температуры плавления соединений **2.7а-к** приведены в таблицах 8 и 17 (см. Обсуждение результатов), в таблице 18 представлены условия синтеза данных веществ.

| Соеди- | Bpe            | RMS              | т °С | Соеди- | Время          |                  | T °C |
|--------|----------------|------------------|------|--------|----------------|------------------|------|
| нения  | синтеза, ч     |                  | 1, C | нения  | синтеза, ч     |                  | 1, C |
| 2.7    | A <sup>a</sup> | $\mathbf{B}^{a}$ |      | 2.7    | A <sup>a</sup> | $\mathbf{B}^{a}$ | -    |
| a      | 4              | 5                | 25   | g      | 5              | 8                | 50   |
| b      | 4              | 8                | 40   | h      | 5              | 7                | 50   |
| c      | 6              | 8                | 40   | i      | 4              | 8                | 80   |
| d      | 4              | 8                | 40   | j      | 5              | 7                | 50   |
| e      | 5              | 9                | 40   | k      | 4              | 6                | 40   |
| f      | 6              | 7                | 50   |        |                |                  |      |

Таблица 18. Время и температура синтеза соединений 2.7а-к

<sup>*а*</sup> Методы А и В. <sup>*b*</sup> Температура синтеза (метод В)

**q**<sup>6</sup>-(1,4–Дигидро-2*H*–3,1-бензоксазин)хромтрикарбонил (2.7а). ВЭЖХ: один пик,  $\tau = 4.9$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 318, 430. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3412 ( $\nu$ (N—H)); 3099 ( $\nu$ (C<sub>Ar</sub>—H); 2858 ( $\nu$ (С—H); 1940, 1866, 1848 ( $\nu$ (C=O)); 1558, 1489 ( $\nu$ (C<sub>Ar</sub>—C<sub>Ar</sub>); 819, 677 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%))): 271 [M]<sup>+</sup> (100), 270 [M—H]<sup>+</sup> (77), 215 [M—2CO]<sup>+</sup> (18), 187 [M—3CO]<sup>+</sup> (15), 187 [M—3CO—2H]<sup>+</sup> (20), 169 [M—3CO—H<sub>2</sub>O]<sup>+</sup> (29), 168 [M—3CO—H<sub>2</sub>O—H]<sup>+</sup> (28), 167 [M—3CO—H<sub>2</sub>O—H]<sup>+</sup> (36), 52 [Cr]<sup>+</sup> (14). Спектр ЯМР <sup>1</sup>Н ( $\delta$ , м.д., *J*/Гц): 4.52 (д, 1 H, NCH<sub>2</sub>OC<u>H<sub>2</sub></u>, *J* = 14.1); 4.65—4.82 (м, 3 H, NCH<sub>2</sub>OC<u>H<sub>2</sub></u>, NC<u>H<sub>2</sub></u>OCH<sub>2</sub>); 5.03 ( $\tau$ , 1 H, H<sub>Ar</sub>, *J* = 6.3); 5.16 (д, 1 H, H<sub>Ar</sub>, *J* = 6.7); 5.66 ( $\tau$ , 1 H, H<sub>Ar</sub>, *J* = 6.7); 5.79 (д, 1 H, H<sub>Ar</sub>, *J* = 6.3); 6.04 (уш. с, 1 H, H<sub>N</sub>).

 $\eta^{6}$ -(2,2-Диметил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил (2.7b). ВЭЖХ: 1 пик,  $\tau = 5.8$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 317, 447. ИКспектр (KBr), v/см<sup>-1</sup>: 3402 (v(N—H)); 2946 (v(C—H); 1936, 1860, 1835 (v(C=O)); 1556, 1490 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 750, 634 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 299 [M]<sup>+</sup> (33), 243 [M — 2CO]<sup>+</sup> (14), 215 [M — 3CO]<sup>+</sup> (100), 197 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (68), 182 [M — 3CO — H<sub>2</sub>O — Me]<sup>+</sup> (59), 52 [Cr]<sup>+</sup> (73). Спектр ЯМР <sup>1</sup>Н ( $\delta$ , м.д., *J*/Гц): 1.37 (с, 3 H, Me); 1.51 (с, 3 H, Me); 4.43 (д, 1 H, OCH<sub>2</sub>, *J* = 14.9); 4.76 (д, 1 H, OCH<sub>2</sub>, J = 14.9); 4.96 (т.д, 1 H, H<sub>ArCr</sub>, J = 6.3, J = 0.8); 5.06 (д.д, 1 H, H<sub>ArCr</sub>, J = 6.7, J = 0.8); 5.64 (т.д, 1 H, H<sub>ArCr</sub>, J = 7.0, J = 1.2); 5.84 (д, 1 H, H<sub>ArCr</sub>, J = 6.3); 6.20 (уш. с, 1 H, H<sub>N</sub>).

**\eta^{6}-(2-спироциклогексан-1,4-дигидро-3,1-бензоксазин)хромтрикарбонил** (2.7с). ВЭЖХ: 1 пик,  $\tau = 7.7$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 317, 446. ИКспектр (KBr),  $\nu$ /см<sup>-1</sup>: 3396 ( $\nu$ (N—H)); 3128 ( $\nu$ (C<sub>Ar</sub>—H); 2937 ( $\nu$ (C—H); 1938, 1855, 1832 ( $\nu$ (C=O)); 1562, 1493 ( $\nu$ (C<sub>Ar</sub>—C<sub>Ar</sub>); 818, 788, 677 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (m/z( $I_{\text{отн}}$  (%)): 339 [M]<sup>+</sup> (23), 283 [M — 2CO]<sup>+</sup> (6), 255 [M — 3CO]<sup>+</sup> (100), 237 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (46), 167 [M — 3CO — C<sub>5</sub>H<sub>10</sub>]<sup>+</sup> (5), 157 [M — 4CO — C<sub>5</sub>H<sub>10</sub>]<sup>+</sup> (12), 52 [Cr]<sup>+</sup> (65). Спектр ЯМР <sup>1</sup>Н ( $\delta$ , м.д.,  $J/\Gamma$ ц): 1.23—1.39 (м, 1 H, C<sub>5</sub>H<sub>10</sub>); 1.42—1.75 (м, 7 H, C<sub>5</sub>H<sub>10</sub>); 1.80—1.93, 1.95—2.03 (оба м, по 1 H, C<sub>5</sub>H<sub>10</sub>); 4.42 (д., 1 H, OCH<sub>2</sub>, J = 14.5); 4.73 (д, 1 H, OCH<sub>2</sub>, J = 14.5); 4.94 (т, 1 H, H<sub>Ar</sub>, J = 6.3); 5.09 (д, 1 H, H<sub>Ar</sub>, J = 7.0); 5.64 (т, 1 H, H<sub>Ar</sub>, J = 6.3); 5.83 (д, 1 H, H<sub>Ar</sub>, J = 6.3); 6.15 (уш. с, 1 H, N).

**q**<sup>6</sup>-(2-Метил-2-этил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил 2.7d (*диастереомер 1*). ВЭЖХ: 1 пик,  $\tau = 7.0$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 213, 315, 432. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3411 ( $\nu$ (N—H)); 2924 ( $\nu$ (C—H); 1937, 1878, 1841 ( $\nu$ (C=O)); 1561, 1493 ( $\nu$ (C<sub>Ar</sub>—C<sub>Ar</sub>); 808, 675 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 313 [M]<sup>+</sup>(37), 257 [M — 2CO]<sup>+</sup> (15), 229 [M — 3CO]<sup>+</sup> (100), 211 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (54), 182 [M — 3CO — H<sub>2</sub>O — Et]<sup>+</sup> (22), 52 [Cr]<sup>+</sup> (9). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 0.89 (т, 3 H, MeCCH<sub>2</sub>Me, *J* = 7.4); 1.45 (с, 3 H, MeCCH<sub>2</sub>Me); 1.57—1.68 (м, 1 H, C<u>H</u><sub>2</sub>Me); 1.69—1.80 (м, 1 H, C<u>H</u><sub>2</sub>Me); 4.42 (д, 1 H, OCH<sub>2</sub>, *J* = 14.9); 4.70 (д, 1 H, OCH<sub>2</sub>, *J* = 14.9); 4.95 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 6.3, *J* = 0.8); 5.07 (д.д, 1 H, H<sub>ArCr</sub>, *J* = 6.7, *J* = 0.8); 5.60—5.67 (м, 1 H, H<sub>ArCr</sub>); 5.83 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 6.19 (уш. с, 1 H, H<sub>N</sub>).

 $\eta^{6}$ -(2-Метил-2-этил-1,4–дигидро-2*H*–3,1-бензоксазин)хромтрикарбонил 2.7d (*диастереомер 2*). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 0.99 (т, 3 H, MeCCH<sub>2</sub>Me, *J* = 7.4); 1.32 (с, 3 H, MeCCH<sub>2</sub>Me); 1.70—1.81 (м, 1 H, CH<sub>2</sub>Me); 1.82—1.92 (м, 1 H, CH<sub>2</sub>Me); 4.44 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 4.76 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 4.95 (т, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 5.09 (д, 1 H, H<sub>ArCr</sub>, *J* = 7.0); 5.63 (т, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 5.82 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 6.16 (уш. с, 1 H, H<sub>N</sub>).

# транс-п<sup>6</sup>-(2-Метил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил

(*trans* -2.7е). ВЭЖХ: один пик,  $\tau = 5.3$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 216, 317, 432. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3325 ( $\nu$ (N—H)); 3099 ( $\nu$ (C<sub>Ar</sub>—H); 2991 ( $\nu$ (C—H); 1947, 1859 ( $\nu$ (C=O)); 1558, 1530, 1489 ( $\nu$ (C<sub>Ar</sub>—C<sub>Ar</sub>); 814, 673 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* ( $I_{\text{отн}}$  (%)): 285 [M]<sup>+</sup> (67), 229 [M — 2CO]<sup>+</sup> (17), 201 [M — 3CO]<sup>+</sup> (100), 183 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (51), 168 [M — 3CO — H<sub>2</sub>O — Me]<sup>+</sup> (60), 52 [Cr]<sup>+</sup> (40). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 1.34 (д, 3 H, Me, *J* = 5.9); 4.71 (д, 2 H, OCH<sub>2</sub>, *J* = 5.5); 4.82 (KB, 1 H, NCHO, *J* = 5.5); 5.09 (т, 1 H, H<sub>Ar</sub>, *J* = 6.3); 5.21 (д, 1 H, H<sub>Ar</sub>, *J* = 7.0); 5.64 (т.д. 1 H, H<sub>Ar</sub>, *J* = 7.0, *J* = 1.2); 5.73 (д, 1 H, H<sub>Ar</sub>, *J* = 6.3); 6.10 (уш. с, 1 H, H<sub>N</sub>).

*цис*-η<sup>6</sup>-(2-Метил-1,4–дигидро-2*H*–3,1-бензоксазин)хромтрикарбонил (*cis*-2.7e). Спектр ЯМР <sup>1</sup>H (δ, м.д., *J*/Гц): 1.37 (д, 3 H, Me, *J* = 5.5); 4.38 (д, 1 H, OCH<sub>2</sub>, *J* = 14.1); 4.73—4.80 (м, 2 H, OCH<sub>2</sub>, NCHO); 4.92 (т.д., 1 H, H<sub>Ar</sub>, *J* = 6.3, *J* = 0.8); 5.00 (д.д, 1 H, H<sub>Ar</sub>, *J* = 7.0, *J* = 0.8); 5.67 (т.д., 1 H, H<sub>Ar</sub>, *J* = 7.0, *J* = 1.2); 5.87 (д, 1 H, H<sub>Ar</sub>, *J* = 6.3), 5.95 (уш.с, 1 H, H<sub>N</sub>).

*транс*- $\eta^6$ -(2–Этил-1,4–дигидро-2*H*–3,1-бензоксазин)хромтрикарбонил (*trans*-2.7f). ВЭЖХ: один пик,  $\tau = 6.8$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 318. ИК-спектр (KBr), v/см<sup>-1</sup>: 3357 (v(N—H)); 3100 (v(C<sub>Ar</sub>—H); 2970 (v(C—H); 1941, 1865 (v(C=O)); 1557, 1531, 1488 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 814, 673 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 299 [M]<sup>+</sup>(36), 243 [M — 2CO]<sup>+</sup>(14), 215 [M — 3CO]<sup>+</sup>(40), 197 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (52), 195 [M — 3CO — H<sub>2</sub>O — 2H]<sup>+</sup> (100), 168 [M — 3CO — H<sub>2</sub>O — Et]<sup>+</sup> (25), 52 [Cr]<sup>+</sup> (81). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 0.99 (т, 3 H, Me, *J*=7.8); 1.60— 1.75 (м, 2 H, C<u>H</u><sub>2</sub>Me); 4.64 (т, 1 H, NCHO, *J* = 5.1); 4.72 (с, 2 H, OCH<sub>2</sub>); 5.08 (т.д., 1 H, H<sub>Ar</sub>, *J* = 6.3, *J* = 0.8); 5.23 (д.д, 1 H, H<sub>Ar</sub>, *J* = 7.0, *J* = 0.8); 5.64 (т.д., 1 H, H<sub>Ar</sub>, *J* = 6.3, *J* = 1.2); 5.74 (уш. д, 1 H, H<sub>Ar</sub>, *J* = 6.7); 6.05 (уш. с, 1 H, H<sub>N</sub>).

*транс*-η<sup>6</sup>-(2-Бутил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил (*trans*-2.7g). ВЭЖХ: один пик, τ = 8.6 мин. УФ-спектр (MeCN, H<sub>2</sub>O), λ/нм: 219, 318 и 219, 318. ИК-спектр (KBr), ν/см<sup>-1</sup>: 3374 (ν(N—H)); 3108 (ν(C<sub>Ar</sub>—H); 2931 (ν(C— H); 1962, 1894 (ν(C=O)); 1555, 1525, 1485 (ν(C<sub>Ar</sub>—C<sub>Ar</sub>); 862, 671 (ω(C<sub>Ar</sub>—H)). Массспектр (*m*/*z* (*I*<sub>отн</sub> (%)): 327 [M]<sup>+</sup> (64), 271 [M — 2CO]<sup>+</sup> (15), 243 [M — 3CO]<sup>+</sup> (100), 225 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (28), 223 [M — 3CO — H<sub>2</sub>O — 2H]<sup>+</sup> (68), 168 [M — 3CO — H<sub>2</sub>O — Bu]<sup>+</sup> (65), 52 [Cr]<sup>+</sup> (96). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 0.90 (т, 3 H, Me, *J* = 7.4); 1.31—1.41, 1.41—1.52 (оба м, по 2 H, Me(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 1.67 (т.д, 2 H, Me(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>, *J* = 7.8, *J* = 5.5); 4.69 (уш. д, 1 H, NCHO, *J* = 5.5); 4.72 (с, 2 H, OCH<sub>2</sub>); 5.08 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 6.3, *J* = 0.8); 5.23 (д.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 0.8); 5.64 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 1.2); 5.74 (уш. д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 6.04 (уш. с, 1 H, H<sub>N</sub>).

*цис*- $\eta^6$ -(2-Бутил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил (*cis*-2.7g). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 0.90 (т, 3 H, Me, *J* = 7.4); 1.31—1.41, 1.41—1.52 (оба м, по 2 H, Me(C<u>H</u><sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 1.67—1.78 (м, 2 H, Me(CH<sub>2</sub>)<sub>2</sub>C<u>H</u><sub>2</sub>); 4.41 (д, 1 H, OCH<sub>2</sub>, *J* = 14.1); 4.60—4.65 (м, 1 H, NCHO); 4.77 (д, 1 H, OCH<sub>2</sub>, *J* = 14.1); 4.93 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 0.8); 5.02 (д.д, 1 H, H<sub>ArCr</sub>, *J* = 6.6, *J* = 0.8); 5.67 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.4, *J* = 1.2); 5.86 (уш. д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 5.90 (уш. с, 1 H, H<sub>N</sub>).

## *транс-*η<sup>6</sup>-(2-(Пропен-1'-ил-1')-1,4-дигидро-2*H*-3,1-

бензоксазин)хромтрикарбонил (*trans-2.7*h). ВЭЖХ: один пик,  $\tau = 7.2$  мин. УФспектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 318. ИК-спектр (KBr), v/см<sup>-1</sup>: 3357 (v(N—H)); 3100 (v(C<sub>Ar</sub>—H); 2971 (v(C—H); 1957, 1865 (v(C=O)); 1531, 1488 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 814, 674 ( $\omega$ (C<sub>Ar</sub>—H)). Macc-спектр (*m*/*z* (*I*<sub>0TH</sub> (%)): 311 [M]<sup>+</sup> (52), 255 [M — 2CO]<sup>+</sup> (8), 227 [M — 3CO]<sup>+</sup> (98), 209 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (100), 168 [M — 3CO — H<sub>2</sub>O — (CH)<sub>2</sub>Me]<sup>+</sup> (25), 52 [Cr]<sup>+</sup> (52). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 1.72 (д.д, 3 H, Me, *J* = 6.3, *J* = 1.2); 4.71 (д, 2 H, OCH<sub>2</sub>, *J* = 2.0); 5.05—5.12 (м, 2 H, NCHO, H<sub>ArCr</sub>); 5.27 (д.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 0.8); 5.48—5.59 (м, 1 H, (C<u>H</u>)<sub>2</sub>Me); 5.66 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 1.2); 5.75 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.7); 5.90—6.02 (м, 1 H, (CH)<sub>2</sub>Me); 6.07 (уш. с, 1 H, H<sub>N</sub>).

*транс*- $\eta^{6}$ -(2-Фенил-1,4–дигидро-2*H*–3,1-бензоксазин)хромтрикарбонил (*trans*-2.7i). ВЭЖХ: один пик,  $\tau = 6.2$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 318, 430. Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 347 [M]<sup>+</sup> (36), 291 [M — 2CO]<sup>+</sup> (5), 263 [M — 3CO]<sup>+</sup> (76), 261 [M — 3CO — 2H]<sup>+</sup> (100), 245 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (28), 243 [M — 3CO — H<sub>2</sub>O — 2H]<sup>+</sup> (67), 168 [M — 3CO — H<sub>2</sub>O — Ph]<sup>+</sup> (12), 157 [M — 3CO — PhCHO]<sup>+</sup> (6), 77 [Ph]<sup>+</sup> (32), 52 [Cr]<sup>+</sup> (55). ИК-спектр (KBr), v/см<sup>-1</sup>: 3327 (v(N—H)); 2925 (v(C—H); 1967, 1874 (v(C=O)); 1549, 1525, 1477 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 780, 710, 661 ( $\omega$ (C<sub>Ar</sub>—H)). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д.,  $J/\Gamma$ ц): 4.78 (д, 1 H, OCH<sub>2</sub>, J = 14.5); 4.87 (д, 1 H, OCH<sub>2</sub>, J = 14.5); 5.14 (т.д., 1 H, H<sub>ArCr</sub>, J = 6.3, J = 0.8); 5.36 (д.д., 1 H, H<sub>ArCr</sub>, J = 6.7, J = 0.8); 5.68—5.74 (м, 2 H, H<sub>ArCr</sub>, NCHO); 5.82 (д, 1 H, H<sub>ArCr</sub>, J = 6.3); 6.31 (уш.с., 1 H, H<sub>N</sub>); 7.38—7.47 (м, 3 H, H<sub>Ph</sub>); 7.48—7.56 (м, 2 H, H<sub>Ph</sub>).

*цис*- $\eta^6$ -(2-Фенил-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил (*cis*-2.7i). ВЭЖХ: 1 пик,  $\tau = 5.8$  мин. УФ-спектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 216, 320, 431. ИКспектр (KBr), v/см<sup>-1</sup>: 3410 (v(N—H)); 2916 (v(C—H); 1947, 1869, 1844 (v(C=O)); 1652, 1558 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 750, 710, 670 ( $\omega$ (C<sub>Ar</sub>—H)). Macc-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 347 [M]<sup>+</sup> (19), 291 [M — 2CO]<sup>+</sup> (5), 263 [M — 3CO]<sup>+</sup> (85), 261 [M — 3CO — 2H]<sup>+</sup> (100), 245 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (21), 243 [M — 3CO — H<sub>2</sub>O — 2H]<sup>+</sup> (50), 168 [M — 3CO — H<sub>2</sub>O — Ph]<sup>+</sup> (6), 77 [Ph]<sup>+</sup> (6), 52 [Cr]<sup>+</sup> (21). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 4.57 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 4.98 (д.д, 1 H, H<sub>ArCr</sub>, *J* = 6.3, *J* = 0.8); 5.03 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 5.15 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.7); 5.63 (д, 1 H, NCHO, *J* = 2.7); 5.73 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 1.2); 5.95 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 6.12 (уш. с, 1 H, H<sub>N</sub>); 7.37—7.46 (м, 3 H, H<sub>Ph</sub>); 7.58—7.69 (м, 2 H, H<sub>Ph</sub>).

#### *транс*-η<sup>6</sup>-(2-(2'-Фурил)-1,4-дигидро-2*H*-3,1-

бензоксазин)хромтрикарбонил (*trans*-2.7j). ВЭЖХ: один пик,  $\tau = 6.1$  мин. УФспектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 219, 318. ИК-спектр (KBr),  $\nu$ /см<sup>-1</sup>: 3360 ( $\nu$ (N—H)); 3099 ( $\nu$ (C<sub>Ar</sub>—H); 2865 ( $\nu$ (C—H); 1950, 1865, 1850 ( $\nu$ (C=O)); 1568, 1479 ( $\nu$ (C<sub>Ar</sub>—C<sub>Ar</sub>); 741, 673 ( $\omega$ (C<sub>Ar</sub>—H)). Macc-спектр (m/z ( $I_{\text{отн}}$  (%)): 337 [M]<sup>+</sup>(39), 281 [M — 2CO]<sup>+</sup>(4), 253 [M — 3CO]<sup>+</sup>(79), 235 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (67), 168 [M — 3CO — H<sub>2</sub>O — C<sub>4</sub>H<sub>3</sub>O]<sup>+</sup> (52), 52 [Cr]<sup>+</sup> (100). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д.,  $J/\Gamma$ ц): 4.64 (д, 1 H, OCH<sub>2</sub>, J = 14.5); 4.69 (д, 1 H, OCH<sub>2</sub>, J = 14.5); 5.10 (т.д., 1 H, H<sub>ArCr</sub>, J = 6.3, J = 0.8); 5.33 (д.д, 1 H, H<sub>ArCr</sub>, J= 7.0, J = 0.8); 5.72 (т.д, 1 H, H<sub>ArCr</sub>, J = 6.3, J = 1.2); 5.82 (д, 1 H, H<sub>ArCr</sub>, J = 6.3); 5.84 (д, 1 H, NCHO, J = 2.7); 6.44—6.47 (м, 1 H, C<sub>4</sub>H<sub>3</sub>O); 6.50 (уш. с, 1 H, H<sub>N</sub>); 6.54 (д, 1 H, C<sub>4</sub>H<sub>3</sub>O, J = 3.1); 7.60 (д.д, 1 H, C<sub>4</sub>H<sub>3</sub>O, J = 2.0, J = 0.8).

*цис*-η<sup>6</sup>-(2-(2'-Фурил)-1,4-дигидро-2*H*-3,1-бензоксазин)хромтрикарбонил (*cis*-2.7j). Спектр ЯМР <sup>1</sup>Н (δ, м.д., *J*/Гц): 4.52 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 4.96—5.02 (м, 2 H, OCH<sub>2</sub>, H<sub>ArCr</sub>); 5.20 (уш. д, 1 H, H<sub>ArCr</sub>, *J* = 6.7); 5.72—5.74 (м, 1 H, H<sub>ArCr</sub>); 5.77 (д, 1 H, NCHO, J = 3.1); 5.91 (уш. д, 1 H, H<sub>ArCr</sub>, J = 6.3); 6.30 (уш. с, 1 H, H<sub>N</sub>); 6.48 (д.д, 1 H, C<sub>4</sub>H<sub>3</sub>O, J = 3.1, J = 1.6); 6.69 (д, 1 H, C<sub>4</sub>H<sub>3</sub>O, J = 3.5); 7.59 (д.д, 1 H, C<sub>4</sub>H<sub>3</sub>O, J = 2.0, J = 0.8).

# *транс*-п<sup>6</sup>-(2-(2'-Пиридил)-1,4-дигидро-2*H*-3,1-

**бензоксазин)хромтрикарбонил** (*trans*-2.7k). ВЭЖХ: один пик,  $\tau = 6.1$  мин. УФспектр (MeCN, H<sub>2</sub>O),  $\lambda$ /нм: 218, 319, 432. ИК-спектр (KBr), v/см<sup>-1</sup>: 3234 (v(N—H)); 3096 (v(C<sub>Ar</sub>—H); 2922 (v(C—H); 1947, 1881, 1854 (v(C=O)); 1557, 1530, 1500 (v(C<sub>Ar</sub>—C<sub>Ar</sub>); 788, 677 ( $\omega$ (C<sub>Ar</sub>—H)). Масс-спектр (*m*/*z* (*I*<sub>отн</sub> (%)): 348 [M]<sup>+</sup>(15), 347 [M — H]<sup>+</sup>(21), 292 [M — 2CO]<sup>+</sup> (7), 264 [M — 3CO]<sup>+</sup> (100), 246 [M — 3CO — H<sub>2</sub>O]<sup>+</sup> (63), 168 [M — 3CO — H<sub>2</sub>O — C<sub>5</sub>H<sub>4</sub>N]<sup>+</sup> (43), 52 [Cr]<sup>+</sup> (17). Спектр ЯМР <sup>1</sup>H ( $\delta$ , м.д., *J*/Гц): 4.90 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); 4.98 (д, 1 H, OCH<sub>2</sub>, *J* = 14.5); (5.15 (т, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 5.56 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.7); 5.72 (т.д, 1 H, H<sub>ArCr</sub>, *J* = 7.0, *J* = 1.2); 5.75 (с, 1 H, NCHO); 5.81 (д, 1 H, H<sub>ArCr</sub>, *J* = 6.3); 6.52 (уш. с, 1 H, H<sub>N</sub>); 7.41 (д.д.д, 1 H, py, *J* = 5.5, *J* = 4.7, *J* = 0.8); 7.64 (д, 1 H, py, *J* = 7.8); 7.90 (т.д, 1 H, py, *J* = 7.8, *J* = 1.6); 8.57 (уш. д.д, 1 H, py, *J* = 4.7, *J* = 0.8).

#### выводы

- Реакцией конденсации 2-(N-фениламино)этанола, 1-(Nфениламино)пропанола-2, 3-(N-фениламино)пропанола-1 и их Nфенилхромтрикарбонильных производных с различными альдегидами синтезированы новые свободные и координированные оксазолидины и оксазинаны.
- Установлено, что реакция (η<sup>6</sup>-фенил)хромтрикарбонильных производных аминоспиртов с альдегидами чувствительна к возрастанию объема заместителей в реагентах и протекает только в случае простейших алифатических альдегидов.
- Взаимодействием N-фенилпроизводных оксазолидинов и оксазинанов с триамминхромтрикарбонилом получены их η<sup>6</sup>-(арен)хромтрикарбонильные производные.
- 4. Установлена высокая региоселективность эквимолярной реакции 2,3дифенилоксазолидина с триамминхромтрикарбонилом, в которой координация протекает по *N*-фенильному кольцу.
- 5. Показана возможность синтеза оксазолидинов и оксазинанов, содержащих η<sup>6</sup>-фенилхромтрикарбонильный заместитель во втором положении гетероциклов за счет предварительного введения блокирующих ацетильной и трет.бутоксикарбонильной групп при атоме азота.
- Реакцией конденсации (η<sup>6</sup>-2-аминобензилового спирта)хромтрикарбонила с рядом альдегидов и кетонов получены η<sup>6</sup>-(арен)хромтрикарбонильные комплексы 1,4-дигидро-3,1-бензоксазинов.
- 7. Взаимодействием 1,4-дигидро-3,1-бензоксазинов с триамминхромтрикарбонилом синтезированы их новые производные, содержащие η<sup>6</sup>-(фенил)хромтрикарбонильную группу в своем составе.
- Показано, что метод конденсации по сравнению с реакцией свободных от металла гетероциклов с триамминхромтрикарбонилом позволяет синтезировать более широкий круг η<sup>6</sup>-(арен)хромтрикарбонильных комплексов 1,4-дигидро-3,1-бензоксазинов

**Приложение.** Кристаллографические данные, параметры рентгеноструктурных экспериментов и уточнения для *trans*-2.4i, 2.4h, 2.6, 2.7e, 2.7c

| Комплекс                                                             | trans-2.4i                                        | 2.7e                                              | 2.7c                                              | 2.6                                               | 2.4h                 |
|----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------|
| Формула                                                              | C <sub>14</sub> H <sub>15</sub> CrNO <sub>4</sub> | C <sub>12</sub> H <sub>11</sub> CrNO <sub>4</sub> | C <sub>16</sub> H <sub>17</sub> CrNO <sub>4</sub> | C <sub>13</sub> H <sub>13</sub> CrNO <sub>5</sub> | $C_{13}H_{13}CrNO_4$ |
| Молекулярная масса                                                   | 313.27                                            | 285.22                                            | 339.30                                            | 315.24                                            | 299.24               |
| Пространственная<br>группа                                           | $P2_1/c$                                          | <i>P</i> -1                                       | P2 <sub>1</sub> /c                                | <i>P</i> -1                                       | $Pna2_1$             |
| $a, \mathrm{\AA}$                                                    | 18.6317(6)                                        | 7.87140(10)                                       | 10.1369(3)                                        | 7.5793(6)                                         | 16.3065(5)           |
| $b, \mathrm{\AA}$                                                    | 13.2146(4)                                        | 11.09270(10)                                      | 13.8772(4)                                        | 8.5955(6)                                         | 7.4539(2)            |
| $c, \mathrm{\AA}$                                                    | 11.6647(4)                                        | 13.80060(10)                                      | 10.7572(3)                                        | 10.6299(8)                                        | 10.1594(3)           |
| α, град                                                              | 90                                                | 99.5860(10)                                       | 90                                                | 97.1450(11)                                       | 90                   |
| <i>β</i> , град                                                      | 103.706(2)                                        | 93.6500(10)                                       | 103.2369(11)                                      | 101.3102(11)                                      | 90                   |
| у, град                                                              | 90                                                | 91.2230(10)                                       | 90                                                | 104.7299(11)                                      | 90                   |
| V / Å <sup>3</sup>                                                   | 2790.19(16)                                       | 1185.14(2)                                        | 1473.03(7)                                        | 645.57(8)                                         | 1234.84(6)           |
| Z                                                                    | 8                                                 | 4                                                 | 4                                                 | 2                                                 | 4                    |
| $d_{pacu}$ / мг•м- $^3$                                              | 1.491                                             | 1.599                                             | 1.530                                             | 1.622                                             | 1.610                |
| $\mu$ / MM <sup>-1</sup>                                             | 0.831                                             | 0.970                                             | 0.794                                             | 0.905                                             | 0.935                |
| Область сканирования $\theta$ , град                                 | 1.908–26.112                                      | 3.001-30.034                                      | 2.064-35.629                                      | 1.99–28.70                                        | 2.30-35.62           |
| Измеренных рефлексов                                                 | 5490                                              | 93231                                             | 29284                                             | 6841                                              | 23477                |
| независимых с I > $2\sigma(I)$                                       | 4453                                              | 6930                                              | 6791                                              | 3010                                              | 5479                 |
| R <sub>int</sub>                                                     | 0.0612                                            | 0.0337                                            | 0.0260                                            | 0.0163                                            | 0.0240               |
| GooF (F2)                                                            | 1.066                                             | 1.050                                             | 1.062                                             | 0.999                                             | 1.002                |
| $R_1 (I > 2\sigma(I))$                                               | 0.0476                                            | $R_1 = 0.0292$                                    | 0.0298                                            | 0.0397                                            | 0.0265               |
| <i>wR</i> <sub>2</sub> (все данные)                                  | 0.0845                                            | 0.0837                                            | 0.0783                                            | 0.1012                                            | 0.0646               |
| Остаточная электронная<br>плотность (max/min) /<br>е•Å <sup>-3</sup> | 0.425 / -0.457                                    | 0.651 / -0.593                                    | 0.564 / -0.638                                    | 0.60 / -0.30                                      | 0.37 / -0.53         |

Приложение. Кристаллографические данные, параметры рентгеноструктурных экспериментов и уточнения для 2.4l, 2.4m, 2.5c, *cis*-2.7i

| Комплекс                                                             | 2.5c                                              | 2.41                                              | 2.4m                   | <i>cis</i> -2.7i     |  |
|----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------|----------------------|--|
| Формула                                                              | C <sub>13</sub> H <sub>13</sub> CrNO <sub>4</sub> | C <sub>18</sub> H <sub>15</sub> CrNO <sub>4</sub> | $C_{21}H_{15}Cr_2NO_7$ | $C_{17}H_{13}CrNO_4$ |  |
| Молекулярная масса                                                   | 299.24                                            | 361.31                                            | 497.34                 | 347.28               |  |
| Пространственная<br>группа                                           | $P2_1/n$                                          | P2(1)2(1)2(1)                                     | Сс                     | P2(1)/c              |  |
| a, Å                                                                 | 7.2925(6)                                         | 6.2114(3)                                         | 11.0531(7)             | 11.9124(10)          |  |
| b, Å                                                                 | 10.6982(9)                                        | 11.6366(6)                                        | 7.4932(5)              | 8.3651(8)            |  |
| $c, \mathrm{\AA}$                                                    | 15.9011(13)                                       | 22.0483(11)                                       | 23.5262(13)            | 15.5815(12)          |  |
| α, град                                                              | 90                                                | 90                                                | 90                     | 90                   |  |
| $\beta$ , град                                                       | 102.2830(10)                                      | 90                                                | 91.915(3)              | 103.043(8)           |  |
| у, град                                                              | 90                                                | 90                                                | 90                     | 90                   |  |
| V / Å <sup>3</sup>                                                   | 1212.15(17)                                       | 1593.64(14)                                       | 1947.4(2)              | 1512.6(2)            |  |
| Z                                                                    | 4                                                 | 4                                                 | 4                      | 4                    |  |
| $d_{pacy}$ / мг•м- <sup>3</sup>                                      | 1.640                                             | 1.506                                             | 1.696                  | 1.525                |  |
| $\mu / \text{MM}^{-1}$                                               | 0.953                                             | 0.739                                             | 1.162                  | 0.776                |  |
| Область сканирования $\theta$ , град                                 | 2.32-35.62                                        | 1.98–26.03                                        | 3.29–25.06             | 3.447 - 26.372       |  |
| Измеренных рефлексов                                                 | 22432                                             | 13542                                             | 6408                   | 21489                |  |
| независимых с I > $2\sigma(I)$                                       | 4739                                              | 3131                                              | 3192                   | 2276                 |  |
| Rint                                                                 | 0.0435                                            | 0.0320                                            | 0.0533                 | 0.0721               |  |
| GooF (F2)                                                            | 1.066                                             | 1.030                                             | 1.048                  | 1.044                |  |
| $R_1 (I > 2\sigma(I))$                                               | 0.0491                                            | 0.0660                                            | 0.0758                 | 0.0475               |  |
| <i>wR</i> <sub>2</sub> (все данные)                                  | 0.1104                                            | 0.1651                                            | 0.1994                 | 0.139                |  |
| Остаточная электронная<br>плотность (max/min) /<br>е•Å <sup>-3</sup> | 0.65 / -0.94                                      | 2.33 / -0.88                                      | 1.20 / -0.59           | -0.399 / 0.353       |  |

# СПИСОК ЛИТЕРАТУРЫ

- 1.Касьян, Л. И. Оксаазагетероциклы на основе аминоспиртов, эпоксидов и азиридинов / Л. И. Касьян, В. А. Пальчиков, А. В. Токарь. Днепропетровск: изд-во ДНУ, 2012, 644 с.
- 2.Бугаенко, Д. И. Арины, диарилиодониевые соли и N-оксиды азинов в реакциях электрофильного N-арилирования без использования переходных металлов / Д. И. Бугаенко, А.В. Карчава, М.А. Юровская // Успехи химии. 2018. Т. 87. С. 272-301.
- З.Биометаллоорганическая химия / под ред. Ж. Жауэн; пер. с англ. В. П. Дядченко [и др.] — М.: БИНОМ. Лаборатория знаний, 2010. — 494 с.
- 4.Berger, A. Metalated (η<sup>6</sup>-arene)tricarbonylchromium complexes in organometallic chemistry / A. Berger, J. P. Djukic, Ch. Michon // Coord. Chem. Rev. 2002. V. 225. P. 215-238.
- 5.Semmelhack, M. F. Transition Metal Arene Complexes: Ring Lithiation / M. F. Semmelhack // Comprehensive Organometallic Chemistry II. 1995. V. 12. P. 1017-1038.
- 6.Rosillo, M. Chromium arene complexes in organic synthesis / M. Rosillo, G. Domnguez, J. Perez-Castells // Chem. Soc. Rev. 2007. V. 36. P. 1589-1604.
- 7.Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis / M. F. Semmelhack, W. D. Harman, M. Uemura [et al.]; Kündig, E. P. (Ed.). Berlin, Heidelberg, New York: Springer-Verlag, 2004. (Topics in Organometallic Chemistry; V. 7). 240 p.
- 8.Mukai, C. Optically active tricarbonyl(η6-o-trimethylsilylbenzaldehyde)chromium(O) complexes in organic synthesis: a highly diastereoselective 1,3-dipolar cycloaddition with electron-rich olefins / C. Mukai, I. J. Kim, W. J. Cho, M. Kido, M. Hanaoka // J. Chem. Soc., Perkin Trans. 1. 1993. P. 2495-2503.
- 9.Pape, A. R. Transition-Metal-Mediated Dearomatization Reactions / A. R. Pape, K.
  P. Kaliappan, E. P. Kündig // Chem. Rev. 2000. V. 100. P. 2917-2940.

- 11.Oesterreich, M. Ueber Reductions- und Oxydations-Versuche am α-μ-Dimethyloxazol, sowie über dessen Condensation mit Acetaldehyd / M. Oesterreich // Chem. Ber. – 1897. – V. 30. – P. 2254-2260
- 12.Knorr, L. Synthese von Oxazolidinen durch Einwirkung von Aldehyden auf Hydramine / L. Knorr, H. Matthes // Chem. Ber. 1901. V. 34. P. 3484-3489.
- 13.Cope, A.C. Synthesis of 2-Alkylaminoethanols from Ethanolamine / A. C. Cope,
  E.M. Hancock // J. Am. Chem. Soc. 1942. V. 64. P. 1503-1506.
- 14.Meltsner, M. The Preparation of Aromatic Oxazolidines / M. Meltsner, E. Waldman, C. B. Kremer // J. Am. Chem. Soc. 1940. V. 62. P. 3494-3495.
- 15.Lázár L. Recent Developments in the Ring-Chain Tautomerism of 1,3-Heterocycles / L. Lázár, F. Fülöp // Eur. J. Org. Chem. – 2003. – № 16. – P. 3025– 3042.
- 16.Bergmann, E. D. The Structure of the Products of Condensation between Primary β-Hydroxyamines and Aliphatic Carbonyl Compounds / E. D. Bergmann, E. Gil-Av, S. Pinchas // J. Am. Chem. Soc. – 1953. – V. 75. – P. 358–361.
- 17.Bergmann, E. D. The Oxazolidines / E. D. Bergmann // Chem. Rev. 1953. V. 53. P. 309-352.
- 18.Fülöp, F. Ring-chain tautomerism of oxazolidines derived from serine esters / F. Fülöp, K. Pihlajaa // Tetrahedron. 1993. V. 49. P. 6701-6706.
- 19.Riddell, F. G. A solid-state NMR study of ring-chain tautomerism in 1,3-O,N-Heterocycles / F. G. Riddell, S. Arumugam, F. Fülöp, G. Bernáth // Tetrahedron. – 1992. – V. 48. – P. 4979-4984.
- 20.Rennekam, M.E. An investigation into the mechanism of gas-phase tautomerism using mass specrometry: Oxazolidines and β-diketones / M.E. Rennekam, J.V. Paukstelis, R.G. Cooks // Tetrahedron. 1971. V. 27. P. 4407 4415
- 21.Laurent, P. A. Preparation de oxazolidine et de quelques derives / P. A. Laurent // Compt. Rend. – 1965. – V. 261 – P. 1323-1326.

- 22.Гафаров, А. Н. Конденсация моноэтаноламина с формальдегидом / А. Н. Гафаров, Л. Н. Пунегова, Э. И. Логинова, С. С. Новиков, Н. К. Титов // Изв. АН СССР, Сер. хим. 1978. Р. 2189-2189.
- 23.Vasylyev M. Synthesis of Morpholin-2-ones by Chemoselective Intramolecular Rhodium-Catalyzed Reductive Ring Expansion of Oxazolidines / M. Vasylyev, H. Alper // Org. Lett. – 2008. – V.10, № 7. – P. 1357–1359.
- 24.Selambarom, J. Contribution of the anomeric effect to the solution and crystal structure of [1S,2S,6S,7S]-1,6-diaza-4,9-dioxa-2,7-Dimethoxycarbonylbicyclo[4.4.1]undecane, a condensation product of L-serine methyl ester with formaldehyde / J. Selambarom, S. Monge, F. Carre, A. Fruchier, J. P. Roque, A. A. Pavia // Carbohydr. Res. -2001. V. 330, № 1. P. 43-51.
- 25.Selambarom, J. Stereochemical study of 1,3-N,X-heterocycles derived from αaminoacids and formaldehyde. Structural evidence for the existence of the anomeric effect / J. Selambarom, F. Carre, A. Fruchier, J. P. Roque, A. A. Pavia // Tetrahedron. – 2002. – V. 58, № 22. – P. 4439–4444.
- 26.Salas-Coronado, R. Bis(1,3-Oxazolidin-3-yl])methanes and 3,8-Dioxa-1,6-Diazabicyclo[4.4.1] Undecanes / R. Salas-Coronado, J. C. Gálvez-Ruiz, C. Guadarrama-Pérez, A. Flores-Parra // Heterocycles. 2003. V. 60, № 5. P. 1123–1132.
- 27. Магеррамов, А. М. Синтез N-замещенных оксазолидинов и морфолинов / А. М. Магеррамов, М. Н. Магеррамов, Х. А. Махмудова, Г. И. Ализаде // Журн. прикл. химии. 2005. Т. 78, № 8. С. 1324–1328.
- 28.Salas-Coronado, R. 3-(1,3-Heterazolidin-3-yl-methyl)-1,3-oxazolidines and their reduction with borane–THF / R. Salas-Coronado, J. C. Gálvez-Ruiz, J. C. Jaen-Gaspar, H. Nöth, A. Flores-Parra // J. Mol. Struct. (Theochem). – 2003. – V. 640. – P. 95–108.
- 29.Кухарев, Б.Ф. Конденсация 1-алкиламино-3-(2-винилоксиэтокси) пропанолов-2 с карбонильными соединениями / Б. Ф. Кухарев, В. К. Станкевич, Г. Р. Клименко, Н. А. Лобанова // Журн. орган. химии. – 2003. – Т. 39. – С. 1627–1630.

- 30.Blanchet, J. Synthesis of Enantiomerically Pure α-Substituted Propargylic Amines by Reaction of Organoaluminum Reagents with Oxazolidines / J. Blanchet, M. Bonin, L. Micouin, H.-P. Husson // J. Org. Chem. – 2000. – V. 65. – P. 6423–6426.
- 31.Кейко, Н. А. Синтез 2-(1-алкоксивинил)оксазолидинов конденсацией 2алкоксипропеналей с 2-аминоалканолами и кольчато-цепная таутомерия продуктов / Н. А. Кейко, Е. А. Фунтикова, Л. Г. Степанова, Ю. А. Чувашев, Л. И. Ларина // Журн. орган. химии. – 2003. – Т. 39. – С. 1546–1552.
- 32.Эфендиев З. Б. Синтез и некоторые превращения 1-фенокси-3анилинопропанола-2 / З. Б. Эфендиев, К. Д. Петров // Журн. орган. химии. – 1968. – Т. 4. – С. 1607–1608.
- 33.Agami, C. An Efficient Access to Enantiomerically Pure Substituted Derivatives of Pipecolic Acid / C. Agami, S. Comesse, C. Kadouri-Puchot // J. Org. Chem. – 2000. – V. 65. – P. 4435–4439.
- 34.Soliman, S.A. Physicochemical study on some synthesized oxazolidine derivatives: differentiation of diastereomers / S.A. Soliman, H. Abdine, S. El-Nenaey // Austral. J. Chem. – 1975. – V. 28. – P. 49-56.
- 35.Soliman, S.A. Estimation of dissociation-constants of some unstable diastereomeric oxazolidines of ephedrine and pseudoephedrine / S.A. Soliman // Can. J. Pharm. Sci. – 1973. – V. 8. – P. 132-135.
- 36.Neelakatan, L. Asymmetric synthesis. II. Synthesis and absolute configuration of oxazolidines derived from (-)-ephedrine and aromatic aldehydes / L. Neelakatan // J. Org. Chem. – 1971. – V. 36. – P. 2256.-2260.
- 37.Beckett, A.H. Identification and stereochemistry of (2S, 4S, 5R)- and (2R, 4S, 5R)2,3,4-trimethyl-5-phenyloxazolidine, degradation products of ephedrine / A.H.
  Beckett, G.R. Jones // Tetrahedron. 1977. V. 33. P. 3305-3311.
- 38.Бадалова, К. К. Реакция 1-амино-3-пропокси-2-пропанола с альдегидами / К. К. Бадалова, А. Р. Мамедова, Р. А. Алиева, А. М. Магеррамов, М. А. Аллахвердиев // Журн. прикл. химии. – 2005. – Т. 78. – С. 1684–1686.

- 39.Bates, R. W. Ring opening of cyclic N,O-acetals with allyltrimethylsilane under Lewis acidic conditions / R. W. Bates, Y. Lu, M. P. Cai // Tetrahedron. – 2009. – V. 65. – P. 7852–7858.
- 40.Agami, C. Asymmetric Synthesis of Homochiral 1,2-Diols via N-Boc Oxazolidines
  / C. Agami, F. Couty, C. Lequesne // Tetrahedron Lett. 1994. V. 35, № 20. P. 3309–3312.
- 41.Polyak, F. Regio- and Stereoselectivity of the Formation of 1,3-Oxazolidines in the Reaction of 1-Ephedrine with Phenylglyoxal. Unexpected Rearrangement of 2-Benzoyl-3,4-dimetil-5-pentyl-1,3-oxazolidine to 4,5-Dimetil-3,6-diphenylmorpholin-2-one / F. Polyak, T. Dorofeeva, G. Zelchans, G. Shustov // Tetrahedron Lett. 1996. V. 37. P. 8223–8226.
- 42.Page, P. C. B. Synthesis of enantiomerically pure tertiary 1,2-aminoalcohols by the highly diastereoselective reductive ring opening of oxazolidines / P. C. B. Page, B. R. Buckley, M. R. J. Elsegood, C. M. Hayman, H. Heaney, G. A. Rassias, S. A. Talib, J. Liddle // Tetrahedron. 2007. V. 63. P. 10991–10999.
- 43.Page, P. C. B. Microwave-assisted highly diastereoselective synthesis of oxazolidines derived from ketones and aminoalcohols / P. C. B. Page, G. A. Parkes, B. R. Buckley, H. Heaney, M. Gholizadeh, J. S. Wailes // Tetrahedron Lett. 2008. V. 49. P. 6951–6954.
- 44.Shoara, R. H. Synthesis of Benzoxazoles Catalyzed by MCM-41, a Green and Reusable Catalyst / R. H. Shoara, M. Heidarya, M. Farzaneha, R. Malakouti // Synthetic Commun. – 2009. – V. 39. – P. 1742–1751.
- 45.Gosain, R. Free-Radical Functionalisation of β-Amino alcohols via 1,5-hydrogen atom abstraction in 1,3-oxazolidines / R. Gosain, A. M. Norrish, M. E. Wood // Tetrahedron Lett. – 1999. – V. 40, № 36. – P. 6673–6676.
- 46.Fu, Y. Facile One-Pot Method for the Synthesis of Novel N-Dichloroacetyl-1,3-Oxazolidines / Y. Fu, H. Fu, F. Ye, J. Mao, X. Wen // Synth. Comm. – 2009. – V.
  39. – P. 2454–2463.
- 47.Prakash, G. K. S. Nafion®-H Catalyzed Synthesis of Fluorinated Benzimidazolines, Benzothiazolines, Benzoxazolines and Dihydrobenzoxazinones

/ G. K. S. Prakash, H. Vaghoo, C. Panja, A. Molnar // Synthesis. – 2008. – № 6. – P. 897–902.

- 48.Han, F.-B. Novel One-Pot, Four-Component Synthesis of 3-Alkyldithiocarbonyl-oxazolidines from Aminoethanols, Ketones, Carbon Disulfide, and Halides / F.-B. Han, Z.-M. Ge, T.-M. Cheng, R.-T. Li // Synlett. 2009. № 4. P. 648–650.
- 49.McKillop, A. An improved Procedure for the Preparation of the Garner Aldehyde and its Use for the Synthesis of N-Protected 1-Halo-2-(R)-amino-3-butenes / A. McKillop, R. J. K. Taylor, R. J. Watson, N. Lewis // Synthesis. 1994. № 1. P. 31–33.
- 50.Avenoza, A. Convenient Procedures for the Synthesis of N-BOC-D-Serinal Acetonide from L-Serine / A. Avenoza, C. Cativiela, F. Corzana, J. M. Peregrina, M. M. Zurbano // Synthesis. – 1997. – № 10. – P. 1146–1150.
- 51.Abraham, E. Asymmetric synthesis of N,O,O,O-tetra-acetyl D-lyxo-phytosphingosine, jaspine B (pachastrissamine) and its C(2)-epimer / E. Abraham, J. I. Candela-Lena, S. G. Davies, M. Georgiou, R. L. Nicholson, P. M. Roberts, A. J. Russell, E. M. Sánchez-Fernández, A. D. Smith, J. E. Thomson // Tetrahedron: Asymmetry. 2007. V. 18. P. 2510-2513.
- 52.Demirci, F. Enantiospecific Synthesis of (R)- and (S)-2,3-Diaminopropanol from
  L- and D-Serine / F. Demirci, A. H. Haines, C. Jia, D. Wu // Synthesis. 1996. –
  № 2. –P. 189–191
- 53.Hoppe, I. Diastereoselective Synthesis of Enantiomerically Pure 3-Organosulfonyl-2-(2-oxocycloalkyl)-1,3-oxazolidines from 2-Formylcycloalkanones and β-Aminoalkanols / I. Hoppe, H. Hoffmann, I. Gärtner // Synthesis. – 1991. – № 12. – P. 1157–1162.
- 54.Barrish, J. C. Aminodiol HIV Protease Inhibitors. 1. Design, Synthesis and Preliminary SAR / J. C. Barrish, E. Gordon, M. Alam // J. Med. Chem. – 1994. – V. 37, № 12. – P. 1758–1768.
- 55.Kang, S. H. Asymmetric synthesis of N-acetylneuraminic acid / S. H. Kang, H.-W. Choi, J. S. Kim, J.-H. Youn // Chem. Commun. 2000. № 3. P. 227–228.

- 56.Кухар, В. П. β-Гідрокси-α-амінокислоти. Асиметричний синтез / В. П. Кухар, Ю. В. Танчук // Журн. орг. фарм. хімії. 2010. Т. 8, вип. 4. С. 21–39.
- 57.Ribes, C. Stereoselective synthesis of pachastrissamine (jaspine B) / C. Ribes, E. Falomir, M. Carda, J. A. Marco // Tetrahedron. 2006. V. 62, № 23. P. 5421–5425.
- 58.Venkatesan, K. A novel stereoselective synthesis of pachastrissamine (jaspine B) starting from 1-pentadecanol / K. Venkatesan, K. V. Srinivasan // Tetrahedron: Asymmetry. – 2008. – V. 19, № 2. – P. 209–215.
- 59.Passiniemi, M. Stereoselective total synthesis of pachastrissamine (jaspine B) / M.
  Passiniemi, A. M. P. Koskinen // Tetrahedron Lett. 2008. V. 49, № 6. P. 980– 983.
- 60.Hajji, C. Chemoselective reaction of N1-Methyl-2-hydroxy-3-methylamino-3phenylpropanamide with electrophiles. Synthesis of chiral hexahydro-4pyrimidinones and oxazolidines // C. Hajji, M. L. Testa, E. Zaballos-Garcia // Tetrahedron. – 2002. – V. 58, № 16. – P. 3281–3285.
- 61.Raghavan S. N-Cbz sulfilimines as valuable intramolecular nucleophiles for the stereoselective synthesis of (-)-deoxocassine and (+)-desoxoprosophylline / S. Raghavan, S. Mustafa // Tetrahedron. 2008. V. 64. № 43. P. 10055–10061.
- 62.Scolastico C. Asymmetric synthesis via nor-ephedrine derived 2-al enyloxazolidines / C. Scolastico // Pure. Appl. Chem. – 1988. – V. 60, № 11. – P. 1689–1698.
- 63.Steif, F. Enantio- and Diastereoselective Synthesis of (Protected) 2-Formyl- and 2-(Hydroxymethyl)-1-phenylalkane-1,3-diols from Chiral 2-Methoxy-3-tosyl-1,3oxazolidines by Subsequent Asymmetric Formylation and Aldolization / F. Steif, B. Wibbeling, O. Meyer, D. Hoppe // Synthesis. – 2000. – №5. – P. 743–753.
- 64.Gosselin, F. Oxazolidine Ring Opening and Isomerization to (E)-Imines. Asymmetric Synthesis of Aryl-α-fluoroalkyl Amino Alcohols / F. Gosselin, A. Roy, P. D. O'Shea // Org. Lett. – 2004. – V. 6, № 4. – P. 641–644.

- 65.Chaume, G. Synthesis of 2-Trifluoromethyl-1,3-oxazolidines as Hydrolytically Stable Pseudoprolines / G. Chaume, O. Barbeau, P. Lesot, T. Brigaud // J. Org. Chem. – 2010. – V. 75, № 12. – P. 4135–4145.
- 66.Cintrat, J. Preparation of Chiral 2-Stannyloxazolidines and First Considerations on the Transacetalisation Reaction Mechanism / J. Cintrat, V. Léat-Crest, J. Parrain // Eur. J. Org. Chem. – 2004. – № 20. – P. 4251–4267.
- 67.Avalos, M. Chiral N-Acyloxazolidines: Synthesis, Structure, and Mechanistic Insights / M. Avalos, R. Babiano, P. Cintas // J. Org. Chem. 2008. V. 73, № 2. P. 661–672.
- 68.Гетероциклические соединения / Под ред. Р. Эльдерфилда. М., 1961. Т. 5.
   602 с.
- 69.Синтез, строение и свойства 1,3-оксазациклоалканов / Д. Л. Рахманкулов, В.
  В. Зорин, Ф. Н. Латыпова и др. // Химия гетероцикл. соед. 1982. № 4. С.
  435–449.
- 70.Amat, M. Dynamic Kinetic Resolution of Racemic γ-Aryl-δ-oxoesters. Enantioselective Synthesis of 3-Arylpiperidines / M. Amat, M. Canto, N. Llor // J. Org. Chem. – 2002. – V. 67, № 15. – P. 5343–5351.
- 71.Ghorai, M. K. Lewis acid mediated nucleophilic ring opening followed by cycloaddition of 2-aryl-N-tosylaziridines with carbonyl compounds: further support towards an SN2-type mechanism / M. K. Ghorai, K. Ghosh // Tetrahedron Lett. – 2007. – V. 48, № 18. – P. 3191–3195.
- 72.Srivastava, A. K. An approach towards the total synthesis of (+)-epiquinamide and (+)-α-conhydrine from Garner aldehyde / A. K. Srivastava, S. K. Das, G. Panda // Tetrahedron. 2009. V. 65, № 27. P. 5322–5327.
- 73.Thevissen, K. Fungicidal activity of truncated analogues of dihydrosphingosine / K. Thevissen, U. Hillaert, E. M. K. Meert // Bioorg. Med. Chem. Lett. 2008. V. 18, № 13. P. 3728–3730.
- 74.Amat, M. An Enantioselective Entry to cis-Perhydroisoquinolines / M. Amat, M.
  Pérez, A. T. Minaglia // Org. Lett. 2005. V. 7, № 17. P. 3653–3656.

- 75.Maury, C. A Simple and General Method for the Asymmetric Synthesis of α-Aminophosphonic Acids / C. Maury, J. Royer, H.-P. Husson // Tetrahedron Lett. – 1992. – V. 33, № 41. – P. 6127–6130.
- 76.Danielsson, J. 1,3-Dipolar Cycloaddition of Azomethine Ylides to Aldehydes: Synthesis of anti α-Amino-β-Hydroxy Esters / J. Danielsson, L. Toom, P. Somfai
  // Eur. J. Org. Chem. – 2011. – №3. – P. 607–613.
- 77.Osborne, H. B. Ligands for Glutamate Receptors: Design and Therapeutic Prospects / H. B. Osborne, J. Egebjerg, E. Nielsen // J. Med. Chem. 2000. V. 43, № 14. P. 2609–2645.
- 78.Davies, S. G. Asymmetric syntheses of (+)-negamycin, (+)-3-epi-negamycin and sperabillin C via lithium amide conjugate addition / S. G. Davies, O. Ichihara, P. M. Roberts, J. E. Thomson // Tetrahedron. 2011. V. 67, № 1. P. 216-227.
- 79.Cong, X. Chemoselective Deprotection of Cyclic N,O-Aminals Using Catalytic Bismuth(III) Bromide in Acetonitrile / X. Cong, F. Hu, K.-G. Liu // J. Org. Chem. - 2005. - V. 70, № 11. - P. 4514-4516.
- 80.Wong, L. Synthesis and Evaluation of Sphingosine Analogues as Inhibitors of Sphingosine Kinases / L. Wong, S. S. L. Tan, Y. Lam, A. J. Melendez // J. Med. Chem. – 2009. – V. 52, № 12. – P. 3618–3626.
- 81.Banphavichit, V. Synthesis of new tridentate chiral aminoalcohols by a multicomponent reaction and their evaluation as ligands for catalytic asymmetric Strecker reaction / V. Banphavichit, W. Bhanlhumnavin, T. Vilaivan // Tetrahedron. 2007. V. 63, № 36. P. 8727–8734.
- 82.Lim, H.-S. Syntheses of sphingosine-1-phosphate analogues and their interaction with EDG/S1P receptors / H.-S. Lim, J.-J. Park, K. Ko // Bioorg. Med. Chem. Lett. - 2004. - V. 14, № 10. -P. 2499-2503.
- 83.Макаев, Ф. З. Эффективный синтез и рентгеноструктурное исследование (±)-2S-2-(2-хлорофенил)-3-ацетил-1,3-оксазолидина / Ф. З. Макаев, Ф. Г. Шепель, С. Т. Малиновский, М. Гданец // Журн. структ. химии. – 2005. – Т. 46, № 6. – С. 1161–1164.

- 84.Huguenot, F. Umpolung Reactivity of Difluoroenol Silyl Ethers with Amines and Amino Alcohols. Application to the Synthesis of Enantiopure-Difluoromethyl Amines and Amino Acids / F. Huguenot, A. Billac, T. Brigaud, C. Portella // J. Org. Chem. – 2008. – V. 73, № 7. – P. 2564–2569.
- 85.Peng, L. Highly diastereoselective N-nitrosation of chiral (E)-2-(benzylideneamino)ethanols with nitric oxide / L. Peng, J. Wang, C. Sun // Tetrahedron: Asymmetry. – 2008. – V. 19, № 17. – P. 2078–2083.
- 86.Tararov, V. I. Synthesis of N-(Dialkylaminoalkyl)alcohols by Homogeneously Catalyzed Hydrogenolysis of Cyclic N,O-Acetals / V. I. Tararov, R. Kadyrov, T. H. Riermeier, A. Börner // Synthesis. – 2002. – № 3. – P. 375–380.
- 87.Мадесклер, М. Гидразинолиз соединений, содержащих оксазолидиновый цикл / М. Мадесклер, Ж. Кукле, Ф. Леаль, В. П. Зайцев, С. Х. Шарипова // Химия гетероцикл. соед. – 2002. – № 1. – С. 78–80.
- 88.Bedürftig, S. Chiral, nonracemic (piperazin-2-yl)methanol derivatives with σreceptor affinity / S. Bedürftig, B. Wünsch // Bioorg. Med. Chem. – 2004. – V. 12, № 12. – P. 3299–3311.
- 89.Alberola, A. Regioselective Reductive Ring Cleavage of 3-Benzyltetrahydro-1,3oxazines to 3-Dialkylaminopropanols and of 3-Benzyl-3methyltetrahydro-1,3oxazinium Iodides to Alkyl 3-Dialkylaminopropyl Ethers / A. Alberola, A. Alvarez, C. Andrés // Synthesis. – 1990. – № 2. – P. 153–156.
- 90.Higashiyama, K. Regio- and Stereoselective Ring-Opening Reaction of Chiral Aziridines: A Facile Synthesis of Chiral β-Amino Alcohols / K. Higashiyama, M. Matsumura, H. Kojima, T. Yamauchi // Heterocycles. – 2009. – V. 78, № 2. – P. 471–485.
- 91.Li, Y. Synthesis of indole alkaloid (–)-corynantheidol and formal synthesis of (–)corynantheidine via one-pot asymmetric azaelectrocyclization / Y. Li, T. Kobayashi, S. Katsumura // Tetrahedron Lett. – 2009. – V. 50, № 31. – P. 4482– 4484.
- 92.Sydnes, M. O. Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL protease inhibitors / M. O.

Sydnes, Y. Hayashi, V. K. Sharma // Tetrahedron. – 2006. – V. 62, № 36. – P. 8601–8609.

- 93.Inoue, Y. Stereoselective synthesis of chiral β-amino trifluoromethyl alcohol: development of a manufacturing process for a key intermediate in the production of a novel elastase inhibitor, AE-3763 / Y. Inoue, T. Omodani, R. Shiratake, F. Sato // Tetrahedron: Asymmetry. – 2010. – V. 21, № 15. – P. 1855–1860.
- 94.Nishiyama, T. The first enantioselective synthesis of imino-deoxydigitoxose and protected imino-digitoxose by using l-threonine aldolase-catalyzed aldol condensation / T. Nishiyama, T. Kajimoto, S. S. Mohile // Tetrahedron: Asymmetry. – 2009. – V. 20, № 2. – P. 230–234.
- 95.Maury, C. Asymmetric Synthesis of (R)- and (S)-Piperidin-2-ylphosphonic Acid by Diastereoselective Addition of Trialkyl Phosphite onto Potential Iminium Salt / C. Maury, Q. Wang, T. Gharbaoui // Tetrahedron. 1997. V. 53, № 10. P. 3627–3636.
- 96.Griffith, J. A. The Synthesis of Novel 4-(Aminomethyl)oxazoline Ligands / J. A. Griffith, G. J. Rowlands // Synthesis. 2005. № 19. P. 3446–3450.
- 97.Saba, S. Thermal Rearrangement of some Oxazolidine N-Oxides. 2-Alkyl-6-aryl-3,4-dihydro-2H-1,5,2-dioxazines / S. Saba, P. W. Domkowski, F. Firooznia // Synthesis. – 1990. – № 10. – P. 921–923.
- 98.Hu, F. Parallel synthesis of individual shikimic acid-like molecules using a mixture-operation strategy and ring-closing enyne metathesis / F. Hu, Y.-H. Zhang, Z.-J. Yao // Tetrahedron Lett. 2007. V. 48, № 20. P. 3511–3515.
- 99.Satam, V. 2-Iodoxybenzoic acid (IBX): an efficient hypervalent iodine reagent / V. Satam, A. Harad, R. Rajule, H. Pati // Tetrahedron. – 2010. – V. 66, № 39. – P. 7659–7706.
- 100.Wróblewski, A. E. Enantiomerically pure N-Boc- and N-benzoyl-(S)phenylglycinals / A. E. Wróblewski, D. G. Piotrowska // Tetrahedron: Asymmetry. - 2002. - V. 13, № 22. - P. 2509–2512.

- 101.Ocejo, M. A Direct and Efficient Stereoconservative Procedure for the Selective Oxidation of N-Protected β-Amino Alcohols / M. Ocejo, J. L. Vicario, D. Badía // Synlett. – 2005. – № 13. – P. 2110–2112.
- 102.Peng, S. (4S)-4-[(1R)-1-Hydroxy-2-trifluoromethylpropenyl]-2,2dimethyloxazolidine-3-carboxylic acid tert-butyl ester: Highly Diastereoselective Synthesis and Palladium-Catalyzed Arylations / S. Peng, F.-L. Qing, Y. Guo // Synlett. – 1998. – № 8. – P. 859–860.
- 103.Li, P. Evolution of the Total Syntheses of Ustiloxin Natural Products and Their Analogues / P. Li, C. D. Evans, Y. Wu // J. Am. Chem. Soc. – 2008. – V. 130, № 7. – P. 2351–2364.
- 104.Takahashi, H. The Absolute Configuration and Stereoselective Grignar Reaction of N-Substituted4-Pheny-1,3-oxazolidines / H. Takahashi, B.C. Hsies, K. Higashiyama // Chem. Pharm. Bull. 1990. V. 38, № 9. P. 2429–2434.
- 105.Dai, C. Total Synthesis of Syringolin A / C. Dai, C. R. J. Stephenson // Org. Lett. - 2010. - V. 12, № 15. - P. 3453-3455.
- 106.Yamauchi, T. Diastereoselective Addition of Grignard Reagents to Chiral 1,3-Oxazolidines Having a N-Diphenylmethyl Substituent // T. Yamauchi, H. Takahashi, K. Higashiyama // Chem. Pharm. Bull. – 1998. – V. 46, № 3. – P. 384– 389.
- 107.Higashiyama, K. Diastereoselective Addition of Chiral Aliphatic Imines and 2-Alkyl-1,3-oxazolidines to Organometallic Reagents / K. Higashiyama, H. Fujikura, T. Hiroshi // Chem. Pharm. Bull. – 1995. – V. 43, № 5. – P. 722–728.
- 108. Takahashi, H. Asymmetric α-Substituted Phenethylamines. V. Synthesis of Chiral 1-Alkyl-2-phenylethylamines via Grignard Reaction of 4-Phenyl-1,3-oxazolidines / H. Takahashi, Y. Chida, K. Higashiyama, H. Onishi // Chem. Pharm. Bull. 1985. V. 33, № 11. P. 4662–4670.
- 109.Yamaguchi, Y. The P1 N-isopropyl motif bearing hydroxyethylene dipeptide isostere analogues of aliskiren are in vitro potent inhibitors of the human aspartyl protease renin / Y. Yamaguchi, K. Menear, N.-C. Cohen // Bioorg. Med. Chem. Lett. – 2009. – V. 19. – P. 4863–4867.

- 110.Bebber, J. Efficient Desymmetrization of meso-cis-1,2-Cyclohexanedimethanol with Differentiation between Diastereotopic and Enantiotopic C–H Bonds by (–)-Sparteine-Mediated Deprotonation / J. Bebber, H. Ahrens, R. Fröhlich, D. Hoppe // Chem. Eur. J. 1999. V. 5. P. 1905–1916.
- 111.Ordóñez, M. Stereoselective synthesis of GABOB, carnitine and statine phosphonates analogues / M. Ordóñez, V. L. Galván, S. Lagunas-Rivera // Tetrahedron: Asymmetry. – 2010. – V. 21. – P. 129–147.
- 112.Torregrosa, R. Solvent-free direct regioselective ring opening of epoxides with imidazoles / R. Torregrosa, I. M. Pastor, M. Yus // Tetrahedron. – 2007. – V. 63. – P. 469–473.
- 113.U.S. Patent US 2005267104 A1: Acyloxymethylcarbamate prodrugs of oxazolidinones / Josyula V. P., Gadwood R. C., Thomasco L. M. 2007.
- 114.Wang, J. Synthesis of oxazolidines using DMSO/P4O10 as a formaldehyde equivalent / J. Wang, F. D. Rochon, Y. Yang // Tetrahedron: Asymmetry. 2007.
  -V. 18. P. 1115–1123.
- 115.Pham, V. T. Stereoselective total synthesis of (2S,3R)-3-hydroxypipecolic acid / V. T. Pham, J. E. Joo, Y.-S. Tian // Tetrahedron: Asymmetry. 2008. V. 19. P. 318–321.
- 116.Scott, J. D. Synthetic studies on tetrazomine: Stereochemical assignment of the βhydroxypipecolic acid / J. D. Scott, T.N. Tippie, R. M. Williams // Tetrahedron Lett. – 1998. – V. 39. – P. 3659–3662.
- 117.Wijtmans, R. Biological Relevance and Synthesis of C-Substituted Morpholine Derivatives // R. Wijtmans, K. S. Vink, H. E. Schoemaker // Synthesis. – 2004. – № 5. – P. 641–662.
- 118.Penhoat, M. New development of Meyers'methodology: stereoselective preparation of an axially chiral 5,7-fused bicyclic lactam related to circumdatins / benzomalvins and asperlicins / M. Penhoat, P. Bohn, G. Dupas // Tetrahedron: Asymmetry. 2006. V. 17, № 2. P. 281–286.

- 119.Koszytkowska-Stawińska, M. Synthesis of aza-analogues of Ganciclovir / M. Koszytkowska-Stawińska, W. Sas, E. Clercq // Tetrahedron. 2006. V. 62, № 44. P. 10325–10331.
- 120.Zefirova, O. N. Design, synthesis, and bioactivity of putative tubulin ligands with adamantane core / O. N. Zefirova, E. V. Nurieva, H. Lemcke // Bioorg. Med. Chem. Lett. – 2008. – V. 18, № 18. – P. 5091–5094.
- 121.PL 301840 A1: Novel derivative of 3-t-butylo-2-phenyloxazolydine, method of obtaining same and thymolol obtaining method / Achmatowicz O., Malinowska I., Grynkiewicz G. – 1995.
- 122.U.S. Patent US 7126005 B2: Process for preparing florfenicol / V. K. Handa, A. K. Gupta, M. Sivakumaran 2006.
- 123.Gordeev, M. F. Approaches to Combinatorial Synthesis of Heterocycles: A Solid-Phase Synthesis of 1,4-Dihydropyridines / M. F. Gordeev, D. V. Patel, E. M. Gordon // J. Org. Chem. – 1996. – V. 61, № 3. – P. 924–928
- 124.Koszytkowska-Stawińska, M. Synthesis of aza-analogues of Ganciclovir / M. Koszytkowska-Stawińska, W. Sas, E. Clercq // Tetrahedron. 2006. V. 62, № 44. P. 10325–10331.
- 125.Duthion, B. Rearrangement of N-alkyl 1,2-amino alcohols. Synthesis of (S)toliprolol and (S)-propanolol / B. Duthion, T.-X. Me'tro, D. G. Pardo, J. Cossy // Tetrahedron. – 2009. – V. 65, № 33. – P. 6696–6706.
- 126.U.S. Patent US 6762200 B2: Oxa(thia)zolidine derivative and anti-inflammatory drug / M. Takagi, K. Ishimitsu, T. Nishibe 2004.
- 127.Desino, K. E. [(3R,5S,7as)-(3,5-Bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol, a Novel Neuroprotective Agent / K. E. Desino, S. Ansar, G. I. Georg // J. Med. Chem. 2009. V. 52, № 23. P. 7537–7543.
- 128.Chalina E. Synthesis and pharmacological investigation of 3,5-di and 2,3,5-trisubstituted oxazolidines. I. Potential antiarrhythmic agents / E. Chalina, L. Georgieva, D. Staneva / Compt. rend. Acad. Bulg. Sci. (Докл. АН Бълг.). 1998. V. 51, № 11-12. P. 53–56.

- 129.Aicher, T. D. Substituted Tetrahydropyrrolo[2,1-b]oxazol-5(6H)-ones and Tetrahydropyrrolo-[2,1-b]thiazol-5(6H)-ones as Hypoglycemic Agents / T. D. Aicher, B. Balkan, P. A. Bell // J. Med. Chem. – 1998. – V. 41, № 23. – P. 4556– 4566.
- 130.Oh, H. S. Solid-phase synthesis of 1,3-oxazolidine derivatives / H. S. Oh, H.-G. Hahn, S. H. Cheon, D.-C. Ha // Tetrahedron Lett. – 2000. – V. 41, № 26. – P. 5069– 5072.
- 131.Tite, T. Synthesis of polyhydroxylated piperidines and evaluation as glycosidase inhibitors / T. Tite, M.-C. Lallemand, E. Poupon // Bioorg. Med. Chem. 2004. V. 12, № 19. P. 5091–5097.
- 132.Abdou, W. M. An efficient method for the synthesis of spiro and fused Nheterocyclic phosphor esters. Reactions of triketoindan-2-oxime with αphosphonyl carbanions / W. M. Abdou, A. A. Sediek, M. D. Khidre // Monatsh. Chem. – 2008. – V. 139, № 6. – P. 617–623.
- 133.Miyaoka, K. T. Triazole Antifungals. III. Stereocontrolled Syntesis of an Optically Active Triazolylylmethyloxirane Precursos to Antifungal Oxazolidine Derivates / K. T. Miyaoka, T. Tajima, Y. S. Oida // Chem. Pharm. Bull. – 1991. – V. 39, № 9. – P. 2241–2246.
- 134.Kohn, M. Über Derivate des Diacetonalkamins / M. Kohn // Monatsh. Ber. 1904. V. 25. P. 817-849.
- 135.Mannich, C. Über den β-Methylamino-α, α-dimethyl-propionaldehyd und den zugehörigen Alkohol / C. Mannich, H. Wieder // Ber. deut. chem. Ges. – 1932. – V. 65. – P. 385-390.
- 136.Mannich, C. Über die Reaktion zwischen Krotonaldehyd und Aminsalzen / C. Mannich, K. Roth // Arch. Pharm. – 1936. – V. 274. – P. 527-537.
- 137.Куприянов, А. И. О применении циангидринного метода к синтезу алкаминокислот (оксиалкиламинокислот) / А. И. Куприянов, Б. А. Рашкован // Журн. Общ. Химии. – 1937. – т. 7. – С. 1026-1032.

- 138.Hancock, E. M. Aminoalcohols and their Esters / E. M. Hancock, E. M. Hardy, D. Heyl, M. E. Wright, A. C. Cope // J. Am. Chem. Soc. – 1944. – V. 66. – P. 1747-1752.
- 139.Kon, G. A. R. 201. Some compounds related to the aromatic "nitrogen mustards"
  / G. A. R. Kon, J. J. Roberts // J. Chem. Soc. 1950. P. 978- 982.
- 140.Bergmann, E. D. Reaction products of primary β-hydroxyamines with carbonyl compounds: XIV. Reaction of 3-Aminopropanol with Carbonyl Compounds / E. D. Bergmann, A. Kaluszyner // Rec. trav. Chim. 1959. V. 78. P. 315-326.
- 141.D'hooghe, M. Synthesis of Novel 2-Alkoxy-3-amino-3-arylpropan-1-ols and 5-Alkoxy-4-aryl-1,3-oxazinanes with Antimalarial Activity / M. D'hooghe, S. Dekeukeleire, K. Mollet, C. Lategan, P. J. Smith, K. Chibale, N. D. Kimpe // J. Med. Chem. – 2009. – V. 52. – P. 4058–4062.
- 142.Pardin, C. Cinnamoyl Inhibitors of Tissue Transglutaminase / C. Pardin, J. N. Pelletier, W. D. Lubell, J. W. Keillor // J. Org. Chem. – 2008. – V. 73. – P. 5766– 5775.
- 143.Конькова, С. Г. Реакционная способность таутомеров в ряду имин 1,3 оксазациклоалканов в реакциях ацилирования и цианоэтилирования / С. Г. Конькова, А. Х. Хачатрян, А. Э. Бадасян, С. К. Антаносян, О. С. Аттарян, М. С. Саргсян // Химический журнал Армении. – 2006 – т. 59. – С. 60 – 69.
- 144.Kotani, R. 2-Etyl- and 2-etyl-3-nitrosotetrahydro-1,3-oxazines synthesis and structural determination / R. Kotani, T. Kuroda, T. Isozaki, S. Sumoto // Tetrahedron.—1969.—V. 25.—P.4743-4749.
- 145.Kohn, M. Über Derivate des Diacetonalkamins / M. Kohn // Monatsh. Chem. 1904. V. 25. P. 850-864.
- 146.Kohn, M. Über Derivate des Diacetonalkamins / M. Kohn // Monatsh. Chem. 1905. V. 26. P. 939-949.
- 147.Kohn, M. Die Darstellung von Aminoalkoholen aus ungesättigten Methylketonen
  / M. Kohn // Monatsh. Chem. 1907. V. 28. P. 423-437.

- 148.Hess, K. Über die Einwirkung von Aldehyden auf primäre Hydramine. (III. Mitteilung über eine neue Oxydationsmethode.) / K. Hess, Cl. Uibrig // Ber. deut. chem. Ges. – 1915. – V. 48. – P. 1974-1985.
- 149.Kohn, M. Bemerkungen zu der Abhandlung von K. Hess und Cl. Uibrig: Über die Einwirkung von Aldehyden auf primäre Hydramine / M. Kohn // Ber. deut. chem. Ges. – 1916. – V. 49. – P. 250-251.
- 150.Urbanski, T. O pochodnych 1,3-oksazyny. XIII. Otzymanie i wlasnosci 3benzylo-4,4,6-trojmetylotetrahydro-1,8-oksazyny / T. Urbafiski, B. Gac-Chylihska // Roczniki Chem. – 1956. – V. 30. – P. 195-199.
- 151.Horii, Z. Synthesis and properties of 2-and 3-aralkyltetrahydro-1,3-oxazines / Z. Horii, T. Inoi, S.-W. Kim, Y. Tamura, A. Suzuki, H. Matsumoto // Chem. Pharm. Bull. —1965.—V.13.—P.1151-1159.
- 152.Juhász, M. Substituent effects in ring-chain tautomerism of the condensation products of non-racemic 1,2-aminoalcohols with aromatic aldehydes / M. Juhász, L. Lázár, F. Fülöp // Tetrahedron: Asymmetry. 2011. V. 22. P. 2012–2017.
- 153.U.S. Patent US 2911294: Tetrahydro-1,3-oxazine for use as a herbicide / J. S. Eden 1959.
- 154.Цукерман, С. В. Синтез γ-оксиалкиламинонитрилов / С. В. Цукерман, В. Ф. Любомудров // Докл. АН СССР. 1956. т. 109. С. 336-339.
- 155.Vaughan, W. R. Synthesis of Potential Anticancer Agents. VI. N-(3-Hydroxypropyl)-benzaldimine and Related Compounds<sup>1,2</sup> / W. R. Vaughan, R. S. Klonowski // J. Org. Chem. – 1961. – V. 26. – P. 145-148.]
- 156.Boiko, I. P. Stereochemistry of hydride of C-alfa-substituted and beta-aminoetyl ketones and phenyl-beta- aminoetyl ketones – synthesis of stereoisomers of C2methyl-substituted and C3-methyl-substituted 3-amino-1-methyl-1-propanols and 3-amino-1-phenyl1-propanols / I. P. Boiko, Yu. F. Malina, O. I. Zhuk, Yu. Yu. Samitov, B. V. Unkovskii // Zh. Org. Khim.—1976. — V.12. — P.80-89.
- 157.Boiko, I. P. Synthesis of substituted tetrahydro-1,3-oxazines / I. P. Boiko, O. I. Zhuk, Yu. F. Malina, Yu. Yu. Samitov, B. V. Unkovskii // Khim. Geterotsikl.Soedin. 1973. V.4. P. 467-471.

- 158.U.S. Patent US 2447822 A1: 5-nitrotetrahydro-1, 3-oxazines and method for preparing them / S. Murray. 1948.
- 159.Senkus, M. The Preparation and the Hydrogenation of 5-Nitropentoxazolidies /
   M. Senkus // J. Am. Chem. Soc. 1950. V. 72. P. 2967-2969.
- 160.Urbanski, T. Reakcje nitrozwiazkow alifatycznych. IX. O nowej pochodnej tetrahydrooksaziny z nitrometanu, formaldehydu i benzylaminy / T. Urbanski, D. Gurne // Roczniki Chem. – 1954. – V. 28. – P. 175-184.
- 161.Gurne, D. On synthesis and degradation of some derivatives of tetrahydro-1,3oxazine / D. Gurne, T. Urbanski // Bull. acad. polon. sci. Cl. III. - 1955. – V. 3. – P. 175-178.
- 162.Urbanski, T. O nitrozwiazkach alifatycznych. XXX. O produktach reakcji 1-nitron-pentanu i 1-nytro-n-heksanu z formaldehydem i amoniakiem lub aminami pierwszorzedowymi / T. Urbanski, H. Dabrowska, H. Piotrowska, B. Lesiowska // Roczniki Chem. – 1957. – V. 31. – P. 687-694.
- 163.Gurne, D. O nitrozwiazkach alifatycznych. XXXII. O syntezie i degradacji 3benzylowych pochodnych tetrahydro-1,3-oksaziny / D. Gurne, T. Urbanski // Roczniki Chem. – 1957. – V. 31. – P. 855-867.
- 164.Gurne, D. O nitrozwiazkach alifatycznych. XXXII. O syntezie i degradacji 3cykloheksylowych pochodnych tetrahydro-1,3-oksazyny / D. Gurne, T. Urbanski // Roczniki Chem. – 1957. – V. 31. – P. 869-878.
- 165.Eckstein, Z. 5-Nitro-5-(1'-cyclohexenyl)- and 5-nitro-5-(1'-cycloheptenyl)-3benzyl- and 3-cyclohexyl tetrahydro-1,3-oxazines / Z. Eckstein, A. Sacha, T. Urbanski // Tetrahedron. – 1961. – V. 16. – P. 30-44.
- 166.Eckstein, Z. Reakcje nitrozwiazkow alifatycznych. XX. Reakcje nitroolelefinow.
  II. Pochodne 5-nitro-5-(1-cycloheksenylo)-tetrahydro-1,3-oksazyn / Z. Eckstein,
  W. Sobotka, T. Urbanski // Roczniki Chem. 1956. V. 30. P. 133-147.
- 167.Urbanski, T. O nitrozwiazkach alifatycznych. XXIX. Otrymywaniu 2podstawionych pochodnych 5-nitrotetrahydro-1,3-oksazyny / T. Urbahski, H. Piotrowska // Roczniki Chem. – 1957. – V. 31. – P. 553-558.

- 168.Eckstein, Z. Z zagadnien otrzymywania srodkow chwastobojczych. XII. Otrymywaniu 5-nitro-5-hydroksymetylu-3-fenoksyetylotetrahydro-1,3-oksazyn / Z. Eckstein, T. Urbanski, J. Mikulski // Roczniki Chem. – 1959. – V. 33. – P. 519-524.
- 169.Eckstein, Z. 97. Infrared spectra and structure of some 1,3-oxazine derivatives /
  Z. Eckstein, P. Gluzinski, W. Hofman, T. Urbanski // J. Chem. Soc. 1961. P. 489-494.
- 170.Borch, R. F. Synthesis, Activation, and Cytotoxicity of Aldophosphamide Analogues / R. F. Borch, R. R. Valente // J. Med. Chem. – 1991. – V. 34. – P. 3052-3058.
- 171.Kametani, T. A Simple Synthesis of 4-Oxazolidinones, 1,3-Oxazin-4-ones and 1,3-Oxazepin-4-ones from Amide Alcohols / T. Kametani, K. Kigasawa, M. Hiiragi, N. Wagatsuma, T. Kohagizawa, H. Inoue // Heterocycles.—1977. V. 7. P.919-925.
- 172.Rassat, A. Nitroxydes—LXII: Nitroxydes oxaziniques: synthese et etude conformationnelle / A. Rassat, P. Rey // Tetrahedron. — 1974. — V. 30. — P.3315-3325.
- 173.U.S. Patent US 2778825 A1: Substituted nu-carbamyl derivatives of 2-methyloxazolidines and 2-methyltetrahydro-1, 3-oxazines and their preparation / M. Sidney. – 1957.
- 174.Watanabe, W. H. The Preparation of 2-Methyloxazolidines and 2-Methyltetrahydro-1,3-oxazines from Acetylene and Aminoalcohols / W. H.
  Watanabe, L. E. Conlon // J. Am. Chem. Soc. – 1957. – V. 79. – P. 2825-2828.
- 175.Vogels, C. M. Metal catalysed addition of B–H and N–H bonds to aminopropyl vinyl ethers / C. M. Vogels, P. G. Hayes, M. P. Shaver, S. A. Westcott // Chem. Commun. – 2000. – P. 51-52.
- 176.Su, R. Q. Co-catalysis between M<sup>n+</sup> and H<sup>+</sup> in the direct addition of N–H bonds to CC double and triple bonds / R. Q. Su, T. E. Müller // Tetrahedron. 2001. V. 57. P. 6027-6033.

- 177.Hayes, P. G. Alkenylpyridine and alkenylamine complexes of palladium / P. G. Hayes, S. A. M. Stringer, C. M. Vogels, S. A. Westcott // Trans. Met. Chem. 2001. V. 26. P. 261-266.
- 178.Neff, V. Continuous hydroamination in a liquid–liquid two-phase system / V. Neff, T. E. Müller, J. A. Lerchera // Chem. Commun. – 2002. – P. 906-907.
- 179.Penzien, J. Heterogeneous catalysts for hydroamination reactions: structure– activity relationship / J. Penzien, C. Haeßner, A. Jentys, K. Köhler, T. E. Müller, J. A. Lercher // Journal of Catalysis. – 2004. – V. 221. – P. 302–312.
- 180.Tada, M. Oxide surface-promoted Pd-complex catalysis for intramolecular Oactivated alkene hydroamination: catalyst preparation, characterization, and performance / M. Tada, M. Shimamoto, T. Sasakib, Y. Iwasawa // Chem. Commun. - 2004. – P. 2562–2563.
- 181.Kukharev, B. F. Cyclization of Vinyl Ethers Derived from Amino Alcohols / B. F. Kukharev, V. K. Stankevich, G. R. Klimenko, V. A. Kukhareva // Zhurnal Organicheskoi Khimii. 2007. V. 43. P. 973–976.
- 182.Wolfarth, S. A. Hydroamination reactions catalyzed by [Au<sub>2</sub>(μ-Cl)(μ-bis(phosphino)ferrocene)][BArF<sub>24</sub>] / S. A. Wolfarth, N. E. Miner, N. E. Wamser, R. K. Gwinn, B. C. Chan, C. Nataro // J. Org. Chem. 2020. V. 906. article 121049.
- 183.Hirst, E. L. 172. The reaction of 1-nitropropane with formaldehyde and ammonia
  / E. L. Hirst, J. K. N. Jones, S. Minahan, F. W. Ochynski, A. T. Thomas, T. Urbahski // J. Chem. Soc. 1947. P. 924-928.
- 184.Urbanski, T. O nitrozwiazkach alifatycznych. XVI. O produktach reakcji 1-nitro*n*-butanu z formaldehydem i amoniakiem / T. Urbanski, H. Piotrowaka // Roczniki Chem. – 1955. – V. 29. – P. 379-391.
- 185.Urbanski, T. O nitrozwiazkach alifatycznych. XVII. O produktach reakcji 1-nitroizo-butanu z formaldehydem i amoniakiem / T. Urbanski, J. Kolesinska // Roczniki Chem. – 1955. – V. 29. – P. 392-398.

- 186.Urbanski, T. O nitrozwiazkach alifatycznych. XVIII. O produktach reakcji 1nitro-*izo*-butanu z formaldehydem i amoniakiem / T. Urbanski, Z. Eckstein, W. Sobotka // Roczniki Chem. – 1955. – V. 29. – P. 399-409.
- 187.Gurne, D. The stereochemistry of some tetrahydro-1,3-oxazine derivatives / D. Gurne, T. Urbanski. // J. Chem. Soc. 1959. P. 1912-1913.
- 188.Gurne, D. O nitrozwiazkach alifatycznych. XLIV. Analiza konformacyjna pochodnych 5-nitro-5-alkilo-3-cycloheksylo-tetrahydro-1,3-oksazyny / D. Gurne, T. Urbahski // Roczniki Chem. – 1960. – V. 34. – P. 881-886.
- 189.Urbanski, T. Reactions of nitroparaffins. Part XLVIII. On 5-aryl derivatives of 5nitrotetrahydro-1,3-oxazine // T. Urbanski, Cz. Beliecki, Z. Eckstein / Roczniki Chem. – 1962. – V. 36. – P. 879-888.
- 190.Eckstein, Z. By-products and the mechanism of formation of 5-nitrotetrahydro-1,3-oxazine derivatives / Z. Eckstein, P. Gluzifiski, D. Gurne, J. Plenkiewicz, T. Urbahski // Chem. & Ind. (London). – 1962. – P. 1503-1504.
- 191.Eckstein, Z. On contribution of hexahydro-s-triazines in the synthesis mechanism of 5-nitrotetrahydro-1,3-oxazine derivatives / Z. Eckstein, P. Gluzifiski, J. Plenkiewicz, T. Urbafiski // Bull. acad. polon. sci., ser. chim. 1962. V. 10. P. 487-492.
- 192.Mannich, C. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin / C. Mannich, Krosche W. // Arch. Pharm. – 1912. – V. 250. – P. 647-667.
- 193.U.S. Patent US 2647117 A1: Preparation of nitrogen-containing materials from olefins / H. D. Hartough, J. J. Dickert, S. L. Meisel 1953.
- 194.U.S. Patent US 2647118 A1: Method for preparing bis-(substituted tetrahydro-1,3-oxazino)methanes / H. D. Hartough, J. J. Dickert, S. L. Meisel – 1953.
- 195.Fattakhov, A. Kh. Role of Prins Reaction and Aminomethylation in the Synthesis of 1,3-Oxazinane from α-Methylstyrene / A. Kh. Fattakhov, R. F. Talipov, G. R. Talipova // Russian Journal of Organic Chemistry. – 2018. – V. 54. – № 12. – P. 1851–1853.

- 196.Feng, H. A Metal-Free Approach Toward Saturated N-Propargyl Heterocycles via an Annulation/Decarboxylative Coupling Sequence / H. Feng, H. Jia, Zh. Sun // Adv. Synth. Catal. – 2015. – V. 357. – P. 2447–2452.
- 197.Feng, H. CuI/CuBr<sub>2</sub>-catalyzed decarboxylative/A<sup>3</sup> reaction of propiolic acids for the facile synthesis of 1,4-diheterocycle-2-butyne / H. Feng, P. Zhao, Zh. Sun // Tetrahedron Lett. – 2015. – V. 56. – P. 5676-5680.
- 198.Diness, F. Fmox: A Base-Labile Aldehyde Protecting Group / F. Diness, M. Meldal // Chem. Eur. J. 2015. V. 2015. P. 1433-1436.
- 199.Diness, F. Solid-Phase Synthesis of Tetrahydro-b-carbolines and Tetrahydroisoquinolines by Stereoselective Intramolecular N-Carbamyliminium Pictet–Spengler Reactions / F. Diness, J. Beyer, M. Meldal // Chem. Eur. J. – 2006. – V. 12. – P. 8056 – 8066.
- 200.Diness, F. Synthesis of 3-Boc-(1,3)-oxazinane-Protected Amino Aldehydes from Amino Acids and Their Conversion into Urea Precursors. Novel Building Blocks for Combinatorial Synthesis / Diness, M. Meldal // QSAR Comb. Sci. – 2004. – V. 23. – P. 130-144.
- 201.Nahm, S. N-Methoxy-N-Methylamides as Effective Acylating Agents / S. Nahm,
  S. M. Weinreb // Tetrahedron Lett. 1981. V. 22. P. 3815-3818.
- 202.Fehrentz, J.-A. Improved Solid Phase Synthesis of C-Terminal Peptide Aldehydes
  / J.-A. Fehrentz, M. Paris, A. Heithz, J. Velek, C. F. Liu, F. Winternitz, J. Martinez
  // Tetrahedron Lett. 1995. V. 36. P. 7871-7874.
- 203.Ito, A. A New Method to Synthesize α-Amino Aldehydes / A. Ito, R. Takahashi, Y. Baba // Chem. Pharm. Bull. 1975. V. 23. P. 3081-3087.
- 204.Dess, D. B. Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones / D. B. Dess, J. C. Martin // J. Org. Chem. – 1983. – V. 48. – P. 4155-4156.
- 205.Jurczak, J. Optically Active N-Protected α-Amino Aldehydes in Organic Synthesis / J. Jurczak, A. Golebiowski // Chem. Rev. – 1989. – V. 89. – P. 149-164.

- 206.Ede, N. J. Solid Phase Synthesis of Peptide Aldehyde Protease Inhibitors. Probing the Protelytic Sites of Hepatitis C Virus Polyprotein / N. J. Ede, S. N. Eagle, G. Wickham, A. M. Bray, B. Warne, K. Shoemaker, S. Rosenberg // J. Pept. Sci. 2000. V. 6. P. 11-18.
- 207.Yang, Ni. Synergistic Catalysis-Enabled Thia-Aza-Prins Cyclization with DMSO and Disulfides: Entry to Sulfenylated 1,3-Oxazinanes and Oxazolidines / Y. Ni, H. Zuo, H. Yu, Y. Wu, F. Zhong // Org. Lett. – 2018. – V. 20. – P. 5899–5904.
- 208.Nimmagadda, S. K. Asymmetric One-Pot Synthesis of 1,3-Oxazolidines and 1,3-Oxazinanes via Hemiaminal Intermediates / S. K. Nimmagadda, Z. Zhang, J. C. Antilla // Org. Lett. 2014. V. 16. P. 4098-4101.
- 209.Okimoto, M. Electrooxidative Cyclization of Hydroxyamino Compounds Possessing a Benzyl Group / M. Okimoto, K. Ohashi, H. Yamamori, S. Nishikawa, M. Hoshi, T. Yoshida // Synthesis. – 2012. – V. 44. – P. 1315–1322.
- 210.Chandgude, A. L. Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes / A. L. Chandgude, D. Narducci, K. Kurpiewska, J. Kalinowska-Tłuscikb, A. Domling // RSC Adv. – 2017. – V. 7. – P. 49995-49998.
- 211.Ghorai, M. K. Lewis acid mediated S<sub>N</sub>2-type nucleophilic ring opening followed by [4+2] cycloaddition of *N*-tosylazetidines with aldehydes and ketones: synthesis of chiral 1,3-oxazinanes and 1,3-amino alcohols / M. K. Ghorai, K. Das, A. Kumar // Tetrahedron Letters. – 2007. – V. 48. – P. 4373–4377.
- 212.Mansfield, R. C. Notes The Preparation of 4-Amino-2-phenyl-2-butanol / R. C. Mansfield, C. J. Schmiedle // J. Org. Chem. 1956. V. 21. P. 699-700.
- 213.U.S. Patent US 2778826 A1: Preparation of basic nitrogen compounds / C.J. Schmidle. 1957.
- 214.Pandey, G. One-Step Stereospecific Strategy for the Construction of the Core Structure of the 5,11-Methanomorphanthridine Alkaloids in Racemic as well as in Optically Pure Form: Synthesis of (±)-Pancracine and (±)-Brunsvigine / G. Pandey, R. Kumar, P. Banerjee, V. G. Puranik // Eur. J. Org. Chem. – 2011. – V. 2011. – P. 4571–4587.

- 215.Pandey, G. Construction of the 5,10b-Phenanthridine Skeleton Using [3+2]-Cycloaddition of a Non-Stabilized Azomethine Ylide: Total Synthesis of (±)-Maritidine and (±)-Crinine Alkaloids / G. Pandey, N. R. Gupta, S. R. Gadre // Eur. J. Org. Chem. 2011. V. 2011. P. 740–750.
- 216.Dubovis, M. V. A new method of synthesis of substituted 1-(1H-imidazole-4-yl)-1H-1,2,3-triazoles and their fungicidal activity / M. V. Dubovis, G. F. Rudakov, A. S. Kulagin, K. V. Tsarkova, S. V. Popkov, A. S. Goloveshkin, G. V. Cherkaev // Tetrahedron. – 2018. – V. 74. – 672-683.
- 217.Urbanski, T. On some properties of tetrahydro-1,3-oxazines deriving from 1nitrobutane or 1-nitro (iso) butane // T. Urbanski, J. Kolesifiska, H. Piotrowska // Bull. Acad. polon. sci., Cl. III. – 1955. – V. 3. – P. 179-182.
- 218.Urbanski, T. Uber Nitroparaffine. Darstellung, Eigenschaften und einige neue Synthesen / T. Urbanski // Chem. Tech. (Berlin.) 1954. V. 6. P. 442-445.
- 219.U.S. Patent US 2550646 A: Polyamino alcohols and method for preparing them /
   S. Murray. 1951.
- 220.Pohland, A. Analgesics: α-dl-4-Dimethylamino-1,2-diphenyl-3-methyl-2-propionoxybutane-N- methyl-C<sup>14</sup> / A. Pohland, H. R. Sullivan, and R. E. McMahon
   // J. Am. Chem. Soc. 1957. V. 79. P. 1442-1444.
- 221.Stuhmer, W. Diastereomere 3-Amino-1.3-diphenyl-propanole-(1) und ihre N-Monoalkyl-Derivate / W. Stuhmer, W. Heinrich // Chem. Ber. – 1951. – V. 84. – P. 224-228.
- 222.Testa, E. 5,5-Disubstituted Dihydro-1,3-oxazine-2,4-diones. Research on Compounds Active on Central Nervous System. XII<sup>1a</sup> / E. Testa, L. Fontanella, G. Cristiani, G. Gallo // J. Org. Chem.- 1959. – V. 24. – P. 1928-1936.
- 223.U.S. Patent US 2774790 A1: Converting oxazine compounds to gamma-hydroxy amines / H.D Hartough, J.J. Dickert Jr., S.L Meisel 1956.
- 224.Krantz, A. Preparation of functionalized isocyanates utilizing a novel reactive pyridinium salt / A. Krantz, B. Hoppe // Tetrahedron Lett. - 1975. - №9. - P. 695-698.

- 225.Elderfield, R. C. Synthesis of some guanidino amino acids from cyanogen bromide<sup>1,2</sup> / R. C. Elderfield, M. Green // J. Org. Chem. – 1952. – V. 17. – P. 442-452.
- 226.Yao, C.-Z. Synthesis of syn-1,3-Aminoalcohols via a Ru-Catalyzed N-Demethylative Rearrangement of Isoxazolidines and Its Application in a Three-Step Total Synthesis of HPA-12 / C.-Z. Yao, Z.-F. Xiao, X.-S. Ning, J. Liu, X.-W. Zhang, Y.-B. Kang // Org. Lett. – 2014. – V. 16. – P. 5824-5826.
- 227.British Patent GB 889303 A: Acetylenic alkylamine derivatives / Miles Laboratories 1962.
- 228.Meyers, A. I. The reduction of 5,6-dihydro-4H-1,3-oxazines to tetrahydro-1,3-oxazines and the formation of C-1 deuteriated aldehydes / A. I. Meyers and A. Nabeya, J. Chem. Soc., Chem. Commun. (London). 1967. P. 1163-1164.
- 229.Meyers, A. I. Synthesis of aldehydes from dihydro-1,3-oxazines / A. I. Meyers,
  A. Nabeya, H. W. Adickes, I. R. Politzer, G. R. Malone, A. C. Kovelesky, R. L.
  Nolen, R. C. Portnoy / Org. Chem. 1973. V. 38. P. 36-56.
- 230.Meyers, A. I. Heterocyclics in Organic Synthesis / A. I. Meyers. New York: Wiley, 1974. 322 p.
- 231.Meyers, A. I. Total synthesis of camptothecin and desethyldesoxycamptothecin /
  A. I. Meyers, R. L. Nolen, E. W. Collington, T. A. Narwid, R. C. Strickland // J.
  Org. Chem. 1973. V. 38. P. 1974–1982.
- 232.Meyers, A. I. Aldehydes from dihydro-1,3-oxazines. I. Synthesis of aliphatic aldehydes and their C-1 deuterated derivatives / A. I. Meyers, A. Nabeya, H. W. Adickes, I. R. Politzer // J. Am. Chem. Soc. – 1969. – V. 91. – P. 763-764.
- 233.Meyers, A. I. Aldehydes from dihydro-1,3-oxazines. III. Synthesis of cycloalkanecarboxaldehydes / A. I. Meyers, H. W. Adickes, I. R. Politzer, W. N. Beverung // J. Am. Chem. Soc. – 1969. – V. 91. – P. 765-767.
- 234.British Patent GB 1152560 A1: N-Acylated Oxaza Heterocycles / DYNAMIT NOBEL A.G. 1968.
- 235.Meyers, A. I. Syntheses via dihydro-1,3-oxazines. XI. A synthesis of functionally substituted aldehydes / A. I. Meyers, G. R. Malone, H. W. Adickes // Tetrahedron Lett. – 1970. – V. 11. – P. 3715-3718.
- 236.Meyers, A. I. Aldehydes from dihydro-1,3-oxazines. II. Synthesis of .alpha.,.beta.-unsaturated aldehydes and their C-1 deuterated derivatives / A. I. Meyers, A. Nabeya, H. W. Adickes, J. M. Fitzpatrick, G. R. Malone, I. R. Pollitzer // J. Am. Chem. Soc. 1969. V. 91. P. 764-765.
- 237.Adickes, H. W. Aldehydes from dihydro-1,3-oxazines. IV. Synthesis of .gamma.hydroxy aldehydes and their .gamma.-oxo derivatives / H. W. Adickes, I. R. Politzer, A. I. Meyers // J. Am. Chem. Soc. – 1969. – V. 91. – P. 2155-2156.
- 238.Meyers, A. I. Aldehydes from dihydro-1,3-oxazines. V. A three carbon chain extention leading to α, β-disubstituted propionaldehydes / A. I. Meyers, A. C. Kovelesky // Tetrahedron Lett. – 1969. – V. 10. – P. 1783-1786.
- 239.Meyers, A. I. Syntheses via dihydro-1,3-oxazines. X. Versatile ketone synthesis involving stepwise alkyl or aryl introduction / A. I. Meyers, E. M. Smith // J. Am. Chem. Soc. – 1970. – V. 92. – P. 1084-1085.
- 240.Meyers, A. I. Dihydro-1,3-oxazines. XV. Two-carbon homologation of alkyl halides to aldehydes using a novel ketene N, O-acetal / A. I. Meyers, N. Nazarenko // J. Am. Chem. Soc. – 1972. – V. 94. – P. 3243-3245.
- 241.Meyers, A. I. Syntheses with dihydro-1,3-oxazines. IX. A simple synthesis of αphenylaldehydes and ketones / A. I. Meyers, A. C. Kovelesky // Tetrahedron Lett. – 1969. – V. 10. – P. 4809-4812.
- 242.Meyers, A. I. Syntheses via dihydro-1,3-oxazines. VII. A simple synthesis of unsymmetrical ketones / A. I. Meyers, A. C. Kovelesky // J. Am. Chem. Soc. – 1969. – V. 91. – P. 5887-5888.
- 243.Meyers, A. I. Dihydro-1,3-oxazines. XII. The oxazine α-carbanion-ketenimine rearrangement / A. I. Meyers, E. M. Smith // Tetrahedron Lett. – 1970. – V. 11. – P. 4355-4358.
- 244.Meyers, A. I. Dihydro-1,3-oxazines. XIII. Synthesis of specifically alkylated unsymmetrical ketones. Method for assembling ketones with .alpha.-(quaternary

carbons) / A. I. Meyers, E. M. Smith, A. F. Jurjevich // J. Am. Chem. Soc. – 1971. – V. 93. – P. 2314-2316.

- 245.Meyers, A. I. Synthesis of ketones from dihydro-1,3-oxazines via stepwise alkyl or aryl introduction / A. I. Meyers, E. M. Smith // J. Org. Chem. – 1972. – V. 37. – P. 4289-4293.
- 246.Meyers, A. I. Dihydro-1,3-oxazines. XVI. General synthesis of 2-alkylcyclopentenones and a method for adding CH<sub>2</sub>CO<sub>2</sub>Me to electrophilic olefins. Application to the synthesis of methyl jasmonate // A. I. Meyers, N. Nazarenko // J. Org. Chem. 1973. V. 38. P. 175-176.
- 247.Meyers, A. I. Chemistry of dihydro-1,3-oxazines. XX. Synthesis of .alpha.branched ketones from dihydro-1,3-oxazines via the ketenimine intermediate.
  .alpha.-Substituted ketones from a stable ketenimine / A. I. Meyers, E. M. Smith, M. S. Ao // J. Org. Chem. – V. 38. – P. 2129-2136.
- 248.Malone, G. R. 5,6-Dihydro-1,3-oxazines. XXIII. Chemistry of 2-chloromethyloxazines. Formation of phosphoranes and phosphonates. Use of .alpha.,.beta. unsaturated oxazines as a common intermediate for the synthesis of aldehydes, ketones, and acids / G. R. Malone, A. I. Meyers // J. Org. Chem. 1974. V. 39. P. 623-628.
- 249.Fitzpatrick, J. M. Preparative procedures for aldehydes from dihydro-1,3oxazines / J. M. Fitzpatrick, G. R. Malone, I. R. Politzer, H. W. Adickes, A. I. Meyers // Org. Prep. Proc. – 1969. – V. 1. – P. 193-199.
- 250.Kovelesky, A. C. 3-Methyl-3-phenylpropanal. An example of a three carbon chain extension via the oxazine-aldehyde synthesis / A. C. Kovelesky, A. I. Meyers // Org. Prep. Proc. – 1969. – V. 1. – P. 213-215.
- 251.Meyers, A. I. An efficient total synthesis of propylure, the highly active sex attractant for the pink bollworm moth / A. I. Meyers, E. W. Collington // Tetrahedron. – 1971. – V. 27. – P. 5979-5985.
- 252.Meyers, A. I. Dihydro-1,3-oxazines. XIV. A versatile synthesis of pyrrolo[2,1-c]
  [1,3,4H] oxazines and a new approach to pyrroles / A. I. Meyers, T. A. Narwid, E.
  W. Collington // J. Heterocycl. Chem. 1971. V. 8. P. 875-876.

- 253.Meyers, A. I. Total synthesis of camptothecin and desethyldesoxycamptothecin /
  A. I. Meyers, R. L. Nolen, E. W. Collington, T. A. Narwid, R. C. Strickland // J.
  Org. Chem. 1973. V. 38. P. 1974-1982.
- 254.Narwid, T. A. Chemistry of dihydro-1,3-oxazines. 24. Formation of pyrroles from dihydro-1,3-oxazines / T. A. Narwid, A. I. Meyers // J. Org. Chem. – 1974. – V. 39. – P. 2572-2574.
- 255.Hebenbrock, K.-F. N-Substituierte Tetrahydro-1.3-oxazine und N-substituierte 1.3-Oxazolidine aus den entsprechenden N-Nitroso-Verbindungen / K.-F. Hebenbrock, K. Eiter // Ann. Chem. – 1973. – V. 765. – P. 78-93.
- 256.Schmidt, R. R. Polare 1.4-Cycloaddition, IX. Cycloaddition von Amidomethylium-Ionen an Doppelbindungs-Systeme. Reaktionsumfang und Reaktionsverlauf / R. R. Schmidt // Chem. Ber. – 1970. – V. 103. – P. 3242-3251.
- 257.McManus, S. P. Neighboring group participation in polar bromination of styrene derivatives / S. P. McManus, R. A. Hames // Tetrahedron Lett. – 1973. – V. 14. – P. 4549-4552.
- 258.French Patent FR 2082275 A5: N-nitroso heterocyclic cpds / Simonnot, Rinuy, Santarelli 1971.
- 259.French Patent FR 1585475 A1: Procédé de préparation de 4H-5,6-Dihydro-1,3oxazines substituées en position 4/ H. Karl-Dieter H., S. Wolfgang – 1970.
- 260.McManus, S. P. Evidence against strongly-bridged bromonium ion intermediates in bromocyclization reactions of 2-butene derivatives / S. P. McManus, D. W. Ware // Tetrahedron Lett. – 1974. – V. – 15. – P. 4271-4274.
- 261.Monneret, C. Alcaloides steroidiques—CLXXI: Nouvelle methode d'acces aux
  4H dihydro-5,6 oxazine-1,3 / C. Monneret, P. Choay, O. Khuong-Huu //
  Tetrahedron. 1975. V. 31. P. 575-578.
- 262.Clapp, R. C. Rearrangements of the aminoalkylation products of tetrahydro-2H-1,3-oxazine-2-thione / R. C. Clapp, L. Long // J. Heterocycl. Chem. – 1970. – V. 7. – P. 1357-1361.

- 263.Martin, J. C. Reactions of trichloroacetyl isocyanate with unsaturated ethers / J.
  C. Martin, J. L. Chitwood, P. G. Gott // J. Org. Chem. 1971. V. 36. P. 2228-2232.
- 264.Арбузов, Б. А. Взаимодействие бензоил- и трихлорацетилизоцианатов с циклическими енаминами / Б. А. Арбузов, Н. Н. Зобова, Ф. Б. Балабанова // Изв. АН СССР. – 1972. – С. 2086-2088.
- 265.French Patent FR 1504886 A1: Nouvelles compositions à base de gélatine et de tannants et produits photographiques préparés à partir de ces compositions tannantes / D.D. Reynolds; J.F. Tinker – 1967.
- 266.German Patent DE 2221408 A1: Neue substituierte 2-Isopropyltetrahydro-1,3oxazine,Verfahren zu ihrer Herstellung und ihre therapeutische Anwendung / Y. Bailly, C. Douzon, C.Fauran, G. Huguet; G. Raynaud – 1972.
- 267.U.S. Patent US 3558615 A1: N-Oxazolidine- and N-Tetrahydro-1,3-Oxazine-Carboxanilides / G.R. Haynes; D.D. Phillips – 1968.
- 268.French Patent FR 1478076 A: Procédé de préparation de 4H-5, 6-dihydro-1, 3oxazines / Huels Chemische Werke Ag. – 1967.
- 269.Fodor, G. Optisches Drehungsvermögen und Konformation, II. Auswertung der Versuchsergebnisse über die epimeren 1-Amino-1.2-diphenyl-propanole-(3) und andere, mit diesen genetisch zusammenhängende Verbindungen an Hand der Brewster-Methode / G. Fodor, J. Stefanowsky, B. I. Kurtev // Chem. Ber. – 1967. – V. 100. – P. 3069-3076.
- 270.Jones, R. A. Y. The conformational analysis of saturated heterocycles. Part XXX.
  3-Alkyl tetrahydro-1,3-oxazines / R. A. Y. Jones, A. R. Katritzky, and D. L. Trepanier / J. Chem. Soc. B. 1971. P. 1300-1302.
- 271.Sheehan, J. C. The synthesis of oxygen analogs of cepham. A new bicyclic system / J. C. Sheehan, M. Dadić // J. Heterocycl. Chem. 1968. V. 5. P. 779-783.
- 272.Canadian Patent CA 697720 A1: Process For The Production Of Derivatives Of Oxazolidones And Oxazinones / R.G. Haber 1964.
- 273.Bott, K. Aldehydsynthesen mit 1.2-Dichloräthylen und vinylchlorid / K. Bott // Tetrahedron Lett. 1970. V. 11. P. 4301-4303.

- 274.Bott, K. α-Verzweigte N-phthaloyl-β-aminosäuren / K. Bott // Tetrahedron Lett. - 1970. – V. 11. – P. 4185-4188.
- 275.French Patent FR 1560931 A: Procédé de préparation de O,N-acétals cycliques N-acylés / K. Thewalt, G. Reuckhoff (Dynamit Nobel A.G.) 1969.
- 276.British Patent GB 1098759 A1: 5-halogen-5-nitrotetrahydro-1,3-oxazines and process for their production / D. Guerne; M. Mordarski ; B. Ortowska; T. Urbauski 1968.
- 277.Drey, C. N. C. Selective hydrogenation of 4,5-dihydro-1,3-oxazin-6-ones to carboxaldehyde derivatives; chemical differentiation between acylazetidin-2-ones and the corresponding isomeric oxazin-6-ones / C. N. C. Drey, R. J. Ridge // J. Chem. Soc, Chem. Commun. – 1975. – P. 948-949.
- 278.Farrissey, W. J. The rearrangement of glycicyl N-phenylcarbamate / W. J. Farrissey, A. M. Nashu // J. Heterocycl. Chem. 1970. V. 7. P. 331-333.
- 279.Haneishi, T. Oxazinomycine, a new carbon-linked nugleoside antibiotic / T. Haneishi, T. Okazaki, T. Hata, C. Tamuta, M. Namura, A. Naito, I. Seki, M. Arai // J. Antibiot. 1971. V. 24. P. 797-799.
- 280.Kupchan, S. M. Tumor inhibitors. LXXIII. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus / S. M. Kupchan, Y. Komoda, W. A. Court, G. J. Thomas, R. M. Smith, A. Karim, C. J. Gilmore, R. C. Haltivanger, R. F. Bryan // J. Am. Chem. Soc. 1972. V. 94. P. 1354-1356.
- 281.Kupchan, S. M. Maytanprine and maytanbutine, new antileukaemic ansa macrolides from Maytenus buchananii / S. M. Kupchan, Y. Komoda, G. J. Thomas, H. P. J. Hintz // J. Chem. Soc, Chem. Commun. – 1972. – P. 1065-1065.
- 282.Kupchan, S. M. Tumor inhibitors. 107. Novel maytansinoids. Naturally occurring and synthetic antileukemic esters of maytansinol / S. M. Kupchan, A. R. Branfman, R. Alan, A. T. Sueden, A. K. Verma, R. G. Dailey, Y. Komoda, Y. Nagao // J. Am. Chem. Soc. – 1975. – V. 97. – P. 5294-5295.
- 283.Meyers, A. I. Progress toward the total synthesis of maytansine. A stereoselective synthesis of the C-1 to C-7 moiety (northern zone) / A. I. Meyers, C. C. Shaw, D.

Home, L. M. Trefonas, R. J. Majesté // Tetrahedron Lett. – 1975. – V. 16. – P. 1745-1748.

- 284.Wani, M. C. Plant antitumour agents: colubrinol acetate and colubrinol, antileukaemic ansa macrolides from Colubrina texensis / M. C. Wani, H. L. Taylor, M. E. Wall // J. Chem. Soc, Chem. Commun. – 1973. – P. 390-390.
- 285.Corey, E. J. Stereocontrolled route to a key intermediate for the synthesis of maytansine / E. J. Corey, M. G. Bock // Tetrahedron Lett. – 1975. – V. 16. – P. 2643-2646.
- 286.Rice, F. A. H. The structure of leucogenenol / F. A. H. Rice // J. Chem. Soc. C. 1971. P. 2599-2606.
- 287.Rice, F. A. H. Isolation of leucogenenol from bovine and human liver / F. A. H. Rice, B. Shaikh // Biochem. J. 1970. V. 116. P. 709-711.
- 288.British Patent GB 1276623 A1: N-Nitroso Heterocyclic Compounds / K. Eiter 1972.
- 289.British Patent GB 1120793 A1: 5-nitrotetrahydro-1,3-oxazines / Grodziskie zaklady farmaceutyczne «Polfa» 1968.
- 290.Johnson, P. Y. The synthesis and antitumor properties of a 6-Alkoxy tetrahydrooxazine / P. Y. Johnson, R. B. Silver // J. Heterocycl. Chem. – 1975. – V. 10. – P. 1029-1030.
- 291.Remillard, S. Antimitotic activity of the potent tumor inhibitor maytansine / S. Remillard, L. I. Rebhun, G. A. Howie, S. M. Kupchan // Science. 1975. V. 189. P. 1002-1005.
- 292.British Patent GB 1213166 A1: Novel cyanoethanols, their synthesis and their conversion to derivatives / J.A. Baker, T.D. Hackett 1970.
- 293.Nicolis, F. B. A Study of Some Pharmacological Properties of Diethadione in Man / F. B. Nicolis, C. Scocella, A. Ghisellini, G. Cenacchi, G. Alberti // Chemotherapia (Basel). – 1962. – V. 4. – P. 485-505.
- 294.Acocella, G. Controlled clinical experiences with a new analeptic, dioxone.
  Methodological considerations and results / G. Acocella, A. Ghisellini // Clin. Ter.
   1961. V. 21. P. 19-43.

- 295.Genacchi, G. Electroencephalographic study of a new analeptic, dioxone, in the diagnosis of epilepsy and its comparison with pentamethylenetetrazole / G. Genacchi, G. Alberti // Clin. Ter. 1961. V. 21. P. 44-57.
- 296.Maffii, G. A new analeptic: 5, 5-diethyl-1, 3-oxazine-2,4-dione (Dioxone) / G. Maffii, V. M. Dezulian, B. Silvestrini // J. Pharm. Pharmacol. 1961. V. 13. P. 244-253.
- 297.Maffii, G. Action of 5,5-diethyl-1,3-oxazine-2,4-dione (dioxone) on respiration and circulation / G. Maffii, G. Bianchi, P. Schiatti, B. Silvestrini // Brit. J. Pharmacol. Chemother. – 1961. – V. 16. – P. 231-243.
- 298.Fadiga, E. Modificazioni provocate dal 5,5-dietil-1,3-ossazin-2,4-dione (dietadione) nell'attivita' elettrica spontanea registrata dalla corteccia cerebrale, dal talamo e dalla formazione reticolare mesencefalica / E. Fadiga, G. Maffii, B. Silvestrini // Boll. Soc. Ital. Biol. Sper. – 1963. – V. 39. – P. 188-190.
- 299.Sayaji, S. D. Novel one-pot synthesis and anti-microbial activity of 6-chloro-2,4diphenyl-3,4-dihydro-2H-1,3-benzoxazines derivatives / Sayaji S. D., Piste B. P. // Internet. J. Chem. Tech. Research. – 2013. – V. 5. – P. 2199-2203.
- 300.Zanatta, N. Synthesis and antimicrobial activity of new (4,4,4-trihalo-3-oxo-but-1-enyl)-carbamic acid ethyl esters, (4,4,4-trihalo-3-hydroxy-butyl)-carbamic acid ethyl esters, and 2-oxo-6-trihalomethyl-[1,3]oxazinane-3-carboxylic acid ethyl esters / N. Zanatta, D. M. Borchhardt, S. H. Alves, H. S. Coelho, A. M. C. Squizani, T. M. Marchi, H. G. Bonacorsoa, M. A. P. Martinsa // Bioorg. & Med. Chem. – 2006. – V. 14. – P. 3174–3184.
- 301.Francavilla, C. Novel N-chloroheterocyclic antimicrobials / C. Francavilla, E. D. Turtle, B. Kim, D. J. R. O'Mahony, T. P. Shiau, E. Low, N. J. Alvarez, C. E. Celeri, L. D'Lima, L. C. Friedman, F. S. Ruado, P. Xu, M. E. Zuck, M. B. Anderson, R. Najafi, R. K. Jain // Bioorg. & Med. Chem. Lett. 2011. V. 21. P. 3029–3033.
- 302.Gulçin, I. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors / I. Gulçin, M. Abbasova, P. Taslimi, Z. Huyut, L. Safarova, A. Sujayev,

V. Farzaliyev, S. Beydemir, S. H. Alwasel, C. T. Supuran / Journal of Enzyme Inhibition and Medicinal Chemistry. – 2017. – V. 32. – P. 1174–1182.

- 303.Landquist, J. K. Comprehensive Organic Chemistry. Heterocyclic Compounds / J. K. Landquist. – Oxford: Pergamon Press, 1979. – 156p.
- 304.Eiden, F. Ring cleavage of 1,2-dihydro-3,1-benzoxazines, I (author's transl) / F. Eiden, K. Schnabel, H. Wiedemann // Arch. Pharm. 1975. V. 308. P. 622-631.
- 305.Paal, C. Ueber Derivate des o-Amidobenzylalkohols / C. Paal, E. Landheimer // Berichte. – 1862. – V. 25. – P. 2967-2973.
- 306.Holly, F. W. Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine / F. W. Holly, A. C. Cope // J. Am. Chem. Soc. – 1944. – V. 66. – P. 1875-1879.
- 307.Eiden, F. Darstellung und Reaktionen von N-Vinyl-o-aminobenzophenon-Derivaten 26. Mitt, über Untersuchungen an Acyl-enaminen / F. Eiden, K. Schnadel, H. Wiendemann // Arch. Pharm. – 1974. – V. 307. – P. 204-211.
- 308.Lessel, J. 3,1-Benzoxazine und Tetrahydrochinazoline aus o-Aminobenzylalkohol und o-Aminobenzylamin - Semi-empirische MO-Berechnungen zum Cyclisierungsverhalten / J. Lessel // Arch. Pharm. – 1994. – V. 327. – P. 329-336.
- 309.Gromachevskaya, E. V. 4H-3,1-benzoxazines. 2. Synthesis of 2,4-substituted 1,2dihydro-4H-3,1-benzoxazines / E. V. Gromachevskaya, V. G. Kul'nevich, T. P. Kosulina, V. S. Pustovarov // Chem. Heterocycl. Compd. – 1988. – V. 24. – P. 692-697.
- 310.Gromachevskaya, E. V. Reaction of o-aminophenyldiphenylcarbinol with unsaturated aldehydes / E. V. Gromachevskaya, T. P. Kosulina, G. D. Krapivin, V. G. Kul'nevich // Chem. Heterocycl. Compd. – 1993. – V. 29. – P. 1109-1110.
- 311.Gromachevskaya, E. V. 4H-3,1-benzoxazoles. 4. Examination of the formation of 1,2-dihydro-4h-3,1-benzoxazines using tagged atoms / E. V. Gromachevskaya, I. S. Arustamova, A. G. Sakhabutdinov, V. G. Kul'nevich // Chem. Heterocycl. Compd. 1988. V. 24. P. 1381-1384.

- 312.Kosulina, T. P. Reaction of o-aminophenyldiphenylmethanol with α-acetylenic ketone / T. P. Kosulina, E. V. Gromachevskaya, V. G. Kul'nevich // Chem. Heterocycl. Compd. – 1993. – V. 24. – P. 1381-1384.
- 313.Mazurkiewicz, R. Synthesis and rearrangement of 4-imino-4H-3,1-benzoxazines
   / R. Mazurkiewicz // Monatsh. Chem. 1989. V. 120. P. 973-980.
- 314.Germain patent DE 102005030733 A1: Preparation of 1,4-dihydro-2H-3,1benzoxazin-2-ones and related compounds for the treatment of respiratory diseases / I. Konetzki, T. Bouyssou, S. Pestel, A. Schnapp – 2007.
- 315.British patent GB 1135899 A1: 3,1-Benzoxazin-2-ones / E. Messer 1968.
- 316.Pierce, M. E. Practical Asymmetric Synthesis of Efavirenz (DMP 266), an HIV-1 Reverse Transcriptase Inhibitor / M. E. Pierce, K. L. Parsons, L. A. Radesca, Y. S. Lo, S. Silverman., J. K. Moore, Q. Islam, A. Choudhury, J. M. D. Fortunak, D. Nguyen, C. Luo, S. G. Morgan, W. P. Davis, P. N. Confalone, C. Chen, K. D. Tillyer, L. Frey, L. Tan, F. Xu, D. Zhao, A. S. Thompson, E. G. Corley, E. J. J. Grabowski, R. Reamer, P. J. Reider // J. Org. Chem. – 1998. – V. 63. – P. 8536-8543.
- 317.Villiger, V. Über Dichlor-phthalsäuren und Dichloranthranilsäuren / V. Villiger // Ber. 1909. V. 4. P. 3529-3549.
- 318.Bogert, M. T. Further studies of syringic acid and its derivatives / M. T. Bogert,
  B. B. Coyne // J. Am. Chem. Soc. 1929. V. 51. P. 569-576.
- 319.Friedlander, P. Über N,N'-Diphenyl-indigo / P. Friedländer, K. Kunz // Ber. 1922. – V. 55. – P. 1597-1607.
- 320.Friedlander, P. Zur Constitution des Anthranils / P. Friedlander, S. Wleugel // Ber. - 1883. - V. 16. - P. 2227-2229.
- 321.Kolbe, H. Ueber Isatin. Vorläufige Mittheilung / H. Kolbe // J. Prakt. Chem. 1884. V. 30. P. 84-87.
- 322.Kolbe, H. Einfache und ergiebige Methode der Darstellung von Anthranilsäure / H. Kolbe // J. Prakt. Chem. 1884. V. 30. P. 124-125.
- 323.Kolbe, H. Beiträge zur Ermittelung der chemischen Constitution des Isatins / H. Kolbe // J. Prakt. Chem. 1884. V. 30. P. 467-483.

- 324.Wagner, E. C. Isatoic anhydride / E. C. Wagner, M. F. Fegley // Org. Syntheses. - 1947. – V. 27. – P. 45-48.
- 325.Erdmann, E. Berichte der deutschen chemischen Gesellschaft / E. Erdmann // Ber.
   1899. V. 32. P. 2159-2172.
- 326.Niementowski, St. Synthese der Isatosäure / St. Niementowski, Br. Rozański // Ber. – 1889. – V. 22. – P. 1672-1677.
- 327.Heilbron, I. M. CCXCII.—Chemical reactivity and conjugation. Part II. The reactivity of the 2-methyl group in the 4-quinazolone series / I. M. Heilbron, F. N. Kitchen, E. B. Parkes, G. D. Sutton // J. Chem. Soc. 1925. V. 127. P. 2167-2175.
- 328.Houben, J. Synthese aromatischer Aminosäuren Synthese aromatischer Aminosäuren V / J. Houben, R. Freund // Ber. 1913. V. 46. P. 3833-3839.
- 329.Asahina, Y. Berichte der deutschen chemischen Gesellschaft (A and B Series) /
  Y. Asahina, T. Ohta // Ber. 1928. V. 61. P. 319-321.
- 330.Koelsch, C. F. The Reaction of Benzylmagnesium Chloride with 3-Phenylquinazolone-4 / C. F. Koelsch // J. Am. Chem. Soc. – 1945. – V. 67. – P. 1718-1720.
- 331.Japan Patent JPS 1689163 B1: Isatoic anhidride derivatives / M. Suzuki, K. Yoshihara, N. Agazi 1963.
- 332.Japan Patent JPS 807862 A1: Dyes containing a dioxodihidrobenzoxazine ring / T. Moni, S. Ono – 1962.
- 333.Japan Patent JPS 1493662 B2: Azo dyes / M. Suzuki, K. Yoshihara, S. Maeda 1964.
- 334.German patent DE 1179217 B2: Verfahren zur Herstellung von 2-Dialkylamino6-oxo-2, 3-dihydro-1, 3-oxazinverbindungen / O. Fuchs, F. Ishe 1964.
- 335.Doleschall, G. Mechanism of carboxyl condensations by carbodiimides. / G. Doleschall, K. Lempert // Tetrahedron Lett. 1963. V. 18. P. 1195-1199.
- 336.German Patent DE 2218302 B1: Fungicidal 2[(triflouromethyl)imino]-3,1benzoxazin-4-ones / G. Buettner, E. Klauke, P. Kaspers, P. Frohberger – 1973.

- 337.Lempert, K. Rearrangement of N-cyano-anthranilic acids to 1,2-dihydro-2-imino-3,1,4H-benzoxazin-4-ones and 2,4(IH,3H)-quinazoline-diones. Reactions of 1,2dihydro-2-imino-3,1,4H-benzoxazin-4-one with hydroxylic reagents / K. Lempert, G. Doleschall // Tetrahedron Lett. - 1963. - V. 12 - P.781-784.
- 338.Lempert, K. 4H-3,1-Benzoxazinone-(4), 1. Mitt.: Die Umlagerung von N-(2-Carboxyphenyl)-cyanamiden und N-(2-Carboxyphenyl)-carbodiimiden zu 1,2-Dihydro-2-imino-4H-3,1-benzoxazinonen-(4) und 1,2,3,4-Tetrahydrochinazolindionen-(2,4) / K. Lempert, G. Doleschall // Monatsh. 1964. V. 95. P. 950-960.
- 339.Nagasaka, T. Stereoselective Synthesis of Tilivalline / T. Nagasaka, Y. Koseki //
  J. Org. Chem. 1998. V. 63. P. 6797-6801.
- 340.Петюнин, П. А. Исследования в области химии гетероциклов. XLV. Синтез и свойства 9-фенилакридин-2-карбоновой кислоты / П. А. Петюнин, А. Ф. Солдатова, А. К. Сухомлинов // Химия гетероцикл. соедин. – 1969. – №4. – С. 702-704.
- 341.Witkop, B. Acid- and Base-catalyzed Rearrangements of a Ring-Chain Tautomeric Ozonide / B. Witkop, J. B. Patrick // J. Am. Chem. Soc. – 1952. – V. 74. – P. 3855, 3861-3866.
- 342.Witkop, B. Reductive Cleavages of a Stable Ozonide / B. Witkop, J. B. Patrick // J. Am. Chem. Soc. – 1952. – V. 74. – P. 3855-3860.
- 343.Witkop, B. Conversion of benzoxazine hydroperoxides to the parent benzoxazines / B. Witkop, J. B. Patrick // J. Org. Chem. – 1954. – V. 19. – P. 1824-1829.
- 344.Gromachevskaya, E. V. Research on 4H-3,1-benzoxazines. 8. Synthesis and properties of 4H-3,1-benzoxazinium chlorides / E. V. Gromachevskaya, T. P. Kosulina, V. G. Kul'nevich // Chem. Heterocycl. Compd. – 1993. – V. 24. – P. 460-464.
- 345.Kliegel, W. Aromatic aldonitrones of 2-(hydroxyamino)benzyl alcohol and their cyclic isomers. Crystal and molecular structures of a 1-hydroxy-1,2-dihydro-4H-

3,1-benzoxazine, a boron chelate, and its parent nitrone ligand / W. Kliegel, J. Metge, S. J. Rettig, J. Trotter // Can. J. Chem. – 1998. – V. 76. – P. 389-399.

- 346.Neuvonen, K. Studies on the benzoxazine series. 2—Preparation and <sup>1</sup>H and <sup>13</sup>C NMR structural study of some substituted 1,2-dihydro-4H-3,1-benzoxazines / K. Neuvonen, R. Pohtola, K. Pihlaja // Magn. Reson. Chem. 1989. V. 27. P. 725-733.
- 347.Fulop, F. Részlegesen telített tetraciklusos benzoxazinok egylombikos szintézise / F. Fulop, L. Lizir, G. Bernath // Magy. Kern. Fol. 1989. V. 95. P. 212-215.
- 348.Lizir, L. Synthesis and stereochemistry of stereoisomeric 1,3-benzoxazino-1,3and -3,1-benzoxazines / L. Lizir, F. Fulop, G. Bemath, A. Kalman, G. Argay // J. Heterocycl. Chem. – 1991. – V. 28. – P. 1213-1218.
- 349.Gromachevskaya, E. V. 4H-3,1-benzoxazines. 5. PMR and mass spectrometric study of 2,4-substituted 1,2-dihydro-4H-3, 1-benzoxazines / E. V. Gromachevskaya, T. P. Kosulina, V. G. Kul'nevich, Yu. Yu. Samitov, A. I. Khayarov, V. T. Dubonosov // Chem. Heterocycl. Compd. – 1990. – V. 26. – P. 86-92.
- 350.Barker, S. J. Flash vacuum pyrolysis of 1-allybenzotriazoles and dihydrobenzoxazines: Formation of quinolines / S. J. Barker, G. B. Jones, K. R. Randless, R. C. Store // Tetrahedron Lett. – 1988. – V. 29. – P. 953-954.
- 351.Eiden, F. Über eine 1.2-dihydro-3.1-benzoxazin→acridan-umlagerung / F. Eiden,
  H. Wiedemann // Tetrahedron Lett. 1970. V. 11. P. 1111-1112.
- 352.Gromachevskaya, E. V. Investigation of 4H-3,1-benzoxazines. 12. N-substitution of 1,2-dihydro-4H-3,1-benzoxazines / E. V. Gromachevskaya, T. P. Kosulina, F. V. Kvitkovskii, V. G. Kul'nevich // Chem. Heterocycl. Compd. 1997. V. 33. P. 736-740.
- 353.Gromachevskaya, E. V. Studies of 4H-3,1-benzoxazines. 13. Bromination of 1,2dihydro-4H-3,1-benzoxazines / E. V. Gromachevskaya, G. D. Krapivin, V. E. Zavodnik, V. G. Kul'nevich // Chem. Heterocycl. Compd. – 1997. – V. 33. – P. 1209-1214.

- 354.Besson, T. Antimicrobial evaluation of 3,1-benzoxazin-4-ones, 3,1-benzothiazin-4-ones, 4-alkoxyquinazolin-2-carbonitriles and N-arylimino-1,2,3-dithiazoles / T. Besson, C. W. Rees, G. Cottenceau, A. Pons // Bioorg. Med. Chem. Lett. 1996. V. 6. P. 2343-2348.
- 355.Habib, O. M. Potentially active antimicrobial agents from 2benzenesulfonyloxyphenyl-3,1-benzoxazine-4-one derivative / O. M. Habib, E. B. Moawad, M. M. Girges, A. M. El-Shafei // Boll. Chim. Farm. – 1995. – V. 134. – P. 503-508.
- 356.Hsieh, P. 2-Substituted benzoxazinone analogues as anti-human coronavirus (anti-HCoV) and ICAM-1 expression inhibition agents / P. Hsieh, F. Chang, C. Chang, P. Cheng, L. Chiang, F. Zeng, K. Lin, Y. Wu // Bioorg. Med. Chem. Lett. - 2004. – V. 14. – P. 4751-4754.
- 357.Neumann, U. Inhibition of human chymase by 2-amino-3,1-benzoxazin-4-ones /
  U. Neumann, N. Schechter, M. Gutschow // Bioorg. Med. Chem. 2001. V. 9. –
  P. 947-954.
- 358.Arcadi, A. Synthesis and in vitro and in vivo evaluation of the 2-(6'methoxy-3',4'dihydro-1'-naphtyl)-4H-3,1-benzoxazin-4-one as a new potent substrate inhibitor of human leukocyte elastase / A. Arcadi, C. Asti, L. Brandolini, G. Caseilli, F. Marinelli, V. Ruggieri // Bioorg. Med. Chem. Lett. – 2009. – V. 9. – P. 1291-1294.
- 359.Hsieh, P.-W. The evaluation of 2,8-disubstituted benzoxazinone derivatives as anti-inflammatory and anti-platelet aggregation agents / P.-W. Hsieh, T.-L. Hwang, C.-C. Wu, F.-R. Chang, T.-W. Wang, Y.-C. Wu // Bioorg. Med. Chem. Lett. – 2005. – V. 15. – P. 2786–2789.
- 360.Gilmore, J. L. Synthesis and evaluation of 2-aryl-4H-3,1-benzoxazin-4-ones as C1r serine protease inhibitors / J. L. Gilmore, S. J. Hays, B. W. Caprathe, C. L. Mark, R. Emmerling, W. Michael, J. C. Jaen // Bioorg. & Med. Chem. Lett. 1996. V. 6. P. 679-682.
- 361.Zhang, P. Potent nonsteroidal progesterone receptor agonists: synthesis and SAR study of 6-aryl benzoxazines / P. Zhang, E. A. Teerfenko, A. Fensome, Z. Zhang,

Y. Zhu, J. Cohen, R. Winneker, J. Wrobel, J. Yardley // Bioorg. Med. Chem. Lett., 2002, 12, 787-790.

- 362.Deswal, S. Quantitative structure activity relationship of benzoxazinone derivatives as neuropeptide Y Y<sub>5</sub> receptor antagonists / S. Deswal, N. Roy // Eur. J. Med. Chem. – 2006. – V. 41. – P. 552-557.
- 363.Kern, J. C. SAR studies of 6-(arylamino)-4,4-disubstituted-1-methyl-1,4-dihydrobenzo[d][1,3]oxazin-2-ones as progesterone receptor antagonists / J. C. Kern, E. A. Terefenko, A. Fensome, R. Unwalla, J. Wrobel, Y. Zhou, J. Cohen, R. Winneker, Z. Zhang, P. Zhang // Bioorg. Med. Chem. Lett. 2007. V. 17. P. 189-192.
- 364.Rausch, M. D. Organometallic π-complexes: XX. The preparation of styrenetricarbonylchromium / M. D. Rausch, G. A. Moser, E. S. Zaiko, A. L. Lipman // J. Organomet. Chem. – 1970. – V. 23. – P. 185-192.
- 365.Zimkin, E. Reaction products of primary β-hydroxy-amines with carbonyl compounds. VI. Oxazolidines derived from N-phenylethanolamine / E. Zimkin, E. Bergmann // Rec. Trav. Chim. Pays-Bas. – 1952. – V. 71. – P. 229-236.
- 366.Farrugia, L. J. The QTAIM Approach to Chemical Bonding Between Transition Metals and Carbocyclic Rings: A Combined Experimental and Theoretical Study of (η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Mn(CO)<sub>3</sub>, (η<sup>6</sup>-C<sub>6</sub>H<sub>6</sub>)Cr(CO)<sub>3</sub>, and (E)-{(η<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)CF=CF(η<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)}(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Fe<sub>2</sub> / L. J. Farrugia, C. Evans, D. Lentz, M. Roemer // J. Am. Chem. Soc. – 2009. – V. 131. – P. 1251-1268.
- 367.Артемов, А. Н. Синтез 1,3-оксазолидинов и 1,3-оксазинанов, содержащих (η<sup>6</sup>-арен)хромтрикарбонильную группу, конденсацией альдегидов и аминоспиртов / А. Н. Артемов, Е. В. Сазонова, Н.А. Крылова, Е. А. Зверева, Н. А. Печень, Г. К. Фукин, А. В. Черкасов, В. И. Фаерман, Н. Ю. Гришина // Изв. АН. Сер. хим. 2018. Т. 5. С. 884-892.
- 368.Müller, J. Massenspektroskopische Untersuchungen an substituierten Benzolchromtricarbonyl-Komplexen / J. Müller, P. Göser // Chem. Ber. – 1969. – V. 102. – P. 3314-3323.

- 369.Gromachevskaya, E. V. 4H-3,1-Benzoxazines, Their Salts and Dihydro Derivatives. (Review) / E. V. Gromachevskaya, F. V. Kvitkovskii, T. P. Kosulina, V. G. Kul'nevich // Chem. Heterocycl. Compd. – 2003. – V. 39. – P. 137-155.
- 370.Fukin, G. K. The Electron Density Distribution in Crystals of η6–[1,4–dihydrospiro(2H–3,1–benzoxazine–2,1'–cyclohexane)]tricarbonylchromium(0): Experiment vs Molecular Invariom / G. K. Fukin, A. V. Cherkasov, E. V. Baranov, R. V. Rumyantcev, E. V. Sazonova, A. N. Artemov // Chem. Select. 2019. V. 4. P. 10976-10982.
- 371.Fukin, G. K. Experimental study of X-ray charge density and the selection of reference points for a source function in η<sup>6</sup>-(2-methyl-1,4-dihydro-2H-3,1benzoxazine)tricarbonylchromium(0) / G. K. Fukin, A. V. Cherkasov, R. V. Rumyantcev, N. Yu. Grishina, E. V. Sazonova, A. N. Artemov, A. I. Stash // Mendeleev Commun. – 2019. – V. 29. – P. 346-348.
- 372.Артемов, А. Н. Синтез (η<sup>6</sup>-арен)хромтрикарбонильных производных 1,4дигидро-3,1-бензоксазинов / Е. В. Сазонова, А. Н. Артемов, В. И. Фаерман, Н. А. Аксенова, А.А. Тимофеева, Н.В. Сомов, Н. Ю. Гришина // Изв. АН. Сер. хим. – 2021. – Т. 1. – С. 171-178.
- 373.Pannel, K. H. Heterocyclic π-Complexes of the transition metals / K. H. Pannel,
  B. L. Kalsotra, C. Parkanyi // J. Heterocycl. Chem. 1978. V. 15. P. 1057-1081.
- 374.Ding, C. Polynuclear Complexes of Ligands Containing in Situ Formed Oxazinane and Oxazolidine Rings with Appended Alkoxyl and Phenol Groups / C. Ding, F. Zeng, J. Ni, B. Wang, Y. Xie // Crystal Growth & Design. – 2012. – V. 12. – P. 2089-2096.
- 375.Okuyama, Y. New chiral ligands, pyrrolidinyl- and 2-azanorbornylphosphinooxazolidines for palladium-catalyzed asymmetric allylation / Y. Okuyama, H. Nakano, H. Hongo // Tetrahedron Asymmetry. – 2000. – V. 11. – P. 1193-1198.
- 376.Конькова, С. Г. Химия иминов. І. Ацилирование гидроксилсодержащих иминов / С. Г. Конькова, А. Э. Бадасян, О. С. Аттарян, А. Х. Хачатрян, М. С.

Саргсян, В. В. Довлатян // Химический журнал Армении. – 1997. – Т. 50. – С. 161-166.

- 377.Tarbell, D. S. New Method to Prepare N-t-Butoxycarbonyl Derivatives and the Corresponding Sulfur Analogs from di-t-Butyl Dicarbonate or di-t-Butyl Dithiol Dicarbonates and Amino Acids / D. S. Tarbell, Yu. Yamamoto, B. M. Pope // Proc. Nat. Acad. Sci. USA. – 1972. – V. 69. – P. 730-732.
- 378.Артемов, А. Н. Реакция фенилсодержащих N-замещенных 1,3оксазолидинов и 1,3-оксазинанов с триамминхромтрикарбонилом / А. Н. Артемов, Е. В. Сазонова, Н. А. Аксенова, Г. К. Фукин, А. В. Черкасов, В. И. Фаерман, Н. Ю. Гришина // Изв. АН. Сер. хим. – 2019. – Т. 8. – С. 1548-1554.
- 379.Peng, L. N-Nitrosation of (E)-2-(benzylidene-amino)ethanols / L. Peng, Z. Liu, J.
  Wang, L. Wu // Tetrahedron Lett. 2007. V. 48. P. 7418-7421.
- 380.Surburg, H. Volatile Constituents of European Bird Cherry Flowers (Padus avium Mill.) / H. Surburg, M. Gürtert, B. Schwarze // J. Essential Oil Research. – 1990. – V.2. – P. 307-316.
- 381.Mierde, H. V. Fast and convenient base-mediated synthesis of 3-substituted quinolines / H. V. Mierde, P. V. D. Voort, F. Verpoort // Tetrahedron Lett. – 2009. – V. 50. – P. 201-203.
- 382.Zubkov, F. I. General synthetic approach towards annelated 3a,6-epoxyisoindoles by tandem acylation/IMDAF reaction of furylazaheterocycles. Scope and limitations / F. I. Zubkov, E. V. Nikitina, T. R. Galeev, V. P. Zaytsev, V. N. Khrustalev, R. A. Noviko v, D. N. Orlova, A. V. Varlamov // Tetrahedron. – 2014. – V. 70. – P. 1659-1690.
- 383.Fülöp, F. Electrophilic aromatic reactivities via ring chain tautomerism of tetrahydro-1,3-oxazines and 1,3-oxazolidines / F. Fülöp, M. Dahlqvist, K. Pihlaja // Acta Chem. Scand. – 1991. – V. 45. – P. 273-275.
- 384.Silverthorn, W. E. Arene Transition Metal Chemistry / W. E. Silverthorn // Adv. Organomet. Chem. 1975. V. 13. P. 47-137.

- 385.Вайсбергер, А. Органические растворители. Физические свойства и методы очистки / А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс. М.: Изд-во иностр. лит., 1958. — 519 с.
- 386.Yin, H. Solvent-free copper-catalyzed N-arylation of amino alcohols and diamines with aryl halides / H. Yin, M. Jin, W. Chen, C. Chen, L. Zheng, P. Wei, S. Han // Tetrahedron Letters. – 2012. – V. 53. – P. 1265-1270.
- 387.Drehfahl, G. Untersuchungen über Stilbene, XLVIII: Synthese von [π-Chromtricarbonyl-styryl]-aromaten durch Wittig-Reaktion / G. Drehfahl, H.H. Horhold, K. Kuhne // Chem.Ber. — 1965. — V. 98. — P. 1826-1830.
- 388.Sheldrick, G. M. SADABS / G. M. Sheldrick. Madison (WI), USA: Bruker AXS, Inc., 1997.
- 389.Sheldrick, G. M. A short history of SHELX // Acta Crystallogr., Sect. A, Found. Crystallogr. — 2008. — V. 64. — P. 112-122.