На правах рукописи

Opnofe

ЮРЛОВ ИВАН АЛЕКСАНДРОВИЧ

СПЕКТРОСКОПИЯ И ОСОБЕННОСТИ ШИРОКОПОЛОСНОГО «БЕЛОГО» ИЗЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ДИЭЛЕКТРИЧЕСКИХ ОКСИДНЫХ И ФТОРИДНЫХ ЧАСТИЦ, ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ ИОНАМИ Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺

1.3.8. Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Саранск – 2021

Работа выполнена в ФГБОУ ВО «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

Научный руководитель	Рябочкина Полина Анатольевна доктор физико-математических наук, профессор			
Официальные оппоненты:	Семашко Вадим Владимирович доктор физико-математических наук, профессор, Казанский физико-технический институт им. Е.К. Завойского - обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук», ведущий научный сотрудник			
	Петрова Ольга Борисовна доктор химических наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева», профессор кафедры химии и технологии кристаллов			
Ведущая организация	Федеральное государственное бюджетное учреждение науки Институт спектроскопии Российской академии наук			

Защита состоится «16» февраля 2022 года в 14 ч. 00 мин. на заседании диссертационного совета 24.2.340.01 при Нижегородском государственном университете им. Н.И. Лобачевского по адресу: г. Нижний Новгород, пр. Гагарина, 23, корп. 3.

С диссертацией можно ознакомиться в библиотеке и на сайте Нижегородского государственного университета им. Н.И. Лобачевского, https://diss.unn.ru/1174

Автореферат разослан

«____» декабря 2021 г.

Ученый секретарь диссертационного совета, канд. физ.-мат. наук

Марычев Михаил Олегович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Исследования кристаллических соединений с редкоземельными (РЗ) ионами проводятся на протяжении нескольких десятилетий, однако не теряют своей актуальности и в настоящее время. Актуальность данных исследований обусловлена тем, что материалы, легированные РЗ ионами, используются в качестве сцинтилляторов, люминофоров активных сред твердотельных лазеров и т. д. [1, 2]. При этом, необходимо отметить, что разнообразные применения материалов с примесными РЗ ионами во многом основаны на процессах поглощения и излучения ими электромагнитного излучения в ультрафиолетовом (УФ), видимом и инфракрасном (ИК) диапазонах спектра.

Среди различных люминесцентных кристаллических материалов значительный интерес для практических применений представляют апконверсионные материалы, для которых характерно наличие люминесценции РЗ ионов в УФ и видимом спектральных диапазонах при их возбуждении излучением ИК области спектра [3]. Эти материалы применяются для визуализаторов ИК излучения, в биомедицине, в фотовольтаике и т.д.

В настоящее время наряду, с объемными кристаллическими материалами, легированными РЗ ионами, значительный научный и практический интерес представляют наноразмерные кристаллические соединения с РЗ ионами. Квантово-размерный эффект на электронных состояниях РЗ-ионов не проявляется из-за сильной локализации волновых функций этих ионов в области ~ 1 Å, что значительно меньше величины параметра кристаллической решетки. Однако за счет квантово-размерного эффекта в нанокристаллах модифицируется колебательный спектр нанокристаллов. В спектре наблюдается низкоэнергетическая щель и значительным образом обедняется плотность электронных состояний [4].

В работе [5], отмечается, что развитая поверхность наночастиц обеспечивает присутствие на ней ОН и других функциональных групп, взаимодействие РЗ ионов с которыми приводит к тушению люминесценции этих ионов. Авторы работы [6] отмечают, что тушение люминесценции РЗ-ионов в наночастицах с размерами более 10-15 нм происходит из-за процессов их взаимодействия с ОН группами, присутствующими в объеме наночастиц.

В настоящее время в научной литературе также имеется значительное которых сообщается количество работ [7-11], В 0 возникновении широкополосного «белого» излучения при возбуждении диэлектрических наночастиц с высокой концентрацией РЗ ионов интенсивным лазерным с длинами волн, соответствующими полосам поглощения излучением примесных РЗ-ионов. Анализ данных работ выявляет существование двух основных точек зрения на природу данного излучения. Авторы работ [7, 8] «белое» излучение, широкополосное обнаруженное связывают при возбуждении уровня ${}^{2}F_{5/2}$ ионов Yb³⁺ в частицах LiYbP₄O₁₂ и LiYb_{0.99}Er_{0.01}P₄O₁₂ с суперпозицией полос люминесценции, обусловленных переносом заряда Yb²⁺ \rightarrow O²⁻ и f-d переходами ионов Yb²⁺. Возбуждение ионов Yb²⁺ по мнению

3

авторов работы [7] происходит в результате их взаимодействия посредством кооперативных процессов.

Авторы других работ [9-11], которые обнаружили широкополосное «белое» излучение в высоколегированных РЗ-ионами наночастицах при их возбуждении интенсивным лазерным излучением выявили, что форма контура данного излучения соответствует распределению Планка для теплового излучения с определенной цветовой температурой. На основании этого факта ими был сделан вывод о том, что данное излучение имеет тепловую природу.

Один из механизмов, объясняющих тепловую природу широкополосного «белого» излучения в наноразмерных диэлектрических частицах, легированных РЗ-ионами при их возбуждении лазерным излучением с высокой плотностью мощности предложен в работах [10,11]. Согласно этому механизму, возбужденные РЗ ионы взаимодействуют между собой и затем с дефектами структуры, имеющими энергетические уровни вблизи зоны проводимости, что приводит к заселению этих уровней. При тепловом возбуждении электроны с энергетических уровней дефектов переходят В зону проводимости. Взаимодействие электронов в зоне проводимости с фононами решетки приводит к нагреву наночастиц. В работе [10] отмечается, что нагрев до температур порошков наноразмерных частиц высоких с высокой Yb^{3+} возбуждении концентрацией ионов при интенсивным лазерным излучением с длиной волны 980 нм является локальным. Это является следствием того, что случае порошков частицы представляют собой В несплошную среду И разделены воздушными зазорами. Низкая теплопроводность воздуха затрудняет теплоотвод от более нагретой частицы к менее нагретой.

публикаций, посвященных Несмотря значительное количество на наблюдению и закономерностям широкополосного «белого» излучения в различных наночастицах, многие важные задачи, направленные на выявление однозначного механизма его возникновения, к настоящему времени еще не решены. Так, отсутствуют детальные исследования влияния размера частиц на особенности его возникновения. Также отсутствуют данные о том, как влияет запрещённой зоны материала и особенности кристаллической ширина структуры материала на характеристики широкополосного «белого» излучения в наночастицах. Кроме того, практически во всех работах исследования проводились для оксидных частиц, легированных РЗ-ионами, и практически отсутствуют работы, где указанное излучение наблюдалось бы во фторидных Обозначенные матрицах [11]. выше задачи свидетельствуют 0 целесообразности дальнейших исследований спектрально-люминесцентных фторидных характеристик наночастиц, оксидных И легированных редкоземельными ионами, включая изучение в них условий возникновения и закономерностей широкополосного «белого» излучения.

В соответствии с этим, **целью** настоящей диссертационной работы являлось изучение спектрально-люминесцентных свойств и выявление особенностей возникновения и закономерностей широкополосного «белого» излучения наноразмерных оксидных (YPO₄, YVO₄, LaGa_{0.5}Sb_{1.5}O₆, BiGeSbO₆,

4

 ZrO_2) и фторидных (CaF₂) диэлектрических частиц, легированных редкоземельными ионами (Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺), при их возбуждении лазерным излучением видимого и ближнего ИК-диапазонов спектра.

Для достижения поставленной цели в данной работе решались следующие задачи:

1. Исследование спектрально-люминесцентных свойств и особенностей возникновения широкополосного «белого» излучения в оксидных YPO₄, YVO₄, ZrO₂ и фторидных CaF₂ диэлектрических наноразмерных частицах, легированных ионами Er³⁺.

2. Исследование спектрально-люминесцентных свойств и закономерностей широкополосного «белого» излучения наноразмерных диэлектрических частиц LaGa_{0.5}Sb_{1.5}O₆, BiGeSbO₆, легированных различными P3-ионами (Pr^{3+} , Dy^{3+} , Yb^{3+} , Er^{3+}).

3. Исследование особенностей возникновения апконверсионной люминесценции и широкополосного «белого» излучения в наноразмерных диэлектрических частицах Y_{0.75}Er_{0.25}VO₄ с различными средними размерами частиц.

4. Поиск возможных практических применений широкополосного «белого» излучения, характерного для наноразмерных диэлектрических частиц с РЗ-ионами, при их возбуждении лазерным излучением видимого и ближнего ИК-диапазона спектра.

Научная новизна

1. Впервые выполнены исследования условий возникновения и характеристик широкополосного «белого» излучения частиц YPO₄:Er, YVO₄:Er, также ZrO_2 - Er_2O_3 , CaF_2 - ErF_3 , $LaGa_{0.5}Sb_{1.5}O$, YVO₄:Dv, а BiGeSbO₆, легированных ионами Pr³⁺, Er³⁺, Yb³⁺, при их возбуждении интенсивным лазерным излучением в полосы поглощения ионов-активаторов. Показано, что данное излучение имеет тепловую природу. Выявлена зависимость условий возникновения и свойств данного излучения от вида и характеристик оптического перехода, на который осуществляется возбуждение, ширины запрещенной зоны и особенностей кристаллической структуры материала.

2. Впервые выполнены исследования спектрально-люминесцентных характеристик частиц $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$ (x = 0.005 – 1) $Bi_{1-x}Pr_xGeSbO_6$ (x = 0.005 – 0.5), $La_{1-x}Dy_xGa_{0.5}Sb_{1.5}O_6$, $Bi_{1-x}Dy_xGeSbO_6$ (x = 0.05 – 0.5) и определены их цветовые координаты для использования в качестве люминофоров.

3. Впервые выполнены эксперименты *in-vivo*, в ходе которых продемонстрировано, что нанесение иттербий-содержащих наночастиц диоксида циркония на поверхность биоткани способствует усилению теплового эффекта при воздействии на неё интенсивным лазерным излучением с $\lambda_{изл.} =$ 980 нм. На основании результатов исследований сделано предположение об использовании данного эффекта при удалении кожных новообразований бесконтактным методом с использованием лазерного излучения.

Практическое значение

Результаты, полученные в работе, потенциально могут быть использованы при разработке новых люминофоров и для биомедицинских применений.

Методология и методы исследования. В качестве объектов исследования в настоящей работе выступали нано и микрочастицы $Y_{1-x}Er_xPO_4$ и $Y_{1-x}Er_xVO_4$ (x = 0.05 - 1); La_{1-x}Re_xGa_{0.5}Sb_{1.5}O₆ и Bi_{1-x}Re_xGeSbO₆ (Re = Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺) (x = 0.05 - 0.5); (1-x)ZrO₂-x мол.% Er₂O₃ (x = 5 - 25); CaF₂-x мол.% ErF₃ (x = 5 - 25).

Для исследования ИХ морфологии И размеров использовались просвечивающей сканирующей тралиционные метолы И электронной микроскопии. Для исследования фазового состава использовались методы рентгеновской дифрактометрии. Методы оптической спектроскопии использовались для исследования спектрально-люминесцентных характеристик частиц.

Положения диссертации, выносимые на защиту:

1. Широкополосное «белое» излучение характерное для частиц Y₁. _xEr_xPO₄ (x = 0.25 – 1), Y_{1-x}Er_xVO₄ (x = 0.25 – 1), Y_{1-x} Dy_xVO₄ (x = 0.25, 0.5), ZrO₂x мол.% Er₂O₃ (x = 5 - 25), CaF₂-25 мол.% ErF₃, а также для La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O₆ (x = 0.4 – 1), Bi_{0.5}Pr_{0.5}GeSbO₆, La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O₆, La_{1-x}Yb_xGa_{0.5}Sb_{1.5}O₆ (x = 0.1, 0.25), Bi_{0.5}Er_{0.5}GeSbO₆, Bi_{1-x}Yb_xGeSbO₆ (x = 0.25, 0.50) при их возбуждении интенсивным лазерным излучением в полосы поглощения ионов-активаторов, имеет тепловую природу. Пороговые условия возбуждения широкополосного «белого» излучения и его свойства зависят от вида и характеристик оптического перехода, на котором осуществляется возбуждение, ширины запрещённой зоны и особенностей кристаллической структуры материала.

2. Концентрационное тушение люминесценции перехода ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ ионов Pr^{3+} , обусловленное процессом кросс-релаксации (${}^{1}D_{2} \rightarrow {}^{1}G_{4}$) $\rightarrow ({}^{3}H_{4} \rightarrow {}^{3}F_{4})$ ионов Pr^{3+} в твердых растворах $Bi_{1-x}Pr_{x}GeSbO_{6}$ (x = 0.005 – 0.5), происходит при бо́льших значениях концентрации ионов Pr^{3+} по сравнению с соединениями $La_{1-x}Pr_{x}Ga_{0.5}Sb_{1.5}O_{6}$ (x = 0.005 – 1).

3. Различие в пороговых условиях возбуждения широкополосного «белого» теплового излучения наночастиц $Y_{0.75}Er_{0.25}VO_4$ ($C_{Er} = 28.5$ ат. %) со средними размерами 45 – 520 нм обусловлено наличием бо́льшего числа дефектов в наночастицах меньшего размера.

4. Нанесение иттербий содержащих наночастиц диоксида циркония на биоткани способствует усилению теплового эффекта при воздействии на них интенсивным лазерным излучением с λ_{возб.} = 980 нм.

Личный вклад

Основные результаты работы получены автором лично, либо при его непосредственном участии. Лично автором выполнены исследования спектрально-люминесцентных характеристик наноразмерных кристаллических частиц концентрационных рядов $Y_{1-x}Er_xPO_4$ (x = 0 – 1), $Y_{1-x}Er_xVO_4$ (x = 0 – 1),

СаF₂-х мол.% ErF₃ (x = 5 - 25), ZrO₂-х мол.% Er₂O₃ (x = 5 - 25), легированных ионами Er³⁺, а также концентрационных рядов твердых растворов LaGa_{0.5}Sb_{1.5}O₆, BiGeSbO₆, легированных ионами Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺. Выполнена обработка всех экспериментальных данных.

Исследованные в настоящей работе образцы наноразмерных кристаллических частиц концентрационных рядов CaF_2 -х мол.% ErF_3 (x = 5 - 25), легированных ионами Er^{3+} , и наноразмерные частицы $Y_{0.75}Er_{0.25}VO_4$ были синтезированы автором диссертационной работы.

Наночастицы концентрационных рядов ZrO_2 - х мол.% Er_2O_3 (x = 5 - 25), легированные ионами Er^{3+} , а также концентрационных рядов $LaGa_{0.5}Sb_{1.5}O_6$ и BiGeSbO₆, легированных ионами Pr^{3+} , Dy^{3+} , Er^{3+} , Yb^{3+} были синтезированы в Институте общей и неорганической химии им. Н.С. Курнакова РАН.

Изучение морфологии и размеров частиц CaF₂-х мол.% ErF₃ (x = 5 - 25), ZrO₂- x мол.% Er₂O₃ (x = 5 - 25) и LaGa_{0.5}Sb_{1.5}O₆ и BiGeSbO₆ легированных ионами Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺, осуществлялась методом сканирующей электронной микроскопии (СЭМ) Егорышевой А.В. в институте общей неорганической химии им. Н.С. Курнакова РАН. Морфология наночастиц $Y_{0.75}Er_{0.25}VO_4$ изучалась методом просвечивающей электронной микроскопии (ПЭМ) на микроскопе FEI TecnaiOsiris (США) с рабочим напряжением 200 кВ Атановой А.В. (Федеральный научно-исследовательский центр «Кристаллография и фотоника» РАН). Эксперименты по рентгеновской дифракции выполнены Кяшкиным В.М. в Мордовском государственном университете им. Н.П. Огарёва.

Постановка цели и задач исследования, интерпретация результатов и формулировка выводов выполнены совместно с научным руководителем.

Апробация работы и публикации

Результаты работы докладывались и обсуждались на следующих конференциях и семинарах: XLVIII, XLIX Огаревских чтениях (2018, 2020, Capanck); Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2020, 2021» (2020 и 2021 Москва); XXII, XXIII научно-практической конференции молодых ученых, аспирантов и студентов (2019, 2021 Саранск); 18-й Международной научной конференции-школе «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение» (2020, Саранск); IX Международной конференции по фотонике и информационной оптике (2020, Москва); XV международной конференции «Физика диэлектриков» (2021, Санкт-Петербург); Международной научной конференции «Физика СПБ» (2021, Санкт-Петербург).

Работа осуществлялась при финансовой поддержке:

1) гранта РФФИ 19-32-90135 Аспиранты «Спектроскопия и особенности широкополосного "белого" излучения наноразмерных диэлектрических оксидных и фторидных частиц, легированных редкоземельными ионами»;

2) гранта РФФИ 18-29-12009 мк «Новые люминофоры на основе сложных оксидов со структурой розиаита, активированные ионами РЗЭ»;

3) гранта Президента Российской Федерации МК-5500.2021.1.2 2020-2021 «Исследование процессов нагрева диэлектрических частиц под воздействием лазерного излучения высокой плотности мощности для биомедицинских применений».

Основные результаты диссертации опубликованы в 8 статьях [A1-A8] в изданиях, входящих в перечень ведущих рецензируемых научных журналов, включенных Высшей аттестационной комиссией при Министерстве образования и науки Российской Федерации в список изданий, рекомендуемых для опубликования основных научных результатов диссертации на соискание степени кандидата и доктора наук и 11 тезисах конференций [B1-B11].

Доклад по теме диссертации был отмечен дипломом за лучший доклад на секции «Оптика» Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2021».

Структура и объем работы

Диссертация состоит из введения, 5 глав, заключения и списка цитируемой литературы. Общий объем диссертации 196 страниц печатного текста, включая 103 рисунка, 1 таблицу и библиографию, содержащую 130 наименований.

Первая глава является обзорной. В ней представлены данные о природе люминесценции РЗ ионов в диэлектрических кристаллах. Отмечаются особенности ее наблюдения в диэлектрических нанокристаллах. Рассмотрены механизмы возникновения антистоксовой люминесценции примесных редкоземельных ионов в диэлектрических кристаллах. Описаны условия наблюдения и предложены известные к настоящему времени механизмы возникновения широкополосного «белого» излучения в диэлектрических нанокристаллах, легированных редкоземельными ионами, при их возбуждении интенсивным лазерным излучением.

Вторая глава посвящена описанию способов получения диэлектрических наночастиц, легированных РЗ ионами. Также в данной главе дана характеристика экспериментальных методов исследования.

В третьей главе представлены результаты исследования морфологии, размеров, фазового состава, а также спектрально-люминесцентных характеристик соединений $Y_{1-x}Er_xPO_4$ (x=0-1), $Y_{1-x}Er_xVO_4$ (x=0-1), CaF_2 -х мол.% ErF_3 (x=5-25), ZrO_2 -х мол.% Er_2O_3 (x=5-25).

ПЭМ изображения наночастиц $Y_{1-x}Er_xVO_4$ и $Y_{1-x}Er_xPO_4$ (x=0.25, 0.5, 0.75, 1) свидетельствуют о том, что они в значительной степени агломерированы. Форма наночастиц ортофосфатов $Y_{1-x}Er_xPO_4$ близка сферической, К наночастицы ортованадатов Y_{1-x}Er_xVO₄ характеризуются эллипсоидальной формой. Полученные из изображений ПЭМ распределения наночастиц по размерам свидетельствуют о том, что средние размеры наночастиц ортофосфата соответствуют 55±5 нм, а ортованадата 70±8 нм. Изображения ПЭМ и соответствующие им распределения наночастиц по размерам соединений Y_{0.95}Er_{0.05}PO₄ и Y_{0.95}Er_{0.05}VO₄ показаны на рис. 1.

8

При возбуждении наночастиц $Y_{0.75}Er_{0.25}PO_4$ на уровень ${}^{4}I_{13/2}$ лазерным излучением с $\lambda_{B036.}=1550$ нм и J=0.3 кВт/см² наблюдается апконверсионная люминесценция, обусловленная переходами с уровней ${}^{4}S_{3/2}$, ${}^{2}H_{11/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{9/2}$ на уровень ${}^{4}I_{15/2}$, (рис. 2 а)). Из рис. 2 а) видно, что при данном способе возбуждения относительная интенсивность линии для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ выше интенсивностей линий для переходов ${}^{2}H_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, однако при возбуждении излучением с J=0.8 кВт/см² интенсивность линии перехода ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, становится выше интенсивности линий для переходов ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$.

При дальнейшем повышении плотности мощности возбуждающего излучения до 1.4 кВт/см² на фоне полос люминесценции наблюдается интенсивное широкополосное излучение в области 400–900 нм. На рис. 2 б) представлена зависимость интенсивности данного излучения от мощности возбуждающего излучения I(P) в логарифмических координатах. Значение тангенса угла наклона, определенного из данной зависимости, равно 10.8, что свидетельствует о нелинейности процессов, приводящих к появлению широкополосного излучения.

Рис. 2 а) Спектры излучения наночастиц $Y_{0.75}$ Er_{0.25}PO₄ T=300K; б) Зависимости lg(I)lg(P) для широкополосного излучения наночастиц $Y_{0.75}$ Er_{0.25}PO₄

Для наночастиц $Y_{1-x}Er_xPO_4$ с высоким содержанием ионов Er^{3+} (x=0.5, 0.75, 1) при возбуждении лазерным излучением с λ_{B036} =1550 нм и J=0.3 кBT/см² также характерна апконверсионная люминесценция ионов Er^{3+} . При значении J=0.8 кBT/см² для данных наночастиц характерно широкополосное излучение. В качестве примера на рис. 3 представлены спектры излучения наночастиц $ErPO_4$. Характерные провалы в спектре широкополосного излучения соответствуют областям полос поглощения ионов Er^{3+} и обусловлены реабсорбцией.

Рис. 3 Спектры излучения наночастиц $ErPO_4$ при возбуждении лазерным излучением с $\lambda_{возб.} = 1550$ нм и различными значениями плотности мощности, T=300K

При возбуждении наноразмерных кристаллических порошков ортованадатов $Y_{1-x}Er_xVO_4$ (x=0.25-1) лазерным излучением с λ_{B036} =1550 нм также как и для наноразмерных порошков ортофосфатов наблюдалась апконверсионная люминесценция и широкополосное «белое» излучение. Однако при этом был выявлен ряд отличий. На рис. 4 представлены спектры излучения, зарегистрированные для образцов $Y_{1-x}Er_xVO_4$ (x=0.25, 1) при их возбуждении непрерывным лазерным излучением с λ_{B036} =1550 нм и различными значениями плотности мощности.

Т=300К

Из рис. 4 а) видно, что при возбуждении наноразмерных наночастиц $Y_{0.75}Er_{0.25}VO_4$ лазерным излучением с $\lambda_{возб.}=1550$ нм и плотностью мощности J=0.3 кВт/см² наблюдается апконверсионная люминесценция, обусловленная переходами с уровней ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, 4 муровень ${}^{4}I_{15/2}$ ионов Er^{3+} . При повышении J до 0.5 кВт/см² для данных образцов характерно широкополосное «белое» излучение. Для наночастиц ортованадатов с большим содержанием эрбия (x=0.5, 0.75, 1) широкополосное «белое» излучение наблюдается при значениях J =0.3 кВт/см². При значениях J > 0.5 кВт/см² возникающее широкополосное излучение для всех образцов ортованадатов становится нестабильным из-за спекания наночастиц в области фокусировки излучения.

На рис. 5 представлены спектры излучения, зарегистрированные при возбуждении наночастиц ErPO₄ и ErVO₄ излучением с λ_{возб.}=970 нм и различными значениями плотности мощности J.

Рис. 5 Спектры излучения наночастиц а) ErPO₄ и б) ErVO₄. На вставке зависимость I(P) для широкополосного излучения наночастиц ErVO₄, T=300K

Спектры излучения наночастиц ErPO₄, полученные при возбуждении лазерным излучением с λ_{B036} =970 нм и J=0.9 и 1.2 кВт/см², показанные на рис. 5 а), представляют собой спектры апконверсионной люминесценции ионов Er³⁺, обусловленной переходами ²H_{11/2}, ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2}→⁴I_{15/2}. В то же время при аналогичных условиях возбуждения в образцах ErVO₄ возникает

широкополосное излучение (рис. 5 б)). Зависимость I(P) в логарифмических координатах для широкополосного «белого» излучения наночастиц ErVO₄ приведена на вставке к рис. 5 б). Значение тангенса угла наклона, определенное из данной зависимости, равно 10.9, что свидетельствует о нелинейности процессов, приводящих к возникновению широкополосного излучения. При возбуждении лазерным излучением с $\lambda_{воз6}$ =970 нм наночастиц Y_{0.25}Er_{0.75}VO₄ также наблюдалось широкополосное излучение. Для образцов ортованадатов с x=0.5, 0.25 данное излучение отсутствовало, а зарегистрированные спектры соответствовали спектрам апконверсионной люминесценции ионов Er³⁺. Для наночастиц ортофосфатов Y_{1-x}Er_xPO₄ (x=0.25-0.75) при указанных условиях возбуждения наблюдалась апконверсионная люминесценция ионов Er³⁺.

При сравнении спектров широкополосного излучения наночастиц Y_{1-x}Er_xPO₄ и Y_{1-x}Er_xVO₄ (x=0.25-1) при возбуждении на уровень ⁴I_{13/2} ионов Er³⁺, а также наночастиц Y_{1-x}Er_xVO₄ (x=0.75, 1) при возбуждении на уровень ⁴I_{11/2} ионов Er³⁺ со спектром излучения вольфрамовой лампы (T=2850 K) было выявлено сходство формы их контуров (рис. 6).

Рис. 6 Спектры излучения наночастиц ErPO₄ ($\lambda_{возб.}$ =1550 нм), ErVO₄ ($\lambda_{возб.}$ =1550 нм, $\lambda_{возб.}$ =970 нм) и вольфрамовой лампы (T_c=2850 K)

СЭМ изображения наночастиц CaF_2 -х мол.% ErF_3 свидетельствует о том, что их средний размер составляет 180-220 нм и не зависит от значения х за исключением образца с x=15, средний размер наночастиц которого меньше и равен 90±7 нм. В качестве иллюстрации на рис. 7 а) представлено СЭМ изображение наночастиц CaF_2 -25 мол.% ErF_3 и соответствующее ему распределение наночастиц по размерам.

Средний размер наночастиц ZrO_2 -х мол.% Er_2Or_3 (x=5-25) в выбранном интервале концентраций Er_2O_3 практически не изменяется и соответствует диапазону 120-220 нм. Наночастицы с x=15 обладают большими размерами (300±12 нм), что, связано с условиями отжига. На рис. 7 б) представлено СЭМ изображение наночастиц ZrO_2 -10 мол.% Er_2O_3 и соответствующее ему распределение наночастиц по размерам.

При возбуждении лазерным излучением с λ_{B036} =1550 нм и плотностью мощности J=0.2 кВт/см² наночастиц CaF₂-х мол.% ErF₃ (x=1-25) наблюдалась апконверсионная люминесценция ионов Er³⁺, обусловленная переходами с возбужденных уровней ²H_{11/2}, ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2} на основное состояние ⁴I_{15/2} этих ионов. Аналогичная люминесценция наблюдалась для образцов с x=1-15 при повышении J до 1.9 кВт/см² (рис. 8). При этом отношение интенсивностей линий люминесценции, соответствующих переходам ²H_{11/2}→⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2} (500-570 нм) и переходу ⁴F_{9/2}→I_{15/2} (630-700 нм), возрастает с увеличением содержания эрбия в образце (x=1-10). При x=15 относительная интенсивность линий в области 500-570 нм снижается, а в области 600-900 нм в спектре наблюдается широкая полоса, не связанная с люминесценцией ионов Er³⁺. Для образца CaF₂-25 мол.% ErF₃ на фоне апконверсионной люминесценции ионов Er³⁺ наблюдается широкополосное излучение, при этом его относительная интенсивности переходу ⁴F_{9/2}→⁴I_{15/2} ионов Er³⁺.

Рис. 8 Спектры излучения наночастиц CaF₂-х мол.% ErF₃ (x=1-25), T=300К

На рис. 9 а) представлены спектры излучения наночастиц ZrO₂-х мол.% Er_2O_3 (x=5-25), зарегистрированные при возбуждении лазерным излучением с λ_{B036} =1550 нм и J=0.9 кВт/см². Для часитиц ZrO₂-х мол.% Er_2O_3 с x=5, 10 наблюдается апконверсионная люминесценция ионов Er^{3+} , а для наночастиц с x=15, 25 - интенсивное широкополосное излучение. При повышении плотности мощности излучения возбуждения до 1.1 кВт/см² широкополосное излучение было зарегистрировано для всех образцов ZrO₂-х мол.% Er_2O_3 (x=5-25). Зависимость I(P) для них является нелинейной. При этом тангенс угла ее наклона на линейном участке зависимости lg(I)lg(P) (рис. 96)) равен 6.2. Данные значения являются близкими к аналогичным значениям для наночастиц ErPO₄.

На рис. 10 а) представлены спектры излучения CaF_2-25 мол.% ErF_3 , ZrO_2-15 мол.% Er_2O_3 , $Y_{0.75}Er_{0.25}PO_4$ и $Y_{0.75}Er_{0.25}VO_4$ а также спектр излучения вольфрамовой лампы ТРШ-2850 без учета корректировки на спектральную чувствительность установки. Анализ характеристик широкополосного «белого» излучения, зарегистрированного для наночастиц ZrO_2 -х мол.% Er_2O_3 (x=5-25),

СаF₂-х мол.% ErF₃ (x=5-25), Y_{1-x}Er_xVO₄ и Y_{1-x}Er_xPO₄ (x=0.25-1), позволяет сделать вывод о применимости предложенного в работе [9,10] механизма возникновения широкополосного излучения в данных наночастицах при их возбуждении интенсивным лазерным излучением с $\lambda_{воз6.}$ =1550 нм. Схема процессов, приводящих к появлению теплового излучения в наночастицах Y_{1-x}Er_xVO₄, Y_{1-x}Er_xPO₄ (x=0.25-1), ZrO₂-х мол.% Er₂O₃ и CaF₂-х мол.% ErF₃ (x=5-25) при возбуждении интенсивным лазерным излучением с $\lambda_{воз6.}$ =1550 нм, показана на рис. 10 б).

Рис. 10 а) Спектры излучения наночастиц CaF₂-25 мол.% ErF₃, ZrO₂-15 мол.% Er₂O₃, Y_{0.75}Er_{0.25}PO₄ и Y_{0.75}Er_{0.25}VO₄, при возбуждении лазерным излучением с $\lambda_{возб.}$ =1550 нм; б) Схема процессов, приводящих к возникновению теплового излучения в наноразмерных кристаллах Y_{1-x}Er_xVO₄ и Y_{1-x}Er_xPO₄ (x=0.25-1), ZrO₂-х мол.%Er₂O₃ и CaF₂-х мол.%ErF₃ (x=5-25)

Ширина запрещённой зоны кристалла влияет на количество переходов, которое должен испытать электрон, чтобы попасть в зону проводимости. Для чтобы оказаться на энергетическом уровне дефекта структуры, того локализованного вблизи зоны проводимости, электрону потребуется преодолеть большее число переходов, в матрице с более высоким значением ширины запрещённой зоны.

В таблице 1 приведены значения ширины запрещенной зоны материалов (Eg), пороговой плотности мощности возбуждающего излучения (J), цветовых температур (Тцв), температур плавления (Тпл), и максимальной частоты фононов v исследованных в работе соединений.

Таблица 1 Некоторые физические характеристики материалов наночастиц и характеристики широкополосного излучения

Материал	Eg, əB	J, кВт/см ²	Тцв, К	Т пл, К	ν, cm^{-1}
СаF ₂ -25 мол.% ErF ₃	12	1.9	1800	1691	443
					484 (наст. раб.)
Y _{0.75} Er _{0.25} PO ₄	8.6-9.2	1.4	2400	2173	1061
ZrO ₂ -15 мол.% Er ₂ O ₃	4.6-4.7, 5.49-5.8	0.9	2500	2973	625
					636 (наст. раб.)
Y _{0.75} Er _{0.25} VO ₄	3.4-3.8	0.5	1800	2083	891
					893 (наст. раб.)

Из таблицы видно, что наименьшее значение J соответствует наночастицам Y_{0.75}Er_{0.25}VO₄, для которых характерно наименьшее значение ширины запрещенной зоной. При увеличении Eg материала значение J также возрастает.

Важную роль в заселении верхних энергетических уровней ионов Er^{3+} играет наличие резонансов в системе уровней, а также вероятность взаимодействия ионов друг с другом. Об эффективном взаимодействии ионов Er^{3+} во всех образцах, исследованных в настоящей работе, свидетельствует наличие в них апконверсионной люминесценции данных ионов. В соединениях CaF_2 -х мол.% ErF_3 описанное взаимодействие являются более эффективным вследствие кластеризации РЗ-ионов. Тем не менее, процесс возникновения «белого» излучения в данных соединениях менее выражен по сравнению с другими составами. Данный факт является дополнительным подтверждением того, что величина Ед является значимым фактором.

Гетеровалентное замещение ионов Zr^{4+} ионами Er^{3+} приводит к возникновению в $ZrO_2-M_2O_3$ кислородных вакансий, дефектов структуры, для которых характерны энергетические уровни вблизи зоны проводимости. Энергия уровней кислородных вакансий составляет 2.5-2.6 эВ (19600-20300 см⁻¹), 3.1-3.8 эВ (~25800-29700 см⁻¹) и 4-5 эВ (~31200-39000 см⁻¹) [12]. Влияние дефектов на условия возникновения теплового излучения и его характеристики отчетливо прослеживается при анализе его особенностей в наночастицах ZrO_2- 15 мол.% Er_2O_3 . Из рис. 10 видно, что «белое» излучение в ZrO_2-15 мол.% Er_2O_3 обладает наибольшей относительной интенсивностью, а в CaF_2-25 мол.% ErF_3 , $Y_{1-x}Er_xPO_4$, $Y_{1-x}Er_xVO_4$ (x = 0.25) оно имеет фоновый характер. Кроме того, рассматриваемое излучение возникало в ZrO_2-x мол.% Er_2O_3 даже при низких значениях x = 5, 10, чего не наблюдалось для других образцов в имеющемся диапазоне значений плотности мощности излучения возбуждения J.

В главе 3 также представлены результаты исследований, выявляющие влияние среднего размера наночастиц Y_{0.75}Er_{0.25}VO₄ на условия возникновения и характеристики широкополосного «белого» излучения при их возбуждении лазерным излучением с $\lambda_{возб.}$ =1550 нм.

На рис. 11 показаны изображения ПЭМ наночастиц YVO₄:Er (C_{Er}=28.5 ат.%), подвергнутых термообработке, а также полученные на их основе распределения по размерам наночастиц. Из распределений по размерам наночастиц YVO₄:Er (C_{Er}=28.5 ат.%) после термообработки при 200° C и 400° C определен средний размер наночастиц, равный 45±6 нм. Наночастицы, подвергнутые отжигу при данных температурах, сильно агломерированы. После термообработки на воздухе при 800° C средний размер наночастиц увеличивается и составляет 320±11 нм. При повышении температуры отжига до 1100° C средний размер наночастиц возрастает до 520±10 нм.

Рис. 11 Изображения ПЭМ наночастиц YVO₄:Er (C_{Er}=28.5 ат.%), отожжённых при температурах а) 200° С, б) 400° С, в) 800° С, г) 1100° С

На рис. 12 показаны спектры излучения наночастиц YErVO₄ (C_{Er}=28.5 ат. %) с различными средними размерами, зарегистрированные при возбуждении излучением с λ_{возб.}=1550 нм и J=0.8 кВт/см². Широкополосное тепловое излучение для наночастиц со средним размером 45±6 нм наблюдается при меньших значениях плотности мощности (J=0.8 кВт/см²) по сравнению с наночастицами со средними размерами 320±11 нм и 520±10 нм, что обусловлено наличием в них большего числа дефектов, связанных с кислородными вакансиями. Кислородные вакансии образуются в процессе отжига наночастиц на воздухе при уменьшении в них количества ОН-групп $OH_{o} \rightarrow H_{2}O + O_{o}^{x} + V_{o}$, где реакции ОН_о-гидроксильная согласно группа, занимающая позицию кислорода в кристаллической структуре, Н₂О-молекула воды, О₀^х-ион кислорода, V₀-вакансия кислорода.

Рис. 12 Спектры излучения наночастиц YErVO₄ (С_{Ег}=28.5 ат. %) с различными средними размерами

С кислородной вакансией связан ион V⁴⁺. О наличии данных ионов в наночастицах свидетельствует их желтая окраска (рис. 13). Данный процесс наиболее интенсивно происходит при температуре отжига равной 400° С. Для более высоких температур отжига (800° С, 1100° С) характерны процессы окисления V⁴⁺, о чем свидетельствует уменьшение интенсивности полосы в области 350-550 нм и приобретении наночастицами YVO₄:Er (C_{Er}=28.5 ат.%) розового цвета.

Рис. 13 Спектральные зависимости $F(\lambda)$, для наночастиц YVO_4 : Er (C_{Er}=28.5 ат.%) после термообработки на воздухе при T=200°, 400°, 800°, 1100° С

В четвертой главе представлены результаты исследования морфологии, размеров, фазового состава, и спектрально-люминесцентных характеристик соединений LaGa_{0.5}Sb_{1.5}O₆ и BiGeSbO₆, легированных редкоземельными ионами Pr^{3+} , Yb^{3+} , Er^{3+} , Dy^{3+} . Выявлены условия возникновения в данных наночастицах широкополосного «белого» излучения и изучены его закономерности.

Наночастицы La_{1-x}Re_xGa_{0.5}Sb_{1.5}O₆ (Re = Pr³⁺, Dy³⁺, Er³⁺, Yb³⁺) (x=0.05-0.5) характеризуются структурой розиаита и имеют квазисферическую форму, соприкасаясь друг с другом гранями они образуют сложные сетчатые

структуры. Их средний размер составляет 120-400 нм. Частицы $Bi_{1-x}Re_xGeSbO_6$ ($Re = Pr^{3+}$, Dy^{3+} , Er^{3+} , Yb^{3+}) (x=0.05-0.5) обладают схожей морфологией, однако отличаются от $La_{1-x}Re_xGa_{0.5}Sb_{1.5}O_6$ размером. Размер висмут-германиевых частиц значительно больше и соответствует интервалу 450 нм - 8 мкм. Изображения СЭМ частиц $La_{0.95}Dy_{0.05}Ga_{0.5}Sb_{1.5}O_6$ и $Bi_{0.95}Dy_{0.05}GeSbO_6$ показаны на рис. 14.

Рис. 14 СЭМ изображения частиц La_{0.95}Dy_{0.05}Ga_{0.5}Sb_{1.5}O₆ и Bi_{0.95}Dy_{0.05}GeSbO₆ и соответствующие им распределения частиц по размерам

На рис. 15 представлены спектры люминесценции концентрационных серий частиц La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O₆ и Bi_{1-x}Pr_xGeSbO₆ (x=0.005-0.5), зарегистрированные при возбуждении на уровень ³P₂ ионов Pr³⁺ излучением с $\lambda_{возб.}$ =457 нм и 4.7 кBт/см².

Рис. 15 Спектры люминесценции a) La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O₆ и б) Bi_{1-x}Pr_xGeSbO₆

Для твердых растворов La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O₆ и Bi_{1-x}Pr_xGeSbO₆ наблюдается различное отношение интенсивностей полос люминесценции для переходов $^{1}D_{2} \rightarrow ^{3}H_{4}$ и переходов $^{3}P_{0} \rightarrow ^{3}H_{4}$ и $^{3}P_{0} \rightarrow ^{3}F_{2}$. Для лантан-галлиевых соединений с x=0.005-0.01 относительная интенсивность полосы ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ люминесценции выше интенсивностей полос люминесценции для переходов ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ и ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$ ионов Pr³⁺. При увеличении концентрации ионов Pr³⁺ х от 0.07 до 0.5 относительная интенсивность полосы люминесценции, соответствующей переходу ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ (580-615 нм), становится значительно ниже интенсивности полосы для переходов ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ и ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$, что обусловлено наличием в $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$ соелинениях процессов кросс-релаксации $(^{1}D_{2}\rightarrow ^{1}G_{4})\rightarrow (^{3}H_{4}\rightarrow ^{3}F_{4})$ ионов Pr³⁺ (рис. 16). Эффективность данных процессов празеодима, повышением концентрации что приводит растет с к концентрационному тушению люминесценции для перехода ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ этих ионов в соединениях $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$ при х от 0.003 до 0.07.

Рис. 16 Схема возбуждения люминесценции ионов Pr³⁺ и возможные процессы передачи энергии

 $Bi_{1-x}Pr_xGeSbO_6$ (x=0.005-0.1) Для соединений относительная интенсивность полосы люминесценции, соответствующей переходу ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ (580-615 нм), соизмерима с интенсивностью полос люминесценции, обусловленных переходами ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$, ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$ ионов Pr^{3+} . Более низкая частота фононов в висмутовых соединениях приводит к тому, что вероятность безызлучательной релаксации с уровня ³Р₀ в них ниже и, соответственно, уровень ${}^{1}D_{2}$ в них заселяется за счет безызлучательной релаксации менее увеличении концентрации ионов Pr³⁺ эффективно. При в висмутгермананиевых частицах процесс кросс-релаксации $({}^{1}D_{2} \rightarrow {}^{1}G_{4}) \rightarrow ({}^{3}H_{4} \rightarrow {}^{3}F_{4})$ также характерен, но как видно из спектров люминесценции (рис. 15) при более высоких значениях концентрации ионов Pr³⁺.

В спектрах Bi_{1-x}Pr_xGeSbO₆ дополнительно присутствует полоса с максимумом, соответствующим 719 нм. Относительная интенсивность этой полосы максимальна при минимальном содержании празеодима в образцах

(x=0.005, 0.01). Данная полоса является собственной люминесценцией матрицы BiGeSbO₆ и, по-видимому, связана со структурными особенностями полиэдра Bi-O.

Ha 17 a) представлены рис. спектры излучения частиц зарегистрированные возбуждении $La_{0.6}Pr_{0.4}Ga_{0.5}Sb_{1.5}O_{6}$ при лазерным излучением с λ_{B030} =457 нм и J=3.6, 4.0 и 4.7 кВт/см² на уровень ³P₂ ионов Pr³⁺ (спектры представлены без учета спектральной чувствительности установки). Спектр наночастиц La_{0.6}Pr_{0.4}Ga_{0.5}Sb_{1.5}O₆ при их возбуждении излучением с λ_{возб.}=457 нм и значениями плотности мощности 3.6 и 4.0 кВт/см² представлен широкополосным полосой люминесценции, как излучением, так И соответствующей переходу ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$. При плотности мощности излучения равной 4.7 кВт/см² спектр представлен только широкополосным излучением. Стоит отметить, что для наночастиц $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$, с концентрацией ионов Pr^{3+} менее 40% широкополосное белое излучение не наблюдается. При ионов Pr³⁺ концентрации в наночастицах увеличении относительная широкополосного излучения также увеличивалась. интенсивность При значении концентрации ионов Pr³⁺ более 50 % в спектрах отсутствуют полосы, люминесценции ионов Pr³⁺, а наблюдается характерные для только широкополосное «белое» излучение. В твердых растворах с концентрацией ионов Pr³⁺ выше 50 % наблюдается смещение максимума широкополосного излучения при увеличением плотности мощности излучения возбуждения, что свидетельствует о нагреве наночастиц до более высоких температур (рис. 17 б)).

Рис. 17 Спектры излучения наночастиц а) La_{0.6}Pr_{0.4}Ga_{0.5}Sb_{1.5}O₆, б) PrGa_{0.5}Sb_{1.5}O₆, T=300K

При возбуждении частиц Bi_{0.5}Pr_{0.5}GeSbO₆ излучением с $\lambda_{B036.} = 457$ нм и плотностью мощности 4.7 кBт/см² широкополосное излучение не было обнаружено. При указанных условиях возбуждения был зарегистрирован спектр люминесценции, обусловленный переходами из возбужденного состояния ³P₀ на уровни ³H₄, ³H₅, ³H₆, ³F₂, ³F₃, ³F₄, а также с уровня ¹D₂ на уровень ³H₄ ионов Pr³⁺ (рис. 18 а)). Однако при увеличении плотности мощности лазерного излучения до 7.7 кBт/см² для частиц Bi_{0.5}Pr_{0.5}GeSbO₆ характерно интенсивное широкополосное «белое» излучение (рис. 18 б)).

На рис. 19 представлены спектры люминесценции концентрационных серий частиц La_{1-x}Dy_xGa_{0.5}Sb_{1.5}O₆ и Bi_{1-x}Dy_xGeSbO₆ (x=0.05-0.5), зарегистрированные при возбуждении на уровень ⁴I_{15/2} лазерным излучением с $\lambda_{\text{возб.}}$ =457 нм и J=4.7 кBT/см², соответствующие переходам из возбужденного состояния ⁴F_{9/2} на уровни ⁶H_{15/2}, ⁶H_{13/2}, ⁶H_{11/2}, ⁶H_{9/2} ионов Dy³⁺.

Рис. 19 Спектры люминесценции а) La_{1-x}Dy_xGa_{0.5}Sb_{1.5}O₆ и б) Bi_{1-x}Dy_xGeSbO₆ (x=0.05-0.5), T=300К

В спектрах соединений $La_{1-x}Dy_xGa_{0.5}Sb_{1.5}O_6$ (рис. 19 а)) на фоне полос люминесценции ионов Dy^{3+} присутствует широкая полоса с максимумом в области 650 нм. Данная широкая полоса не соответствует спектру теплового излучения и, по-видимому, обусловлена дефектами структуры.

Ha рис. 20 представлены спектры люминесценции частиц $La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O_{6}$ И $Bi_{0.75}Er_{0.25}GeSbO_6$, при возбуждении лазерным излучением с $\lambda_{возб} = 1550$ нм. Для всех спектров характерно увеличение интенсивности линии, соответствующей переходу ²H_{11/2}→⁴I_{15/2}, относительно интенсивности линии для перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, что связано с термолизацией штарковских подуровней термов ²H_{11/2} и ⁴S_{3/2} при нагреве образцов.

Рис. 20 Спектры антистоксовой люминесценции, обусловленной переходам ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} для а) La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O₆; б) Bi_{0.75}Er_{0.25}GeSbO₆

Широкополосное излучение в наночастицах La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O₆ наблюдается при возбуждении излучением с плотностью мощности 0.8 кВт/см² на фоне полос апконверсионной люминесценции ионов Er³⁺. При увеличении плотности мощности лазерного излучения до 1.9 кВт/см² интенсивность полос люминесценции апконверсионной уменьшается, интенсивность a широкополосного излучения возрастает (рис. 21 а)). При идентичных условиях возбуждения диэлектрических частиц Bi_{0.75}Er_{0.25}GeSbO₆, широкополосное излучение не было обнаружено. Отсутствие широкополосного «белое» излучения в частицах Bi_{0.75}Er_{0.25}GeSbO₆ при возбуждении лазерным излучением с $\lambda_{\text{возб}}$ =1550 нм и J=0.8, 1.4 1.9 кВ/см², также как и в случае наночастиц Bi_{0.5}Pr_{0.5}GeSbO₆, по-видимому, обусловлено тем, что они значительно крупнее $La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O_6$, либо связано с особенностями наночастиц взаимодействия РЗ ионов в висмут-германиевых соединениях. При увеличении концентрации ионов Er³⁺ до значения x=0.5 в висмут-германиевых соединениях широкополосное «белое» излучение было зарегистрировано при возбуждении излучением с λ_{B036} =1550 нм и J=1.4 кВт/см² (рис. 21 б)).

Рис. 21 Спектры излучения частиц а) La_{0.75}Er_{0.25}Ga_{0.5}Sb_{1.5}O₆ и б) Bi_{0.5}Er_{0.5}GeSbO₆

При возбуждении частиц со структурой розиаита, легированных ионами Yb³⁺, лазерным излучением с $\lambda_{\text{возб.}}$ =980 нм и J=0.5 кB/см² было обнаружено, что

спектры излучения соединений La_{1-x}Yb_xGa_{0.5}Sb_{1.5}O₆ (x=0.1, 0.25) и Bi_{1-x}Yb_xGeSbO₆ (x=0.05, 0.1) представляют собой спектры апконверсионной люминесценции ионов Er^{3+} , которые присутствуют в частицах в виде неконтролируемой примеси (рис. 22 а)). Стоит отметить, что при данных условиях возбуждения, полосы апконверсионной люминесценции ионов Er^{3+} наблюдается на фоне полосы широкополосного излучения в области 500–800 нм. Относительная интенсивность широкополосного излучения увеличивается при увеличении плотности мощности возбуждающего излучения до 0.9 кBT/см² или концентрации ионов Yb³⁺ x=0.25.

При возбуждении излучением с $\lambda_{возб.}$ =980 нм и J=0.5 кВт/см² частиц Bi_{1-x}Yb_xGeSbO₆ (x=0.05-0.1), также были зарегистрированы спектры апконверсионной люминесценции ионов Er³⁺, состоящие из полос, характерных для переходов с уровней ⁴F_{7/2}, ²H_{11/2}, ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2}, на основной энергетический уровень ⁴I_{15/2} (рис. 22 б)). В соединениях Bi_{1-x}Yb_xGeSbO₆ (x=0.05-0.1) при указанных параметрах возбуждения фоновое широкополосное излучение не было зарегистрировано, однако оно наблюдается для частиц Bi_{1-x}Yb_xGeSbO₆ с бо́льшим содержанием иттербия (x=0.25, 0.5) при их возбуждении излучением с плотностью мощности 0.9 кВт/см² (рис. 22 б)).

Рис. 22 а) Спектры излучения La_{1-x}Yb_xGa_{0.5}Sb_{1.5}O₆ (x=0.1, 0.25); б) Bi_{1-x}Yb_xGeSbO₆ (x=0.05, 0.1), T=300K

Было установлено, что в частицах висмут-германиевой серии пороговая плотность мощности лазерного излучения необходимая для возникновения широкополосного излучения выше по сравнению с аналогичной характеристикой для лантан-галлиевой серии. Кроме того в частицах висмут-германиевой серии широкополосное излучение появляется при больших концентрациях РЗ-ионов. Что обусловлено особенностями их морфологии, а именно большим размером частиц висмут-германиевой серии (450 нм-8 мкм) по сравнению с частицами лантан-галлиевой серии (120-500 нм), а также, более низкой вероятностью взаимодействия РЗ ионов.

В пятой главе представлены результаты экспериментов *in-vivo*, выявляющие усиление теплового эффекта при воздействии на биоткань интенсивным лазерным излучением с $\lambda_{возб.}$ =980 нм при нанесении на нее итербий-содержащих наночастиц диоксида циркония.

24

На рис. 23 а) представлены изображения участков кожи спины крысы после воздействия на нее лазерным излучением с $\lambda_{возб.}$ =980 нм и J=0.9 кВт/см², согласно схеме, представленной на рис. 23 б).

Рис. 23 а) Динамика заживления кожных ран у крыс после точечного воздействия лазерного излучения; б) Схема воздействия лазерным излучением на кожу спины крыс

Сравнительный анализ характера повреждения кожи крыс и динамики ее заживления после воздействия лазерным излучением с λ_{возб.}=980 нм и J=0.9 кВт/см² показал, что предварительное нанесение на нее наночастиц ZrO₂-20 мол.% Yb₂O₃ приводит к визуально более выраженному повреждению и увеличивает срок его заживления примерно в полтора-два раза.

Нагрев наночастиц под действием интенсивного лазерного излучения может найти практическое применение в биомедицине в качестве метода усиления теплового эффекта лазерного воздействия.

Основные результаты:

1. При возбуждении интенсивным лазерным излучением в полосу поглощения ионов-активаторов частиц $Y_{1-x}Er_xPO_4$ (x = 0.25 – 1), $Y_{1-x}Er_xVO_4$ (x = 0.25 – 1), $Y_{1-x}Dy_xVO_4$ (x = 0.05 - 0.5), ZrO_2 -х мол.% Er_2O_3 (x = 5 - 25), CaF_2 -25 мол.% ErF_3 , $LaGa_{0.5}Sb_{1.5}O_6$ и BiGeSbO₆ (легированных ионами Pr^{3+} , Er^{3+} , Yb^{3+}) зарегистрировано широкополосное «белое» излучение имеющее тепловую природу. Показано, что пороговые условие возникновения и свойства данного излучения зависят от вида и характеристик оптического перехода, для которого осуществляется возбуждение, ширины запрещённой зоны и особенностей кристаллической структуры материала.

2. Впервые исследованы спектрально-люминесцентные характеристики концентрационных рядов твердых растворов La₁.

 $_{x}Pr_{x}Ga_{0.5}Sb_{1.5}O_{6}$ (x = 0 - 1) и $Bi_{1-x}Pr_{x}GeSbO_{6}$ (x = 0 - 0.5). Выявлено тушение люминесценции для перехода ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ ионов Pr^{3+} , обусловленное процессом кросс-релаксации (${}^{1}D_{2} \rightarrow {}^{1}G_{4}$) $\rightarrow ({}^{3}F_{4} \rightarrow {}^{3}H_{4})$ ионов Pr^{3+} при x > 0.07 для La_{1-} $_{x}Pr_{x}Ga_{0.5}Sb_{1.5}O_{6}$ и x > 0.25 для $Bi_{1-x}Pr_{x}GeSbO_{6}$ (x = 0 - 0.5). При возбуждении частиц $Bi_{1-x}Pr_{x}GeSbO_{6}$ (x = 0 - 0.5) излучением с $\lambda_{изл.}$ = 457 нм выявлена полоса люминесценции с максимумом 719 нм, обусловленная дефектами, связанными со структурными особенностями полиэдра Bi-O.

Отсутствие спектров апконверсионной 3. люминесценции для наночастиц YErVO₄ ($C_{Er} = 28.5$ ат. %) со средними размерами 45 ± 6 нм, обусловлено взаимодействием ионов Er³⁺ с присутствующими в них ОН группами. При воздействии на данные частицы лазерным излучением с $\lambda_{\mu_{3,1}}$ = 1550 нм и плотностью мощности J = 1.9 кВт/см² зарегистрировано широкополосное «белое» излучение в результате нагрева частиц. Нагревание частиц приводит к удалению ОН групп. Данный факт подтверждается наличием спектров апконверсионной люминесценции, обусловленной переходами ²H_{11/2}, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} , зарегистрированных при их возбуждении излучением с $\lambda_{_{\rm ИЗЛ.}} = 1550$ нм и плотностью мощности J = 0.3 кВт/см², в области, где предварительно наблюдалось широкополосное «белое» излучение при воздействии на частицы YErVO₄ ($C_{Er} = 28.5$ ат. %) излучением с $\lambda_{\mu_{3Л.}} = 1550$ нм и плотностью мощности $J = 1.9 \text{ кBt/cm}^2$.

4. Широкополосное тепловое излучение для наночастиц YErVO₄ (C_{Er} = 28.5 ат. %) со средним размером 45 ± 6 нм наблюдается при меньших значениях плотности мощности J = 0.8 кВт/см² по сравнению с наночастицами со средними размерами 320 ± 11 нм и 520 ± 10 нм (J = 1.4 кВт/см²), что обусловлено наличием большего числа дефектов в наночастицах с меньшим размером.

5. В ходе экспериментов *in-vivo* продемонстрировано, что предварительное нанесение иттербий-содержащих наночастиц диоксида циркония на поверхность биоткани способствует усилению теплового эффекта при воздействии на неё интенсивным лазерным излучением с $\lambda_{изл.} = 980$ нм и плотностью мощности равной 0.9 кВт/см².

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

[A1] Khrushchalina S.A., Ryabochkina P.A., Zharkov M.N., Kyashkin V.M., Tabachkova N.Yu., Yurlov I.A. Broadband emission from Er-contained yttrium orthophosphate and orthovanadate nanopowders excited by near infrared radiation // J. of Lum.– 2019. –V. 205, –P. 560 – 567.

[A2] Egorysheva A.V., Gajtko O.M., Golodukhina S.V., Khrushchalina S.A., Ryabochkina P.A., Taratynova A.D., Yurlov I.A. Synthesis and spectral-luminescent properties of La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O₆ solid solutions // Ceram. Inter.– 2019. –V. 45, –P. 16886–16892.

[A3] Ryabochkina P.A., Khrushchalina S.A., Yurlov I.A., Egorysheva A.V., Atanova A.V., Veselova V.O., Kyashkin V.M. Blackbody emission from CaF_2 and ZrO_2 nanosized dielectric particles doped with Er^{3+} ions // RSC Adv.,- 2020, -V. 10, N_{2} 26288.

[A4] Egorysheva A., Gajtko O., Golodukhina S., Khrushchalina S., Ryabochkina P., Taratynova A., Yurlov I. Spectral and luminescent characteristics of $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$, $Bi_{1-x}Pr_xGe_{0.5}Sb_{1.5}O_6$ (x = 0 – 0.5) solid solutions // AIP Conf. Proc., - 2020, -V. 2308, No 050004.

[A5] Egorysheva A.V., Golodukhina S.V., Khrushchalina S.A., Ryabochkina P.A., Taratynova A.D., Yurlov I.A. Comparative study of luminescent properties of $Bi_{1-x}Pr_xGe_{0.5}Sb_{1.5}O_6$ and $La_{1-x}Pr_xGa_{0.5}Sb_{1.5}O_6$ (x = 0 – 0.5) solid solutions with rosiaite structures // J. of Lum.– 2021. –V. 232, Nº 117869.

[A6] Ryabochkina P.A., Egorysheva A.V., Golodukhina S.V., Khrushchalina S.A., Taratynova A.D., Yurlov I.A. Synthesis and photoluminescence properties of novel LaGa_{0.5}Sb_{1.5}O₆: Eu³⁺, Dy³⁺, Tb³⁺ and BiGeSbO₆: Eu³⁺, Dy³⁺, Tb³⁺ phosphors // J. of All. Comp.– 2021. –V. 886, № 161175.

[A7] Veselova V.O., Yurlov I.A., Ryabochkina P.A., Belova O.V., Dudkina T.D., Egorysheva A.V. Synthesis and luminescent properties of nanocrystalline $(1 - x)ZrO_2-xEr_2O_3$ (x = 0.015 – 0.5) solid solutions// J. Neorg. Khim.– 2020. –V. 65, –P. 1168 – 1173.

[A8] Рябочкина П.А., Хрущалина С.А., Беляев А.Н., Бушукина О.С., Юрлов И.А., Костин С.В. Использование наноразмерных диэлектрических частиц, легированных ионами Yb³⁺, для усиления теплового эффекта при воздействии на биоткань лазерным излучением ближней ИК-области спектра (эксперименты *in-vivo*) // Квант. Эл.- 2021. - Т. 51, № 11, С. 1038 – 1043.

[В1] Хрущалина С.А., Рябочкина П.А., Беляев А.Н., Бушукина О.С., Юрлов И.А., Дворянчикова M.A., Кузнецова O.A. Использование Yb^{3+} наноразмерных диэлектрических частиц, легированных ионами лля воздействии усиления теплового эффекта при на биоткань лазерным ик-области излучением ближней спектра // «Мат. нано-. микро-. оптоэлектроники и волоконной оптики: физические свойства и применение». Прог. и мат. 17-й межд. науч. конф.-школы. – 2018. – С. 148 – 149.

[**B2**] Егорышева А.В., Дудкина Т.Д., Рябочкина П.А., Голодухина С.В., Хрущалина С.А., Юрлов И.А., Таратынова А.Д. Новые оптические материалы на основе сложных оксидов LaGa_{0.5}Sb_{1.5}O₆ со структурой розиаита // «VIII Международная конф. по фотонике и информационной оптике». Сбор. науч. трудов.– 2019. -С. 417 - 418.

[**B3**] Юрлов И.А., Рябочкина П.А., Хрущалина С.А., Егорышева А.В., Голодухина С.В. Особенности взаимодействия лазерного излучения с высокой плотностью мощности с наноразмерными частицами ZrO₂-Y₂O₃ и CaF₂-ErF₃ // «IX Международная конф. по фотонике и информационной оптике». Сбор. науч. трудов. – 2019. –С. 73 – 74.

[**B4**] Егорышева А.В., Рябочкина П.А., Голодухина С.В., Хрущалина С.А., Юрлов И.А., Таратынова А.Д. Новые люминофоры на основе LnGa_{0.5}Sb_{1.5}O₆ // «XXI Менделеевский съезд по общ. и прик. химии» Сбор. тез. 6 т.– 2019. –С. 76.

[**B5**] Хрущалина С.А., Рябочкина П.А., Юрлов И.А., Егорышева А.В., Гайтко О.М., Голодухина С.В., Таратынова А.Д. Исследование спектральнолюминесцентных характеристик твердых растворов La_{1-x}Re_xGa_{0.5}Sb_{1.5}O₆, Bi₁₋ _xRe_xGe_{0.5}Sb_{1.5}O₆ (Re = Eu, Dy, Tb) // «Новые мат. и персп. тех.» Сборник мат. 6 междис. науч. фор. с межд. учас.– 2020. –С. 252–254.

[**B6**] Веселова В.О., Юрлов И.А., Хрущалина С.А., Рябочкина П.А., Егорышева А.В. Синтез и люминесцентные свойства высокодисперсного диоксида циркония, допированного эрбием // «Новые мат. и персп. тех.» Сборник мат. 6 междис. науч. фор. с межд. учас. – 2020. – С. 515 – 517.

[**B7**] Гайтко О.М., Голодухина С.В., Егорышева А.В., Рябочкина П.А., Таратынова А.Д., Юрлов И.А., Хрущалина С.А. Спектрально-люминесцентные характеристики нанопорошков твердых растворов $La_{1-x}Re_xGa_{0.5}Sb_{1.5}O_6$, $Bi_{1-x}Re_xGe_{0.5}Sb_{1.5}O_6$ (Re = Pr, Eu, Dy, Tb) // ««Мат. нано-, микро-, оптоэлектроники и Волоконной оптики: физ. Св-ва и применение». Прог. и мат. 18-й Межд. научной конф.-школы.– 2020. –С. 60.

[**B8**] Веселова В.О., Егорышева А.В., Рябочкина П.А., Хрущалина С.А., Юрлов И.А. Спектрально-люминесцентные свойства наночастиц ZrO₂-Er₂O₃ // «Мат. нано-, микро-, оптоэлектроники и Волоконной оптики: физ. Св-ва и применение». Прог. и мат. 18-й Межд. научной конф.-школы. –2020. –С. 61.

[**B9**] Юрлов И.А., Рябочкина П.А., Хрущалина С.А., Кяшкин В.М., Егорышева А.В., Веселово В.О., Белова О.В. Апконверсионная люминесценция и широкополосное «белое» излучение в наночастицах ZrO₂-Er₂O₃ и CaF₂-ErF₃ // Мат. межд. науч. фор. «ЛОМОНОСОВ-2020».

[**B10**] Юрлов И.А., Рябочкина П. А., Хрущалина С.А., Кяшкин В.М., Атанова А.А. Синтез и спектрально-люминесцентные свойства наночастиц Y_{0.75}Er_{0.25}VO₄ // Мат. межд. науч. фор. «ЛОМОНОСОВ-2021».

[B11] Khrushchalina S.A., Belyaev A N., Bushukina O.S., Ryabochkina P.A., Yurlov I.A. Increasing the thermal effect efficiency of NIR laser radiation onbiological tissue using Yb-containing dielectric nanoparticles // The 28th Int. Conf. on Adv. Las. Tech., Book of abstracts.

Список цитируемой литературы

1. Jüstel, T. New Developments in the Field of Luminescent Materials for Lighting and Displays / T. Jüstel, H. Nikol, C. Ronda // C. Angew. Chem. Int. Ed. – 1998, –V. 37, - P. 3084.

2. Kaminskii, A. A. Tetragonal YPO_4 – a novel SRS-active crystal / A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, G. Mariotto // Las. Phys. Lett. – 2008, –V. 5, - P. 367.

3. Vetrone, F. Significance of Yb^{3+} concentration on the upconversion mechanisms in codoped Y_2O_3 :Er³⁺, Yb³⁺ nanocrystals / F. Vetrone, J.- C. Boyer, J. A. Capobianco // J. Appl. Phys. – 2004, – V. 96, No 1, - P. 661 – 667.

4. Simon, D. T. Electron-phonon dynamics in an ensemble of nearly isolated nanoparticles / D. T. Simon, M. R. Geller // phys. Rev. B.- 2001, -V. 64, - P. 115412.

5. Kaminskii, A. A. Tetragonal YPO_4 – a novel SRS-active crystal / A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, G. Mariotto // Las. Phys. Lett. – 2008, –V. 5, - P. 367.

6. Vanetsev, A. S. Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: the influence of synthetic conditions / A. S. Vanetsev, E. V. Samsonova, O. M. Gaitko, K. Keevend, A. V. Popov, U. Mäeorg, H. Mändar, I. Sildos, Yu. V. Orlovskii // J. of All. Comp. – 2015, –V. 639, - P. 415 – 421.

7. Strek, W. White emission of lithium ytterbium tetraphosphate nanocrystals / W. Strek, L. Marciniak, A. Bednarkiewicz, A. Lukowiak, R. Wiglusz, D. Hreniak // Opt. Exp.- 2011, -V. 19, № 15, - P. 14083 – 14092.

8. Marciniak, L. Temperature of broadband anti-Stokes white emission in LiYbP₄O₁₂: Er nanocrystals / L. Marciniak, W. Strek, D. Hreniak, Y. Guyot // Appled Phys. Lett. – 2014, –V. 105, - P. 173113.

9. Хрущалина, С. А. Широкополосное излучение белого света в наноразмерных кристаллических порошках ортофосфатов иттрия, легированных ионами Yb³⁺ и Er³⁺, при воздействии лазерным излучением с длиной волны 972 нм / С. А. Хрущалина, П. А. Рябочкина, В. М. Кяшкин, А. С. Ванецев, О. М. Гайтко, Н. Ю. Табачкова // Письма в ЖЭТФ.– 2016, –V. 103, № 5, - Р. 342 – 349.

10. Рябочкина, П. А. Особенности взаимодействия лазерного излучения ближнего ИК-диапазона с наноразмерными Yb-содержащими диэлектрическими частицами / П. А. Рябочкина, С. А. Хрущалина, В.М. Кяшкин, А.С. Ванецев, О.М. Гайтко, Н.Ю. Табачкова // Письма в ЖЭТФ. – 2016, –V. 103, № 12, - Р. 836 – 845.

11. Marciniak, L. Laser induced broad band anti-Stokes white emission from LiYbF₄ nanocrystals / L. Marciniak, R. Tomala, M. Stefanski, D. Hreniak, W. Strek // J. Rare Earth.–2016, –V. 34, - P. 227 - 234.

12. Nicoloso, N. Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia / N. Nicoloso, A. Löbert, B. Leibold // Sensors and Actuators B.– 1992, –V. 8, № 3, P. 253–256.