МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

АЛАХМАД АЛИ

«Исследование структуры и физико-химических свойств координационных соединений лантаноидов с глицином»

1.4.1 – неорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель: доктор химических наук, профессор

Князев Александр Владимирович

Нижний Новгород 2021

Содержание

Содержание	1
Введение	4
Глава 1. Литературный обзор	8
1.1 Особенности электронного строения и электронные конфигурации лантаноидов	8
1.2 Соотношение размеров лантаноидов	13
1.3 Степени окисления лантаноидов	16
1.4 Координационное число и стереохимия лантаноидов	17
1.5 Координационная химия лантаноидов	20
1.6 Молекулярные структуры координационных соединений лантаноидов	26
1.7 Применение полиэдров Вороного-Дирихле в кристаллохимическом анализе	27
1.8 Координационные соединения лантаноидов с аминокислотами, структура и кристаллохимические формулы соединений	32
Глава 2. Экспериментальная часть	42
2.1 Методы исследования	42
2.2 Исходные вещества	44
2.3 Синтез монокристаллов координационных соединений лантаноидов с глицином	45
Глава 3. Результаты и обсуждение	49
3.1 Результаты исследования полученных соединений с помощью рентгеноструктурного анализа) 49
3.1.1 Кристаллическая структура соединения [Ho(Gly) ₃ ·2H ₂ O](ClO ₄) ₃	51
3.1.2 Кристаллические структуры соединений [Sm ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆ , [Gd ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆ , [Eu ₂ (Gly) ₆ 9H ₂ O](ClO ₄) ₆ , [Dy ₂ (Gly) ₆ ·7H ₂ O](ClO ₄) ₆	54
3.1.3 Кристаллическая структура соединения [La (Gly) ₃ ·2H ₂ O](ClO ₄) ₃	60
3.1.4 Химическая связь кислорода с лантаноидами в координационных соединениях лантаноидов с глицином	61
3.1.5 Дефекты кристаллической решетки	65
3.2 Дифференциальная сканирующая калориметрия (ДСК) и термогравиметрический ан (ТГА) полученных соединений	ализ 66
3.2.1 ТГА и ДСК соединения [Sm ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆	66
3.2.2 ТГА и ДСК соединения [Eu ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆	68
3.2.3 ТГА и ЛСК соелинения [Gd2(Glv)6·9H2O](ClO4)6	69
3.2.4 ТГА и ЛСК соединения [Dv2 (Gly)6:7H2O](ClO ₄)6	70
3.2.5 ТГА и ЛСК соединения [Ho(Gly)3·2H2O](СЮ4)3	72
3.2.6 ТГА соединения [La(Gly) ₃ :2H ₂ O](ClO ₄) ₃	73
3.3 Термолинамические свойства соелинения [La(Glv)3:2H2O](ClO4)3	75
3.3.1 Анализ межмолекулярных взаимодействий в кристаллах модификации II и I соелинения [La(Gly)3·2H ₂ O](ClO ₄) ₃ с помощью полиэлров Вороного-Лирих пе	
3.3.2. Термолинамика фазовых переходов в соелинении II a(Glv) ₂ ·2H ₂ OI(ClO ₄) ₂	
Выволы.	88

Список литературы	89
4. Приложение	101
4.1 Кристаллографические данные и параметры уточнения структуры для [Ho(Gly) ₃ ·2H ₂ O](ClO ₄) ₃	101
4.2 Кристаллографические данные и параметры уточнения структуры для [Sm ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆ , [Eu ₂ (Gly) ₆ 9H ₂ O](ClO ₄) ₆ , [Gd ₂ (Gly) ₆ ·9H ₂ O](ClO ₄) ₆	106
4.3 Кристаллографические данные и параметры уточнения структуры для [Dy ₂ (Gly) ₆ ·7H ₂ O](ClO ₄) ₆	142
4.4 Кристаллографические данные и параметры уточнения структуры для [La (Gly) ₃ ·2H ₂ O](ClO ₄) ₃	150

Обозначения и сокращения

Gly – глицин, Glu – глутаминовая кислота, Asp – аспарагиновая кислота, Ala – аланин, Pro – пролин, Val – валин, Leu – лейцин, Phe – фенилаланин, Met – метионин, Ser – серин, Туг – тирозин, His – гистидин, Lys – лизин, Trp – триптофан, Arg– аргинин.

RE = РЗЭ – редкоземельные элементы

CN = КЧ – координационное число

ДСК – дифференциальная сканирующая калориметрия

ТГА – термогравиметрический анализ

КП – координационный полиэдр

КХГ – кристаллохимическая группа

КХФ – кристаллохимическая формула

МПВД – молекулярный полиэдр Вороного-Дирихле

ПВД – полиэдр Вороного-Дирихле

ССDС – Кембриджский центр структурных данных;

d_{AZ} – диапазон межатомных расстояний А–Z

ICSD – Inorganic crystal structure database;

 k_{AZ} – общее число всех граней с $P\Gamma = 0$ у МПВД, ($P\Gamma$) ранг грани

 $N_{\rm f}$ – число граней ПВД

 $^0\mathrm{S}$ – общая площадь граней нулевого ранга МПВД

 S_{AZ} — общая площадь всех граней типа A/Z у ПВД атомов, содержащихся водной формульной единице вещества;

V_{ПВД} – объем ПВД;

 Δ_{AZ} — парциальный вклад невалентных контактов A/Z в величину интегрального параметра ${}^{0}S = \Sigma S_{AZ} M\Pi B Д;$

КТМС - количество тридентатных мостиковых соединений

Ph₃PO - Triphenylphosphine oxide

Введение

Актуальность работы

Изучение процессов взаимодействия между аминокислотами и ионами лантаноидов (Ln) имеет важное биологическое и биомедицинское значение, в частности, В физиологических условиях, например, для разработки спектроскопических зондов для исследования биологических систем, искусственных нуклеаз и контрастных в магнитно-резонансной веществ томографии (МРТ). А также для понимания метаболизма лантаноидных комплексов, которые входят в пищевую цепь через лантаноидсодержащие удобрения.

Координация ионов лантаноидов с аминокислотами исторически осуществлялась в кислой среде. Большинство таких комплексов было получено в условиях низких значений pH (2...4), они были изучены и структурно охарактеризованы. Однако, при низком значении pH, координационная химия лантаноидов и аминокислот не позволяет понять механизм взаимодействия этих уникальных ионов металлов с биологическими средами, поэтому химики обратили свое внимание на взаимодействие лантаноидов и аминокислот в условиях более высоких значений pH, в том числе близких к физиологическому значению или даже выше.

Очевидно, что установление механизмов взаимодействия между ионами лантаноидов и аминокислотами имеет решающее значение для оценки того, как эти уникальные ионы металлов могут влиять на биологические системы и человеческую жизнь. Таким образом, изучение координационной химии лантаноидов становится актуальной задачей.

Целью работы было изучение взаимосвязи между составом, строением и свойствами ряда координационных соединений лантаноидов с глицином.

В связи с этим, были поставлены следующие задачи:

1. Разработка методики синтеза монокристаллов координационных соединений лантаноидов с глицином.

2. Исследование кристаллической структуры полученных веществ методом рентгеноструктурного анализа.

3. Описание кристаллической структуры методами классической кристаллографии и молекулярных полиэдров Вороного-Дирихле.

 Изучение поведения соединений в широком интервале температур методами дифференциальной сканирующей калориметрии и термогравиметрического анализа.

5. Изучение термодинамических свойств соединений методом адиабатической калориметрии.

Научная новизна работы

Разработаны методики синтеза шести новых координационных соединений лантаноидов с глицином. При рентгеноструктурном исследовании монокристаллов установлена кристаллическая структура всех соединений и описаны схемы каждого соединения. С позиций термического разложения для метода молекулярных полиэдров Вороного-Дирихле проведен анализ межмолекулярных и внутримолекулярных невалентных взаимодействий в структуре кристалла для одного из полученных соединений [La(Gly)₃·2H₂O](ClO₄)₃. Определено, что в дополнение к высокому КЧ и разнообразию способов координации, в полиядерных карбоксилатах редкоземельных элементов два соседних иона RE (III) связаны между собой карбоксилатными группами, то есть мостиковым типом координации. Систематизированы данные о типах координации и важнейших геометрических параметрах полученных соединений.

Теоретическая и практическая значимость работы

Впервые установленные кристаллографические и термографические характеристики трех новых соединений лантаноидов, которые могут быть использованы для их идентификации. Кристаллоструктурные характеристики всех новых соединений необходимы для выявления взаимосвязи между составом, строением и свойствами соединений Ln(III). Впервые установленные сведения о типах координации лантана с аминокислотой глицином являются основой для прогнозирования строения еще неизученных соединений и дальнейшего

систематического исследования кристаллохимической роли аминокислот в структурах кристаллов соединений f-элементов.

Методология и методы диссертационного исследования

При выполнении работы использованы физико-химические методы исследования (рентгеноструктурный, дифференциально-сканирующая калориметрия и термогравиметрический анализ) и современные методы кристаллохимического анализа соединений (метод молекулярных полиэдров Вороного-Дирихле), опирающиеся на стереоатомную модель строения кристаллов.

Основные результаты и положения, выносимые на защиту:

1. Методики синтеза шести новых координационных соединений лантаноидов с глицином.

2. Результаты рентгеноструктурного анализа шести комплексов лантаноидов.

3. Данные теплофизического и кристаллохимического исследования полученных соединений.

4. Систематизированные сведения о кристаллохимической роли карбоксильной группы в структурах соединений f-металлов.

Достоверность полученных результатов определяется использованием современного прецизионного научного оборудования и совокупности взаимодополняющих физико-химических методов исследования соединений.

Апробация работы и публикации. Результаты диссертационной работы были представлены на ежегодной XXIII Всероссийской конференции молодых ученых - химиков (с международным участием) (ННГУ г. Нижний Новгород, 21, 23–24 апреля 2020 года. Опубликовано 2 статьи по теме работы в международные международных рецензируемых журналах «Журнал химической термодинамики, Журнал химической кристаллографии».

Личный вклад диссертанта заключается в разработке методик получения монокристаллов новых соединений лантаноидов с глицином, интерпретации результатов рентгеноструктурного исследования и кристаллохимическом анализе полученных соединений, установлении схем термораспада полученных

соединений, систематизации данных о типах координации карбоксильной группой в структурах кристаллов f-металлов.

Объем и структура диссертации. Диссертационная работа включает введение, обзор литературы, экспериментальную часть, обсуждение результатов, выводы и основные результаты, список использованных источников (121). Объем диссертации составляет 158 страниц. Диссертационная работа содержит 48 рисунков и 42 таблиц.

Благодарности. Автор выражает свою глубокую благодарность научному руководителю, д.х.н., проф., А.В. Князеву, доценту кафедры кристаллографии и экспериментальной физики ННГУ им. Н. И. Лобачевского к.ф.-м.н. Н.В. Сомову за помощь в проведении рентгеноструктурного анализа, заведующему лабораторией химической термодинамики д.х.н., проф. Н.Н. Смирновой за помощь в проведении термодинамических исследований, заведующему кафедрой физической химии д.х.н., проф. А.В. Маркину за помощь в исследовании теплофизических свойств , к.х.н. В.Ж. Корокину, к.х.н. Е.Н. Буланову.

Глава 1. Литературный обзор

Элементы подгруппы лантана, получившие впоследствии общее название лантаноиды, имеют атомные номера в диапазоне от 57 до 71. Это лантан (La), церий (Ce), празеодим (Pr), неодим (Nd), прометий (Pm), самарий (Sm), европий (Eu), гадолиний (Gd), тербий (Tb), диспрозий (Dy), гольмий (Ho), эрбий (Er), тулий (Tm), иттербий (Yb) и лютеций (Lu) [1]. Также в группу включают скандий (Sc) и иттрий (Y), которые находятся в той же подгруппе Периодической системы. Таким образом, общее количество рассматриваемых элементов составляет 17, и все их относят к так называемым редкоземельным элементам (RE). Эти элементы схожи по своим характеристикам, хотя есть свойства, по которым они очень различны. В данной главе рассматриваются вопросы координационной химии лантаноидных комплексов, содержащих органические лиганды, относящиеся К группе аминокислот [2 - 6].

1.1 Особенности электронного строения и электронные конфигурации лантаноидов

Электронная конфигурация атома в основном состоянии определяется его главным квантовым числом *n* и орбитальным квантовым числом *l*. Согласно принципу наименьшей энергии, существуют два типа электронных конфигураций для лантаноидных элементов: [Xe]4fⁿ6s² и [Xe]4fⁿ⁻¹5d¹6s², где [Xe] представляет собой электронную конфигурацию ксенона, которая выглядит следующим образом:

 $[Xe]: 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6.$

В указанных общих формулах *n* представляет собой число от 1 до 14. Лантан, церий и гадолиний относятся к типу [Xe]4fⁿ6s², а празеодим, неодим, прометий, самарий, европий, тербий, диспрозий, гольмий, эрбий, тулий, иттербий и лютеций к типу [Xe]4fⁿ⁻¹5d¹6s². Скандий и иттрий не имеют 4f электронов, но обладают сходными химическими свойствами с лантаноидными элементами, поскольку их внешние электроны имеют конфигурацию (n–1) d¹ns². По этой причине их, как правило, также относят к лантаноидным элементам [7, 8]. Лантаноидные элементы принимают либо конфигурацию [Xe]4fⁿ6s², либо конфигурацию [Xe]4fⁿ⁻¹5d¹6s², зависящую от относительного энергетического уровня этих двух электронных конфигураций. На рисунке 1.1 показан относительный энергетический уровень нейтральных атомов лантаноидов в электронных конфигурациях 4fⁿ6s² или 4fⁿ⁻¹5d¹6s².

Рисунок 1.1 - Относительный энергетический уровень различных электронных конфигураций 4fⁿ6s² или 4fⁿ⁻¹5d¹6s² нейтральных атомов лантаноидов [6]

Для лантана, церия и гадолиния энергетический уровень конфигурации [Xe]4fⁿ⁻¹5d¹6s² меньше по сравнению с конфигурацией [Xe]4fⁿ6s², следовательно, они имеют конфигурацию [Xe]4fⁿ⁻¹5d¹6s². Для тербия две конфигурации [Xe]4f⁹6s² и [Xe]4f⁸5d¹6s² энергетически близки друг к другу, поэтому тербий может принять любую из них. Лютеций имеет 14f электрона и поэтому имеется только одна возможная конфигурация строения атома - [Xe]4f¹⁴5d¹6s². Все остальные элементы имеют конфигурацию [Xe]4fⁿ6s². Все электронные конфигурации лантаноидных элементов приведены в таблице 1.1.

Для многоэлектронных атомов уменьшение атомного радиуса, вызванное увеличением ядерного заряда, частично компенсируется увеличением электростатического отталкивания между электронами. Экранирующий эффект возникает из внутренних электронов и уменьшается в следующем порядке: s>p>d>f [9]. Для лантаноидных элементов при увеличении атомного номера электрон добавляется не к самой внешней оболочке, а к внутренней оболочке 4f (таблица 1.1). Из-за диффузионных свойств электроны 4f не все распределяются во внутренней части оболочки 5s5p, и это хорошо видно на рисунках 1.2 и 1.3. На рисунке 1.2 показаны радиальные функции распределения электронов 4f, 5s, 5p, 5d, 6s и 6p для церия, а на рисунке 1.3 - радиальные функции распределения электронов 4f, 5s, 5p для празеодима. Увеличение электронов 4f лишь частично экранирует увеличение ядерного заряда. Обычно считается, что постоянная экранирования 4fэлектронов в трехвалентных лантаноидах составляет около 0,85. Электроное облако 4f в нейтральном состоянии не является диффузионным в трехвалентных ионах лантаноидов, а постоянная экранирования электронов 4f больше, но не превышает единицы.

Z		Элемент	Элен 1	ктронн нейтра.	ая кон льных	фигура атомо	ация в	Электронная конфигурация	Атомный радиус (pm) (коорлинационное	Атомный вес	
			4f	5s	5p	5d	6s	трехвалентных ионов	число=12)		
57	La		0	2	6	1	2	[Kr] 4d ¹⁰ 5s ² 5p ⁶ 4f ⁰ *	187,910	138,910	
58	Ce	е 1 и	1	2	6	1	2	$[Xe]4f^1$	182,470	140,120	
59	Pr	тал нен :46.	3	2	6		2	$[Xe]4f^2$	182,800	140,910	
60	Nd	олп 10лп	6	$4 \ 2 \ 6 \ 2 \ [Xe]4f^3$					182,140	144,240	
61	Pm	е oj зап	5	2	6		2	$[Xe]4f^4$	(181,00)	(147,00)	
62	Sm	іни БЮ она	6	2	6		2	[Xe]4f ⁵	180,410	150,360	
63	Eu	per ber	7	2	6		2	[Xe]4f ⁶	204,200	151,960	
64	Gd	нул олн	$\frac{1}{2}$			180,130	157,250				
65	Tb		9	2	6		2	[Xe]4f ⁸	178,330	158,930	
66	Dy		10	2	6		2	[Xe]4f ⁹	177,400	162,500	
67	Но		11	2	6		2	$[Xe]4f^{10}$	176,610	164,930	
68	Er		12	2	6		2	[Xe]4f ¹¹	175,66	167,26	
69	Tm		13	2	6		2	[Xe]4f ¹²	174,62	168,93	
70	Yb		14	2	6		2	[Xe]4f ¹³	193,920	173,040	
71	Lu		14	2	6	1	2	[Xe]4f ¹⁴	173,490	174,970	
			3d	4s	4p	4d	5s				
21	Sc	a de	1	2				[Ar]	164,060	44,955	
39	Y	нут] -ни 18 leкт ект	10	2	6	1	2	[Kr]	180,120	88,907	
		H H Lee o									

 $[Kr]4d^{10}5s^{2}5p^{6}=[Xe]$

Поэтому по мере увеличения атомного номера эффективное притяжение между ядром и внешними электронами возрастает [10], что вызывает уменьшение атомного и/или ионного радиуса. Это явление называется «лантаноидным сжатием».

Рисунок 1.2 - Радиальные функции распределения электронов 4f,5s,5p,5d,6s и 6р для церия⁺³ [3]

Рисунок 1.3 - Радиальные функции распределения электронов 4f,5s,5p для празеодима [11]

Одно из последствий эффекта сжатия лантаноидов состоит в том, что радиус трехвалентного иона иттрия (Y^{3+}) по величине находится между значениями радиусов Ho³⁺ и Er³⁺, а атомный радиус иттрия - между неодимом и самарием [12]. Это приводит к тому, что химические свойства иттрия очень похожи на свойства лантаноидных элементов. Иттрий часто встречается с лантаноидами в природных минералах. Химические свойства иттрия могут быть подобны более легким или более тяжелым лантаноидным элементам в различных системах, в зависимости от степени ковалентности химических связей в этих системах [13].

Другой эффект лантаноидного сжатия заключается в том, что третий ряд элементов d-блока имеет лишь незначительно большие атомные радиусы, чем второй ряд переходных элементов. Например, цирконий, гафний, ниобий, тантал, вольфрам и молибден имеют сходные ионные радиусы и химические свойства (Zr^{4+} 80pm, Hf^{4+} 81 pm; Nb⁵⁺ 70 pm, Ta⁵⁺ 73 pm; Mo⁶⁺ 62 pm, W⁶⁺ 65pm). Эти элементы также содержатся в одних и тех же природных минералах, и их трудно отделить друг от друга.

1.2 Соотношение размеров лантаноидов

Из-за эффекта сжатия радиус ионов лантаноидов постепенно уменьшается во внутренних электронных слоях по мере увеличения атомного номера, что приводит к изменениям свойств лантаноидов. Например, стабильность лантаноидных комплексов с увеличением атомного номера лантаноида обычно повышается [14]; щелочность ионов лантаноидов с увеличением атомного номера снижается; pH, при котором гидраты лантаноидов начинают осаждаться из водного раствора, с увеличением атомного номера постепенно уменьшается.

Из-за лантаноидного сжатия радиус атомов лантаноидов также меняется, потому что экранирующий эффект 4f электронов в атомах лантаноидов не так силен, как в случае ионов лантаноидов, следовательно, лантаноидное сжатие слабее в атомах лантаноидов, чем в ионах [15]. Атомный радиус атомов металла в гексагональной кристаллической упаковке определяется как среднее расстояние между соседними атомами в плотнейшей упаковке (таблица 1.1). Связь между ионным радиусом и атомным номером показана на рисунке 1.4. Атомный радиус также претерпевает воздействие эффекта лантаноидного сжатия, за исключением церия, европия и иттербия. Однако уменьшение атомных радиусов лантаноидов не столь заметно, как уменьшение радиусов их ионов (рисунок 1.5).

Рисунок 1.4 – График зависимости между ионным радиусом и атомным номером ионов лантаноидов [2, 6]

Рисунок 1.5 – График зависимости между атомным радиусом и атомным номером атомов лантаноидов [2, 6]

Аномальное поведение атомных радиусов церия, европия и иттербия можно объяснить следующим образом: атомный радиус металла приблизительно равен максимальному радиусу электронного облака, поэтому в металлах происходит перекрытие электронных оболочек именно крайними областями. Эти электроны могут свободно перемещаться в кристаллической решетке и становиться электронами проводимости. Строго говоря, в лантаноидах есть три типа электронов проводимости. Европий и иттербий, как правило, имеют электронную конфигурацию 4f⁷ и 4f¹⁴ соответственно, и поэтому они обеспечивают только два электрона проводимости. Перекрывающаяся часть внешних электронов между соседними атомами становится меньше, а атомный радиус больше [16].

Напротив, атом церия имеет только один электрон 4f, и он стремится обеспечить четыре электрона проводимости, чтобы получить стабильную электронную конфигурацию. Перекрывающаяся часть внешних электронных оболочек становится больше, это приводит к тому, что расстояние между соседними атомами становится меньше по сравнению с другими лантаноидами [17].

1.3 Степени окисления лантаноидов

Редкоземельные элементы имеют схожие конфигурации двух крайних внешних оболочек. В химических реакциях они проявляют типичные металлические свойства и, как правило, теряют три электрона и проявляют степень окисления +3 [18]. РЗЭ характеризуются меньшей реакционной способностью, чем щелочные и щелочноземельные металлы, но более высокой, чем другие металлы. Их следует хранить в инертной жидкости, иначе они окисляются и теряют свой металлический блеск [19]. Реакционная способность металлов постепенно возрастает от скандия к лантану и постепенно уменьшается от лантана к лютецию [20]. То есть лантан является наиболее активным металлом из всех 17-ти редкоземельных элементов.

Все элементы ряда лантаноидов имеют степень окисления +3. Ранее считалось, что некоторые металлы (самарий, европий и иттербий) также проявляют степень окисления +2. Дальнейшие исследования этих металлов и их соединений показали, что все они способны проявлять в своих комплексах и в растворах степень окисления +2 [17]. Некоторые металлы лантаноиды могут проявлять степень окисления +4. Такое неравномерное распределение степени окисления объясняется высокой стабильностью пустых, наполовину заполненных или полностью заполненных f-орбиталей. Степень окисления +4 также проявляется в оксидах празеодима (Pr), неодима (Nd), тербия (Tb), диспрозия (Dy).

Европий (атомный номер 63) имеет электронную конфигурацию [Xe] $4f^76s^2$, он теряет два электрона с энергетического уровня 6s и достигает очень стабильной, наполовину заполненной конфигурации $4f^7$ и, следовательно, легко образует ион Eu^{2+} . Затем Eu^{2+} переходит в наиболее типичное для лантаноидов состояние +3 и образует Eu^{3+} , действующий как сильный восстановитель.

Иттербий (атомный номер 70) обладает сходными с европием свойствами, и проявляет сильные восстановительные свойства в состоянии Yb²⁺; он имеет полностью заполненную f-орбиталь. Наличие f-орбитали оказывает большое влияние на степень окисления, проявляемую этими металлами, и их свойства.

Редкоземельные металлы могут вступать в реакцию с водой с выделением водорода. Еще более активно они реагируют с кислотами, но не реагируют с основаниями.

Согласно правилу Хунда, электронные оболочки стабильны, когда они пусты, полны или наполовину заполнены. Например, конфигурации $4f^0$ (La³⁺), $4f^7$ (Gd³⁺), и $4f^{14}$ (Lu³⁺) являются стабильными. Ce³⁺, Pr³⁺ и Tb³⁺ имеют на один или два электрона больше, чем требуется для стабильных электронных конфигураций, поэтому они могут быть также окислены до состояния +4. В отличие от вышеприведенных примеров Sm³⁺, Eu³⁺ и Yb³⁺ имеют на один или два электрона меньше, чем требуется для стабильной электронной конфигурации, и поэтому они, как правило, получают один или два электрона и подвергаются снижению степени окисления до +2. Таковы причины, по которым эти элементы имеют аномальные валентные состояния [21].

1.4 Координационное число и стереохимия лантаноидов

Координационное число определяет число лигандов, координированных с центральным атомом. Для анализа разброса координационного числа лантаноидов изучено более 1400 координационных соединений лантаноидов, которые были структурно охарактеризованы, полученные результаты опубликованы в период 1935 - 1995 гг. [22]. В таблице 1.2 и на рисунке 1.6 приведены данные о статистике координационных чисел комплексных соединений лантаноидов.

КЧ*	Σ - итог	Sc	Y	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
3	10	2	1		1		1		1	2		1					1	
4	18			3	3				1		1	1					7	2
5	25		4	3	3	3	4				1				3		3	1
6	133	9	19	8	7	12	8		15	10	7		3	1	6	1	20	7
7	121	12	20	10	7	5	10		12	7	6	1	5	1	5	1	13	6
8	534	18	51	31	36	27	56		73	34	24	6	13	16	39	5	68	40
9	367	3	33	31	17	26	61		36	32	25	11	16	12	25	5	21	13
10	160		5	33	20	16	32		18	13	4	1	3	2	2	1	9	1
11	37			14	5	6	4		2	3				1			2	
12	28		1	11	7	2	4			1	1		1					
Всего	1433	44	134	144	106	97	177		158	102	69	21	41	33	80	13	144	70

Таблица 1.2 – Статистика координационных соединений лантаноидов с различными координационными числами

КЧ* - координационное число.

Рисунок 1.6 – Распределение лантаноидов по координационному числу

Все координационные числа находятся в диапазоне от 3 до 12, а наиболее распространенное координационное число равно восьми (37%) [23]. По сравнению с переходными металлами лантаноидные элементы имеют две различные характеристики с точки зрения величины координационного числа:

1) Большие значения координационных чисел.

Например, координационное число 3d-переходных металлов обычно составляет 4 или 6. Тогда как, наиболее распространенное координационное число лантаноидных комплексов составляет 8 или 9. Это число близко к сумме электронов на 6s, 6p и 5d орбиталях. Другим фактором, отвечающим за большое координационное число лантаноидов в комплексах, является их большой ионный радиус. Когда координационное число равно шести, ионные радиусы d-элементов Fe^{3+} и Co³⁺ равны 55 и 54 pm соответственно, тогда как ионные радиусы La³⁺, Gd³⁺ и Lu³⁺ в аналогичной ситуации составляет 103,2, 93,8 и 86,1 pm соответственно.

2) Переменные координационные числа.

Координационные связи лантаноидных комплексов не являются направленными, а координационное число варьируется от 3 до 12 [24, 25].

1.5 Координационная химия лантаноидов

Как уже отмечалось ранее, лантаноиды - это 14 элементов от церия (Се) до лютеция (Lu). В Периодической системе Менделеева данные элементы расположены в шестом периоде. Лантан, лантаноиды и подобные им скандий и иттрий образуют группу редкоземельных элементов (РЗЭ) [26, 27]. Изучение лантаноидов началось в XVIII в. В 1787 году К. Аррениус возле города Иттерби обнаружил неизвестный черный минерал, а десять лет спустя Ю. Гадолин изучил этот минерал и обнаружил в нем новый оксид. Позже минерал из города Иттерби назвали гадолинитом, а новый оксид назвали «землей иттрия». В 20-х годах позапрошлого столетия ученым-исследователем М. Клапротом при изучении минерала охрита были выделены оксиды церия («земля церия»). При проведении восстановительного процесса было установлено, что продукт, полученный из цериевых оксидов, является металлом, схожим по своим свойствам с некоторыми другими известными элементами. Именно его впоследствии назвали церий [28].

В течение XIX-XX веков были обнаружены и выделены все лантаноиды. Так как эти элементы были выделены из так называемых «земель иттрия» и «земель церия», условно все лантаноиды делятся на две группы:

- группа церия (от церия до европия);

- группа иттрия (гадолиний-лютеций) [26].

Лантаноиды - это металлы серебристого цвета. Их общими свойствами являются низкая твердость, пластичность и относительно низкие температуры плавления [29, 30]. Одна из важнейших физических особенностей этих металлов – это способность поглощать тепловые нейтроны, она присуща в большей степени гадолинию, самарию, европию и диспрозию

По химическим свойствам лантаноиды очень похожи между собой, что можно объяснить строением электронных оболочек атомов (таблица 1.1). Как видно из таблицы, лантаноиды отличаются лишь количеством электронов на f-подуровне, что влияет, в частности, на хроматичность их ионов [31].

Все лантаноиды химически активны. Существует тенденция уменьшения реакционной способности с увеличением порядкового номера. В ряду напряжений

элементы лантаноидной группы находятся слева от водорода, следовательно, при хранении на воздухе на поверхности металла происходит потеря характерного металлического блеска и образование побежалости в виде оксидной пленки. Все лантаноиды реагируют с водой по следующей реакции (1.1) [32].

$$2\text{Me} + 6\text{H}_2\text{O} \longrightarrow 2\text{Me}(\text{OH})_3 + 3\text{H}_2\uparrow \tag{1.1}$$

И только для элемента европия характерно образование кристаллогидрата желтого цвета, растворимого в воде. При хранении на воздухе происходит отщепление молекул воды, и соединение постепенно приобретает белый цвет:

$$2\mathrm{Eu} + 10\mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{Eu}(\mathrm{OH})_3 \cdot 2\mathrm{H}_2\mathrm{O} + 5\mathrm{H}_2\uparrow \tag{1.2}$$

$$2\mathrm{Eu}(\mathrm{OH})_3 \cdot 2\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Eu}_2\mathrm{O}_3 + 5\mathrm{H}_2\mathrm{O} \tag{1.3}$$

Лантаноидам свойственно образовывать оксиды, гидроксиды, сульфиды, нитриды, гидриды и другие соединения. Оксиды лантаноидов устойчивы. Они практически нерастворимы или мало растворимы в воде. При термическом взаимодействии с оксидами щелочных металлов образуют соединения типа MeLnO₂ [33].

Оксиды лантаноидов получают путем разложения нитратов при нагревании:

$$4Ln(NO_3)_3 \longrightarrow 2Ln_2O_3 + 12NO_2 + 3O_3$$
(1.4)

Большинство оксидов группы лантана растворимы в сильных кислотах, в том числе и некоторых органических.

При взаимодействии растворимых солей лантаноидов со щелочами образуются соответствующие гидроксиды [34]. Значения pH их осаждения уменьшается от соединений церия (7,82) до соединений лютеция (6,82) и основные свойства этого ряда постепенно ослабевают из-за уменьшения радиуса ионов (лантаноидное сжатие). В качестве примера на рисунке 1.7 представлены зависимости различных форм гидроксида некоторых лантаноидов.

Лантаноидные гидроксиды уступают по основной активности только гидроксидам щелочноземельных металлов [35, 36].

Рисунок 1.7 - Содержание различных гидроксокомплексов лантаноидов в зависимости от pH среды

В общих условиях редкоземельные гидроксиды $RE(OH)_3$ · nH_2O осаждаются из раствора с высоким pH в виде геля. Однако они нестабильны, при нагревании до 200 °C и выше обычно отдают воду, чтобы стать REO(OH) или RE_2O . От лантана до лютеция температура дегидратации снижается с увеличением атомного номера в связи с уменьшением ионного отношения.

Монокристаллы редкоземельных гидроксидов могут быть получены гидротермическим методом. При температуре 190...420 °C и давлении от 1,2·10⁶ до 7·10⁷ Па редкоземельные гидроксиды могут быть выращены из систем RE₂O₃ – H₂O – NaOH после длительной обработки.

Структура Lu(OH)₃ и Sc(OH)₃ имеют кубическую систему, а все другие монокристаллы редкоземельных элементов гексагональную. В гексагональной системе два элемента $RE(OH)_3$ присутствуют в каждой ячейке. В качестве µ3-мостика каждая гидроксидная группа связывает три редкоземельных иона, таким образом, вокруг каждого иона RE^{3+} имеется девять атомов кислорода, и их

координационное число равно девяти. В ячейках нет водородных связей, так как все три не поделенные пары электронов атомов кислорода заняты редкоземельными ионами и образуют треугольный трехугловой призменный многогранник. В кубических системах в каждой ячейке имеется восемь RE(OH)₃ единиц. В качестве µ2-мостика каждая гидроксидная группа связывает два редкоземельных иона, а редкоземельные ионы координируются шестью атомами образуют октаполиэдр. В этой бесконечной сети И кислорода между гидроксильными группами существуют прочные водородные связи (рисунок 1.8).

Рисунок 1.8 – Структура кристалла Lu(OH)₃ [37]

Из солей лантаноидов хорошо растворимы в воде хлориды, нитраты, сульфаты. Малой растворимостью отличаются карбонаты, фториды, фосфаты [36].

Галогениды лантаноидов легко поглощают воду из окружающей среды с образованием гидратов RECl₃ · nH₂O. Для лантана, церия, празеодима n = 7, а для неодима, лютеция, скандия и иттрия n = 6. Негидратированные галогениды лантаноидов могут быть получены непосредственно реакцией редкоземельных металлов с соответствующими галогенидными газами или реакциями замещения редкоземельных металлов галогенидами ртути [37]. Однако их нельзя получить 23

нагреванием гидратированного галогенида, потому что гидрат гидролизуется с образованием REOX, где X представляет соответствующий галогенид. Другой обычно используемый метод заключается в смешивании REX₃·nH₂O и избытка NH₄X (RECl₃/NH₄Cl = 6, REI₃/NH₄I = 12) в растворе и медленном нагревании в вакууме для удаления всей воды, после чего нагревание медленно продолжают до 300 °C пока весь галогенид аммония не будет полностью сублимирован [38].

Растворимость редкоземельных фторидов REF_3 очень низкая, ПР варьируется от 19 до 15 для более легких редкоземельных лантана, церия, празеодима, неодима и более тяжелых редкоземельных иттербия и лютеция, соответственно. Негидратированные фториды лантаноидов имеют две разные кристаллические системы: гексагональную систему (от лантана до тербия) и ромбическую систему (от диспрозия до лютеция, иттрия). В кристалле LaF₃ центральный ион координируется девятью атомами фтора. Каждый атом фтора далее соединяется с двумя атомами лантана через мостик, образуя бесконечный полимер.

Гидраты редкоземельных хлоридов также имеют две разные кристаллические системы: триклинную систему для лантана, церия и празеодима, а также моноклинную систему для неодима, лютеция и иттрия. CeCl₃·7H₂O, отличается от предыдущей схемы описания бесконечного полимера, так как два атома церия соединены двумя µ2-мостиками, образуя димер.

Формула для этого димера имеет вид $[(H_2O)_7Ce (\mu 2-Cl)_2Ce(H_2O)_7]Cl_4$, структура показана на рисунке 1.9.

Рисунок 1.9 - Структура [(H₂O)₇Ce (µ2-Cl)₂Ce(H₂O)₇]⁴⁺ в гидратированном хлориде церия [39]

Таким образом, координационное число церия равно девяти, и полиэдр принимает конфигурацию антипризмы с ограниченным квадратом.

GdCl₃·6H₂O существует в виде отдельной молекулы и может быть представлен как [GdCl₂·6H₂O]Cl. Координационное число гадолиния равно восьми, и нескоординированный хлорид присутствует в решетке, так как он образует шесть водородных связей с координированными молекулами воды. Поскольку его ионный потенциал Z/R относительно мал, координационная способность перхлоратной группы к редкоземельным ионам является относительно слабой по сравнению с другими кислородсодержащими кислотными группами [40]. Например, в $RE(ClO_4)_3 \cdot 6H_2O$ центральный ион координирован с молекулами воды, а все перхлоратные анионы существуют только в решетке и не связаны с Однако редкоземельным центральным ионом. координируется OH с редкоземельными ионами, применяя моно- или бидентатные расположения в зависимости от координационной способности конкурентных лигандов [41 - 43].

Например, в комплексе [Nd(ClO₄)₂(ph₃PO)₄]ClO₄· C₂H₅OH две перхлоратные группы принимают бидентатное расположение для координации с ионом неодима, в то время как третья существует в решетке (рисунок 1.10).

Рисунок 1.10 - Катионная структура в комплексе [Nd(ClO₄)₂(ph₃PO)₄]ClO₄· C₂H₅OH [44]

Получение сульфатов RE осуществляется растворением соответствующих гидроксидов, карбонатов или оксидов в серной кислоте, с последующим выпариванием, в общем виде соединения имеют формулу RE₂(SO₄)₃·nH₂O [45 - 47].

Как было сказано выше, лантаноиды обладают схожими химическими свойствами, что создает определенные трудности при разделении их в промышленных масштабах при переработке руды. Для селективного извлечения лантаноидов используют координационные соединения, такие как этилендиаминтетрауксусная (EDTA) и лимонная кислоты [48], которые повышают разделение РЗМ в отдельные продукты.

1.6 Молекулярные структуры координационных соединений лантаноидов

Координационное число является важным фактором при формировании комплекса. Поскольку, как отмечалось ранее, лантаноиды являются f-элементами, их КЧ может превышать 9 и даже 10-14, это можно объяснить участием в формировании связей на f-подуровне. На рисунке 1.11 приведено несколько примеров многогранников (полиэдров), которые соответствует строению комплексов лантаноидов (III) [49].

Рисунок 1.11 - Примеры многогранников (полиэдров), которые соответствует строению комплексов лантаноидов (III)

Для элементов, расположенных в начале подгруппы лантаноидов характерны высокие координационные числа, а для элементов, которые завершают сообщество, типична конфигурация октаэдрических комплексов с КЧ = 8 [50].

1.7 Применение полиэдров Вороного-Дирихле в кристаллохимическом анализе

В фундаментальной кристаллохимии структура кристалла представляется в виде жесткого скелета, упакованного в определенное 3-х мерное пространство [51]. Для рассмотрения жестких сферических скелетов, упакованных в пространстве и измеряемым некоторым относительным радиусом, используют коэффициент упаковки жестких сфер (Δ_3). Данный коэффициент может выражать отношение объема, занятого всеми телами, до заполнения максимального объема пространства. Полиэдр в виде шестивершинника или шестигранника в данном случае является элементарным представителем или началом сферической упаковки, $\Delta_3 = 0.7405$ [52 - 54].

Если рассматривать кристаллы с точки зрения модели в атомной стереопроекции, то сферические упаковки, состоящие из атомов, могут проявлять не жесткие скелетоподобные свойства, а быть способными к деформации [55]. При деформации атомы, перекрываясь вместе со сферами, накладывая свое взаимовлияние, способны принадлежать нескольким точкам подпространства различных сфер. При максимальном деформировании сферических упаковок образуется пробел пространства, состоящего из многогранников, ступенчатая модель этого процесса для двумерного ПДВ показана на рисунке 1.12.

Для трехмерного случая следствием этого распределения будет разделение пространства на стереоэдры. Особым случаем стереоэдра являются многогранники (полиэдры) Вороного-Дирихле (ПВД) [56]. ПВД атома называется выпуклый многогранник, все внутренние точки которого расположены ближе к этому атому, чем к любому другому атому структуры. ПВД можно рассматривать как пересечение векторного пространства, содержащего этот атом и ограниченного плоскостями, перпендикулярными к сегментам, которые соединяют его с остальными атомами структуры, и пересекают эти отрезки точно посередине (рисунок 1.13) [57]. Структуру простых веществ ПВД можно рассматривать как геометрическое изображение атома и его поля действия [58].

Рисунок 1.12 - Фрагмент двумерного пакета (а), редкого плоского покрытия с равными шарами (б) и расщеплением Воронова - Дирихле (в) [57]

Рисунок 1.13 - Атомы (ПВД) в структуре кристаллов меди гранецентрированной кубической решетки (ГКР) - (a); А - центральный атом меди, а [Ω] - сплошной угол затененной грани (б)

Важнейшими параметрами атома ВПА в кристаллической структуре являются [58 - 60]:

1. V_{ПВД} - объем многогранника;

2. N_f- количество граней многогранника;

3. R_{CД}-радиус сферы, объем которой равен объему многогранника (полиэдра);

4. D_A - смещение ядра атома из геометрического центра тяжести;

5. G₃ - безразмерное значение второго момента многогранника (полиэдра), которое характеризует степень его сферического характера.

Сферу, имеющую радиус R_{CД}, можно рассматривать в качестве геометрического образа атома в кристаллическом поле сферической симметрии (рисунок 1.14). Связь между V_{ПВД} и R_{CД} описывается формулой:

$$R_{\rm C,I} = \sqrt[3]{\frac{3}{4} \cdot \frac{V_{\rm IB,I}}{\pi}}.$$
(1)

Числовое значение $V_{\Pi B Z}$ зависит от химической природы атома, от его степени окисления, электронной конфигурации и химической природы окружающих его атомов. Следует отметить, что объем атомов ПВД А имеет то же валентное состояние и окружен атомами Х той же химической природы и не зависит от координационного числа атома А [57, 59, 61], что обусловлено формированием однотипной электронной конфигурации валентной оболочки атома А благодаря химическому взаимодействию с окружающими атомами.

Рисунок 1.14 – ПВД некоторого атома, характеризующегося объемом $V_{\Pi B Д}$ (а) и сфера с радиусом $R_{C Д}$ (б), объем которой равен $V_{\Pi B Д}$

Чтобы определить КЧ любого атома методом рядовых пересекающихся сфер, необходимо учитывать следующее:

1. Если два атома находятся на расстоянии больше суммы радиусов внешних пространств, их внешние сферы считаются химически не связанными так как в этом случае общее перекрытие равно нулю-тип перекрытия П₀.

2. Химическое взаимодействие между двумя атомами наблюдается при перекрытии внешних сфер атомов - это тип перекрытия П₁.

3. Когда сближаются взаимодействующие атомы, становится возможным перекрытие внешней сферы одного атома двумя сферами второго атома, что приводит к реализации типа перекрытия П₂.

4. С дальнейшим сближением двух атомов наступит момент, когда внутренние сферы обоих атомов будут пересекаться с внешней сферой смежного атома, что приводит к тройному перекрытию П₃.

5. Еще большее уменьшение межъядерного расстояния между взаимодействующими атомами приведет к перекрытию их внутренних сфер (перекрытия П₄).

Переход от 0-го (тип Π_0) до 4 -го (тип Π_4) показан на рисунке 1.15.

Рисунок 1.15 - Модель 5-тивозможных типов перекрывания двух пространственных смежных атомов [62]

Таким образом, увеличение количества перекрытий от Π_0 до Π_4 происходит через уменьшение межатомного расстояния. Движущей силой процесса является уменьшение энергии системы вследствие перераспределения электронной плотности, которая заключается в формировании общих электронных пар (реализация ковалентной связи), или переход электронов от одного атома к другому (осуществление ионной коммуникации) [62]. Величина КЧ атома принимается равным общему числу образованных им сильных (тип пересечения Π_2 , Π_3 , Π_4) химических связей.

Вышеприведенные и некоторые другие характеристики атомов ПВД в строении кристаллов любого состава, симметрии и структуры могут быть однозначно определены топологическими программами TOPOS [63, 64]. В этом случае для любых вычислений нужна только информация о группе

пространственной симметрии кристалла, параметры и координаты элементарной ячейки и базового атома.

1.8 Координационные соединения лантаноидов с аминокислотами, структура и кристаллохимические формулы соединений

Интерес к координационной химии лантаноидов с аминокислотами появился в начале 1970-х годов, когда было открыто, что определенные ионы RE (III) могут использоваться в качестве зондов для определения мест связывания ионов кальция в белках и ферментах [65 - 67]. С тех пор был опубликован большой объем работ по проблемам структурной химии редкоземельных лантаноидных аминокислотных координационных комплексов. Результаты исследований включают все редкоземельные элементы, 13 из 20 стандартных аминокислот (Gly, Ala, Val, Leu, Phe, Met, Pro, Ser, Tyr, His, Lys, Trp и Arg) и более 100 структурно описанных соединений RE (III)–аминокислота.

Получение координационных лантаноидных соединений с аминокислотами.

Получение комплексов с аминокислотами начинается с выбора аминокислот и солей RE(III), обычно перхлоратов, нитратов или хлоридов, из-за их хорошей растворимости и доступности. Большинство комплексов получают путем смешивания солей и лигандов при молярном соотношении RE (III) : лиганд = 1 : 1 в водных растворах с последующим медленным испарением, при этом стехиометрия и структура полученных продуктов в целом не зависят от соотношения RE(III) к лиганду исходных материалов.

Однако существуют исключения, при которых из одной и той же реакционной смеси могут быть выделены два продукта с различной стехиометрией [68]. Поэтому для облегчения выращивания монокристаллов требуется предварительная корректировка параметров соотношения RE (III) к лиганду.

Структура координационных лантаноидов с аминокислотами.

При pH 1-4, аминокислоты находятся в их цвиттерионовой форме [69]. Таким образом, лиганды можно рассматривать как простые карбоксилаты с положительно заряженной боковой группой –NH⁺³ в ее α-положении. Фактически, структуры, о

которых сообщалось до сих пор, указывают на то, что аминокислоты ведут себя очень похоже на монокарбоксилаты с точки зрения их положения координации с группой –NH⁺³, участвующей только в формировании водородных связей [70]. Однако, до сих пор не было зарегистрировано ни одного мононуклеарного RE (III) – аминокислотного комплекса, и в этих структурах обнаружены только пять координационных положений: η^1 ; η^2 ; μ_2 - $\eta^1\eta^1$ ZZ; μ_2 - $\eta^1\eta^1$ ZE; и μ_2 - $\eta^2\eta^1$ (рисунок 1.16).

Эти комплексы являются либо димерными, либо полимерными с соотношением RE(III) к лиганду 1: 1, 1: 2 или 1: 3. Координационные числа RE (III) варьируются от шести до десяти, большинство из которых составляют восемь с геометрией, искаженной квадратной антипризмы. Обнаружено, что среди лигандов Gly и Pro образуют три типа комплексов с RE: L = 1: 3, 1: 2 и 1: 1, в то время как Ala и Ser могут образовывать два типа комплексов с RE: L = 1: 2 и 1: 1 для Ala и RE: L = 1: 2 и 2: 3 для Ser соответственно. Все остальные лиганды могут образовывать только комплексы 1: 2 или 1: 1 [71, 72].

Рисунок 1.16 - Структуры координации, наблюдаемые для комплексов лантаноидов и карбоновых кислот: (a) η¹; (б)η²; (в) μ₂-η¹η¹ (O, O); (г) μ₂-η¹η¹ ZZ; (д)μ₂-η¹η¹ EE; (e) μ₂-η¹η¹ ZE; (ë)μ₂-η²η¹; (ж)μ₃-η²η¹; (з) μ₃-η²η²

Структуры комплексов 1: 3 (RE: L).

Комплексы 1 : 3 (RE : L) обнаруживаются только тогда, когда лигандами являются Gly или Pro, но в широким диапазоне ионов металла от самого маленького Sc (III) до самого большого La (III). Соответственно, наблюдаются комплексы с KЧ = 6, 8, 9 или 10, каждый из которых представляет собой одномерные полимерные структуры с чередующимся двойным и четырехкратным, тройным или двойным мостиковым соединением. На рисунке 1.17 представляено три типа чередующихся двойных и четверных мостиковых соединений, то есть (I) (μ_2 - $\eta^2\eta^1$)₂/(μ_2 - $\eta^1\eta^1$)₂(μ_2 - $\eta^2\eta^1$)₂, (II) (μ_2 - $\eta^1\eta^1$)₂//(μ_2 - $\eta^2\eta^1$)₂ и (III) (μ_2 - $\eta^2\eta^1$)₂ (μ_2 - $\eta^2\eta^1$)₂) и (III) (μ_2 - $\eta^2\eta^1$)₂ (μ_2 - $\eta^2\eta^1$)₂, два типа тройных мостиковых соединений, (IV) (μ_2 - $\eta^2\eta^1$)₂(μ_2 - $\eta^1\eta^1$) и (V) (μ_2 - $\eta^2\eta^1$)₂, а также один тип двойного мостикового соединения, т.е. (VI) (μ_2 - $\eta^1\eta^1$)₂, были идентифицированы в комплексах 1 : 3.

Gly образует структуры типа (I) с более легкими структурами La (III) и типа (II) с Pr, Nd, Sm, Ho, Er и Y. Однако комплексы Pro 1: 3 с Pr (III), Nd (III) и Gd (III) имеют структуру типа (III). Три представителя структурного типа (I) - (III) показаны на рисунке 1.17 (а), (б) и (в). Три комплекса имеют одинаковую формулу: $[RE_2L_6(H_2O)_4]^{6n+n}$, хотя их структура различна. В $[La_2Gly_6(H_2O)_4]^{6n+n}$ четыре из шести карбоксилатов вокруг La (III) находятся в режиме координации тридентатного мостика (μ_2 - $\eta^2\eta^1$) [73], тогда как в этом режиме только два и ноль карбоксилатов для $[Sm_2(Gly)_6(H2O)_4]^{6n+n}$ [74] и $[Pr_2(Pro)_6(H_2O)_4]^{6n+n}$ [75] соответственно. Таким образом, координационные числа RE(III) в трех структурах составляют десять, девять и восемь. Это является результатом сжатия лантаноидов и стерического эффекта: ион La(III) с большим ионным радиусом предпочитает координационный режим μ_2 - $\eta^2\eta^1$ для достижения высоких координационных чисел, а Pro является более объемным, чем Gly.

Гисунок 1.17 – Структуры (a) [La₂Ory₆ (H₂O) 4] ⁴ ⁴ ⁴ ⁴ ⁴ ⁵ (b) [Sm ₂Gly₆ (H₂O) 4] ^{6n + n}; (b) [Pr₂Pro₆ (H₂O) 4] ^{6n + n}; (c) [La ₂Gly₆ (H₂O) 4] ^{6n + n}; (d) [Yb ₂Gly₆ (H₂O) 4] ^{6n + n} ⁴ (e) Sm₂ (Pro) 6 (H₂O) 6] ^{6n + n} [RE, черный (большие шары); O, серый; N, черный (маленькие шарики); C, белый; H, опущено) Ln = La, Sm, Pr, Yb [73]

Структуры двух тройных мостиковых комплексов показаны на рисунке 1.17. Координационные числа для La (III) и Yb (III) составляют девять и восемь соответственно [76, 77]. Двойные мостиковые структуры встречаются только в комплексах Pro, $[RE_2(Pro)_6(H_2O)_6]^{6n+n}$ [RE = Sm (III), Eu (III), Gd (III), Er (III) и Y (III)] (рисунок 1.17, е), где два соседних иона металла связаны двойным мостиком (μ_2 - $\eta^1\eta^1$)₂, причем каждый из них дополнительно координируется монодентатом (η^1) Pro и тремя молекулами воды, KЧ = 8 [78].

Структуры комплексов 1 : 2 (RE: L).
Комплексы 1: 2 (RE : L) склонны образовываться, когда в качестве лигандов используются Gly, Ala, Val, Phe, Met, Ile, His, Cys и Pro. Большинство этих комплексов являются димерными, с общей формулой $[RE_2L_4(H_2O)_8]X_6 \cdot nH_2O$ (RE = Pr, Nd, Sm, Eu, Ho, Er и Y; X = Cl⁻ или ClO⁻⁴; n = 0–4) за исключением некоторых Pro комплексов, $[RE(Pro)_2 (H_2O)_5]Cl_3$ (RE = Er, Ho, Dy и Yb), которые являются 1D-полимерами.

В нетипичном димерном комплексе 1 : 2 два иона RE (III) связаны через четвертной мостик (μ_2 - $\eta^1\eta^1$)₄. Каждый из ионов металла дополнительно координируется четырьмя молекулами воды, KЧ = 8. Репрезентативная структура, [Eu₂(Ala)₄(H₂O)₈]⁶⁺), показана на рисунке 1.18 (а). В то время как большинство димерных комплексов RE(III) с карбоновой кислотой являются центросимметричными, с аминокислотами в качестве лигандов, аналогично структурированные комплексы можно получить только, когда для синтеза используются рацемические формы лигандов [79].

Рисунок 1.18 - Структуры (a) [Er₂(Ala)₄ (H₂O)₈]⁶⁺ и (б) [Er(Pro)₂ (H₂O)₅]^{3n + n} (RE, черные (большие шары); О, серый; N, черный (маленькие шарики); С, белый; H, опущено); Ln= Er [79, 80]

На рисунке 1.18 (б) показана структура $[Er(Pro)_2(H_2O)_5]^{3n+n}$. Два соседних иона Er (III) в структуре соединяются, чтобы получить мостиковый карбоксилат в координационном режиме μ_2 - $\eta^1\eta^1$, и каждый из Er(III) дополнительно координируется одним монодентатным (η^1) лигандом и пятью молекулами воды, KЧ = 8 [40].

Структуры комплексов 1: 1 и 2: 3 (RE: L).

Разнообразный спектр структур был обнаружен для комплексов 1 : 1 с простыми аминокислотами Gly, Pro и Ala, а также с аминокислотами с боковыми группами, способными к координации металла, такими как Ser, Thr, Glu и Asp. Структуры могут быть димерными, 1D-полимерными или 2D-слоистыми.

Комплексы Gly и Pro являются димерными с двумя мостиковыми ионами RE(III) и двумя карбоксилатными группами в положении бидентатного мостика $(\mu_2 - \eta^1 \eta^1)_2$. Структура [Nd₂ (Pro)₂(H₂O)₁₂]^{6n + n} показана на рисунке 1.19 (a) [81].

Рисунок 1.19 - Структуры (a) [Nd₂(Pro)₂(H₂O) ₁₂]⁶⁺; (б) [Dy(Ala)(H₂O) ₆] ⁿ; и (в) [Ho₂(Ser)₂(H₂O)₁₂] ^{6n + n} (RE, черный (большие шарики); О, серый; N, черный (маленькие шарики); С, белый; Н, опущено); Ln= Nd, Dy, Ho [81, 82]

Однако, комплекс Ala[Dy(Ala)(H₂O)₆]³ⁿ⁺ⁿ является бесконечной цепью. Каждый из ионов Dy(III) координируется шестью молекулами воды и связан с соседними металлическими центрами через одиночные карбоксилатные мостики μ_2 - $\eta^1\eta^1$ (рисунок 1.19, б) [82].

Для Ser и Thr известно только о двух структурах: [Ho₂(Ser)₂(H₂O)₁₂]_nCl_{3n} и $[Ho_2(Thr)_2(H_2O)_{12}]_nCl_{3n}$. Оба комплекса имеют очень похожие структуры с группой -ОН и один карбоксилат О хелатируется с одним Но (III), а другой карбоксилат О координирует соседний с ним Но (III) с образованием 1D-полимера (рисунок 1.19, в) [83]. Единственный известный комплекс 2 : 3 с единственным семикоординатным комплексом RE(III)-аминокислота, о котором сообщалось до настоящего времени, это димерный комплекс Ser [Er₂(Ser)₃(H₂O)₈](ClO₄)₆ [84]. В Er(III) соединены через три иона карбоксилата структуре два В ИХ координационном режиме μ_2 - $\eta^1\eta^1$, а координационная сфера Er(III) заполнена четырьмя молекулами воды, КЧ = 7.

И Glu, и Asp имеют дополнительную карбоксильную группу, которая депротонирует при координации ионов RE(III). Таким образом, Glu и Asp в комплексах заряжены отрицательно. Координационные положения Glu и Asp показаны на рисунке 1.20. Сообщалось о нескольких комплексах Glu [RE = Pr, Nd (Y), Ho, Er], которые демонстрируют очень похожие 2D-слоистые структуры [85].

Атипичный комплекс Glu можно представить в виде $[RE_2(Glu)_2(H_2O)_8]_n (X)_4$ (X = ClO₄⁻, Cl⁻ или NO₃⁻) (рисунок 1.21, а).

Рисунок 1.20 - Положения координации Glu (слева) и Asp (посередине и справа)

В структуре два иона RE (III) соединены мостиком с образованием димерной единицы двумя тридентатными хелатирующими ($\mu_2\eta^2\eta^1$) γ -карбоксилатами и двумя бидентатными мостиковыми (μ_2 - $\eta^1\eta^1$) α -карбоксилатами из четырех лигандов, и димерные единицы, связанные с четырьмя другими наборами димерных единиц

через другие концы лигандов, образуя слоистую структуру. Каждый из ионов RE (III) также координируется четырьмя молекулами воды, КЧ = 9 [86].

Только два Asp-комплекса были структурно охарактеризованы с помощью дифракции рентгеновских лучей, но они структурно отличаются друг от друга. [Sm(Asp) (H₂O)₄]³ⁿ⁺ⁿ представляет собой 2D-слоистый полимер [78], в котором и α -, и β -карбоксилаты находятся в режиме координации мостиковых связей μ_2 - $\eta^1\eta_1$ (рисунок 1.21, б), а каждый лиганд координируется с четырьмя Sm (III) центрами.

Рисунок 1.21 - Структуры (a) [Eu₂(Glu)₂(H₂O)₈]^{4n + n}; (б) [Sm (Asp) (H₂O)₄]^{2n + n}; и (в) [Ho (Asp) (H₂O)₅]^{2n + n} [RE, черный (большие шары); О, серый; N, черный (маленькие шарики); С, белый; Н, опущено)] Ln = Eu, Sm, Ho

Каждый из металлических центров окружен четырьмя атомами кислорода, по одному от каждого лиганда. Затем лиганды координируют еще восемь металлических центров, образуя слоистую структуру. [Ho(Asp)(H₂O)₅]³ⁿ⁺ⁿ представляет собой бесконечную цепь [87]. Только β-карбоксилаты находятся в режиме мостиковой координации μ_2 - $\eta^1\eta^1$; α-карбоксилаты представляют собой монодентат η^1 (рисунок 1.21, в) [24]. Каждый Но (III) координируется пятью молекулами воды и тремя кислородами из разных лигандов, КЧ = 8.

Как видно из приведенного выше обсуждения, γ - и β - карбоксилаты отстают от положительно заряженных -NH⁺³, чем α -карбоксилат, и ожидается, что они будут координировать ионы RE(III) более эффективно. Этот эффект поможет понять, почему они показывают два разных координационных положения μ_2 - $\eta^2\eta^1$ по сравнению с μ_2 - $\eta^1\eta^1$ в Glu и μ_2 - $\eta^1\eta^1$ по сравнению с η^1 в Asp (рисунок 1.21, а, в). Однако он не является достаточно выраженным для того, чтобы генерировать данную разницу для расстояний RE (III) -О (карбоксилат) между α-, β- и γ- карбоксилатами.

Таким образом, в литературном обзоре рассмотрены особенности электронного строения и электронные конфигурации лантаноидов с точки зрения квантовой химии, а также подробно изучены энергетические уровни электронных конфигураций нейтральных атомов лантаноидов. Отмечено, что ДЛЯ многоэлектронных атомов RE уменьшение атомного радиуса, вызванное увеличением ядерного заряда, частично компенсируется увеличением электростатического отталкивания между электронами. Кроме того, проведен анализ распределения электронов на внешних слоях лантаноидов с получением эффекта «лантаноидного сжатия».

Важным вопросом, рассмотренным в этой главе, является соотношение размеров ионных и атомных радиусов лантаноидов в зависимости от порядкового номера элементов в периодической таблице. Описано аномальное поведение атомных радиусов церия, европия и иттербия в связи с их соответствием радиусам максимумов внешней плотности электронного облака. Поэтому в данных металлах самые крайние внешние электронные облака перекрываются. Эти электроны могут свободно перемещаться в кристаллической решетке и становиться проводящими.

В соответствии с постулатами квантовой химии рассмотрены степени окисления лантаноидов, где отмечается аномальность валентных состояний элементов. В соответствии с правилом Хунда, электронные оболочки стабильны, когда они пусты, полны или наполовину заполнены. Например, конфигурации $4f^0$ (La³⁺), $4f^7$ (Gd³⁺), и $4f^{14}$ (lu³⁺) являются стабильными. Ce³⁺, Pr³⁺ и Tb³⁺ имеют на один или два электрона больше, чем требуется для стабильных электронных конфигураций, поэтому они могут быть дополнительно окислены до состояния 4^+ . В отличие от этого Sm³⁺, Eu³⁺ и Yb³⁺ имеют на один или два электрона меньше, чем требуется для стабильный меньше, чем требуется для стабильной электронной конфигурации, и поэтому они, как правило, получают один или два электрона и подвергаются редукции до состояния 2^+ .

В литературном обзоре приведена статистика координационных соединений лантаноидов с различными координационными числами, где для анализа разброса

координационного числа лантаноидов было изучено более 1400 координационных соединений лантаноидов. Все они были структурно охарактеризованы, отмечено, что все координационные числа лантаноидов находятся в диапазоне от 3 до 12, а наиболее распространенное координационное число равно восьми (37 % сходимости). В соответствии с КЧ приведены основные реакции лантаноидов и молекулярные структуры.

Частным примером в п. п. 1.7 рассмотрены полиэдры Вороного-Дирихле и их применение в кристаллохимическом анализе, например, для определения КЧ. В п. 1.8 обзор координационных соединений п. приведен лантаноидов с аминокислотами, рассмотрены вопросы получения координационных лантаноидных соединений с аминокислотами, структуры различных координационных лантаноидов аминокислотами, кристаллохимические с формулы.

Отмечено, что для соединений лантаноидов с аминокислотами в условиях pН обнаружено большое низких И высоких И описано разнообразие координационных положений для этих биологически значимых лигандов. Множественные мостиковые взаимодействия карбоксилатных групп, будь то в скелете или в боковой цепи, являются ключом к образованию этих лантаноидных координационных соединений, синергетическая координация карбоксилатных и аминогрупп приводит к образованию этих чрезвычайно сложных и эстетически привлекательных кластерных комплексов.

41

Глава 2. Экспериментальная часть

2.1 Методы исследования

Для решения поставленных задач были использованы следующие методы исследования: дифференциальный термический, термогравиметрический, рентгеноструктурный методы анализа и вакуумная адиабатическая калориметрия.

Дифференциальная сканирующая калориметрия (ДСК)

Прибор полностью автоматизирован и позволяет проводить классические ДСК-измерения, а также измерения удельной теплоемкости веществ в широком диапазоне температур. Принцип действия прибора основан на распространении внутри него тепловых потоков, которые направлены к исследуемому образцу и эталону. Пустой эталонный тигель и тигель с загруженным образцом, размещаются на высокочувствительном сенсоре. Конструкция калориметра полностью герметична и позволяет проводить измерения в атмосфере высокочистых газов (например, инертного аргона) [88, 89].

Внешний вид дифференциального сканирующего калориметра показан на рисунке 1.2

Рисунок 2.1 - Внешний вид калориметра DSC 204 *F1 Phoenix* (NETZSCH, Германия)

Термогравиметрический анализ

Термогравиметрический анализ исследуемых образцов проводили в температурном интервале 300...900 К со скоростью нагревания 5 К/мин. В качестве продувочного газа использован аргон высокой чистоты, скорость потока газа – 25 мл/мин. Масса образца, загруженного в алюминиевый тигель, около 10–20 мг [90]. Термомикровесы TG 209 *F1 Iris* позволяют фиксировать изменение массы веществ с точностью до $\pm 0,1$ мкг в широком диапазоне температур. Согласно стандартной методике термогравиметрического анализа (ISO, ASTM, DIN) за температуру начала разложения вещества принимается температура, соответствующая потере массы около 2 % [91].

Внешний вид термогравиметрического анализатора TG 209 *F1 Iris* (NETZSCH, Германия) показан на рисунке 2.2.

Рисунок 2.2 - Внешний вид термоанализатора TG 209 F1 Iris

Вакуумная адиабатическая калориметрия

Вакуумная адиабатическая калориметрия заключается в нагревании или охлаждении образца с определением скорости и записью временной зависимости разницы температур между исследуемым образцом и образцом сравнения (эталоном), не претерпевающим никаких изменений в рассматриваемом температурном интервале. Метод используется для регистрации фазовых превращений в образце и исследования их параметров [92].

Для измерения изобарной теплоемкости C_p° исследуемого вещества в диапазоне температур 5,5...350 К использовали автоматический прецизионный адиабатический вакуумный калориметр БКТ-3,0 с дискретным нагревом [93].

Устройство калориметра и порядок работы описаны в работе [94]. Проведены испытания калориметра путем измерения теплоемкости высокочистой меди и стандартных образцов синтетического корунда и бензойной кислоты К-2.

Рентгеноструктурный анализ (РСА)

Рентгеноструктурные исследования всех полученных соединений проводили с монокристаллов на дифрактометре XtaLAB Pro MM003 (MoK α , $\lambda = 0,71073$ Å, ω сканирование) с охладителем Cobra Oxford Cryosystems при температурах 100К. Сбор и обработка данных проводились с помощью программы CrysAlis Pro [95]. Рентгенодифракционный эксперимент проведен на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker KAPPA APEX II. В экспериментальные интенсивности рефлексов внесены поправки на поглощение с использованием программы SADABS [96]. Структуры расшифрованы прямым методом SHELXS97 и уточнены полноматричным методом наименьших квадратов SHELXL97 [97] по F2 по всем данным в анизотропном приближении для всех неводородных атомов.

2.2 Исходные вещества

Исходные вещества, которые использовали для синтеза новых соединений, условно можно разделить на три группы:

1. Растворы перхлоратов: перхлорат гольмия (III) - $Ho(ClO_4)_3$, перхлорат самария (III) - $Sm(ClO_4)_3$, перхлорат гадолиния (III) - $Gd(ClO_4)_3$, перхлорат европия (III) - $Eu(ClO_4)_3$, перхлорат лантана (III) - $La(ClO_4)_3$, перхлорат диспрозия - $Dy(ClO_4)_3$. Водные растворы перхлоратов лантаноидов $Ln(ClO_4)_3$ получали растворением навесок оксидов лантаноидов (XЧ): Ho_2O_3 , Sm_2O_3 , Gd_2O_3 , Eu_2O_3 , La_2O_3 , Dy_2O_3 соответственно, в концентрированной хлорной кислоте (2 мл HClO₄, 70 %) и 10 мл дистиллированной воды, реакции соответствуют общим уравнениям [98].

2. Стандартный раствор гидроксида натрия 0,5 М, для его получения 20 г гидроксида натрия (ХЧ) растворяли в 1000 мл воды.

3. Аминокислота глицин (ХЧ), использовали без дополнительной очистки.

2.3 Синтез монокристаллов координационных соединений лантаноидов с глицином

Все соединения были получены методом изотермического испарения насыщенных водных растворов оксидов лантаноидов с глицином при определенном значении рН и при комнатной температуре. Синтез проводили следующим образом:

[La(Gly)₃·2H₂O](ClO₄)₃. Водный раствор перхлората лантана La(ClO₄)₃ получали растворением (0,65 мг) оксида лантана La₂O₃ в концентрированной хлорной кислоте (2 мл, 70%) с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,266 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 2,5. После этого объем раствора уменьшали до 3 мл и отфильтровывали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для постепенного комнатной температуре. Бесцветные испарения при иглы кристаллизовались примерно за один месяц (рисунок 2.3).

Рисунок 2.3 - Фотография игольчатых кристаллов соединения [La(Gly)₃.2H₂O](ClO₄)₃

[Sm₂(Gly)₆ ·9H₂ O](ClO₄)₆. Водный раствор перхлората самария Sm(ClO₄)₃ получали растворением (0,533 мг) оксида самария Sm₂O₃ в концентрированной хлорной кислоте (2 мл, 70 %) с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,337 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 2,32. После этого объем раствора уменьшали до 3 мл и отфильтровали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для постепенного испарения при комнатной температуре. Бесцветные иглы кристаллизовались примерно за две недели.

[Gd₂ (Gly)₆·9H₂ O](ClO₄)₆. Водный раствор перхлората гадолиния Gd(ClO₄)₃ получали растворением (0,554 мг) оксида гадолиния Gd₂O₃ в концентрированной хлорной кислоте (2 мл, 70%) с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,337 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 3.03. После этого объем раствора уменьшали до 3 мл и отфильтровали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для постепенного испарения при комнатной температуре. Бесцветные иглы кристаллизовались примерно за три недели.

[Eu₂ (Gly)₆·9H₂O](ClO₄)₆. Водный раствор перхлората европия Eu(ClO₄)₃ получали растворением (0,585 мг) оксида европия Eu₂O₃ в концентрированной хлорной кислоте (2 мл, 70 %) с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,337 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 2,29. После этого объем раствора уменьшали до 3 мл и отфильтровали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для

постепенного испарения при комнатной температуре. Бесцветные иглы кристаллизовались примерно за три месяца (рисунок 2.4).

Рисунок 2.4 - Фотография игольчатых кристаллов соединения $[Eu_2(Gly)_6.9H_2O](ClO_4)_6$

[Но (Gly)₃'2H₂O](ClO₄)₃. Водный раствор перхлората гольмия Ho(ClO₄)₃ получали растворением (0,578 мг) оксида гольмия Ho₂O₃ в концентрированной хлорной кислоте (2 мл, 70 %) в 10 мл с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,337 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 2,90. После этого объем раствора уменьшали до 3 мл и фильтровали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для постепенного испарения при комнатной температуре. Бесцветные иглы кристаллизовались примерно за четыре месяца (рисунок 2.5).

Рисунок 2.5 - Фотография игольчатых кристаллов соединения [Ho(Gly)₃·2H₂O](ClO₄)₃

[Dy₂ (Gly)₆·7H₂O](ClO₄)₆. Водный раствор перхлората диспрозия Dy(ClO₄)₃ получали растворением (0,570 мг) оксида диспрозия Dy₂O₃ в концентрированной хлорной кислоте (2 мл, 70 %) в 10 мл с добавлением деионизированной воды (10 мл), а затем добавляли глициновую кислоту (0,337 г, 2 ммоль). Полученную смесь перемешивали при температуре около 80 °C на водяной бане в течение более 6 часов, с постепенным добавлением водного раствора NaOH (0,5 M) до достижения pH ~ 2,80. После этого объем раствора уменьшали до 3 мл и отфильтровали. Горячий раствор помещали в чашки Петри, плотно закрывали и оставляли для постепенного испарения при комнатной температуре. Бесцветные иглы кристаллизовались примерно за один месяц (рисунок 2.6).

Рисунок 2.6 - Фотография игольчатых кристаллов соединения [Dy₂ (Gly)₆·7H₂O](ClO₄)₆

Глава 3. Результаты и обсуждение

3.1 Результаты исследования полученных соединений с помощью рентгеноструктурного анализа

В структуре исследуемых соединений наблюдается два различных типа координации карбоксильных групп с лантаноидами. На рисунке 3.1 (а) представлено бидентатное мостиковое соединение, в случае которого каждый атом кислорода в карбоксильной группе координируется к одному атому лантоноида. Справа, на рисунке 3.1 (б) изображено тридентатное мостиковое соединение, где один из атомов кислорода в карбоксильной группе координируется к двум атомам лантоноида.

Рисунок 3.1 - Режимы координации, принятые карбоксилатными группами в карбоксилатах редкоземельных элементов: (a) бидентатное мостиковое соединение, (μ₂-η¹η¹ (б) тридентатное мостиковое соединение, (μ₂-η²η¹) [99] (Ln =Sm, Eu, Gd, La, Ho, Dy...)

Количество и тип мостиковых соединений карбоксильных групп между соседними атомами лантаноидов может быть различным. Наиболее простой возможный способ координации – это двойной или четверной бидентатный мостик, которые отличаются между собой лишь количеством мостиковых соединений (рисунок 3.2 a, б).

Более сложный тип координации наблюдается в случае образования одного тридентатного и трех бидентатных мостиковых соединений (рисунок 3.2, в), а также в случае, когда атомы лантаноидов соединены между собой через два тридентатных мостика (рисунок 3.2, г) или два тридентатных и два бидентатных мостика (рисунок 3.2, д).

Рисунок 3.2 - Мостиковые способы в полинуклеарных редкоземельных карбоксилатах (Ln = Ho, Sm, Gd, Eu, Dy, La) с аминокислотами. (а) двойной бидентатной мостик (µ₂-η¹η¹)₂ (б) четверной бидентатной мостик, (µ₂-η¹η¹)₄ (в) один тридентатный мостик и три бидентатный мостик (µ₂-η²η¹)₁ + (µ₂-η¹η¹)₃ (г) два тридентатный мостик и два бидентатный мостик (µ₂-η²η¹)₂ + (µ₂-η¹η¹)₂

Стоит отметить, что в последовательности всегда повторяется одно и то же количество мостов между двумя соседними атомами лантаноидов, то есть два через четыре, мы рассмотрим это подробно позже.

Методом РСА впервые изучены шесть новых соединений, содержащих ионы лантаноидов с глицином. Состав синтезированных соединений представлен в таблице 3.1. Все кристаллы получены испарением водных растворов при комнатной температуре. Образующиеся кристаллы фильтровали на стеклянных фильтрах Шотта. Затем, методом рентгеноструктурного анализа впервые были изучены шесть новых соединений, содержащих атомы лантаноидов и глицина [100].

Таблица 3.1 - Состав шести новых координационных соединений лантаноидов с глицином

Ν	Полученные соединения	Сингония	Радиус	Атомный	КЧ	КТМС	Молярная
			Ln ³⁺ ,	радиус,	Ln	между	масса,
			(Å)	(Å)		Ln-Ln	г/моль
Ι	$[La_2(Gly)_6 \cdot 4H_2O](ClO_4)_6$	Триклинная	1,03	1,87	10	2	1397
II	$[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$	Триклинная	0,938	1,80	9;8	1	1523,76
III	$[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$	Триклинная	0,958	1,80	9;8	1	1509,96
IV	$[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6*$	Триклинная	0,947	1,80	9;8	1	1513,18
V	$[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6*$	Триклинная	0,912	1,78	9;8	1	1444,18
VI	$[Ho_2(Gly)_6 \cdot 4H_2O](ClO_4)_6*$	Триклинная	0,901	1,76	8	0	1449,04

КТМС - количество тридентатных мостиковых соединений Соединения, полученные впервые, выделены *

Поскольку кристаллические структуры изучаемых соединений отличаются друг от друга, мы решили начать изучение структуры простейшего соединения, в котором количество тридентатного мостикового соединения является наименьшим.

3.1.1 Кристаллическая структура соединения [Ho(Gly)3 · 2H2O](ClO4)3

Комплекс перхлората гольмия с глицином формулой [Ho(Gly)3·2H₂O](ClO₄)₃, был получен в виде монокристалла, который кристаллизовался в триклинной

сингонии с пространственной группой *Р*1. Основные характеристики элементарной ячейки указаны в таблице 3.2.

Первичная структура была определена структурно-инвариантными прямыми методами с использованием SHELX [101, 102]. Положение остальных атомов определялось разностным синтезом электронной плотности и уточнялось по |F|² методом наименьших квадратов. Кристаллографические данные депонированы в Кембриджском банке структурных данных под кодами CCDC: 2058261.

Таблица 3.2 - Кристаллографические данные, детали сбора данных и параметры уточнения структуры для [Ho (Gly) ₃ ·2H₂O](ClO₄)₃

Параметр	Значение
Формула	C ₆ H ₁₉ Cl ₃ HoN ₃ O ₂₀
M	724,52
Сингония, Z	триклинный, 2
Кристаллографическая группа	$P\overline{1}$
T, K	293(2)
a, Å	9,3573(2)
b, Å	10,7080(2)
c, Å	11,9467(2)
α, °	68,528(2)
β, °	82,146(2)
γ, °	73,398(2)
$V, Å^3$	1066,83(4)
D_x , Γ · cm ⁻³	2,255
μ, мм ⁻¹	4,185
Поглощение Т T _{min} /T _{max}	0,51771 / 1
Коррекция поглощения	Мультисканирование
F(000)	708
Размер, мм	$0,26 \times 0,12 \times 0,048$
Дифрактометр / Излучение / Монохроматор /	Rigaku XtaLab, MM003, P200K / MoKα,
Сканирование	λ = 0,71073 Å / MicroMax-003 / ω scans
Диапазон ө, °	2,679 - 28,281
Диапазон индексов	$-12 \leq h \leq 12$
	$ -14 \leq k \leq 14$
	$-15 \le 1 \le 15$
Измеренные отражения, все / независимые / с	29098 / 5274 / 5084 / 0,0411
$I > 2\sigma(I) / R_{int}$	
Параметры	321
GOOF	1,108
R-факторы для $F_2 > 2 \sigma(F^2)$	$R_1=0,0288$
	$wR_2 = 0,0775$

R-факторы для всех рефлексов	R ₁ =0,0305
	$wR_2 = 0,0783$
$\Delta \rho(\min/\max), e \cdot Å^{-3}$	-1,112 / 2,166

Комплекс перхлората гольмия с глицином [Ho(Gly)₃·2H₂O](ClO₄)₃ состоит из двухъядерных [Ho(Gly)₃·2H₂O]³⁺ катионов, перхлорат-ионов [ClO₄]⁻, молекулы глицина и молекулы воды H₂O. В структуре монокристалла число мостиковых соединений двух соседних атомов гольмия варьируется от двух и четырех (рисунок 3.3, i) двойной бидентатной мост (μ_2 - $\eta^1\eta^1$)₂, и (ii) четверной бидентатной мост, (μ_2 - $\eta^1\eta^1$)₄.

В случае соединения с гольмием к каждому атому металла координируются шесть атомов кислорода из молекулы глицина и два атома кислорода из молекулы воды. В результате координационное число иона Ho³⁺ равно восьми, при этом перхлорат-ионы не участвуют в координации. Стоит отметить, что мы наблюдаем разупорядоченность расположения атомов кислорода в некоторых ионах перхлората, что связано с условиями синтеза (рисунок 3.4).

Рисунок 3.3 - Структуры [Ho (Gly)₃ · 2H₂O](ClO₄)₃ (**i**) двойной бидентатной мосте (μ₂-η¹η¹)₂, (**ii**) четверной бидентатной мосте, (μ₂-η¹η¹)₄

Таким образом, кислородные мостики скрепляют линейную цепочку, идущую вдоль оси *a* (рисунок 3.4). Все кристаллографические данные о структуре [Ho(Gly)₃·2H₂O](ClO₄)₃ находятся в приложении (таблицы 4.1.1 - 4.1.4).

Рисунок 3.4 - Расположение молекулы в элементарной ячейке соединения [Ho (Gly)₃·2H₂O](ClO₄)₃

3.1.2 Кристаллические структуры соединений [Sm₂ (Gly)₆·9H₂O](ClO₄)₆, [Gd₂ (Gly)₆·9H₂O](ClO₄)₆, [Eu₂ (Gly)₆ 9H₂O](ClO₄)₆, [Dy₂ (Gly)₆·7H₂O](ClO₄)₆

Первичная структура была определена структурно-инвариантными прямыми методами с использованием SHELX [101, 102]. Положения других атомов, включая атомы водорода, определялись с помощью разностных синтезов электронной плотности и уточнялись по отношению к $|F|^2$ методом наименьших квадратов. Положения атомов водорода были уточнены в общем цикле наименьших квадратов в изотопном приближении и без ограничений. Кристаллографические данные были депонированы в Кембриджском центре кристаллографических данных под кодами депонирования ССDC:

I -	C12H48Cl6 Sm2N6O45	CCDC	2051485.
-		CCDC	20011000

- II C12H48Cl6Eu2N6O45 CCDC 2051487.
- III C12H48Cl6Gd2N6O45 CCDC 2051486.
- IV C12H38Cl6Dy2N6O40 CCDC 2051488.

Соединения $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2 (Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$ были получены в виде монокристаллов, которые кристаллизовались в триклинной сингонии с пространственной группой $P\overline{1}$. Основные характеристики и параметры ячейки указаны в таблицах 3.3, 3.4.

Таблица 3.3 - Кристаллографические данные, параметры эксперимента и уточнения структур $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$

Параметр	Значение	Значение	Значение				
Формула	I - $C_{12}H_{48}Cl_6N_6O_{45}Sm_2$	II - $C_{12}H_{48}Cl_6Eu_2N_6O_{45}$	III - C ₁₂ H ₄₈ Cl ₆ Gd ₂ N ₆ O ₄₅				
M 1509,96		1513,18	1523,76				
Сингония, Z	Триклинный, 2						
Кристаллографич-		$P\overline{1}$					
еская группа							
Т, К		100(2)					
a, Å	11,5394(3)	11,41250(10)	11,41840(10)				
b, Å	14,0810(3)	13,99550(10)	14,0047(2)				
c, Å	15,6316(3)	15,52070(10)	15,51350(10)				
α, °	97,049(2)	96,4200(10)	96,4170(10)				
β, °	102,817(2)	102,5760(10)	102,5740(10)				
γ, °	105,249(2)	106,0180(10)	106,0480(10)				
V, Å ³	2344,76(10)	2286,23(3)	2287,49(4)				
$D_x, \Gamma \cdot cM^{-3}$	2,139	2,198	2,212				
μ, мм ⁻¹	2,953	3,203	3,359				
Поглощение Т	0,481 / 0,717	0,34822 / 1	0,083 / 1				
T_{min}/T_{max}							
Коррекция	Аналитический расчет поглощения в многогранных кристаллах [122]						
поглощения							
F(000)	1496	1500	1504				
Размер, мм 0,396 × 0,222 × 0,159		0,765 × 0,425 × 0,191	$0,565 \times 0,354 \times 0,14$				
Дифрактометр /	Oxford Diffraction	Rigaku XtaLab, MM003, P200K / MoK α , λ =					
Излучение /	Gemini S / MoK α , λ =	0,71073 Å / MicroMax-0	$03 / \omega$ scans				
Монохроматор /	0,71073 Å / graphite / ω						
Сканирование	scans						
Диапазон of θ , °	3,572 - 30,507	2,347 - 30,507	2,346 - 30,508				
Диапазон	$-16 \le h \le 16$	$-16 \le h \le 16$	$-16 \le h \le 16$				
индексов	$-20 \le k \le 20$	$-19 \le k \le 19$	$-19 \le k \le 19$				
$-22 \le 1 \le 22$		$-22 \le l \le 22$	$-22 \le l \le 22$				
Измеренные 45785 / 14282 / 12025 /		69457 / 13941 / 13501 /	73246 / 13943 / 13362 /				
отражения, все / 0,0228		0,0324	0,0306				
независимые / с I							
$> 2\sigma(I) / R_{int}$							
Параметры 757		742	742				
GOOF	GOOF 1,048		1,112				
R-факторы для F ₂	$R_1 = 0,0271$	$R_1 = 0,0211$	$R_1 = 0.0188$				
$> 2 \sigma(F^2)$	$wR_2 = 0,0649$	$wR_2 = 0,0531$	$wR_2 = 0,0477$				

R-факторы для	$R_1 = 0,0343$	$R_1 = 0,0221$	$R_1 = 0,0201$
всех рефлексов	$wR_2 = 0,0689$	$wR_2 = 0,0536$	$wR_2 = 0,0483$
$\Delta \rho(\text{min/max}), e^{-\dot{A}^{-3}}$	-1,322 / 2,13	-1,041 / 1,035	-1,444 / 0,809

Таблица 3.4 - Кристаллографические данные, параметры эксперимента и

уточнения структуры [Dy₂(Gly)₆·7H₂O](ClO₄)₆

Параметр	Значение			
Формула	$C_{12}H_{38}Cl_6Dy_2N_6O_{40}$			
M	1444,18			
Сингония, Z	триклинный, 2			
Кристаллографическая группа	PĪ			
Т, К	100(2)			
a, Å	9,16540(10)			
b, Å	12,7110(2)			
c, Å	18,5295(2)			
α, °	78,4190(10)			
β, °	77,7900(10)			
γ, °	84,5440(10)			
$V, Å^3$	2063,80(5)			
D _x , г·см ⁻³	2,324			
μ, мм ⁻¹	4,114			
Поглощение Т T _{min} /T _{max}	0,316 / 0,737			
Коррекция поглощения	Аналитический расчет поглощения в			
	многогранных кристаллах [122]			
F(000)	1412			
Размер, мм	0,387 imes 0,188 imes 0,084			
Дифрактометр / Излучение /	Rigaku XtaLab, MM003, P			
Монохроматор / Сканирование				
	200K / MoK α , λ = 0,71073 Å /			
	MicroMax-003 / ω scans			
Диапазон of θ , °	1,638 - 30,508			
Диапазон индексов	$-13 \le h \le 13$			
	$-18 \le k \le 18$			
	$-26 \le 1 \le 26$			
Измеренные отражения, все /	54621 / 12573 / 11927 / 0,0339			
независимые / с $I > 2\sigma(I) / R_{int}$				
Параметры	660			
GOOF	1,154			
R-факторы для $F_2 > 2 \sigma(F^2)$	$R_1 = 0,0331$			
	$wR_2 = 0,0787$			
R-факторы для всех рефлексов	$R_1 = 0.0351$			
	$wR_2 = 0,0796$			
$\Delta \rho(\min/\max), e \cdot A^{-3}$	-1,254 / 3,618			

(б) структура $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$

(г) структура $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$

Рисунок 3.5 - Структура и способы связывания [Sm₂ (Gly)₆·9H₂O](ClO₄)₆, [Gd₂(Gly)₆·9H₂O](ClO₄)₆, [Eu₂(Gly)₆·9H₂O](ClO₄)₆, [Dy₂ (Gly)₆·7H₂O](ClO₄)₆ (i) - двойной бидентатный мостик, (µ₂-η¹η¹)₂, (ii) - четырехкратный хелатный мостик (µ₂-η²η¹)₁ + (µ₂-η¹η¹)₃ Рентгенографическое исследование монокристаллов комплексов самария, гадолиния, европия и диспрозия показало, что они все имеют одинаковую структуру (рисунок 3.5 а, б, в, г). Число мостиков между двумя соседними атомами лантаноидов равно двум, в случае бидентантого мостикого соединения (рисунок 3.5, i), или четырем, в случае трех бидентантных и одного тридентного мостика (рисунок 3.5, ii). Данный способ координации ранее не был отмечен в литературе [24, 53, 99].

Координационные числа самария, гадолиния и европия варьируются между восемью и девятью, при этом они попеременно изменяются в следующей последовательности: 8;8;9;9;8;8;9;9..... и так далее. Хотя атомы Dy имеют такие же координационные числа 8 или 9, они чередуются по-другому: 8;9;8;9;8;9..... и т.д. (рисунок. 3.5), в результате чего соединение кислородного моста представляет собой линейную цепь.

Во всех вышеупомянутых кристаллических структурах, когда координационное число иона Ln³⁺ равно восьми, к каждому атому металла координируются шесть атомов кислорода из молекулы глицина и два атома кислорода из молекулы воды. С другой стороны, когда координационное число лантаноида равно девяти, имеется один атом кислорода, который координируется к двум атомам металла одновременно, это происходит, когда в структуре есть тридентатный мост.

Помимо этого, в кристаллической структуре соединений, содержащих диспрозий, наблюдаются и другие отличия. Во-первых, количество молекул воды значительно меньше, чем в других структурах. Во-вторых, в структуре соединений с самарием, гадолинием и европием все тридентатные мостиковые соединения находятся в транс-положении относительно друг друга, за исключением структуры с диспрозием, в которой они расположены в цис-положении друг относительно друга (рисунок 3.5 a, б, в, г). Таким образом, кислородные мостики скрепляют линейную цепь, что приводит к тому, что все многоядерные карбоксилаты редкоземельных элементов имеют бесконечную цепь.

59

3.1.3 Кристаллическая структура соединения [La (Gly)3·2H2O](ClO4)3

Первичная структура была определена структурно-инвариантными прямыми методами с использованием SHELX [101, 102]. Положения других атомов, включая атомы водорода, определялись с помощью разностных синтезов электронной плотности и уточнялись по отношению к $/F/^2$ методом наименьших квадратов. Положения атомов водорода были уточнены в общем цикле наименьших квадратов в изотопном приближении и без ограничений. Кристаллографические данные были депонированы в Кембриджском центре кристаллографических данных под кодами депонирования ССDC:1957331.

Комплекс перхлората лантана с глицином [La(Gly)₃·2H₂O](ClO₄)₃, был получен в виде монокристалла, который кристаллизовался в триклинной сингонии с пространственной группой *P*1. Основные характеристики и параметры элементарной ячейки расшифрованы при 100 К и указаны в таблице 3.6.

Рисунок 3.6 - Структура [La(Gly)₃·2H₂ O](ClO₄)₃ (i) двойной бидентатный мост, $(\mu_2 - \eta^2 \eta^1)_2$, (ii) четверной хелатный мост, $(\mu_2 - \eta^2 \eta^1)_2 + (\mu_2 - \eta^1 \eta^1)_2$

Рентгеноструктурный анализ показал, что в структуре перхлората лантана с глицином число мостиков равно двум в случае тридентантого мостикового 60

соединения (рисунок 3.6, i), или четырем в случае двух бидентантных и двух тридентных мостиков (рисунок 3.6, ii). В данном случае координационное число лантана равно десяти, где к каждому атому металла координируются восемь атомов кислорода из молекулы глицина и два атома кислорода из молекулы воды (рисунок 3.6).

Термодинамические свойства перхлората лантана с глицином будут рассмотрены отдельно, так как в структуре был обнаружен фазовый переход.

3.1.4 Химическая связь кислорода с лантаноидами в координационных соединениях лантаноидов с глицином

Степень ковалентности в связях металл-лиганд мала, поэтому структура и термодинамика комплексообразования в водном растворе могут быть интерпретированы на основе электростатического притяжения. Поскольку 5f-орбитали в актинидных элементах менее защищены, вероятно, ковалентность их связей выше. Сходство в комплексообразовании двух семейств подтверждает точку зрения, согласно которой в актинидах, как и в лантаноидах, модель электростатического связывания подходит для интерпретации образования комплексов [103].

Так как химическая связь с лантаноидами имеет почти всегда ионный характер, то согласно теории ЖМКО Пирсона, катионы РЗЭ (III) являются жёсткими кислотами («тяжелые» акцепторы), а значит, имеют большое сродство по своим свойствам с донором атомов – кислородом, вследствие чего наиболее вероятными биологическими лигандами для них являются карбоксильные и фосфатные группы. Ионы РЗЭ (III), имея оболочку благородного газа, могут предоставить лигандам для образования донорно-акцепторной связи ковалентного типа только энергетически невыгодные вакантные 5d-, 6s- и 6р-орбитали и не полностью занятые 4f-орбитали, находящиеся в значительной мере под защитой 5s²5p⁶-электронов [104].

61

Рисунок 3.7 - $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$

В соединениях Sm, Gd, Eu и Dy в случае, когда координационное число атома лантаноидов равно девяти, длина связи Ln-O является наибольшей (рисунок 3.7 а, б, в, г). Согласно работе [105], это связно со сжатием лантаноидов, которое

уменьшается в масштабе с увеличением координационного числа, что следует за возрастанием анион-анионного отталкивания с увеличением координационного числа. Сжатие лантаноидов для трехвалентных ионов лантаноидов, связанных с O²⁻, изменяется в зависимости от координационного числа, это приводит к уменьшению средней длины связи Ln-O с Sm³⁺ до Ho³⁺ (таблица 4.1.3, таблица 4.2.3, таблица 4.2.8, таблица 4.2.13, таблица 4.3.3, таблица 4.4.1) в приложении. Кроме того, в случае тридентатного мостикового соединения наблюдается самое длинное соединение среди всех соединений Ln-O. (таблица 3.5, таблица 4.4.1, таблица 4.4.4), это вызвано тем, что кристаллическая структура пытается достичь своей идеальной длины связи в рамках ограничений симметрии пространственной группы.

Таблица 3.5 - Межатомные расстояния «длина связи Ln-O» для соединений $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$

Атомы	Расстояние , Å	Атомы	Расстояние , Å	Атомы	Расстояние , Å	Атомы	Расстояние , Å
Sm1 – O13	2,544(2)	Eu1 – O13	2,5334(13)	Gd1 - O13	2,5220(12)	Dy2-014	2,415(3)
Sm1 – O14	2,565(2)	Eu1 – O14	2,5693(13)	Gd1-014	2,5621(12)	Dy2-013	2,438(3)
Sm1 – O2	2,5230(19)	Eu1 – O2	2,5212(13)	Gd1 - O2	2,5086(12)	Dy2 - O4 ^(I)	2,493(3)
Sm1 – O1	2,813(2)	Eu1 – O1	2,7963(13)	Gd1 - O1	2,8177(12)	Dy2 - O3 ^(I)	2,844(4)
Sm2 – O1	2,3457(19)	Eu2 – O1	2,3407(13)	Gd2 - O1	2,3278(11)	Dy1 - O3	2,292(3)

 $(\mu_2 - \eta^2 \eta^1)$ - Тридентатное мостиковое соединение

Во всех исследуемых соединениях отмечается искажение длины связи Ln-O, которое является основной причиной изменения средней длины связи для ионов лантаноидов, связанных с O²⁻. Предполагается, что это связано с неспособностью кристаллических структур достичь своей идеальной (априорной) длины связи в рамках ограничений пространственно-групповой симметрии.

Все кристаллографические данные о структурах $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$, [La(Gly)₃·2H₂O](ClO₄)₃, Ho(Gly)₃·2H₂O](ClO₄)₃ находятся приложении (таблицы 4.1 - 4.4).

3.1.5 Дефекты кристаллической решетки

Кристаллы, атомы в которых расположены строго периодически, называют идеальными [106]. Все реальные кристаллы обязательно содержат отклонения от идеальной структуры, такие отклонения принято называть дефектами структуры. Дефекты структуры разделяют на динамические и статические. К динамическим дефектам относят искажения кристаллической решетки, вызванные тепловыми колебаниями или же колебаниями атомов в поле проходящей через кристалл электромагнитной волны. Статические дефекты связаны с нарушениями в расположении атомов в кристаллической решетке [107, 108]. Во всех изучаемых координационных соединениях лантаноидов с глицином, мы наблюдаем разупорядоченность в расположении атомов кислорода в некоторых ионах перхлората и атомов углеродов и азота в нескольких молекулах глицина (рисунок 3.7). Эти дефекты относятся к статическим, они связаны с нарушениями в расположении атомов в кристаллической решетке. Мы считаем, что основными механизмами диффузии В вышеперечисленных кристаллах является вакансионный, связанный с перегруппировками атомов вблизи вакансий, и межузельный, связанный с перемещениями, как правило, сравнительно мелких атомов по междоузлиям, которые вызваны различными условиями синтеза (рисунок 3.7 а, б, в, г).

3.2 Дифференциальная сканирующая калориметрия (ДСК) и термогравиметрический анализ (ТГА) полученных соединений

В этой части приведен обзор применения методов дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического анализа (ТГА) для изучения свойств аккумуляции тепла и термостойкости исследуемых соединений. Большинство веществ при нагревании претерпевают несколько превращений, которые отражаются на термографической кривой при соответствующих температурах [109].

Обезвоживание является основным явлением, которое было идентифицировано с помощью ДСК и ТГ, поэтому мы начали изучать структуры с наибольшим количеством молекулы воды «Число гидратации или число сольватации», в которых есть два типа молекул воды внутрисферные и внешнесферные до самого простого в котором существует только внутрисферные.

3.2.1 ТГА и ДСК соединения [Sm2(Gly)6·9H2O](ClO4)6

График ТГ потери массы $[Sm_2(Gly)_6 \cdot 9H_2O]$ (ClO₄)₆, связанной с дегидратацией, которая происходит в диапазоне температур от 40 до 250 °C, приведен на рисунке 3.8. Дегидратация происходит в четыре этапа, что подтверждается данными ДСК (рисунок 3.9), которые показывают наличие четырех необратимых эндотермических эффектов, начинающихся при T₁ = 75 °C (с плечом в диапазоне температур от 24...42 °C), T₂ = 87 °C, T₃ = 124 °C и T₄ = 184 °C соответственно, уравнение (1).

Рисунок 3.8 - ТГА соединения [Sm₂(Gly)₆·9H₂O](ClO₄)₆ от 0 до 250 °C

Рисунок 3.9 - ДСК соединения [Sm₂(Gly)₆·9H₂O](ClO₄)₆ от 0 °C до 250 °C

 $[Sm_{2}(Gly)_{6} \cdot 9H_{2}O](ClO_{4})_{6} \xrightarrow{-3H2O,75 \circ C} [Sm_{2}(Gly)_{6} \cdot 6H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O,87 \circ C} \\ [Sm_{2}(Gly)_{6} \cdot 4H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O,124 \circ C} [Sm_{2}(Gly)_{6} \cdot 2H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O,184 \circ C} \\ [Sm_{2}(Gly)_{6}](ClO_{4})_{6} \dots \dots \dots (1)$

Все эндотермические эффекты (включая небольшое плечо) связаны с процессом дегидратации $3H_2O$, $2H_2O$, $2H_2O$, $2H_2O$ в T_1 , T_2 , T_3 и T_4 соответственно Рисунок 3.9. Последние два резких пика соответствуют последнему процессу

обезвоживания четырех молекул воды, которые координируются с атомами самария.

3.2.2 ТГА и ДСК соединения [Eu₂(Gly)₆·9H₂O](ClO₄)₆

График ТГ потери массы $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)$, связанной с дегидратацией в диапазоне температур от 40 до 250 °С приведен на рисунке 3.10, она происходит в четыре этапа, что подтверждаются данными ДСК (рисунок 3.11).

Рисунок 3.10 - ТГА соединения [Eu₂(Gly)₆·9H₂O](ClO₄)₆ от 0 до 250 °C

$[\operatorname{Eu}_2(\operatorname{Gly})_6 \cdot 9\operatorname{H}_2\operatorname{O}](\operatorname{ClO}_4)_6 \xrightarrow{-\operatorname{H2O}, 61 ^\circ \mathrm{C}} $	$[\mathrm{Eu}_{2}(\mathrm{Gly})_{6} \cdot \mathrm{8H}_{2}\mathrm{O}](\mathrm{ClO}_{4})_{6} \xrightarrow{-2\mathrm{H2O}, 87 ^{\circ}\mathrm{C}} \rightarrow$
$[\operatorname{Eu}_{2}(\operatorname{Gly})_{6} \cdot 6\operatorname{HO}](\operatorname{ClO}_{4})_{6} \xrightarrow{-2\operatorname{H2O}, 132 \circ C}$	$[Eu_2(Gly)_6 \cdot 4H_2O](ClO_4)_6 \xrightarrow{-4H2O, 184 \circ C} $
$[Eu_2(Gly)_6](ClO_4)_6 \xrightarrow{-Glycine}$	$[Eu_2(Gly)_5](ClO_4)_6$ (2)

Объединив полученные данные, мы обнаружили наличие четырех четко выраженных необратимых эндотермических эффектов. Первая стадия соответствует H₂O при T₁ = 61 °C, вторая стадия соответствует 2H₂O при T₂ = 87 °C, третья стадия соответствует 2H₂O при T₃ = 132 °C, оставшийся 4H₂O, которые являются внутрисферными, удаляются при T₄ = 184 °C, далее начинается распад молекулы глицина, что также является необратимым процессом, уравнение (2).

3.2.3 ТГА и ДСК соединения [Gd2(Gly)6·9H2O](ClO4)6

Комбинируя данные, полученные с помощью ДСК и ТГ (рисунки 3.12, 3.13), мы обнаружили наличие четырех четко выраженных необратимых эндотермических эффектов, связанных с дегидратацией соединения [Gd₂(Gly)₆·9H₂O](ClO₄)₆.

Рисунок 3.12 - ТГА соединения [Gd₂(Gly)₆·9H₂O] (ClO₄)₆ от 0 до 250 °C

Рисунок 3.13 - ДСК соединения [Gd₂(Gly)₆·9H₂O](ClO₄)₆

 $[Gd_{2}(Gly)_{6} \cdot 9H_{2}O](ClO_{4})_{6} \xrightarrow{-4H2O, 83 \circ C} [Gd_{2}(Gly)_{6} \cdot 5H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O, 113 \circ C}$ $[Gd_{2}(Gly)_{6} \cdot 3H_{2}O](ClO_{4})_{6} \xrightarrow{-H2O, 137 \circ C} [Gd_{2}(Gly)_{6} \cdot 2H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O, 196 \circ C}$ $[Gd_{2}(Gly)_{6}](ClO_{4})_{6} \qquad (3)$

Все эндотермические эффекты (включая небольшое плечо) связаны с процессом дегидратации $4H_2O$, $2H_2O$, H_2O и $2H_2O$ в T_1 , T_2 , T_3 и T_4 соответственно. Более того, такой процесс происходит в диапазоне температур от 37 до 250 °C и является необратимым, уравнение (3).

3.2.4 ТГА и ДСК соединения [Dy2 (Gly)6·7H2O](ClO4)6

График ТГ потери массы $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$, связанной с дегидратацией, которые происходят в диапазоне температур от 50 до 250 °C, показан на рисунке 3.14. Дегидратация происходит в три этапа, что подтверждаются данными ДСК (рисунок 3.15). Первая стадия соответствует $3H_2O$ при $T_1 = 67$ °C, вторая стадия соответствует $2H_2O$ при $T_2 = 117$ °C, третья стадия соответствует $2H_2O$ при $T_3 = 172$ °C. А дальше начинается распад молекулы глицина. весь процесс дегидратация являются необратимым процессом.

Рисунок 3.14 - Термогравиметрический анализ ТГА (от 0 до 250° С), [Dy₂(Gly)₆·7H₂O](ClO₄)₆

Рисунок 3.15 - ДСК соединения [Dy₂(Gly)₆·7H₂O](ClO₄)₆

 $[Dy_{2}(Gly)_{6} \cdot 7H_{2}O](ClO_{4})_{6} \xrightarrow{-3H2O, 67 \circ C} [[Dy_{2}(Gly)_{6} \cdot 4H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O, 117 \circ C}] \\ [Dy_{2}(Gly)_{6} 2H_{2}O](ClO_{4})_{6} \xrightarrow{-2H2O, 172 \circ C} [Dy_{2}(Gly)_{6}](ClO_{4})_{6} \dots \dots \dots \dots (4)]$

ДСК соединения $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$ показывает наличие трех различных эндотермических эффектов, начинающихся при T₁ = 67 °C (с плечом в диапазоне температур от 22 до 56 °C), T₂ = 117 °C, T₃ = 172 °C соответственно (рисунок 3.15). Весь процесс дегидратация необратим уравнение (4).
3.2.5 ТГА и ДСК соединения [Ho(Gly)3·2H2O](ClO4)3

В соединении [Ho(Gly)₃·2H₂O](ClO₄)₃ дегидратация и распад одной молекулы глицина, происходят в диапазоне температур от 50 до 250 °C (рисунок 3.16). Дегидратация происходит в три этапа, что подтверждаются данными ДСК (рисунок 3.17).

Первый и второй эндотермические эффекты связаны с процессом обезвоживания внутрисферных молекулы воды при T_1 , T_2 соответственно. Далее начинается распад молекулы глицина, где последний резкий пик при $T_3 = 163$ °C соответствует распаду первой молекулы глицина. Весь процесс дегидратация и распад молекулы глицина являются необратимым процессом, уравнение (5).

Рисунок 3.16 - ТГА соединения [Ho(Gly)₃·2H₂O](ClO₄)₃ от 0 до 250 °C

3.2.6 ТГА соединения [La(Gly)3·2H2O](ClO4)3

По данным термогравиметрии необратимый эффект наблюдается при температуре ~182 °C, это связано с дегидратации внутрисферных молекулы воды, который происходят в широком диапазоне температур от 140 до 232 °C (рисунок 3.18).

Рисунок 3.18 - ТГА соединения [La(Gly)₃·2H₂O](ClO₄)₃ (от 0 до 250 °C)

Дальше при увеличении температуры выше 250 °С наблюдается распад соединения, уравнение (6).

$$[La(Gly)_3 \cdot 2H_2O](ClO_4)_3 \xrightarrow{-2H_2O, 134 \circ C} [La(Gly)_3](ClO_4)_3 \dots \dots \dots (6)$$

В исследованных нами соединениях обезвоживание не происходит в одну стадию. Почти во всех кристаллах существуют внешнесферные молекулы воды, которые «находятся между цепочками» и внутрисферные, которые «координируются с каждым атомом лантаноидов». Внутрисферная вода образует большое число водородных связей с атомами кислорода глицина, что приводит к повышению температуры ее отщепления.

Кроме того, стабильность водородных связей, образующихся внутри кристалла, возрастает с увеличением числа связей тридентатных мостиковых соединений, которые, в свою очередь, повышают стабильность кристаллической структуры рисунок 3.18-3.8. Внешнесферные молекулы воды образуют очень слабые водородные связи, поэтому их связь с кристаллом слабая.

Несмотря на то, что соединения $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2(Gly)_6 \cdot 7H_2O](ClO_4)_6$ имеют одинаковую структуру, их графики ДСК и ТГ не похожи друг на друга. Мы связываем это с изменением средней длины связей для ионов лантаноидов, связанных с O^{2-} , что, в свою очередь, приводит к большому количеству водородных связей между атомами кислорода и водорода или к меньшему, что усиливает или ослабляет межмолекулярное взаимодействие, соответственно[110, 111].

Основными причинами изменения средней длины связи для Ln-O являются следующие:

1 - Сжатие лантаноидов увеличивается, что следует за увеличением анионанионного отталкивания с увеличением координационного числа;

2 - Неспособность кристаллических структур достичь своей идеальной (априорной) длины связи в рамках ограничений пространственно-групповой симметрии приводит к изменению средней длины связи.

В результате трудно отделить внутрисферные молекулы воды, потому что, с одной стороны, они сильно координированы с атомами лантаноидов, с другой стороны, у них выше способность образовывать водородные связи, чем у внешнесферных [105, 112].

3.3 Термодинамические свойства соединения [La(Gly)3·2H2O](ClO4)3

В этой части внимание сосредоточено на том, как может происходить взаимодействие между лантаном и глицином, в основном она посвящена изучению фазового перехода, происходящего в координационном соединении лантана с глицином [La(Gly)₃·2H₂O](ClO₄)₃, (Gly = NH₃⁺ – CH₂–COO⁻). Структуру кристаллов определяли на монокристаллическом дифрактометре до и после фазового перехода при температурах 100 и 300 K, соответственно (таблица 3.6).

В ходе исследования выявлены особенности структурных изменений при фазовом переходе. Методом вакуумной адиабатической калориметрии впервые была измерена изобарная теплоемкость, рассчитаны стандартные термодинамические функции и температур фазовых переходов для монокристалла [La(Gly)₃·2H₂O](ClO₄)₃. Для анализа полиморфизма в [La(Gly)₃·2H₂O](ClO₄)₃ использовался метод молекулярных полиэдров Вороного – Дирихле.

Таблица 3.6 - Кристаллографические данные, детали сбора данных и параметры уточнения структуры для I - $C_6 H_{19} C_{13} La N_3 O_{20}$ при T=300K и II - $C_6 H_{19} C_{13} La N_3 O_{20}$ при T=100K

Формула	I - C ₆ H ₁₉ Cl ₃ La N ₃ O ₂₀	II - C ₆ H ₁₉ Cl ₃ La N ₃ O ₂₀
	Т=300К	T=100K
Μ	698,5	698,5
Сингония	триклинный	триклинный
Кристаллографическая	$P\overline{1}$	$P\overline{1}$
группа		
Ζ	2	4
Т, К	300(2)	100 (2)
a, Å	8,77980(10)	10,58650(10)
b, Å	10,75560(10)	12,9131(2)
c, Å	13,0038(2)	16,4845(2)

α, °	71,5090(10)	86,3970(10)
β, °	82,8020(10)	76,6550(10)
γ, °	67,2400(10)	72,4450(10)
$V, Å^3$	1073,89(2)	2090,48(5)
D_x , Γ ·cm ⁻³	2,16	2,219
μ, мм ⁻¹	2,463	2,53
Поглощение T _{min} /T _{max}	0,325/1	0.231/1
Коррекция поглощения	CrysAlisPro 1.171.40.53 (Rig	aku Oxford Diffraction, 2019)
	Численная коррекция погл	ощения на основе гауссова
	интегрирования по много	огранной модели кристалла
	Эмпирическая коррекция п	оглощения с использованием
	сферических гармоник, р	реализованная в алгоритме
	масштабирования SCALE3 AE	SSPACK.
F(000)	688	1376
Размер, мм	$0,442 \times 0,192 \times 0,108$	
Дифрактометр /	XtaLAB Pro 200K: Kappa single	e / MoK α ($\lambda = 0,71073$ Å) / mirror
Излучение /	$/ \omega$ scans	
Монохроматор /		
Сканирование		
Диапазон of θ , °	3,006 - 33,141	2,07 - 26,372
Диапазон индексов	$-13 \le h \le 13$	$-13 \le h \le 13$
	$-16 \le k \le 16$	$-16 \le k \le 16$
	$-19 \le 1 \le 19$	$-20 \le 1 \le 20$
Измеренные	49976 / 8184 / 7926 / 0,0244	70142 / 8527 / 7542 / 0,0286
отражения, все /		
независимые / с I >		
$2\sigma(I)/R_{int}$		
Параметры	337	678
GOOF	1,076	1,141
R -факторы для $F^2 > 2$	$R_1 = 0,0237$	$R_1 = 0,0343$
$\sigma(F^2)$	$wR_2 = 0,0647$	$wR_2 = 0,0869$
R-факторы для всех	$R_1 = 0,0245$	$R_1 = 0,0367$
рефлексов	$wR_2 = 0,0653$	$wR_2 = 0,0884$
$\Delta \rho(\text{min/max}), e^{-\hat{A}^{-3}}$	-0,889 / 1,522	-1,146 / 2,219

Методом рентгеноструктурного анализа были изучены структуры соединений, которые были обнаружены методом вакуумной адиабатической калориметрии до фазового перехода при 100 К и после, при 300 К.

Обе модификации I и II кристаллизуются в триклинной сингонии с пространственной группой $P\overline{1}$ (таблица 3.6). По вакуумной адиабатической калориметрии наблюдаются фазовые переходы при температурах 232,4; 262,3; 278,5 К соответственно (рисунок 3.20). Эти переходы согласно феноменологической классификации Маккалафа-Веструма [113] можно отнести к

типу G (стеклоподобные). Обычно переходы такого типа происходят в широком диапазоне температур, для исследуемого соединения он составляет 210...288 К. Часть цепочки изображена на рисунке 3.19.

Рисунок 3.19 - Модификация II и I соединения [La(Gly)₃·2H₂O](ClO₄)₃ при 100К и 300К

Как видно из рисунка 3.19, низкотемпературная модификация является более разупорядоченной, чем высокотемпературная. В низкотемпературной модификации большее количество атомов в глицине и перхлорат-ионе имеет сложный вид. После фазового перехода происходит «разморозка» вращения групп в некоторых молекулах глицина и перхлорат-иона. В некоторые сложные многоатомные молекулы, особенно органические, входят отдельные группы или радикалы, имеющие характер самостоятельных групп. При смещении из положения равновесия, когда одна группа поворачивается относительно другой, потенциальная энергия возрастает и возникает сила, стремящаяся вернуть молекулу в равновесное положение. При этом возникают вращательные колебания вокруг оси молекулы.

Поскольку у частиц, расположенных на поверхности кристалла, меньше соседей и их связь с кристаллом ослаблена, именно с них должен начаться процесс разупорядочения при тепловом воздействии на кристалл.

3.3.1 Анализ межмолекулярных взаимодействий в кристаллах модификации II и I соединения [La(Gly)₃·2H₂O](ClO₄)₃ с помощью полиэдров Вороного-Дирихле

Для анализа различий внутримолекулярных взаимодействий в кристаллах использовали метод молекулярных полиэдров Вороного – Дирихле (MMVDP) [114, 115]. Согласно MMVDP, все соседние атомы А и Z в кристаллической структуре всегда имеют общую грань соответствующих им многогранников Вороного-Дирихле (контакт A/Z) (таблица 3.7). Важной характеристикой грани A/Z является ее ранг, который указывает на минимальное количество химических связей, соединяющих ядра атомов A и Z в структуре вещества.

В зависимости от ранга граней (FR) все контакты A/Z подразделяются на три типа: химические связи (FR = 1), межмолекулярные невалентные контакты (FR = 0) и внутримолекулярные невалентные контакты (FR > 1) [114, 115]. Наблюдается уменьшение количества внутримолекулярных контактов в высокотемпературной модификации из-за разрыва внутримолекулярных невалентных контактов H/La (таблица 3.7). Основной вклад в связывание сложных групп во всех случаях вносят дисперсионные взаимодействия (контакты H/H), которые составляют ~ 33,5...33,9 % от общей площади граней многогранников Вороного-Дирихле (⁰S), соответствующих внутримолекулярных контактов.

Таблица 3.7 - Характеристики взаимодействий в модификациях I и II соединения с точки зрения MMVDP

Модификация І			Модификация II									
A/Z	k ₄ z	d _{min} , Å	d _{max} , Å	SAZ, Å ²	V, Å ³	∆az, %	k _{AZ}	d _{min} , Å	d _{max} , Å	SAZ, $Å^2$	V, Å ³	∆AZ, %
H/H	76	1,295	4,103	141,588	45,44	33,87127	77	1,444	4,278	135,273	43,566	33,52873
H/C	48	1,958	4,01	32,947	12,011	7,881718	48	1,957	3,967	32,488	11,875	8,052467
C/C	2	3,534	3,534	1,007	0,593	0,240899	2	3,482	3,535	1,225	0,717	0,303628
H/N	12	2,014	2,028	2,607	0,879	0,623657	12	2,014	2,038	2,602	0,879	0,644931
C/N	6	2,396	2,459	0,363	0,147	0,086838	6	2,428	2,475	0,307	0,126	0,076093
H/O	56	2,26	3,953	110,785	48,705	26,50245	56	2,208	3,804	112,382	48,593	27,85497
C/O	16	2,249	3,352	3,35	1,688	0,801401	19	2,294	3,622	3,17	1,609	0,785715
N/O	2	2,686	2,686	0,086	0,038	0,020573	3	2,68	2,733	0,092	0,041	0,022803
0/0	72	2,159	3,238	125,286	53,656	29,97144	73	2,141	3,703	115,638	49,415	28,662
H/La							4	2,926	3,498	0,276	0,138	0,068409
Sum Mol	290	1,295	4,103	418,018	163,156	100	300	1,444	4,278	403,454	156,959	100
Sum Cell	580	1,295	4,103	836,036	326,312		1200	1,444	4,278	1613,81 6	627,834	

Жирным шрифтом отмечены взаимодействия, уникальные для модификации II.

Примечание. k_{AZ} - общее количество всех граней с FR = 0 (ранг грани); d_{min} , d_{max} - наименьшее и наибольшее (соответственно) межатомные расстояния A — Z; S_{AZ} - суммарная площадь всех граней этого типа ПВД атомов, содержащихся в одной формульной единице; V - общий объем пирамид, в основании которых лежат грани с FR = 0, а вершины заняты ядрами атомов молекулы; Δ_{AZ} - частичный вклад (в процентах) соответствующих не валентных A / Z-контактов в интегральный параметр $^{0}S = \Sigma S_{AZ}$ молекулярного ПВД.

Второй по значимости вклад вносят водородные связи (контакты H/O) и контакты O/O, которые составляют только частичный вклад $\Delta_{AZ} \approx 26...30$ % (таблица 3.7). Следует отметить, что водородные связи в низкотемпературной модификации прочнее высокотемпературной (значение Δ_{AZ} на 1,35 % больше), с другой стороны, контакты O/O слабее в низкотемпературной модификации (значение Δ_{AZ} на 1,31 % меньше). Все остальные внутримолекулярные контакты в обеих модификациях с суммарным парциальным вкладом менее 10 % играют второстепенную роль в формировании молекулярной структуры в кристаллах.

Для исследования кристаллов при низкотемпературном фазовом переходе в [La(Gly)₃·2H₂O](ClO₄)₃ совместно использовались как экспериментальные (рентгеноструктурный анализ), так и теоретические (молекулярный метод полиэдров Вороного – Дирихле) данные. Исследование показало тонкие различия в расположении (статистика расположения молекул глицина и перхлората иона) и

взаимодействия молекул в различных модификациях. Подобные исследования координационных соединений лантаноидов с аминокислотами ранее не проводились.

3.3.2 Термодинамика фазовых переходов в соединении [La(Gly)₃·2H₂O](ClO₄)₃

В этой части рассмотрена термодинамика фазовых переходов в соединении перхлорат лантана с глицином [La(Gly)₃·2H₂O](ClO₄)₃. Термодинамические свойства комплекса изучены методом адиабатической калориметрии. Обнаружены три уникальных фазовых перехода. Прецизионный адиабатический калориметр использовался для измерения молярной теплоемкости и определения стандартных термодинамических функций соединения [La(Gly)₃·2H₂O](ClO4)₃.

Для измерения теплоемкости C_p° исследуемого вещества в диапазоне температур 5,5...350 К использовался автоматический прецизионный адиабатический вакуумный калориметр БКТ-3,0 с дискретным нагревом. Устройство калориметра и порядок работы описаны ранее [116]. Испытания проводили путем измерения теплоемкости высокочистой меди и контрольных образцов синтетического корунда и бензойной кислоты К-2. Анализ результатов показал, что относительная стандартная неопределенность теплоемкости вещества при гелиевых температурах находится в пределах ± 2 %, снижается до $\pm 0,5$ % при повышении температуры до 40 K, и равна $\pm 0,2$ % при T больше 40 K.

Теплоемкость

Измерения C_p° проводились в диапазоне температур 5,5-350 К (таблица 3.10). Масса образца, загруженного в калориметрические ампулы прибора ВКТ-3,0, составляла 0,6728 г. Экспериментальные значения C_p° были получены в трех сериях экспериментов, всего 230 значений. Теплоемкость образца варьировалась в пределах 20...50 % от общей теплоемкости калориметрической ампулы + вещество в диапазоне от 6 К до 343 К. Экспериментальные точки C_p° в интервале температур 5,5-350 К были подобраны с помощью метода наименьших квадратов, и были

получены полиномиальные уравнения (уравнения (1) - (3)) зависимости C[°]_p от температуры. Соответствующие коэффициенты (А, В, С и т. Д.) приведены в таблице 3.8.

$$C_{p}^{\circ} = A + B \cdot (T/30) + C \cdot (T/30)^{2} + D \cdot (T/30)^{3} + E \cdot (T/30)^{4} + F \cdot (T/30)^{5} + G \cdot (T/30)^{6} + H \cdot (T/30)^{7}(1)$$

$$C_{p}^{\circ} = A + B \cdot ln(T/30) + C \cdot ln^{2}(T/30) + D \cdot ln^{3}(T/30) + E \cdot ln^{4}(T/30) + F \cdot ln^{5}(T/30) + G \cdot ln^{6}(T/30) + H \cdot ln^{7}(T/30) + I \cdot ln^{8}(T/30)(2)$$

 $\ln C_{p}^{\circ} = A + B \cdot ln(T/30) + C \cdot ln^{2}(T/30) + D \cdot ln^{3}(T/30) + E \cdot ln^{4}(T/30) + F \cdot ln^{5}(T/30) + G \cdot ln^{6}(T/30) + H \cdot ln^{7}(T/30) + I \cdot ln^{8}(T/30).$ (3)

Наибольшее сглаживание экспериментальной кривой было получено при разбиении экспериментальных данных на четыре температурных диапазона (таблица 3.8). Их среднеквадратичное отклонение от усреднения кривой $C_p^{\circ} = f(T)$ составило $\pm 0,15$ % в диапазоне T = 5,5...40 K, $\pm 0,075$ % при T = 40...80 K и $\pm 0,050$ % в диапазоне T = 80...350K. Экспериментальные значения молярной теплоемкости [La (Gly)₃·2H₂O](ClO₄)₃ в диапазоне температур 6...346 K и средний график $C_p^{\circ} = f(T)$ представлены на рисунке 3.20.

Таблица 3.8 - Коэффициенты аппроксимирующих полиномов для соединения [La(Gly)₃·2H₂O](ClO₄)₃

<i>T</i> /(K)	5.5–20	18–102	100-209	291-350
полиномиальный тип	3	2	1	1
Α	-8,153340810	90,08307365	12059,18107	-1112897,466
В	-126,0040357	139,2759019	-17539,62561	403634,9685
С	-544,3180690	62,76626487	11008,69936	-41647,18390
D	-1280,968090	9,373870789	-3786,952452	-1491,267749
Е	-1824,000992	17,75032575	774,8018602	579,9822857
F	-1608,007706	-9,781258512	-94,37678089	-39,67479689
G	-858,0698217	-3,293883478	6,341001827	0,9009019263
Н	-253,8046779	-30,48979956	-0,1813299075	
Ι	-31,90878551	19,15045603		

Теплоемкость C_p° этого вещества в интервалах 5,5...209 и 291...350 К постепенно увеличивается с повышением температуры и не проявляет никаких

особенностей, а при 210...290 К возникают аномальные теплоемкости в виде трех эндотермических эффектов (таблица 3.10, рисунок 3.20). Температурные интервалы перехода определялись графически по кривой $C_p^{\circ} = f(T)$. Температуры переходов оценивались как температуры максимального значения C_p° в температурных интервалах переходов. Энтальпия и энтропия фазовых переходов определяли непрерывным поэтапным интегрированием (таблица 3.9). Следует отметить, что работа [117] предоставляет информацию о полиморфизме в исследуемом соединении, но количество фазовых переходов не было точно установлено из-за использования дифференциальной сканирующей калориметрии, а не вакуумной адиабатической калориметрии.

Этот переход можно отнести к переходу первого рода по классификации Эренфеста, и, как показали проведенные нами исследования, фазовые переходы полностью обратимы. Ранее в [118] было проведено исследование температурной зависимости соединения [La(Gly)₃·2(H₂O)₄](ClO₄)₃ в интервале 78...385 К.

Рисунок 3.20 - Температурная зависимость теплоемкости соединения [La(Gly)₃·2H₂O](ClO₄)₃

Рисунок 3.21 - Сравнение полученных результатов (кружки) и результатов работы [118] (квадраты) по температурной зависимости теплоемкости [La (Gly)₃·2H₂O](ClO₄)₃

Однако значения (в рамках предложенной нами формулы) были в среднем на 10 % меньше, а фазовые переходы отсутствуют, что, вероятно, связано с систематической ошибкой (рисунок 3.21).

Термодинамические функции

Для расчета стандартных термодинамических функций для соединения $[La(Gly)_3 \cdot 2H_2O]$ (ClO₄)₃ его значения C_p° были экстраполированы из температуры начала измерения примерно с 5,5 K до 0 K графическим методом, который заключается в выборе гладкой функции, стремящейся к 0 K в интервале 6...15 K (таблица 3.10).

Таблица 3.9 - Термодинамические характеристики фазовых переходов в кристаллическом соединении [La(Gly)₃·2H₂O](ClO₄)₃; M = 698,4499 г·моль⁻¹, $p^{\circ} =$

0,1 МПа

Фаза перехода	Интервал фазового перехода, К	T _{tr} ,K	Δ _{tr} H°, Дж ∙ моль ^{– 1}	Δ _{tr} S°, Дж • К ^{− 1} • моль ^{− 1}
1	210-239	$232,4 \pm 0,2$	$661,9 \pm 1,4$	$2,84 \pm 0,06$
2	252-268	$262,3 \pm 0,2$	$91,2 \pm 0,2$	$0,35 \pm 0,01$
3	273–288	$278,5\pm0,2$	$93,4 \pm 0,2$	$0,34 \pm 0,01$

Стандартные неопределенности и: $u(T_{tr}) = 0,2$ К, $u_r (\Delta_{tr} H^\circ) = \pm 0,2\%$, $u_r (\Delta_{tr} S^\circ) = \pm 3\%$, $u_r(p) = \pm 1\%$ (уровень достоверности = 0,68). Общие изменения энтальпии были получены путем интегрирования измеренной теплоемкости, а энтальпии фазовых переходов были получены путем вычитания интегрированной базовой энтальпии из общих изменений энтальпии. Линейная обработка базовой линии в области фазового перехода:

Первый фазовый переход $C_p = 1,6488 \cdot T + 226,230 (ряд 2).$ $C_p = 1,6091 \cdot T + 232,522 (ряд 3).$ Второй фазовый переход $C_p = 1,2879 \cdot T + 321,034 (ряд 2),$ $C_p = 1,4857 \cdot T + 266,316 (ряд 3).$ Третий фазовый переход $C_p = 0,69893 \cdot T + 490,566 (ряд 2).$ $C_p = 1,0393 \cdot T + 394,641 (ряд 3).$

Расчеты H°(T)-H°(0) и S°(T)-S°(0) были выполнены путем численного интегрирования кривых $C_p^{\circ} = f(T)$ и $C_p^{\circ} = f(\ln T)$ соответственно, а функция Гиббса $G^{\circ}(T) - H^{\circ}(0)$ оценивалась по энтальпиям и энтропиям при соответствующих температурах. Предполагается, что относительная стандартная неопределенность значений функции составляла ± 2% при T < 40 K, ± 0,5% в диапазоне 40...80 K и ± 0,2 % в диапазоне 80...350 K.

Таблица 3.10 - Термодинамические функции кристаллического $[La(Gly)_3 \cdot 2H_2O]$ (ClO₄) ₃; M = 698,4499 г · моль ⁻¹, p° = 0,1 Мпа

T ,(<i>K</i>)	$C_p^{o}(T), (\mathcal{A}\mathcal{H} \cdot K^{-1} \cdot$	Н°(Т)-Н°(0), (кДж ·	S°(Т), (Дж · К ⁻¹	-[G°(Т)-Н°(0)], (кДж ·				
	моль ^{— 1})	моль ⁻¹)	• моль ^{— 1})	моль ^{—1})				
Кристалл IV								
0	0	0	0	0				
5	1,416	0,001917	0,5167	0,0006659				
5,5	1,724	0,0027114	0,6678	0,0009612				
10	7,865	0,02150	2,985	0,008340				
15	23,31	0,09591	8,810	0,03624				
20	43,92	0,2630	18,27	0,1025				

25	66.74	0.5390	30.50	0.2236
30	90.08	0.9311	44.73	0.4109
35	113.1	1.439	60.36	0.6732
40	135.7	2 061	76.93	1 016
45	157.8	2,795	94 20	1 444
50	179.5	3 639	112.0	1 959
55	200.5	4 589	130.0	2 564
60	200,5	5 642	148.4	3 260
65	220,7	6 795	146,4	4 048
70	258.0	8.040	185.3	4 928
75	230,0	0,040	203.6	5 900
80	290.3	10 79	203,0	6 964
85	304.5	10,77	221,9	8 110
90	317 /	12,27	259,9	0,119
05	317,4	15,65	237,7	10.69
100	340.4	13,43	273,2	10,09
100	351.5	17,12	300.2	12,11
105	362.6	20.63	309,2	15,02
110	302,0	20,03	323,8	15,21
113	373,3	22,46	342,2	10,88
120	<u> </u>	24,37	274.2	10,00
123	394,0	20,52	374,2	20,40
130	404,8	20,32	389,9	22,57
133	414,9	30,30	403,5	24,50
140	424,9	32,40	420,0	20,42
145	434,9	34,01	455,7	28,50
150	445,0	30,81	450,6	30,78
155	455,0	39,00	403,4	33,07
160	405,2	41,30	480,0	35,45
105	4/5,4	45,72	494,5	37,87
170	485,8	46,12	508,8	40,38
1/3	490,4	48,37	523,0	42,90
180	507,2	51,08	537,2	45,61
185	518,4	53,65	551,2	48,53
190	529,9	56,27	565,2	51,12
195	541,4	58,95	5/9,1	53,98
200	552,8	61,68	593,0	50,91
205	563,2	64,47	606,/	59,91
210	5/1,6	67,31	620,4	62,98
211	5/3,3	67,88	623,1	63,60
212	579,1	08,40	625,8	64,22
213	578,1	69,03	628,0	64,85
214	Jð1,4	09,01	031,3	00,48
215	J84,J	/0,20	034,0	00,11
210	500.4	/0,/8	030,/	00,/3
217	590,4	/1,5/	039,4	0/,39
218	593,9	/1,96	644.0	08,05
219	590,0 500,0	/2,50	044,9	08,0/
220	599,8	/3,16	64/,6	69,32
221	603,8	/3,/0	650,3	69,97
222	608,2	/4,5/	655,1	/0,62
223	013,2	/4,98	055,8	/1,2/
224	618,6	75,59	658,6	71,93
225	624,3	/6,21	661,3	12,59
226	630,2	76,84	664,1	73,25
227	637,1	77,48	666,9	73,92
228	645,1	78,12	669,7	74,59
229	655,1	78,77	672,6	75,26
230	664,2	79,42	675,5	75,93

231	671,9	80,09	678,3	76,61
232	676,4	80,77	681,3	77,29
232,4	677,5	81,04	682,4	77,56
		Кристалл	III	
232,4	677,5	81,04	682,4	77,56
233	668,5	81,44	684,1	77,97
234	637,9	82,07	686,9	78,66
235	621,2	82,71	689,6	79,34
236	616,5	83,33	692,2	80,03
237	615,0	83,96	694,9	80,73
238	616,1	84,57	697,5	81,42
239	617.1	85.18	700.0	82.12
240	618.7	85.80	702.6	82.82
241	620.6	86.42	705.2	83.53
242	622.1	87.04	707.7	84.23
243	623.6	87.66	710.3	84.94
244	625.5	88.29	712.9	85.66
245	626,2	88,91	715,4	86,37
246	626,2	89,54	718,0	87,09
247	628,4	90,17	720,5	87,81
248	631,0	90,80	723,1	88,53
249	633,0	91,43	725,6	89,25
250	635,2	92,06	728,2	89,98
251	637,6	92,70	730,7	90,71
252	640,2	93,34	733,3	91,44
253	642,7	93,98	735,8	92,17
254	644,8	94,62	738,3	92,91
255	646,6	95,27	740,9	93,65
256	648,6	95,92	743,4	94,39
257	652,7	96,57	745,9	95,14
258	656,2	97,22	748,5	95,89
259	657,3	97,88	751,0	96,64
260	661,6	98,54	753,6	97,39
261	667,7	99,21	756,1	98,14
262	673,9	99,88	758,7	98,90
262,3	675,8	100,1	759,5	99,13
		Кристалл	II	
262,3	675,8	100,1	759,5	99,13
263	673,1	100,5	761,2	99,66
264	663,0	101,2	763,8	100,4
265	661,9	101,9	766,3	101,2
266	663,3	102,5	768,8	102,0
267	663,0	103,2	771,3	102,7
268	663,8	103,9	773,7	103,5
269	666,1	104,5	776,2	104,3
270	669,0	105,2	778,7	105,0
271	672,1	105,9	781,2	105,8
272	674,8	106,5	783,7	106,6
273	677,3	107,2	786,1	107,4
273,15	677,7	107,3	786,5	107,5
274	679,8	107,9	788,6	108,2
275	682,4	108,6	791,1	109,0
276	684,6	109,3	793,6	109,8
277	686,4	110,0	796,1	110,6
278	710,2	110,6	798,6	111,4
278,5	728,6	111,0	799,9	111,8
ļ,		Кристалл	Ι	
278,5	728,6	111,0	799,9	111,8

279	725,9	111,4	801,2	112,2
280	695,7	112,0	803,6	113,0
281	690,9	112,7	806,1	113,8
282	690,9	113,4	808,5	114,6
283	690,9	114,1	811,0	115,4
284	690,9	114,8	813,4	116,2
285	690,9	115,5	815,9	117,0
286	691,2	116,2	818,3	117,8
287	692,2	116,9	820,7	118,6
288	693,7	117,6	823,1	119,5
289	693,8	118,3	825,5	120,3
290	693,8	119,0	827,9	121,1
295	703,8	122,5	839,9	125,3
298,15	708,7	124,7	847,4	127,9
300	711,2	126,0	851,7	129,5
305	718,0	129,6	863,6	133,8
310	725,3	133,2	875,3	138,2
315	733,4	136,8	887,0	142,6
320	741,8	140,5	898,6	147,0
325	750,2	144,3	910,1	151,5
330	758,2	148,0	921,7	156,1
335	765,6	151,8	933,1	160,8
340	772,8	155,7	944,5	165,5
345	781,3	159,6	955,9	170,2
350	793,7	163,5	967,2	175,0

Из абсолютного значения энтропии [La(Gly)₃·2H₂O](ClO₄)₃ (таблица 3.10), углерода в виде графита, кристаллического лантана, газообразного водорода, кислорода, азота и хлора [119, 120] стандартная энтропия образования $\Delta_{\rm f}S^{\circ}$ [La(Gly)₃·2H₂O](ClO₄)₃ при T = 298,15 К была рассчитана по методикам, описанным ранее [121]. Значения соответствуют следующему процессу: La(κ) + 6·C(Γ p) + 9.5·H₂(Γ) + 1.5·N₂(Γ) + 10·O₂(Γ) + 1.5·Cl₂(Γ) \rightarrow \rightarrow [La(Gly)₃·2H₂O](ClO₄)₃ (κ),

где в скобках указаны физические состояния реагентов: (гр), графит; (г), газообразный; (к), кристаллический.

 $\Delta_{\rm f}$ S°(298,15, [La(Gly)₃·2H₂O](ClO₄)₃, к) = -(3158 ± 4) Дж·К⁻¹·моль⁻¹.

Общая цель этих исследований состояла в том, чтобы обобщить результаты термодинамического исследования [La(Gly)₃·2H₂O](ClO₄)₃. Измерена теплоемкость [La(Gly)₃·2H₂O](ClO₄)₃ в интервале температур (6-350 K), рассчитаны термодинамические функции. Была рассчитана стандартная энтропия образования и определены термодинамические функции, связанные с фазовыми переходами.

Выводы

1. Разработаны методики синтеза монокристаллов шести новых соединений лантаноидов с глицином состава $[La(Gly)_3 \cdot 2H_2O](ClO_4)_3$, $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6$, $[Dy_2 \quad (Gly)_6 \cdot 7H_2O](ClO_4)_6$, $[Ho(Gly)_3 \cdot 2H_2O](ClO_4)_3$.

2. Методом рентгеноструктурного анализа расшифрованы структуры соединений и установлены принципы и способы координации глицина на атомы лантаноидов.

3. дифференциальной Методом термогравиметрического анализа И сканирующей калориметрии впервые определены температуры дегидратации и термораспада всех изученных соединений. Установлено, что в интервале °C 50 200 наблюдается температур OT до дегидратация соединений $[Gd_2(Gly)_6 \cdot 9H_2O](ClO_4)_6, [Sm_2(Gly)_6 \cdot 9H_2O](ClO_4)_6, [Eu_2(Gly)_6 \cdot 9H_2O](ClO_4)_6, [Dy_2](ClO_4)_6, [Dy_2](Dy_2](ClO_4)_6, [Dy_$ $(Gly)_6 \cdot 7H_2O](ClO_4)_6$. Для соединений гольмия и лантана $[Ho(Gly)_3 \cdot 2H_2O](ClO_4)_6$. $[La(Gly)_3 \cdot 2H_2O](ClO_4)_3]$ процесс дегидратации происходит в интервале 25 – 150 °С и 140 – 250 °С, соответственно.

4. Методом вакуумной адиабатической калориметрии впервые изучена температурная зависимость теплоемкости соединения [La(Gly)₃·2H₂O](ClO₄)₃ в интервале температур от 6 до 346 К. Обнаружены три фазовых перехода при температурах 232,4, 262,3, 278,5 К и методом рентгеноструктурного анализа изучена природа полиморфизма в данном соединении.

Список литературы

- [1] L. Lavelle, "Lanthanum (La) and Actinium (Ac) Should Remain in the d-block," J. Chem. Educ., vol. 85, no. 11, Nov. 2008, doi: 10.1021/ed085p1482.
- [2] J.-C. G. Bünzli and C. Piguet, "Taking advantage of luminescent lanthanide ions," *Chem. Soc. Rev.*, vol. 34, no. 12, 2005, doi: 10.1039/b406082m.
- [3] H. Siitari, I. Hemmilä, E. Soini, T. Lövgren, and V. Koistinen, "Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay," *Nature*, vol. 301, no. 5897, Jan. 1983, doi: 10.1038/301258a0.
- [4] S. Sueda, J. Yuan, and K. Matsumoto, "Homogeneous DNA Hybridization Assay by Using Europium Luminescence Energy Transfer," *Bioconjug. Chem.*, vol. 11, no. 6, Nov. 2000, doi: 10.1021/bc000030r.
- [5] S. Sueda, J. Yuan, and K. Matsumoto, "A Homogeneous DNA Hybridization System by Using A New Luminescence Terbium Chelate," *Bioconjug. Chem.*, vol. 13, no. 2, pp. 200–205, Feb. 2002, doi: 10.1021/bc010049+.
- [6] E. P. Diamandis, "Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications," *Clin. Biochem.*, vol. 21, no. 2, Apr. 1988, doi: 10.1016/S0009-9120(88)80104-8.
- [7] C.-G. Ma, M. G. Brik, D.-X. Liu, B. Feng, Y. Tian, and A. Suchocki, "Energy level schemes of f N electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state," *J. Lumin.*, vol. 170, Feb. 2016, doi: 10.1016/j.jlumin.2015.07.053.
- [8] V. E. Fleischauer *et al.*, "Insight into the Electronic Structure of Formal Lanthanide(II) Complexes using Magnetic Circular Dichroism Spectroscopy," *Organometallics*, vol. 38, no. 16, pp. 3124–3131, Aug. 2019, doi: 10.1021/acs.organomet.9b00315.
- [9] Moeller Therald, *The Chemistry of the Lanthanides*, vol. 26. Elsevier, 2013.
- [10] L. Brewer, "Systematics of the Properties of the Lanthanides," in *Systematics and the Properties of the Lanthanides*, Dordrecht: Springer Netherlands, 1983.
- [11] B. B. Das, F. Liu, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," *Reports Prog. Phys.*,

vol. 60, no. 2, Feb. 1997, doi: 10.1088/0034-4885/60/2/002.

- [12] S. Siekierski, "The itinerant character of 4f orbitals in lanthanide metals by a comparison of lanthanide contraction in metals and ionic compounds," *Inorganica Chim. Acta*, vol. 109, no. 3, May 1985, doi: 10.1016/S0020-1693(00)81769-7.
- [13] R. Khoshnavazi, L. Bahrami, and S. Gholamyan, "The influence of lanthanide ionic radii on the formation and stability of the complexes: Synthesis, chemical properties and characterization of [(β-SiW9O34)2(H2OM)3CO3]13– M=Eu3+ and Gd3+," *J. Mol. Struct.*, vol. 990, no. 1–3, Mar. 2011, doi: 10.1016/j.molstruc.2011.01.018.
- P. Caravan, P. Mehrkhodavandi, and C. Orvig, "Cationic Lanthanide Complexes of N,N'-Bis(2-pyridylmethyl)ethylenediamine-N,N'-diacetic Acid (H2bped)," *Inorg. Chem.*, vol. 36, no. 7, pp. 1316–1321, Mar. 1997, doi: 10.1021/ic9613016.
- [15] K. O. Kvashnina, S. M. Butorin, and P. Glatzel, "Direct study of the f-electron configuration in lanthanide systems," *J. Anal. At. Spectrom.*, vol. 26, no. 6, 2011, doi: 10.1039/c0ja00142b.
- [16] A. Pebler and W. E. Wallace, "CRYSTAL STRUCTURES OF SOME LANTHANIDE HYDRIDES1," J. Phys. Chem., vol. 66, no. 1, pp. 148–151, May 2002, doi: 10.1021/j100807a033.
- [17] M. R. MacDonald, J. E. Bates, J. W. Ziller, F. Furche, and W. J. Evans, "Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+," *J. Am. Chem. Soc.*, vol. 135, no. 26, pp. 9857–9868, May 2013, doi: 10.1021/ja403753j.
- [18] W. J. Evans, "The organometallic Chemistry of the lanthanide elements in low oxidation states," *Polyhedron*, vol. 6, no. 5, 1987, doi: 10.1016/S0277-5387(00)80921-3.
- [19] D. A. Johnson, "Recent Advances in the Chemistry of the Less-Common Oxidation States of the Lanthanide Elements," 1977.
- [20] S. A. Cotton, "Scandium, Yttrium & amp; the Lanthanides: Inorganic & amp; Coordination Chemistry," in *Encyclopedia of Inorganic and Bioinorganic Chemistry*, Chichester, UK: John Wiley & Sons, Ltd, 2011.
- [21] T. Mikulas, M. Chen, D. A. Dixon, K. A. Peterson, Y. Gong, and L. Andrews,

"Reactions of Lanthanide Atoms with Oxygen Difluoride and the Role of the Ln Oxidation State," *Inorg. Chem.*, vol. 53, no. 1, Jan. 2014, doi: 10.1021/ic402422h.

- [22] Duan, Y., Coutinho, J., Rosaleny, L., Cardona, S., Baldoví, J. J., & Gaita-Ariño, A.
 "Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets," *Prepr.) available Res. Sq.*, vol. (Version 1), 2021.
- [23] J. Marçalo and A. P. De Matos, "A new definition of coordination number and its use in lanthanide and actinide coordination and organometallic chemistry," *Polyhedron*, vol. 8, no. 20, Jan. 1989, doi: 10.1016/S0277-5387(89)80007-5.
- [24] C.-H. Huang, "Rare earth coordination chemistry: fundamentals and applications," *John Wiley Sons*, 2011.
- [25] S. Cotton, Lanthanide and Actinide Chemistry. John Wiley & Sons. ISBN: 978-0-470-01005-1, 2006.
- [26] ed. W. R. M. H. and A. T. H. N. G. Connelly and T. Damhus, *Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005*. Cambridge: RSC Publishing. ISBN 978-0-85404-438-2, 2005.
- [27] N. Malhotra *et al.*, "An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms," *Animals*, vol. 10, no. 9, Sep. 2020, doi: 10.3390/ani10091663.
- [28] Голуб А.М, Общая и неорганическая химия, vol. Часть 2. Киев: Высшая школа: Pecypc studmed.ru, 1971.
- [29] M. Kumar, "Recent trends in chromatographic procedures for separation and determination of rare earth elements. A review," *Analyst*, vol. 119, no. 9, 1994, doi: 10.1039/an9941902013.
- [30] K. Robards, S. Clarke, and E. Patsalides, "Advances in the analytical chromatography of the lanthanides. A review," *Analyst*, vol. 113, no. 12, 1988, doi: 10.1039/an9881301757.
- [31] M. I. Moustafa and N. A. Abdelfattah, "Physical and Chemical Beneficiation of the Egyptian Beach Monazite," *Resour. Geol.*, vol. 60, no. 3, Aug. 2010, doi: 10.1111/j.1751-3928.2010.00131.x.

- [32] С. И. Е. Филянд Э. Ю., *Свойства редких элементов: Справочник*. Москва: ГНТИ литературы по черной и цветной металлургии, 1953.
- [33] E. Bentouhami, G. M. Bouet, J. Meullemeestre, F. Vierling, and M. A. Khan, "Physicochemical study of the hydrolysis of Rare-Earth elements (III) and thorium (IV)," *Comptes Rendus Chim.*, vol. 7, no. 5, May 2004, doi: 10.1016/j.crci.2004.01.008.
- [34] X. Wang and Y. Li, "Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires," *Angew. Chemie*, vol. 114, no. 24, Dec. 2002, doi: 10.1002/ange.200290048.
- [35] Ахметов Н.С., *ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ*, Fourth edition. Москва: Высшая школа, изд. центр «Академия», 2001.
- [36] А. Л. А. Серебренников В.В., Курс химии редкоземельных элементов (скандий, иттрий, лантаниды). Томск: Изд. Томского университета, 1963.
- [37] N. M. Shavaleev, R. Scopelliti, F. Gumy, and J.-C. G. Bünzli, "Visible-Light Excitation of Infrared Lanthanide Luminescence via Intra-Ligand Charge-Transfer State in 1,3-Diketonates Containing Push-Pull Chromophores," *Eur. J. Inorg. Chem.*, vol. 2008, no. 9, Mar. 2008, doi: 10.1002/ejic.200701197.
- [38] F. P. Doty, D. McGregor, M. Harrison, K. Findley, and R. Polichar, "Structure and properties of lanthanide halides," Sep. 2007, doi: 10.1117/12.740849.
- [39] Lakowicz, Joseph R., and ed, *Topics in fluorescence spectroscopy: volume 4: probe design and chemical sensing*, vol. 4. Springer Science & Business Media, 1994.
- [40] E. E. S. Teotonio *et al.*, "Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes," *Polyhedron*, vol. 21, no. 18, Aug. 2002, doi: 10.1016/S0277-5387(02)01032-X.
- [41] J. H. Forsberg and T. Moeller, "Rare earths. LXXIX. Syntheses and properties of ethylenediamine chelates of the tripositive lanthanide ions," *Inorg. Chem.*, vol. 8, no. 4, Apr. 1969, doi: 10.1021/ic50074a036.
- [42] J. H. Forsberg and T. Moeller, "Rare earths. LXXX. Thermodynamic stabilities of ethylenediamine chelates of the tripositive lanthanide ions in anhydrous acetonitrile," *Inorg. Chem.*, vol. 8, no. 4, Apr. 1969, doi: 10.1021/ic50074a037.

- [43] A. A. Khan and K. Iftikhar, "Mixed-ligand lanthanide complexes—XI. Absorption spectra and hypersensitivity in the complexes of PrIII, NdIII, HoIII and ErIII in nonaqueous solutions," *Polyhedron*, vol. 16, no. 23, Sep. 1997, doi: 10.1016/S0277-5387(97)00138-1.
- [44] Haugland and Richard P, *The handbook: a guide to fluorescent probes and labeling technologies*. Slovenia: PhD diss., Univerza v Ljubljani, Fakulteta za farmacijo, 2005.
- [45] J. Liang, R. Ma, F. Geng, Y. Ebina, and T. Sasaki, "Ln2(OH)4SO4·nH2O (Ln = Pr to Tb; n ~ 2): A New Family of Layered Rare-Earth Hydroxides Rigidly Pillared by Sulfate Ions," *Chem. Mater.*, vol. 22, no. 21, pp. 6001–6007, Oct. 2010, doi: 10.1021/cm102236n.
- [46] P. Venkatesan, T. Vander Hoogerstraete, K. Binnemans, Z. Sun, J. Sietsma, and Y. Yang, "Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step," *ACS Sustain. Chem. Eng.*, vol. 6, no. 7, Jul. 2018, doi: 10.1021/acssuschemeng.8b01707.
- [47] M. Alemrajabi, Å. C. Rasmuson, K. Korkmaz, and K. Forsberg, "Processing of a rare earth phosphate concentrate obtained in the nitrophosphate process of fertilizer production," *Hydrometallurgy*, vol. 189, Nov. 2019, doi: 10.1016/j.hydromet.2019.105144.
- [48] K. NAKASHIMA, F. KUBOTA, T. MARUYAMA, and M. GOTO, "Ionic Liquids as a Novel Solvent for Lanthanide Extraction," *Anal. Sci.*, vol. 19, no. 8, 2003, doi: 10.2116/analsci.19.1097.
- [49] R. O. Freire, G. B. Rocha, and A. M. Simas, "Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations," *J. Mol. Model.*, vol. 12, no. 4, Mar. 2006, doi: 10.1007/s00894-005-0027-5.
- [50] J. A. Peters, M. S. Nieuwenhuizen, A. P. G. Kieboom, and D. J. Raber, "Analysis of multinuclear lanthanide induced shifts. Part 5. The co-ordination polyhedron of 1: 3 lanthanide(<scp>III</scp>)–glycolate complexes in aqueous solution," *J. Chem. Soc., Dalt. Trans.*, no. 3, 1988, doi: 10.1039/DT9880000717.

- [51] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," *Acta Crystallogr. Sect. A*, vol. 32, no. 5, Sep. 1976, doi: 10.1107/S0567739476001551.
- [52] Бокий Г.Б., Кристаллохимия. М. Наука, 1971.
- [53] Уэллс А., Структурная неорганическая химия Т.1–3. М.:Мир. 1988.
- [54] Вайнштейн В.Б., Инденбом Л.М., and Фридкин В.М., Современная кристаллография. Том 2. Структура кристаллов, УДК: 548.0. Москва, 1979.
- [55] V. A. Blatov and V. N. Serezhkin, "Stereoatomic Model of the Structure of Inorganic and Coordination Compounds," *Russ. J. Inorg. Chem. S105–S222.*, vol. 45, pp. S105–S222, 2000.
- [56] V. A. Blatov *, "Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications," *Crystallogr. Rev.*, vol. 10, no. 4, Oct. 2004, doi: 10.1080/08893110412331323170.
- [57] V. A. Blatov, A. P. Shevchenko, and V. N. Serenzhkin, "Crystal space analysis by means of Voronoi–Dirichlet polyhedra," *Acta Crystallogr. Sect. A Found. Crystallogr.*, vol. 51, no. 6, Nov. 1995, doi: 10.1107/S0108767395006799.
- [58] Блатов В.А., Шевченко А.П., and Сережкин В.Н., Области действия атомов урана (II-VI) в кислородсодержащих соединениях. Доклады РАН Т. 343. № 6, 1995.
- [59] Сережкин В.Н. and Буслаев Ю.А., *Стереоэффект неподеленной электронной пары во фторидах сурьмы*. Журн. неорган. химии Т. 42, 1997.
- [60] Сережкин В.Н., Блатов В.А., and Шевченко А.П., Полиэдры Вороного-Дирихле атомов урана(VI) в кислородсодержащих соединениях. Коорд. химия. Т. 21. № 3., 1995.
- [61] "Analysis of environment of alkali atoms in oxygen-containing compounds with Voronoi-Dirichlet polyhedra," *Zeitschrift für Krist. - Cryst. Mater.*, vol. 213, no. 4, Apr. 1998, doi: 10.1524/zkri.1998.213.4.202.
- [62] Черняев И.И. and Щелоков Р.Н., "Комплексные оксалатогалогенидные соединения уранила пентацидо-ряда," *Журн. неорган. химии*, vol. T. 8. № 6, pp. 1530–1531, 1963.

- [63] I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani, and D. M. Proserpio, "Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)," *J. Solid State Chem.*, vol. 178, no. 8, Aug. 2005, doi: 10.1016/j.jssc.2005.05.029.
- [64] Блатов В.А., Шевченко А.П., and Сережкин В.Н., "Автоматизация кристаллохимического анализа: комплекс компьютерных программ TOPOS," *Коорд. химия*, vol. T. 25. № 7., pp. 483–497, 1999.
- [65] B. Martin and F. S. Richardson, "Lanthanides as probes for calcium in biological systems," *Q. Rev. Biophys.*, vol. 12, no. 2, May 1979, doi: 10.1017/S0033583500002754.
- [66] L. Dressler, R. Golbik, and R. Ulbrich-Hofmann, "Lanthanides as substitutes for calcium ions in the activation of plant α-type phospholipase D," *Biol. Chem.*, vol. 395, no. 7–8, Jul. 2014, doi: 10.1515/hsz-2014-0112.
- [67] G. E. Smolka, E. R. Birnbaum, and D. W. Darnall, "Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilis .alpha.-amylase," *Biochemistry*, vol. 10, no. 24, Nov. 1971, doi: 10.1021/bi00800a033.
- [68] L. Wang and Y. Li, "Controlled Synthesis and Luminescence of Lanthanide Doped NaYF 4 Nanocrystals," *Chem. Mater.*, vol. 19, no. 4, Feb. 2007, doi: 10.1021/cm061887m.
- [69] R. Wang, H. Liu, M. D. Carducci, T. Jin, C. Zheng, and Z. Zheng, "Lanthanide Coordination with α-Amino Acids under Near Physiological pH Conditions: Polymetallic Complexes Containing the Cubane-Like [Ln 4 (μ 3 -OH) 4]⁸⁺ Cluster Core," *Inorg. Chem.*, vol. 40, no. 12, Jun. 2001, doi: 10.1021/ic001469y.
- [70] C. KREMER, J. TORRES, S. DOMINGUEZ, and A. MEDEROS, "Structure and thermodynamic stability of lanthanide complexes with amino acids and peptides," *Coord. Chem. Rev.*, vol. 249, no. 5–6, Mar. 2005, doi: 10.1016/j.ccr.2004.07.004.
- [71] Z. Zheng, "Lanthanides: Amino Acid Compounds," in *Encyclopedia of Inorganic and Bioinorganic Chemistry*, Chichester, UK: John Wiley & Sons, Ltd, 2012.
- [72] S. J. Shukla et al., "Identification of Pregnane X Receptor Ligands Using Time-

Resolved Fluorescence Resonance Energy Transfer and Quantitative High-Throughput Screening," *Assay Drug Dev. Technol.*, vol. 7, no. 2, Apr. 2009, doi: 10.1089/adt.2009.193.

- [73] Z. Li and Y. Zhang, "Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission," *Angew. Chemie*, vol. 118, no. 46, Nov. 2006, doi: 10.1002/ange.200602975.
- [74] H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, "Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells," *Chem. - A Eur. J.*, vol. 15, no. 14, Mar. 2009, doi: 10.1002/chem.200802261.
- [75] G.-S. Yi and G.-M. Chow, "Water-Soluble NaYF 4 :Yb,Er(Tm)/NaYF 4 /Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence," *Chem. Mater.*, vol. 19, no. 3, Feb. 2007, doi: 10.1021/cm062447y.
- [76] Z. Chen *et al.*, "Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels," *J. Am. Chem. Soc.*, vol. 130, no. 10, Mar. 2008, doi: 10.1021/ja076151k.
- [77] L. Wang *et al.*, "Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles," *Angew. Chemie Int. Ed.*, vol. 44, no. 37, Sep. 2005, doi: 10.1002/anie.200501907.
- [78] H. Hu *et al.*, "Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels," *Chem. Mater.*, vol. 20, no. 22, Nov. 2008, doi: 10.1021/cm801215t.
- [79] D. CHATTERJEE, A. RUFAIHAH, and Y. ZHANG, "Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals," *Biomaterials*, vol. 29, no. 7, Mar. 2008, doi: 10.1016/j.biomaterials.2007.10.051.
- [80] F. Wang and X. Liu, "Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF 4 Nanoparticles," J. Am. Chem. Soc., vol. 130, no. 17, Apr. 2008, doi: 10.1021/ja800868a.
- [81] L.-Q. Xiong, Z.-G. Chen, M.-X. Yu, F.-Y. Li, C. Liu, and C.-H. Huang, "Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors," *Biomaterials*, vol. 30, no. 29, Oct. 2009, doi:

10.1016/j.biomaterials.2009.06.015.

- [82] M. Yu *et al.*, "Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors," *Anal. Chem.*, vol. 81, no. 3, Feb. 2009, doi: 10.1021/ac802072d.
- [83] Z. Li, Y. Zhang, and S. Jiang, "Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles," *Adv. Mater.*, vol. 20, no. 24, Dec. 2008, doi: 10.1002/adma.200801056.
- [84] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, "High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm³⁺ and Yb³⁺ Doped Fluoride Nanophosphors," *Nano Lett.*, vol. 8, no. 11, Nov. 2008, doi: 10.1021/nl802223f.
- [85] Z. S. Abdullahe, B. F. Abbas, A. S. ahmed, L. F. Mohammed, H. K. Shaaban, and W. M. Khamis, "Synthesis, Characterization and Photo Degradation Studies of New Mixed Ligand Transition Metal Complexes of Mefenamic Acid and Glutamine," *Res. J. Pharm. Technol.*, May 2021, doi: 10.52711/0974-360X.2021.00453.
- [86] B. Barja, R. Baggio, R. Calvo, M. T. Garland, M. Perec, and A. Rizzi, "Gadolinium(III) and europium(III) l-glutamates: Synthesis and characterization," *Inorganica Chim. Acta*, vol. 359, no. 12, Sep. 2006, doi: 10.1016/j.ica.2006.04.046.
- [87] I. Csoeregh, P. Kierkegaard, J. Legendziewicz, and E. and Huskowska, "Crystal structure of holmium aspartate chloride hydrate Ho(L-Asp)Cl2·6H2O," *Acta Chem. Scand.*, vol. 43, no. 7, pp. 636–640, 1989.
- [88] C. Leyva-Porras *et al.*, "Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries," *Polymers (Basel).*, vol. 12, no. 1, Dec. 2019, doi: 10.3390/polym12010005.
- [89] C. H. Spink, "Differential Scanning Calorimetry," 2008.
- [90] A. W. Coats and J. P. Redfern, "Thermogravimetric analysis. A review," Analyst, vol. 88, no. 1053, 1963, doi: 10.1039/an9638800906.
- [91] N. Saadatkhah *et al.*, "Experimental methods in chemical engineering: Thermogravimetric analysis—TGA," *Can. J. Chem. Eng.*, vol. 98, no. 1, Jan. 2020,

doi: 10.1002/cjce.23673.

- [92] H. E. O'Neal and N. W. Gregory, "Vacuum Adiabatic Heat Capacity Calorimeter," *Rev. Sci. Instrum.*, vol. 30, no. 6, Jun. 1959, doi: 10.1063/1.1716647.
- [93] Y. Ogata, K. Kobayashi, T. Matsuo, and H. Suga, "An adiabatic low-temperature calorimeter for small samples," J. Phys. E., vol. 17, no. 11, Nov. 1984, doi: 10.1088/0022-3735/17/11/030.
- [94] N. N. Smirnova, A. V. Markin, Y. S. Samosudova, G. M. Ignat'eva, and A. M. Muzafarov, "Thermodynamics of a seventh generation carbosilane dendrimer with phenylic substituent on the initial branching center and terminal butyl groups," Α. vol. 5. Russ. J. Phys. Chem. 84. no. Jan. 2010, doi: 10.1134/S0036024410050134.
- [95] Rigaku and Yarnton, "CrysAlis PRO," Oxfordshire, vol. England, 2015.
- [96] Madison and Wisconsin, SADABS // Bruker AXS Inc. USA, 2004.
- [97] Sheldrick G. M., "A short history of SHELX. // Acta Cryst. A.," vol. 64, no. № 1, pp. 112–122, 2008.
- [98] A. W. Hakin, J. Lian Liu, K. Erickson, and J.-V. Munoz, "Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa," *J. Chem. Thermodyn.*, vol. 36, no. 9, Sep. 2004, doi: 10.1016/j.jct.2004.02.004.
- [99] J. Lu and R. Wang, "Lanthanides: Carboxylates," in *Encyclopedia of Inorganic and Bioinorganic Chemistry*, Chichester, UK: John Wiley & Sons, Ltd, 2012.
- [100] V. N. Serezhkin, Yu. N. Mikhailov, and and Yu. A. Buslaev, "The Method of Intersecting Spheres for Determination of Coordination Numbers of Atoms in Crystal Structures," *Russ. J. Inorg. Chem. Samara State Univ. Samara, Russ.*, vol. 42, pp. 1871–1910, 1997.
- [101]L. J. Farrugia, "WinGX suite for small-molecule single-crystal crystallography," J. Appl. Crystallogr., vol. 32, no. 4, Aug. 1999, doi: 10.1107/S0021889899006020.
- [102]G. M. Sheldrick, "Crystal structure refinement with SHELXL," Acta Crystallogr. Sect. C Struct. Chem., vol. 71, no. 1, Jan. 2015, doi: 10.1107/S2053229614024218.

- [103]G. R. Choppin, "Structure and thermodynamics of lanthanide and actinide complexes in solution," *Pure Appl. Chem.*, vol. 27, no. 1–2, Jan. 1971, doi: 10.1351/pac197127010023.
- [104] C. H. Evans, *Biochemistry of the Lanthanides*, vol. 8. Springer Science & Business Media, 2013.
- [105] O. C. Gagné, "Bond-length distributions for ions bonded to oxygen: results for the lanthanides and actinides and discussion of the *f* -block contraction," *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.*, vol. 74, no. 1, Feb. 2018, doi: 10.1107/S2052520617017425.
- [106] M. Kitajima, "Defects in crystals studied by Raman scattering," Crit. Rev. Solid State Mater. Sci., vol. 22, no. 4, Dec. 1997, doi: 10.1080/10408439708241263.
- [107] D. J. Bacon, D. M. Barnett, and R. O. Scattergood, "Anisotropic continuum theory of lattice defects," *Prog. Mater. Sci.*, vol. 23, Jan. 1980, doi: 10.1016/0079-6425(80)90007-9.
- [108] M. J. Whelan and P. B. Hirsch, "Electron diffraction from crystals containing stacking faults: I," *Philos. Mag.*, vol. 2, no. 21, Sep. 1957, doi: 10.1080/14786435708242742.
- [109] R. Parameshwaran, A. Sarı, N. Jalaiah, and R. Karunakaran, "Applications of Thermal Analysis to the Study of Phase-Change Materials," 2018.
- [110]F. Biedermann and H.-J. Schneider, "Experimental Binding Energies in Supramolecular Complexes," *Chem. Rev.*, vol. 116, no. 9, May 2016, doi: 10.1021/acs.chemrev.5b00583.
- [111]A. C. Legon and D. J. Millen, "Angular geometries and other properties of hydrogen-bonded dimers: a simple electrostatic interpretation of the success of the electron-pair model," *Chem. Soc. Rev.*, vol. 16, 1987, doi: 10.1039/cs9871600467.
- [112] F. Zocchi, "Accurate bond valence parameters for lanthanide–oxygen bonds," J. Mol. Struct. THEOCHEM, vol. 805, no. 1–3, Mar. 2007, doi: 10.1016/j.theochem.2006.10.025.
- [113] Westrum EF, McCullough JP, and Furukawa GT, *Adiabatic low-temperature calorimetry*. Chapter 5: Exp Thermodyn 1, 1968.

- [114] V. N. Serezhkin and A. V. Savchenkov, "Application of the Method of Molecular Voronoi–Dirichlet Polyhedra for Analysis of Noncovalent Interactions in Crystal Structures of Flufenamic Acid—The Current Record-Holder of the Number of Structurally Studied Polymorphs," *Cryst. Growth Des.*, vol. 15, no. 6, Jun. 2015, doi: 10.1021/acs.cgd.5b00326.
- [115] V. N. Serezhkin and L. B. Serezhkina, "New criterion for conformational polymorphism," *Crystallogr. Reports*, vol. 57, no. 1, Jan. 2012, doi: 10.1134/S1063774511030291.
- [116] R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, "Low-temperature heat capacity of 1-bromoperfluorooctane," *J. Chem. Thermodyn.*, vol. 29, no. 6, Jun. 1997, doi: 10.1006/jcht.1996.0173.
- [117] A. V. Knyazev, A. K. Alahmad, N. V. Somov, S. S. Knyazeva, and A. V. Markin, "Structural Study of Polymorphism in [La(Gly)3·2H2O](ClO4)3," J. Chem. *Crystallogr.*, vol. 51, no. 4, Dec. 2021, doi: 10.1007/s10870-020-00871-0.
- [118]L. Bei-Ping *et al.*, "Heat Capacities and Thermodynamic Properties of Lanthanum/Holmium Perchlorate Complexes with Glycine," *Chinese J. Chem.*, vol. 21, no. 4, Aug. 2010, doi: 10.1002/cjoc.20030210409.
- [119] M.W. Chase, *NIST-JANAF thermochemical tables*, Fourth edition. Monograph 9: J. Phys. Chem. Ref. Data, 1998.
- [120] J.D. Cox, D.D. Wagman, and V.A. Medvedev, *CODATA Key Values for Thermodynamics*. New York: Hemisphere Publishing, 1984.
- [121]B. V. Lebedev, "Application of precise calorimetry in study of polymers and polymerization processes," *Thermochim. Acta*, vol. 297, no. 1–2, Aug. 1997, doi: 10.1016/S0040-6031(97)00066-X.
- [122] R. C. Clark, J. S. Reid. "The analytical calculation of absorption in multifaceted crystals" Acta Cryst. 1995. V. 51. Iss. 6. P. 887-897. DOI: 10.1107/S0108767395007367.

4. Приложение

4.1 Кристаллографические данные и параметры уточнения структуры для [Ho(Gly)3·2H₂O](ClO₄)₃

Атом	X	У	Z	Заселенность	Ueq, Ų
C1	0,9969(4)	0,6536(3)	0,3016(3)	1	0,0251(6)
C2	0,9486(4)	0,7530(4)	0,1772(3)	1	0,0361(8)
C3	0,4401(4)	0,5394(4)	0,7053(3)	1	0,0293(7)
C4	0,4281(5)	0,5751(5)	0,8179(4)	1	0,0402(9)
C5	0,5473(4)	0,2363(3)	0,6128(3)	1	0,0256(6)
C6	0,6110(5)	0,0830(4)	0,6800(4)	1	0,0398(9)
Cl1	0,36043(14)	0,84047(11)	1,02960(9)	1	0,0482(2)
C12	0,15961(15)	0,32960(12)	1,12785(10)	1	0,0510(3)
C13	0,79278(17)	0,02734(11)	0,37500(11)	1	0,0538(3)
H1A	0,765493	0,723096	0,139694	1	0,066
H1B	0,753255	0,869488	0,112784	1	0,066
H1C	0,739334	0,779298	0,236645	1	0,066
H2A	0,976381	0,838673	0,161499	1	0,043
H2B	1,000333	0,712546	0,117655	1	0,043
H2C	0,823936	0,0483	0,628617	1	0,082
H2D	0,803675	-0,020915	0,757203	1	0,082
H2E	0,789995	0,127666	0,709241	1	0,082
НЗА	0,221902	0,689149	0,794576	1	0,082
H3B	0,26769	0,652249	0,916452	1	0,082
H3C	0,229396	0,550309	0,880545	1	0,082
H4A	0,478619	0,494195	0,882098	1	0,048
H4B	0,477532	0,648119	0,80312	1	0,048
H6A	0,560361	0,055466	0,758225	1	0,048
H6B	0,595826	0,028689	0,635233	1	0,048
H7A	0,793(3)	0,641(5)	0,6479(4)	1	0,095(18)
H7B	0,758(8)	0,7525(14)	0,534(4)	1	0,095(18)
H8A	1,007(2)	0,316(5)	0,440(5)	1	0,099(18)
H8B	0,891(5)	0,254(4)	0,432(5)	1	0,099(18)
Ho1	0,73417(2)	0,49661(2)	0,50161(2)	1	0,02259(6)
N1	0,7854(4)	0,7844(4)	0,1654(3)	1	0,0437(8)

Таблица 4.1.1 - Список атомов для C6H19Cl3H0N3O20

N2	0,7735(5)	0.0569(4)	0.6953(4)	1	0.0545(11)
N3	0.2712(5)	0.6213(5)	0.8562(4)	1	0.0548(10)
01	1 1280(3)	0.6360(3)	0.3253(2)	1	0.0418(7)
02	0.0030(3)	0,5966(3)	0,3203(2)	1	0.0354(6)
02	0,9039(3)	0,3900(3)	0,3703(2)	1	0,0334(0)
O3	0,5616(3)	0,5379(3)	0,6491(3)	1	0,0481(7)
O4	0,3282(4)	0,5149(3)	0,6800(2)	1	0,0426(6)
05	0,4095(3)	0,2773(3)	0,6062(3)	1	0,0410(6)
06	0,6374(4)	0,3082(3)	0,5687(3)	1	0,0453(7)
07	0,7906(4)	0,6662(3)	0,5718(3)	1	0,0434(7)
08	0,9170(4)	0,3099(4)	0,4557(4)	1	0,0551(9)
09	0,4145(8)	0,9070(7)	0,9144(5)	1	0,118(2)
O10	0,4692(6)	0,7854(5)	1,1190(5)	1	0,0820(14)
011	0,3076(7)	0,7287(5)	1,0298(5)	1	0,0885(15)
O12	0,2380(6)	0,9389(5)	1,0613(4)	1	0,0797(14)
013	0,0617(13)	0,4398(8)	1,1463(8)	1	0,192(5)
O14	0,2318(9)	0,3544(8)	1,0123(5)	1	0,130(3)
015	0,2597(7)	0,2471(5)	1,2216(4)	1	0,101(2)
O16	0,0768(11)	0,2397(9)	1,1203(9)	1	0,164(3)
O17A	0,874(2)	-0,0199(15)	0,4864(13)	0,501(16)	0,1155(19)
O17B	0,789(3)	-0,0530(17)	0,5030(14)	0,481(16)	0,1155(19)
017C	0,747(2)	-0,0752(15)	0,3570(14)	0,469(13)	0,1155(19)
O18A	0,6394(16)	0,1139(11)	0,3622(10)	0,586(12)	0,1155(19)
O18B	0,871(2)	0,1299(16)	0,3338(14)	0,428(12)	0,1155(19)
O18C	0,752(3)	0,1589(16)	0,3716(15)	0,418(13)	0,1155(19)
O19A	0,870(2)	-0,0570(15)	0,3116(14)	0,481(12)	0,1155(19)
O19B	0,894(2)	0,0590(17)	0,2686(15)	0,394(11)	0,1155(19)
O19C	0,679(4)	-0,039(3)	0,436(3)	0,241(12)	0,1155(19)

Атом	U ₁₁ , Å ²	U_{22} , Å ²	U ₃₃ , Å ²	$U_{12}, Å^2$	U ₁₃ , Å ²	U ₂₃ , Å ²
C1	0,0239(14)	0,0264(14)	0,0229(14)	-0,0075(12)	-0,0015(11)	-0,0051(12)
C2	0,0308(18)	0,045(2)	0,0238(16)	-0,0111(15)	-0,0027(13)	-0,0004(15)
C3	0,0301(16)	0,0310(16)	0,0243(15)	-0,0051(13)	0,0009(12)	-0,0096(13)
C4	0,041(2)	0,049(2)	0,0362(19)	-0,0095(17)	-0,0043(16)	-0,0217(18)
C5	0,0270(15)	0,0231(14)	0,0256(14)	-0,0080(12)	-0,0014(12)	-0,0056(12)
C6	0,036(2)	0,0249(17)	0,049(2)	-0,0038(14)	-0,0065(16)	-0,0033(16)
Cl1	0,0611(7)	0,0433(5)	0,0388(5)	-0,0131(5)	-0,0026(4)	-0,0124(4)
Cl2	0,0574(7)	0,0477(6)	0,0410(5)	-0,0112(5)	-0,0038(5)	-0,0084(4)
C13	0,0767(8)	0,0344(5)	0,0514(6)	-0,0143(5)	-0,0075(5)	-0,0139(4)
Ho1	0,01870(8)	0,02412(9)	0,02322(9)	-0,00833(5)	-0,00063(5)	-0,00405(6)
N1	0,0324(17)	0,054(2)	0,0352(16)	-0,0072(15)	-0,0107(13)	-0,0038(15)
N2	0,041(2)	0,051(2)	0,059(2)	0,0129(17)	-0,0172(18)	-0,0175(19)
N3	0,059(3)	0,057(2)	0,048(2)	-0,011(2)	0,0170(19)	-0,0272(19)
01	0,0263(13)	0,0573(18)	0,0327(13)	-0,0153(12)	-0,0064(10)	0,0004(12)
O2	0,0260(12)	0,0368(13)	0,0348(13)	-0,0123(10)	0,0034(10)	-0,0008(11)
03	0,0365(15)	0,0555(18)	0,0401(15)	-0,0051(13)	0,0103(12)	-0,0118(13)
O4	0,0446(16)	0,0609(18)	0,0305(13)	-0,0246(14)	0,0003(11)	-0,0174(13)
O5	0,0267(13)	0,0400(15)	0,0433(15)	0,0006(11)	-0,0056(11)	-0,0049(12)
O6	0,0524(18)	0,0435(15)	0,0424(15)	-0,0320(14)	-0,0063(13)	-0,0011(12)
07	0,0432(16)	0,0447(16)	0,0510(17)	-0,0153(13)	-0,0040(13)	-0,0224(14)
08	0,0293(15)	0,0532(18)	0,094(3)	-0,0049(13)	0,0001(16)	-0,0427(19)
09	0,129(5)	0,114(4)	0,065(3)	-0,029(4)	0,033(3)	0,007(3)
O10	0,080(3)	0,073(3)	0,091(3)	-0,004(2)	-0,035(3)	-0,026(2)
011	0,119(4)	0,071(3)	0,096(3)	-0,032(3)	-0,021(3)	-0,040(3)
O12	0,083(3)	0,078(3)	0,075(3)	0,009(2)	-0,016(2)	-0,041(2)
013	0,274(12)	0,126(6)	0,150(6)	0,096(7)	-0,096(7)	-0,098(5)
O14	0,152(7)	0,129(5)	0,070(3)	-0,028(5)	0,020(4)	-0,005(3)
O15	0,128(5)	0,083(3)	0,071(3)	0,018(3)	-0,040(3)	-0,026(3)
016	0,156(8)	0,145(7)	0,208(9)	-0,082(6)	-0,030(7)	-0,039(6)
017A	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
O17B	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
O17C	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
O18A	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
O18B	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
018C	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)

Таблица 4.1.2 - Параметры атомного смещения C₆H₁₉Cl₃HoN₃O₂₀

019A	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
O19B	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)
019C	0,144(6)	0,089(3)	0,104(3)	-0,018(3)	-0,010(4)	-0,030(3)

Таблица 4.1.3 -	Межатомные	расстояния для	C6H19Cl3H0N3O20
-----------------	------------	----------------	-----------------

Атомы	Расстояние,	Атомы	Расстояние,	Атомы	Расстояние,
	Å		Å		Å
Cl3 – O18C	1,337(16)	Ho1 – O7	2,462(3)	C5 - O5	1,241(4)
Cl3 – O19A	1,375(15)	Cl1 – O9	1,399(5)	C5 – C6	1,517(5)
Cl3 – O17C	1,377(17)	Cl1 – O11	1,419(5)	019C – 017C	1,19(3)
Cl3 – O18B	1,397(19)	Cl1 – O10	1,420(5)	O19C – O17B	1,33(3)
Cl3 – O19C	1,42(3)	Cl1 – O12	1,432(4)	O19C - O18A	1,51(3)
Cl3 – O17B	1,457(16)	Cl2 - O13	1,341(6)	O18C – O18B	1,15(2)
Cl3 – O18A	1,462(13)	Cl2 - O15	1,415(5)	O18C - O18A	1,31(2)
Cl3 – O19B	1,471(19)	Cl2 - O14	1,419(6)	O19B – O18B	1,23(2)
Cl3 – O17A	1,474(16)	Cl2 - O16	1,430(8)	O19B – O19A	1,23(2)
Ho1 – O2	2,278(2)	C1 – O1	1,243(4)	N3-C4	1,475(6)
Ho1 – O6	2,279(3)	C1 – O2	1,243(4)	C2 – N1	1,482(5)
Ho1 – O3	2,300(3)	C1 - C2	1,515(5)	C6 – N2	1,490(6)
Ho1 ^(I) – O1	2,342(3)	C3 – O3	1,238(5)	O17A – O17B	0,94(2)
$Ho1^{(II)} - O4$	2,376(3)	C3 - O4	1,248(5)	019A – 017C	1,24(2)
$Ho1^{(II)}-O5$	2,379(3)	C3 - C4	1,509(5)		
Ho1 – O8	2,412(3)	C5 - O6	1,238(4)		

Symmetry codes: I) -x+2, -y+1, -z+1; II) -x+1, -y+1, -z+1;

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O17B - Cl3 - O17A	37,2(8)	$O1^{(II)}-Ho1-O8\\$	73,14(13)	O1 - C1 - C2	116,2(3)
O18C - Cl3 - O18B	49,6(10)	$O4^{(I)}-Ho1-O5^{(I)}\\$	73,97(11)	O2 - C1 - C2	118,0(3)
O17C - Cl3 - O19C	50,3(12)	O2 - Ho1 - O8	74,15(12)	O1 - C1 - O2	125,8(3)
O18B - Cl3 - O19B	50,9(9)	$O1^{(II)}-Ho1-O7\\$	74,66(11)	O3 - C3 - C4	115,2(4)
O19A - Cl3 - O19B	51,2(9)	$O2-Ho1-O5^{(\mathrm{I})}$	76,36(10)	O4 - C3 - C4	117,0(3)
O19A - Cl3 - O17C	53,4(9)	O6 - Ho1 - O3	76,40(13)	O3 - C3 - O4	127,9(4)
O19C - Cl3 - O17B	54,9(14)	$O6-Ho1-O4^{(I)}$	77,43(11)	O5 - C5 - C6	116,6(3)
O18C - Cl3 - O18A	55,4(10)	$O3-Ho1-O1^{(II)}$	79,05(11)	O6 - C5 - C6	117,1(3)
O19C - Cl3 - O18A	63,3(12)	$O3-Ho1-O5^{(I)}$	79,49(11)	O6 - C5 - O5	126,2(3)
O18B - Cl3 - O17A	84,7(10)	$O2-Ho1-O4^{(I)}\\$	79,51(10)	Cl3 – O18A – O19C	57,0(14)
O17C - Cl3 - O17B	86,7(10)	$O6-Ho1-O1^{(II)}$	80,09(11)	O18C – O18A – Cl3	57,4(10)
O17C - C13 - O18A	89,9(9)	$O2-Ho1-O1^{(II)}$	102,63(10)	O18C - O18A - O19C	105,4(18)
O19C - Cl3 - O17A	92,2(15)	$O6-Ho1-O5^{(I)}$	122,03(11)	O18C - O18B - Cl3	62,5(14)
O18C - Cl3 - O17A	92,3(10)	$O3-Ho1-O4^{(I)}$	123,84(12)	O19B – O18B – Cl3	67,7(13)
O18C - Cl3 - O19B	92,6(11)	O8 - Ho1 - O7	125,22(11)	O18C - O18B - O19B	117(2)
O17C - C13 - O19B	98,8(11)	$O5^{(I)} - Ho1 - O8$	137,44(13)	017C – 019A – Cl3	63,4(11)
O19A - Cl3 - O18B	99,6(11)	$O4^{(I)} - Ho1 - O7$	138,42(11)	O19B – O19A – Cl3	68,5(11)
O17B - C13 - O18A	99,8(9)	O2 - Ho1 - O3	139,48(12)	O19B - O19A - O17C	122,4(18)
O18B - Cl3 - O18A	100,2(9)	O3 - Ho1 - O8	141,13(13)	O19A – O19B – Cl3	60,4(12)
O19A - Cl3 - O19C	102,2(14)	O6 - Ho1 - O7	141,24(11)	O18B - O19B - Cl3	61,4(12)
O18C - Cl3 - O17B	103,6(9)	$O1^{(II)}-Ho1-O4^{(I)}\\$	141,97(12)	O19A - O19B - O18B	118,2(18)
O19A – Cl3 – O17A	105,8(9)	$O1^{(II)}-Ho1-O5^{(I)}$	143,91(11)	O19C – O17B – Cl3	61,2(15)
O18C - Cl3 - O19C	109,0(15)	O2 - Ho1 - O6	144,11(12)	O17A – O17B – Cl3	72,4(16)
O19A - Cl3 - O17B	110,1(9)	O11 - Cl1 - O10	107,3(3)	O17A - O17B - O19C	134(3)
O19B - Cl3 - O17A	110,7(11)	O9 - Cl1 - O12	108,1(3)	O18A – O18C – Cl3	67,1(11)
O17C - C13 - O17A	114,1(9)	O11 - Cl1 - O12	108,4(3)	O18B – O18C – Cl3	67,9(13)
O18A - Cl3 - O19B	116,4(8)	O10 - C11 - O12	109,2(3)	O18B - O18C - O18A	126,6(19)
O18B - Cl3 - O17B	119,2(11)	O9 - Cl1 - O11	110,1(4)	019A – 017C – Cl3	63,2(12)
O18A - Cl3 - O17A	122,4(8)	O9 - Cl1 - O10	113,6(4)	O19C – O17C – Cl3	66,8(18)
O19A - Cl3 - O18A	129,1(9)	O14 - Cl2 - O16	98,0(6)	019C - 017C - 019A	128(2)
O18C - Cl3 - O19A	143,2(11)	O15 - Cl2 - O16	105,3(5)	N1 - C2 - C1	111,7(3)
O17B - Cl3 - O19B	143,2(11)	O13 - Cl2 - O16	107,8(7)	N3 - C4 - C3	111,7(4)
O18C - Cl3 - O17C	144,8(12)	O15 - Cl2 - O14	112,4(4)	N2 - C6 - C5	109,1(3)
O19C - Cl3 - O19B	148,0(14)	O13 - Cl2 - O15	115,1(4)	$C1-O1-Ho1^{(\mathrm{II})}$	132,7(2)

Таблица 4.1.4 - Валентные углы в структуре C₆H₁₉Cl₃HoN₃O₂₀

O17C - Cl3 - O18B	149,4(10)	O13 - Cl2 - O14	116,0(5)	C1 - O2 - Ho1	177,5(3)
O18B - Cl3 - O19C	158,1(14)	Cl3 – O19C – O18A	59,7(13)	C3 – O3 – Ho1	154,6(3)
O3 – Ho1 – O7	70,34(12)	O17C – O19C – Cl3	63,0(19)	$C3-O4-Ho1^{(I)}\\$	130,8(2)
$O5^{(I)} - Ho1 - O7$	70,93(11)	O17B - O19C - Cl3	63,9(18)	$C5-O5-Ho1^{(I)}\\$	127,6(2)
$O4^{(I)} - Ho1 - O8$	71,04(12)	O17C - O19C - O18A	95(2)	C5 - O6 - Ho1	160,0(3)
O2 - Ho1 - O7	71,22(11)	O17C - O19C - O17B	101(3)	O17B – O17A – Cl3	70,4(16)
O6 - Ho1 - O8	72,54(13)	O17B - O19C - O18A	103(2)		

Symmetry codes: I) -x+1, -y+1, -z+1; II) -x+2, -y+1, -z+1;

4.2 Кристаллографические данные и параметры уточнения структуры для [Sm₂ (Gly)₆·9H₂O](ClO₄)₆, [Eu₂ (Gly)₆ 9H₂O](ClO₄)₆, [Gd₂ (Gly)₆·9H₂O](ClO₄)₆

Атом	x	У	Z	Ueq, Ų
C1	0,3707(2)	0,12741(18)	0,78352(16)	0,0199(4)
C2	0,4798(2)	0,1144(2)	0,84897(18)	0,0224(5)
C3	0,4028(2)	0,34075(19)	0,65272(17)	0,0221(5)
C4	0,4953(3)	0,3894(2)	0,6043(2)	0,0294(6)
C5	0,4906(2)	0,63514(19)	0,92777(18)	0,0229(5)
C6	0,4347(3)	0,6977(2)	0,8677(2)	0,0364(7)
C7	0,1273(2)	0,37891(18)	0,71534(16)	0,0191(4)
C8	0,0244(3)	0,4111(2)	0,66096(19)	0,0265(5)
C9	0,0898(2)	0,16542(19)	0,84015(16)	0,0213(5)
C10	-0,0124(3)	0,1278(2)	0,8851(2)	0,0286(6)
C11	-0,0156(2)	-0,12735(17)	0,58044(15)	0,0171(4)
C12	-0,0101(3)	-0,18629(19)	0,65483(17)	0,0226(5)
Cl1	0,79047(8)	0,53561(6)	0,52343(6)	0,04079(18)
Cl2	0,67348(6)	0,17691(5)	0,37374(4)	0,02771(13)
C13	0,74083(10)	0,25677(8)	0,74410(8)	0,0577(3)
Cl4	-0,27482(8)	-0,10345(6)	0,72477(6)	0,04072(18)
C15	-0,26698(8)	0,03632(7)	1,02696(5)	0,04167(18)
C16	0,05976(8)	0,64799(6)	0,84090(6)	0,03818(16)
H1	0,455(4)	0,112(3)	0,899(3)	0,044(11)
H2	0,548(3)	0,169(3)	0,856(2)	0,034(9)
Н3	0,584(4)	0,401(3)	0,640(3)	0,054(12)
H4	0,487(4)	0,454(3)	0,600(3)	0,042(10)
H5	0,382(4)	0,725(3)	0,898(3)	0,062(14)
H6	0,499(4)	0,751(3)	0,863(3)	0,054(12)

Таблица 4.2.1 - Список атомов для I - С12Н48Сl6N6О45Sm2

H7	-0,026(4)	0,417(3)	0,698(3)	0,044(11)
H8	0,062(4)	0,467(3)	0,645(2)	0,038(10)
H9	-0,097(4)	0,105(3)	0,840(3)	0,043(11)
H10	-0,002(4)	0,072(3)	0,907(3)	0,041(10)
H11	0,020(3)	-0,239(3)	0,641(2)	0,025(8)
H12	-0,086(3)	-0,207(3)	0,662(2)	0,028(9)
H13	0,1880(13)	0,439(4)	0,956(3)	0,107(11)
H14	0,301(4)	0,478(4)	1,0284(14)	0,107(11)
H15	0,5469	0,134398	0,575397	0,112(17)
H16	0,5114	0,108006	0,4829	0,112(17)
H17	0,589401	0,603004	0,7147	0,051(15)
H18	0,573	0,693316	0,6896	0,05
H19	0,757(2)	0,5428(15)	0,788(3)	0,1
H20	0,7349	0,623403	0,8434	0,1
H21	0,589(5)	0,378(3)	0,9320(17)	0,107(11)
H22	0,620(4)	0,373(3)	0,847(2)	0,107(11)
H23	0,2299	0,1905	1,1064	0,1
H24	0,2752	0,235991	1,0427	0,1
H25	0,2561	0,001801	0,558805	0,081(19)
H26	0,306401	0,072	0,5242	0,070(16)
H27	-0,117	0,1047	0,6525	0,063(14)
H28	-0,1339	0,060205	0,567204	0,073(15)
H29	-0,020(4)	0,410(5)	0,8821(6)	0,101(11)
H30	-0,0397(19)	0,4237(6)	0,9706(17)	0,101(11)
H33	0,541903	0,0295	0,771399	0,070(16)
H34	0,4413	-0,0298	0,7938	0,14(3)
H35	0,565(5)	0,019(4)	0,858(4)	0,092(19)
H36	0,4656	0,2719	0,5121	0,055(13)
H37	0,536(5)	0,354(4)	0,493(4)	0,088(18)
H38	0,4016	0,333302	0,475392	0,090(19)
H39	0,3069	0,5828	0,775393	0,054(13)
H40	0,419(5)	0,624(4)	0,747(3)	0,076(16)
H41	0,3105	0,6734	0,7508	0,058(13)
H42	-0,114(4)	0,349(3)	0,559(3)	0,041(11)
H43	-0,0773	0,2677	0,5922	0,073(15)
H44	-0,0143	0,3295	0,5397	0,055(13)
H45	-0,009(4)	0,2624(19)	0,936(3)	0,101(11)
h				
H46	-0,075(3)	0,181(3)	0,979(3)	0,101(11)
-----	--------------	--------------	-------------	------------
H47	0,055(4)	0,216(3)	0,998(3)	0,047(12)
H48	0,0429	-0,0687	0,749	0,072(15)
H49	0,066(4)	-0,153(3)	0,785(3)	0,042(11)
H50	0,1569	-0,1003	0,7431	0,090(18)
N1	0,5081(3)	0,0227(2)	0,81629(19)	0,0329(6)
N2	0,4740(3)	0,3289(2)	0,5148(2)	0,0396(7)
N3	0,3627(3)	0,6381(2)	0,77868(19)	0,0380(6)
N4	-0,0475(2)	0,3351(2)	0,57973(17)	0,0302(5)
N5	-0,0112(3)	0,2063(2)	0,9571(2)	0,0377(6)
N6	0,0719(2)	-0,1215(2)	0,74058(15)	0,0281(5)
01	0,3512(2)	0,21073(14)	0,79365(14)	0,0301(4)
O1W	0,4826(3)	0,1275(2)	0,52668(19)	0,0526(7)
O2	0,30338(19)	0,05643(15)	0,72227(13)	0,0293(4)
O2W	0,7152(4)	0,5715(3)	0,8155(4)	0,1009(15)
03	0,33169(18)	0,25419(14)	0,61678(13)	0,0267(4)
O3W	0,5438(3)	0,6286(2)	0,6908(2)	0,0676(9)
O4	0,4082(2)	0,39163(15)	0,72575(13)	0,0296(4)
O4W	0,0072(3)	0,4132(3)	0,9379(2)	0,0704(9)
05	0,4586(2)	0,54349(14)	0,90149(15)	0,0317(4)
O5W	0,2208(3)	0,2277(3)	1,0795(2)	0,0758(10)
06	0,5636(2)	0,68234(17)	1,00099(15)	0,0437(6)
07	0,19895(19)	0,44032(15)	0,78351(13)	0,0292(4)
08	0,13476(18)	0,29326(13)	0,69242(13)	0,0249(4)
09	0,16617(19)	0,24985(15)	0,87458(13)	0,0285(4)
O10	0,08668(19)	0,10803(14)	0,77108(12)	0,0262(4)
011	0,04017(19)	-0,03567(13)	0,59955(13)	0,0264(4)
O12	-0,07750(19)	-0,17598(14)	0,50432(12)	0,0263(4)
013	0,2441(2)	0,04143(16)	0,53359(15)	0,0305(4)
O14	-0,08000(18)	0,11824(15)	0,60822(14)	0,0286(4)
015	0,5862(3)	0,3984(2)	0,88310(19)	0,0575(8)
016	0,2651(2)	0,4461(2)	0,97524(17)	0,0451(6)
O17	0,7362(4)	0,5989(3)	0,5691(3)	0,0822(11)
O18	0,9232(3)	0,5767(2)	0,5493(2)	0,0584(8)
O19	0,7486(4)	0,5271(4)	0,4284(2)	0,0915(13)
O20	0,7587(3)	0,4391(2)	0,5461(2)	0,0630(8)
O21	0,6334(3)	0,2600(2)	0,3976(2)	0,0628(8)
L	L	I	1	l

O22	0,7904(3)	0,1836(3)	0,4311(2)	0,0690(9)
O23	0,6831(2)	0,17040(18)	0,28311(15)	0,0392(5)
O24	0,5846(3)	0,08566(18)	0,37974(18)	0,0466(6)
O25	0,7378(7)	0,3364(7)	0,7156(10)	0,306(6)
O26	0,8550(4)	0,2399(4)	0,7476(3)	0,1004(14)
O27	0,7393(7)	0,2898(8)	0,8280(7)	0,272(6)
O28	0,6319(5)	0,1763(4)	0,7113(3)	0,1185(18)
O29	-0,1577(3)	-0,1012(3)	0,7817(2)	0,0671(9)
O30	-0,2718(4)	-0,0070(3)	0,7081(3)	0,1030(15)
031	-0,3676(3)	-0,1320(3)	0,7707(3)	0,0775(10)
032	-0,3065(4)	-0,1748(3)	0,6464(2)	0,0930(14)
O33	-0,1427(4)	0,0313(3)	1,0559(3)	0,0838(11)
O34	-0,2649(3)	0,1041(3)	0,9661(2)	0,0663(9)
O35	-0,2997(3)	0,0752(3)	1,10336(19)	0,0683(9)
O36	-0,3574(4)	-0,0559(3)	0,9814(2)	0,0910(14)
O37	-0,0377(3)	0,5544(2)	0,8168(2)	0,0568(7)
O38	0,0080(3)	0,7282(2)	0,8554(2)	0,0582(8)
O39	0,1473(4)	0,6476(3)	0,9211(2)	0,0811(11)
O40	0,1185(3)	0,6613(2)	0,7705(2)	0,0621(8)
Sm1	0,15301(2)	0,13562(2)	0,63765(2)	0,01447(3)
Sm2	0,35283(2)	0,36894(2)	0,86254(2)	0,01812(3)

Таблица 4.2.2 - Параметры атомного смещения для I - С12H48Cl6N6O45Sm2

Атом	U11, Å ²	U_{22} , Å ²	U33, Å ²	U_{12} , Å ²	U13, Å ²	U_{23} , Å ²
C1	0,0233(11)	0,0197(11)	0,0177(11)	0,0093(9)	0,0040(9)	0,0039(8)
C2	0,0212(12)	0,0217(11)	0,0207(12)	0,0064(9)	-0,0001(9)	0,0018(9)
C3	0,0178(11)	0,0230(11)	0,0245(12)	0,0036(9)	0,0059(9)	0,0058(9)
C4	0,0269(14)	0,0257(13)	0,0341(15)	0,0009(11)	0,0138(12)	0,0051(11)
C5	0,0234(12)	0,0203(11)	0,0238(12)	0,0057(9)	0,0035(9)	0,0067(9)
C6	0,0399(17)	0,0248(14)	0,0383(17)	0,0085(13)	-0,0034(14)	0,0112(12)
C7	0,0182(11)	0,0187(10)	0,0204(11)	0,0078(8)	0,0027(9)	0,0029(8)
C8	0,0259(13)	0,0254(13)	0,0259(13)	0,0132(11)	-0,0025(10)	0,0013(10)
C9	0,0224(11)	0,0233(11)	0,0170(11)	0,0047(9)	0,0049(9)	0,0051(9)
C10	0,0288(14)	0,0268(13)	0,0259(13)	-0,0001(11)	0,0112(11)	0,0006(10)
C11	0,0176(10)	0,0164(10)	0,0165(10)	0,0051(8)	0,0029(8)	0,0034(8)
C12	0,0264(13)	0,0207(11)	0,0171(11)	0,0030(10)	0,0022(9)	0,0054(9)

Cl1	0,0325(4)	0,0358(4)	0,0595(5)	0,0147(3)	0,0129(3)	0,0181(4)
C12	0,0296(3)	0,0292(3)	0,0257(3)	0,0126(3)	0,0068(2)	0,0031(2)
C13	0,0482(5)	0,0530(6)	0,0858(8)	0,0241(5)	0,0279(5)	0,0258(6)
Cl4	0,0325(4)	0,0377(4)	0,0459(4)	0,0086(3)	0,0055(3)	-0,0011(3)
C15	0,0388(4)	0,0528(5)	0,0261(3)	0,0032(3)	0,0056(3)	0,0092(3)
Cl6	0,0449(4)	0,0345(4)	0,0391(4)	0,0129(3)	0,0171(3)	0,0084(3)
N1	0,0299(13)	0,0335(13)	0,0330(13)	0,0182(11)	-0,0041(11)	0,0020(10)
N2	0,0511(18)	0,0339(15)	0,0415(16)	0,0110(13)	0,0298(14)	0,0071(12)
N3	0,0340(14)	0,0420(15)	0,0334(14)	0,0084(12)	-0,0025(11)	0,0172(12)
N4	0,0249(12)	0,0354(13)	0,0253(12)	0,0102(10)	-0,0030(10)	0,0024(10)
N5	0,0364(15)	0,0426(15)	0,0311(14)	0,0040(12)	0,0175(12)	-0,0029(12)
N6	0,0313(13)	0,0339(12)	0,0156(10)	0,0080(10)	0,0004(9)	0,0062(9)
01	0,0382(11)	0,0205(9)	0,0358(11)	0,0148(8)	0,0108(9)	0,0058(8)
O1W	0,0498(16)	0,0626(18)	0,0500(16)	0,0159(13)	0,0262(13)	0,0063(13)
O2	0,0294(10)	0,0270(10)	0,0262(10)	0,0157(8)	-0,0068(8)	-0,0042(8)
O2W	0,067(2)	0,094(3)	0,170(5)	0,031(2)	0,063(3)	0,056(3)
O3	0,0253(9)	0,0229(9)	0,0278(10)	-0,0008(7)	0,0109(8)	0,0002(7)
O3W	0,069(2)	0,0467(16)	0,083(2)	0,0170(16)	0,0200(18)	0,0007(16)
O4	0,0332(11)	0,0267(9)	0,0250(10)	0,0019(8)	0,0102(8)	0,0011(8)
O4W	0,077(2)	0,074(2)	0,065(2)	0,0318(19)	0,0172(18)	0,0152(18)
O5	0,0320(11)	0,0177(9)	0,0373(11)	0,0043(8)	-0,0023(9)	0,0032(8)
O5W	0,071(2)	0,127(3)	0,0414(16)	0,049(2)	0,0139(15)	0,0226(18)
O6	0,0568(15)	0,0277(11)	0,0303(11)	0,0091(10)	-0,0145(10)	0,0011(9)
O7	0,0278(10)	0,0249(9)	0,0274(10)	0,0100(8)	-0,0053(8)	-0,0032(8)
08	0,0271(9)	0,0177(8)	0,0306(10)	0,0101(7)	0,0061(8)	0,0026(7)
09	0,0280(10)	0,0255(9)	0,0262(10)	-0,0014(8)	0,0103(8)	-0,0020(7)
O10	0,0312(10)	0,0248(9)	0,0196(9)	0,0036(8)	0,0084(7)	0,0007(7)
011	0,0300(10)	0,0166(8)	0,0273(9)	0,0013(7)	0,0037(8)	0,0038(7)
012	0,0318(10)	0,0241(9)	0,0159(8)	0,0040(8)	-0,0023(7)	0,0038(7)
013	0,0286(10)	0,0288(10)	0,0338(11)	0,0078(8)	0,0110(8)	0,0011(9)
O14	0,0216(9)	0,0313(10)	0,0272(10)	0,0045(8)	0,0022(8)	0,0006(8)
015	0,0338(13)	0,076(2)	0,0501(16)	0,0269(13)	-0,0063(12)	-0,0241(14)
016	0,0352(13)	0,0482(14)	0,0410(13)	0,0080(11)	0,0063(10)	-0,0142(11)
017	0,083(3)	0,075(2)	0,118(3)	0,051(2)	0,049(2)	0,021(2)
O18	0,0361(14)	0,0580(17)	0,078(2)	0,0064(13)	0,0162(14)	0,0167(15)
019	0,084(3)	0,133(4)	0,062(2)	0,046(3)	0,0040(19)	0,035(2)
O20	0,0496(17)	0,0421(15)	0,104(3)	0,0111(13)	0,0271(17)	0,0307(16)

O21	0,096(2)	0,0364(14)	0,074(2)	0,0354(15)	0,0428(18)	0,0052(13)
O22	0,0399(16)	0,108(3)	0,0479(17)	0,0230(17)	-0,0097(13)	0,0104(17)
O23	0,0506(14)	0,0393(12)	0,0294(11)	0,0115(11)	0,0150(10)	0,0084(9)
O24	0,0567(16)	0,0362(12)	0,0498(15)	0,0066(11)	0,0284(13)	0,0087(11)
O25	0,108(5)	0,270(8)	0,617(15)	0,081(5)	0,081(7)	0,350(10)
O26	0,089(3)	0,109(3)	0,133(4)	0,061(3)	0,054(3)	0,021(3)
O27	0,111(5)	0,340(11)	0,282(9)	-0,002(6)	0,093(6)	-0,176(8)
O28	0,104(4)	0,130(4)	0,085(3)	-0,018(3)	0,020(3)	0,014(3)
O29	0,0381(15)	0,080(2)	0,069(2)	0,0220(15)	-0,0046(14)	-0,0103(17)
O30	0,096(3)	0,057(2)	0,147(4)	0,014(2)	0,011(3)	0,045(2)
031	0,057(2)	0,106(3)	0,085(2)	0,035(2)	0,0312(18)	0,030(2)
032	0,074(2)	0,116(3)	0,065(2)	0,037(2)	-0,0064(18)	-0,044(2)
033	0,076(2)	0,110(3)	0,076(2)	0,055(2)	0,0041(19)	0,028(2)
O34	0,0428(15)	0,098(2)	0,0511(17)	0,0073(16)	0,0012(13)	0,0416(17)
035	0,065(2)	0,083(2)	0,0436(16)	-0,0018(17)	0,0244(14)	-0,0031(15)
036	0,112(3)	0,068(2)	0,056(2)	-0,029(2)	0,030(2)	-0,0116(16)
037	0,0513(16)	0,0398(14)	0,075(2)	0,0060(12)	0,0213(15)	0,0055(13)
O38	0,089(2)	0,0443(15)	0,0606(18)	0,0341(15)	0,0406(17)	0,0118(13)
039	0,076(2)	0,083(2)	0,068(2)	0,0133(19)	-0,0102(18)	0,0294(19)
O40	0,0648(19)	0,072(2)	0,071(2)	0,0305(16)	0,0450(17)	0,0232(16)
Sm1	0,01542(6)	0,01237(5)	0,01367(5)	0,00357(4)	0,00128(4)	0,00131(4)
Sm2	0,01864(6)	0,01415(6)	0,01908(6)	0,00493(4)	0,00167(4)	0,00006(4)

Таблица 4.2.3 - Межатомные расстояния для I - С12H48Cl6N6O45Sm2

Атомы	Расстояние, Å	Атомы	Расстояние, Å	Атомы	Расстояние, Å
Sm1-011	2,3492(18)	C12 - H12	0,88(4)	N4 – H42	0,84(4)
Sm1 – O8	2,3588(18)	C12 – H11	0,92(3)	N4 – H43	0,979(3)
Sm1 ^(I) - O12	2,3915(18)	C12 - N6	1,486(3)	N5 – H47	0,85(4)
Sm1 – O3	2,4013(18)	C12 - C11	1,509(3)	N5 - H45	0,890(2)
Sm1 - O10	2,4162(19)	Cl1 – O20	1,422(3)	N5 – H46	0,890(2)
Sm1 – O2	2,5230(19)	Cl1 - O17	1,425(3)	N6 – H49	0,87(4)
Sm1-013	2,544(2)	Cl1 - O18	1,430(3)	N6 – H48	0,900(3)
Sm1-014	2,565(2)	Cl1 – O19	1,436(4)	N6 – H50	0,937(3)
Sm1 – O1	2,813(2)	Cl2 – O21	1,406(3)	C1 – O2	1,243(3)
Sm1 – C1	3,033(2)	Cl2 – O22	1,417(3)	C1-O1	1,250(3)
Sm2-O1	2,3457(19)	Cl2 – O23	1,439(2)	C3 - O4	1,251(3)
Sm2 – O5	2,3720(19)	C12 - O24	1,446(2)	C3 - O3	1,255(3)

Sm2 – O4	2,398(2)	Cl3 – O25	1,263(6)	C5 – O5	1,234(3)
$Sm2^{(II)}-O6$	2,415(2)	Cl3 – O27	1,343(8)	C5-O6	1,246(3)
Sm2 – O9	2,4174(19)	C13 – O26	1,389(4)	C7 – O8	1,246(3)
Sm2 – O7	2,4413(19)	C13 – O28	1,396(5)	C7 – O7	1,255(3)
Sm2-016	2,492(2)	Cl4 – O32	1,397(3)	C9 – O9	1,249(3)
Sm2-015	2,554(3)	Cl4 – O30	1,408(4)	C9 – O10	1,254(3)
C2 – H1	0,90(4)	Cl4 – O31	1,418(3)	C11-O11	1,246(3)
C2 – H2	0,92(4)	Cl4 – O29	1,435(3)	C11 – O12	1,249(3)
C2 - N1	1,473(4)	Cl5 – O36	1,419(3)	O1W – H16	0,870(3)
C2 – C1	1,504(3)	C15 – O35	1,420(3)	O1W – H15	0,913(3)
C4 – H4	0,94(4)	C15 – O33	1,428(4)	O2W – H20	0,753(5)
C4 – H3	1,01(5)	C15 – O34	1,428(3)	O2W – H19	0,851(2)
C4 - N2	1,481(4)	C16 - O40	1,421(3)	O3W – H17	0,769(4)
C4 – C3	1,510(4)	Cl6 – O39	1,426(3)	O3W – H18	0,888(3)
C6 – H6	0,93(5)	C16 – O38	1,428(3)	O4W – H29	0,850(2)
C6 – H5	0,97(5)	Cl6 – O37	1,433(3)	O4W – H30	0,850(2)
C6 – N3	1,471(4)	N1 – H35	0,83(6)	O5W – H23	0,725(4)
C6 - C5	1,519(4)	N1 – H33	0,879(3)	O5W – H24	0,937(3)
C8 – H8	0,89(4)	N1 – H34	0,884(3)	O13 – H25	0,746(2)
C8 – H7	0,92(4)	N2 - H36	0,778(3)	O13 – H26	0,789(2)
C8 – N4	1,476(4)	N2 – H37	0,87(6)	O14 – H27	0,905(2)
C8 – C7	1,505(3)	N2 - H38	0,943(4)	O14 – H28	0,9449(19)
C10-H10	0,92(4)	N3 – H39	0,857(3)	O15 – H21	0,850(2)
C10 – H9	1,01(4)	N3 - H41	0,945(3)	O15 – H22	0,850(2)
C10 - N5	1,472(4)	N3 - H40	0,95(5)	O16 – H13	0,850(2)
C10 – C9	1,516(4)	N4 – H44	0,809(3)	O16 – H14	0,850(2)

Таблица 4.2.4 - Валентные углы в структуре I - С12Н48Сl6N6О45Sm2

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O2 - Sm1 - C1	23,65(6)	C2 - C1 - Sm1	173,86(17)	O17 – Cl1 – O19	110,9(3)
O1 – Sm1 – C1	24,31(6)	C1 - C2 - H1	104(3)	O22 - C12 - O24	107,7(2)
O2 - Sm1 - O1	47,95(6)	N1 - C2 - H2	109(2)	O23 - C12 - O24	108,59(15)
O3 – Sm1 – O1	66,44(7)	C1 - C2 - H2	109(2)	O22 - C12 - O23	109,24(18)
O10 - Sm1 - O1	67,75(6)	N1 - C2 - C1	110,8(2)	O21 - C12 - O23	109,64(17)
O2 - Sm1 - O13	68,28(7)	N1 - C2 - H1	112(3)	O21 - C12 - O24	109,99(18)
O11 – Sm1 – O13	69,41(7)	H1 - C2 - H2	112(3)	O21 - Cl2 - O22	111,6(2)

$O12^{(I)} - Sm1 - O14$	69,75(7)	H3-C4-H4	106(3)	O25 - Cl3 - O27	96,7(8)
O10 - Sm1 - C1	70,26(7)	C3 - C4 - H4	108(2)	O27 - Cl3 - O28	104,0(4)
O10 - Sm1 - O14	70,43(7)	N2 - C4 - H3	109(2)	O27 - Cl3 - O26	107,9(5)
O11 - Sm1 - O14	71,29(7)	C3 - C4 - H3	111(2)	O25 - C13 - O26	110,6(4)
O8 - Sm1 - O14	72,44(7)	N2 - C4 - H4	111(2)	O25 - C13 - O28	115,4(5)
O3 - Sm1 - O13	72,46(7)	N2 - C4 - C3	111,7(2)	O26 - Cl3 - O28	119,1(4)
O10 - Sm1 - O2	74,91(7)	C5-C6-H5	107(3)	O30 - Cl4 - O31	107,0(3)
O3 - Sm1 - C1	75,13(7)	H5-C6-H6	108(4)	O32 - C14 - O31	108,0(3)
O8 - Sm1 - O3	75,81(7)	C5-C6-H6	109(3)	O31 - Cl4 - O29	108,1(2)
$O12^{(I)} - Sm1 - O3$	76,10(7)	N3 - C6 - H5	111(3)	O30 - Cl4 - O29	110,3(2)
O8 - Sm1 - O1	76,21(6)	N3 - C6 - H6	111(3)	O32 - Cl4 - O29	110,5(2)
$O12^{(I)} - Sm1 - O13$	76,37(7)	N3 - C6 - C5	111,9(3)	O32 - C14 - O30	112,7(3)
O11 - Sm1 - O2	77,50(7)	C7 - C8 - H7	105(2)	O34 - C15 - O33	106,7(2)
O8 - Sm1 - O10	77,58(7)	C7 - C8 - H8	106(2)	O36 - C15 - O34	107,3(2)
O11 - Sm1 - O10	78,18(7)	N4 - C8 - H7	109(3)	O35 - C15 - O33	107,6(2)
$O8 - Sm1 - O12^{(I)}$	82,95(7)	N4 - C8 - H8	109(2)	O36 - C15 - O35	110,0(2)
O13 - Sm1 - C1	84,68(7)	N4 - C8 - C7	111,5(2)	O35 - C15 - O34	110,0(2)
O3 - Sm1 - O2	86,86(7)	H7 - C8 - H8	117(3)	O36 - C15 - O33	115,1(3)
$O11 - Sm1 - O12^{(I)}$	96,59(7)	H9 - C10 - H10	106(3)	O40 - C16 - O38	108,60(18)
O11 - Sm1 - C1	99,20(7)	N5 - C10 - H9	109(2)	O39 - Cl6 - O37	108,7(2)
O8 - Sm1 - C1	100,35(7)	C9 - C10 - H10	109(2)	O38 - C16 - O37	109,41(19)
O13 - Sm1 - O1	102,89(7)	C9 – C10 – H9	110(2)	O39 - Cl6 - O38	109,7(2)
O11 - Sm1 - O1	120,58(6)	N5 - C10 - H10	111(2)	O40 - C16 - O37	109,8(2)
O8 - Sm1 - O2	123,60(6)	N5 - C10 - C9	111,1(2)	O40 - C16 - O39	110,7(2)
O13 - Sm1 - O14	123,60(7)	C11 – C12 – H12	107(2)	O4 - C3 - C4	115,3(2)
O3 - Sm1 - O10	131,08(7)	N6-C12-H12	108(2)	O3 - C3 - C4	117,2(2)
O14 - Sm1 - O1	131,83(6)	N6-C12-H11	109(2)	O4 - C3 - O3	127,5(2)
O10 - Sm1 - O13	134,94(7)	C11 – C12 – H11	110(2)	O6-C5-C6	115,8(2)
O3 - Sm1 - O14	135,44(7)	N6-C12-C11	110,8(2)	O5-C5-C6	118,2(2)
O2 - Sm1 - O14	137,03(7)	H11 – C12 – H12	112(3)	O5 - C5 - O6	126,0(3)
$O12^{(I)} - Sm1 - O10$	139,32(7)	H33 - N1 - H34	103,3(3)	O7 - C7 - C8	117,0(2)
$O12^{(I)} - Sm1 - O1$	140,44(6)	C2 - N1 - H35	104(4)	O8 - C7 - C8	119,2(2)
O14 - Sm1 - C1	140,66(7)	H33 – N1 – H35	105(4)	O8 - C7 - O7	123,8(2)
O11 - Sm1 - O8	141,35(7)	C2 – N1 – H33	111,6(3)	O10 - C9 - C10	115,6(2)
O11 - Sm1 - O3	141,81(7)	C2 - N1 - H34	113,5(3)	O9 - C9 - C10	117,1(2)
$O12^{(\mathrm{I})}-Sm1-O2$	144,01(7)	H34 - N1 - H35	119(4)	O9 - C9 - O10	127,3(2)
O8 - Sm1 - O13	145,38(7)	H36 - N2 - H38	105,7(4)	O12 – C11 – C12	116,0(2)

$O12^{(I)} - Sm1 - C1$	149,19(7)	H37 - N2 - H38	107(4)	O11 - C11 - C12	118,2(2)
O4 - Sm2 - O15	68,96(9)	C4 - N2 - H37	108(4)	O11 - C11 - O12	125,8(2)
O9 - Sm2 - O16	69,81(8)	H36 - N2 - H37	108(4)	C1 - O1 - Sm1	87,73(16)
O5 - Sm2 - O15	70,23(9)	C4 - N2 - H38	110,3(3)	Sm2 - O1 - Sm1	110,57(7)
$O6^{(\rm II)}-Sm2-O15$	71,42(11)	C4 - N2 - H36	116,7(3)	C1 - O1 - Sm2	160,36(19)
O5-Sm2-O16	71,65(9)	H39 – N3 – H41	98,8(3)	Sm1 - O13 - H25	100,86(18)
O7 - Sm2 - O16	72,27(8)	C6 - N3 - H40	108(3)	H25 - O13 - H26	109,7(3)
O1 - Sm2 - O9	73,40(7)	H39 - N3 - H40	108(3)	Sm1 - O13 - H26	116,97(18)
O1 - Sm2 - O4	73,94(7)	C6 - N3 - H41	108,4(3)	H27 - O14 - H28	93,77(18)
$O6^{(II)}-Sm2-O16$	75,53(10)	H40 - N3 - H41	115(3)	Sm1 - O14 - H28	115,36(15)
O4-Sm2-O7	75,63(8)	C6 – N3 – H39	118,5(3)	Sm1 - O14 - H27	118,11(15)
O5-Sm2-O7	77,56(7)	H42 - N4 - H43	103(3)	Sm2-O15-H21	88(4)
O1 - Sm2 - O15	79,95(8)	H43 - N4 - H44	106,6(3)	H21 - O15 - H22	117,1(4)
$O6^{(II)}-Sm2-O9\\$	80,27(8)	H42 - N4 - H44	107(3)	Sm2-O15-H22	126(3)
O9 - Sm2 - O7	81,24(7)	C8 - N4 - H42	108(3)	Sm2 - O16 - H13	113(3)
O5-Sm2-O4	81,28(7)	C8 - N4 - H43	113,0(2)	H13 - O16 - H14	117,0(4)
$O1-Sm2-O6^{\rm (II)}$	84,11(8)	C8 - N4 - H44	117,4(3)	Sm2 - O16 - H14	130(3)
$O5-Sm2-O6^{\rm (II)}$	99,93(7)	C10 - N5 - H46	107(3)	C1 - O2 - Sm1	101,84(15)
O1 - Sm2 - O7	116,38(7)	C10 - N5 - H47	107(3)	H15 - O1W - H16	102,0(3)
O16 - Sm2 - O15	123,16(8)	H46 - N5 - H47	107(4)	C3 - O3 - Sm1	138,52(17)
O4-Sm2-O9	125,28(7)	C10 - N5 - H45	109(3)	H19 - O2W - H20	129,3(9)
O7 - Sm2 - O15	134,79(10)	H45 - N5 - H47	109(4)	C3 - O4 - Sm2	139,68(18)
$O4-Sm2-O6^{\rm (II)}$	137,27(9)	H45 - N5 - H46	117,2(4)	H17 – O3W – H18	118,0(4)
O5-Sm2-O9	140,07(7)	C12 - N6 - H48	106,0(2)	C5 - O5 - Sm2	165,8(2)
O1 - Sm2 - O16	140,28(9)	H49 - N6 - H50	106(3)	H29-O4W-H30	117,0(4)
O4 - Sm2 - O16	141,53(9)	H48 - N6 - H49	108(3)	$C5-O6-Sm2^{\rm (II)}$	132,92(19)
O9 - Sm2 - O15	142,75(10)	C12 - N6 - H49	110(3)	H23-O5W-H24	110,8(4)
O1 - Sm2 - O5	146,53(8)	H48 - N6 - H50	110,9(3)	C7 - O7 - Sm2	110,74(16)
$O6^{(II)}-Sm2-O7\\$	146,79(9)	C12 - N6 - H50	115,1(2)	C7 - O8 - Sm1	174,98(18)
O2 - C1 - Sm1	54,51(13)	O18 - Cl1 - O19	107,9(2)	C9 - O9 - Sm2	143,39(18)
O1 - C1 - Sm1	67,95(15)	O20 - C11 - O18	108,53(19)	C9 - O10 - Sm1	133,55(17)
O1 - C1 - C2	117,7(2)	O20 - C11 - O17	109,6(2)	C11 - O11 - Sm1	177,63(19)
O2 - C1 - C2	119,9(2)	O20 - C11 - O19	109,9(3)	$C11 - O12 - Sm1^{(I)}$	135,71(16)
O2 - C1 - O1	122,4(2)	O17 - Cl1 - O18	110,1(2)		
~			•	•	-

Атомы	D – H, Å	H A, Å	D ··· A, Å	D – H … A, °
O13 – H26 … O1W	0,789(2)	1,967(3)	2,732(4)	163,22(19)
O13 – H26 … O1W	0,789(2)	1,967(3)	2,732(4)	163,22(19)
$O16 - H14 \cdots O15^{(I)}$	0,850(2)	2,01(3)	2,791(4)	152(5)
O15 – H21 ···· O16 ^(I)	0,850(2)	2,63(5)	2,791(4)	92(4)
$O16 - H14 \cdots O15^{(I)}$	0,850(2)	2,01(3)	2,791(4)	152(5)
O15 – H21 ···· O16 ^(I)	0,850(2)	2,63(5)	2,791(4)	92(4)
O16 – H13 … O4W	0,850(2)	1,970(14)	2,802(4)	166(5)
O16 – H13 … O4W	0,850(2)	1,970(14)	2,802(4)	166(5)
O3W – H17 … O2W	0,769(4)	2,070(5)	2,806(6)	160,1(3)
O3W – H17 … O2W	0,769(4)	2,070(5)	2,806(6)	160,1(3)
O15 – H22 ··· O27	0,850(2)	2,07(2)	2,824(8)	148(4)
O15 – H22 ··· O27	0,850(2)	2,07(2)	2,824(8)	148(4)
O13 – H25 ··· O2	0,746(2)	2,469(2)	2,844(3)	112,92(16)
O13 – H25 ··· O2	0,746(2)	2,469(2)	2,844(3)	112,92(16)
O14 – H28 ···· O13 ^(II)	0,9449(19)	1,936(2)	2,869(3)	168,77(15)
$O14 - H28 \cdots O13^{(II)}$	0,9449(19)	1,936(2)	2,869(3)	168,77(15)
O1W – H16 … O24	0,870(3)	2,008(2)	2,871(4)	171,0(2)
O1W – H16 … O24	0,870(3)	2,008(2)	2,871(4)	171,0(2)
N2 – H36 … O1W	0,778(3)	2,128(3)	2,891(4)	167,0(3)
N2 – H36 … O1W	0,778(3)	2,128(3)	2,891(4)	167,0(3)
N3 – H41 ··· O40	0,945(3)	2,270(3)	2,898(4)	123,3(2)
N3 – H41 … O40	0,945(3)	2,270(3)	2,898(4)	123,3(2)
O1W – H15 ··· O28	0,913(3)	2,071(5)	2,907(6)	151,8(2)
O1W – H15 … O28	0,913(3)	2,071(5)	2,907(6)	151,8(2)
$O2W-H20\cdotsO5W^{(I)}$	0,753(5)	2,156(4)	2,908(7)	176,4(3)
$O2W-H20\cdotsO5W^{(I)}$	0,753(5)	2,156(4)	2,908(7)	176,4(3)
$O2W - H19 \cdots O37^{(III)}$	0,851(2)	2,27(2)	2,920(5)	133(3)
$O2W - H19 \cdots O37^{(III)}$	0,851(2)	2,27(2)	2,920(5)	133(3)
N5 – H45 … O4W	0,890(2)	2,078(18)	2,922(5)	158(4)
N5 – H45 … O4W	0,890(2)	2,078(18)	2,922(5)	158(4)
N6 – H48 … O29	0,900(3)	2,419(3)	2,937(4)	116,79(19)
N6 – H48 … O29	0,900(3)	2,419(3)	2,937(4)	116,79(19)
$N4 - H44 \cdots O18^{(IV)}$	0,809(3)	2,271(3)	2,938(4)	140,2(2)
$N4 - H44 \cdots O18^{(IV)}$	0,809(3)	2,271(3)	2,938(4)	140,2(2)
N5 – H46 … O34	0,890(2)	2,13(2)	2,946(4)	153(4)

Таблица 4.2.5 - Параметры водородных связей для I - С₁₂Н₄₈Сl₆N₆O₄₅Sm₂

N3 – H39 … O7	0,857(3)	2,100(2)	2,946(4)	168,77(19)
N5 – H46 … O34	0,890(2)	2,13(2)	2,946(4)	153(4)
N3 – H39 … O7	0,857(3)	2,100(2)	2,946(4)	168,77(19)
$O14 - H27 \cdots O26^{(V)}$	0,905(2)	2,404(4)	2,955(5)	119,33(17)
$O14 - H27 \cdots O26^{(V)}$	0,905(2)	2,404(4)	2,955(5)	119,33(17)
O4W – H29 … O37	0,850(2)	2,42(5)	2,973(5)	123(5)
O4W – H29 … O37	0,850(2)	2,42(5)	2,973(5)	123(5)
$N2 - H38 \cdots O17^{(IV)}$	0,943(4)	2,097(3)	2,975(5)	154,4(2)
$N2 - H38 \cdots O17^{(IV)}$	0,943(4)	2,097(3)	2,975(5)	154,4(2)
$N1 - H34 \cdots O23^{(VI)}$	0,884(3)	2,140(2)	2,994(4)	162,18(19)
$N1 - H34 \cdots O23^{(VI)}$	0,884(3)	2,140(2)	2,994(4)	162,18(19)
$N2 - H36 \cdots O32^{(II)}$	0,778(3)	2,684(3)	3,013(5)	107,7(3)
$N2 - H36 \cdots O32^{(II)}$	0,778(3)	2,684(3)	3,013(5)	107,7(3)
$N6-H50$ ···· $O35^{(VII)}$	0,937(3)	2,516(3)	3,024(4)	114,27(16)
$N6-H50$ ···· $O35^{(VII)}$	0,937(3)	2,516(3)	3,024(4)	114,27(16)
$N1 - H34 \cdots O35^{(VII)}$	0,884(3)	2,555(3)	3,046(4)	115,9(2)
$N1 - H34 \cdots O35^{(VII)}$	0,884(3)	2,555(3)	3,046(4)	115,9(2)
$O5W - H23 \cdots O29^{(VII)}$	0,725(4)	2,443(4)	3,062(5)	144,4(3)
$O5W - H23 \cdots O29^{(VII)}$	0,725(4)	2,443(4)	3,062(5)	144,4(3)
$N1 - H33 \cdots O24^{(VI)}$	0,879(3)	2,574(3)	3,066(4)	116,29(19)
$N1 - H33 \cdots O24^{(VI)}$	0,879(3)	2,574(3)	3,066(4)	116,29(19)
N4 – H43 … O14	0,979(3)	2,143(2)	3,077(3)	158,88(17)
N4 – H43 … O14	0,979(3)	2,143(2)	3,077(3)	158,88(17)
$O5W-H24$ ···· $O6^{(I)}$	0,937(3)	2,209(3)	3,082(5)	154,7(3)
$O5W - H24 \cdots O6^{(I)}$	0,937(3)	2,209(3)	3,082(5)	154,7(3)
$O3W - H18 \cdots O32^{(VIII)}$	0,888(3)	2,281(5)	3,100(6)	153,3(2)
$O4W - H29 \cdots O27^{(V)}$	0,850(2)	2,72(5)	3,100(8)	109(4)
$O3W - H18 \cdots O32^{(VIII)}$	0,888(3)	2,281(5)	3,100(6)	153,3(2)
$O4W - H29 \cdots O27^{(V)}$	0,850(2)	2,72(5)	3,100(8)	109(4)
$N3 - H41 \cdots O23^{(IV)}$	0,945(3)	2,311(2)	3,106(4)	141,28(19)
$N3 - H41 \cdots O23^{(IV)}$	0,945(3)	2,311(2)	3,106(4)	141,28(19)
N1 – H33 … O28	0,879(3)	2,452(5)	3,114(6)	132,5(2)
N1 – H33 … O28	0,879(3)	2,452(5)	3,114(6)	132,5(2)
C2 – H2 … O28	0,92(4)	2,65(4)	3,130(6)	113(3)
C2 – H2 ··· O28	0,92(4)	2,65(4)	3,130(6)	113(3)
N6 – H48 ··· O10	0,900(3)	2,3702(19)	3,163(3)	146,92(18)
N6 – H48 ··· O10	0,900(3)	2,3702(19)	3,163(3)	146,92(18)

$N6 - H50 \cdots O23^{(VI)}$	0,937(3)	2,397(3)	3,166(4)	139,23(17)
$N6 - H50 \cdots O23^{(VI)}$	0,937(3)	2,397(3)	3,166(4)	139,23(17)
$C10 - H9 \cdots O26^{(V)}$	1,01(4)	2,62(4)	3,178(6)	115(3)
$C10 - H9 \cdots O26^{(V)}$	1,01(4)	2,62(4)	3,178(6)	115(3)
$O4W - H30 \cdots O39^{(IX)}$	0,850(2)	2,472(15)	3,190(6)	143(2)
$O4W-H30\cdotsO39^{(IX)}$	0,850(2)	2,472(15)	3,190(6)	143(2)
$O13-H25\cdotsO24^{(VI)}$	0,746(2)	2,553(3)	3,196(4)	145,54(17)
$O13-H25\cdotsO24^{(VI)}$	0,746(2)	2,553(3)	3,196(4)	145,54(17)
$O13 - H25 \cdots O22^{(VI)}$	0,746(2)	2,556(4)	3,220(4)	149,37(17)
$O13 - H25 \cdots O22^{(VI)}$	0,746(2)	2,556(4)	3,220(4)	149,37(17)
$O5W - H23 \cdots O31^{(VII)}$	0,725(4)	2,572(4)	3,222(5)	150,3(3)
$O5W - H23 \cdots O31^{(VII)}$	0,725(4)	2,572(4)	3,222(5)	150,3(3)
N6 – H50 ···· O2	0,937(3)	2,508(2)	3,239(3)	134,92(17)
N6 – H50 … O2	0,937(3)	2,508(2)	3,239(3)	134,92(17)
$O3W-H18\cdotsO31^{(VIII)}$	0,888(3)	2,467(4)	3,248(5)	146,9(2)
$O3W-H18\cdotsO31^{(VIII)}$	0,888(3)	2,467(4)	3,248(5)	146,9(2)
O14 – H27 ··· O30	0,905(2)	2,443(4)	3,256(5)	149,74(17)
O14 – H27 ··· O30	0,905(2)	2,443(4)	3,256(5)	149,74(17)
C4 – H3 … O25	1,01(5)	2,36(4)	3,267(7)	149(3)
C4 – H3 … O25	1,01(5)	2,36(4)	3,267(7)	149(3)
C8 – H7 ··· O37	0,92(4)	2,56(4)	3,294(4)	136(3)
C8 – H7 ··· O37	0,92(4)	2,56(4)	3,294(4)	136(3)
$C10 - H10 \cdots O33^{(VII)}$	0,92(4)	2,51(4)	3,309(5)	146(3)
$C10 - H10 \cdots O33^{(VII)}$	0,92(4)	2,51(4)	3,309(5)	146(3)
$C4 - H4 \cdots O3W$	0,94(4)	2,53(4)	3,322(4)	142(3)
$C4 - H4 \cdots O3W$	0,94(4)	2,53(4)	3,322(4)	142(3)
$C12 - H11 \cdots O18^{(X)}$	0,92(3)	2,63(3)	3,345(4)	136(3)
$C12 - H11 \cdots O18^{(X)}$	0,92(3)	2,63(3)	3,345(4)	136(3)
$C2 - H1 \cdots O36^{(VII)}$	0,90(4)	2,49(4)	3,360(5)	164(3)
$C2 - H1 \cdots O36^{(VII)}$	0,90(4)	2,49(4)	3,360(5)	164(3)
C2 – H2 ··· O27	0,92(4)	2,56(4)	3,452(10)	162(3)
C2 – H2 ··· O27	0,92(4)	2,56(4)	3,452(10)	162(3)
C10 – H9 ··· O30	1,01(4)	2,55(4)	3,502(5)	157(3)
C10 – H9 ··· O30	1,01(4)	2,55(4)	3,502(5)	157(3)
O1W – H16 … Cl2	0,870(3)	2,8669(7)	3,604(3)	143,6(2)
O1W – H16 … Cl2	0,870(3)	2,8669(7)	3,604(3)	143,6(2)
$N1 - H34 \cdots Cl2^{(VI)}$	0,884(3)	2,9309(7)	3,634(3)	137,77(19)

$N1-H34\cdotsC12^{(VI)}$	0,884(3)	2,9309(7)	3,634(3)	137,77(19)
$O3W-H18\cdotsCl4^{(VIII)}$	0,888(3)	2,8491(8)	3,709(3)	163,3(2)
$O3W-H18\cdotsCl4^{(VIII)}$	0,888(3)	2,8491(8)	3,709(3)	163,3(2)
$N5 - H46 \cdots Cl5$	0,890(2)	2,892(15)	3,740(3)	160(4)
$N5 - H46 \cdots Cl5$	0,890(2)	2,892(15)	3,740(3)	160(4)

Symmetry codes: I) -x+1, -y+1, -z+2; II) -x, -y, -z+1; III) x+1, y, z; IV) -x+1, -y+1, -z+1; V) x-1, y, z; VI) - x+1, -y, -z+1; VII) -x, -y, -z+2; VIII) x+1, y+1, z; IX) -x, -y+1, -z+2; X) x-1, y-1, z;

Таблица 4.2.6 - Список атомов для II - С12Н48Сl6Eu2N6O45

Атом	x	У	Z	Ueq, Å ²
C1	0,37266(16)	0,12645(13)	0,78201(11)	0,0070(3)
C2	0,48091(17)	0,11243(13)	0,84983(12)	0,0081(3)
C3	0,40078(16)	0,34426(13)	0,64951(12)	0,0073(3)
C4	0,49306(17)	0,39615(13)	0,59936(12)	0,0093(3)
C5	0,48538(16)	0,63777(13)	0,92956(11)	0,0075(3)
C6	0,42608(18)	0,69894(13)	0,86878(12)	0,0107(3)
C7	0,12394(16)	0,37744(13)	0,71634(12)	0,0071(3)
C8	0,01878(17)	0,40791(13)	0,66131(12)	0,0084(3)
C9	0,09139(16)	0,16133(13)	0,84141(11)	0,0074(3)
C10	-0,01184(17)	0,12507(13)	0,88836(12)	0,0094(3)
C11	-0,01705(15)	-0,12924(12)	0,58016(11)	0,0060(3)
C12	-0,01298(17)	-0,18752(13)	0,65662(11)	0,0080(3)
Cl1	0,79874(4)	0,54051(3)	0,52456(3)	0,01038(8)
Cl2	0,67326(4)	0,17324(3)	0,37469(3)	0,00798(7)
Cl3	0,74256(4)	0,25798(3)	0,75339(3)	0,01294(8)
Cl4	-0,27737(4)	-0,10430(3)	0,73032(3)	0,01078(8)
C15	-0,26522(4)	0,04262(3)	1,02842(3)	0,01317(8)
Cl6	0,05262(4)	0,64428(3)	0,84213(3)	0,01134(8)
Eu1	0,15261(2)	0,13582(2)	0,63783(2)	0,00419(3)
Eu2	0,35546(2)	0,36929(2)	0,86065(2)	0,00506(3)
H1	0,454(2)	0,1036(17)	0,9040(16)	0,005(4)
H2	0,556(2)	0,1688(17)	0,8628(15)	0,005(4)
H3	0,576(3)	0,410(2)	0,6344(19)	0,022(7)
H4	0,480(3)	0,464(2)	0,5922(18)	0,019(7)
H5	0,367(2)	0,7209(19)	0,8961(17)	0,012(6)
H6	0,492(3)	0,759(2)	0,8639(19)	0,019(7)
H7	-0,034(2)	0,4190(18)	0,6982(16)	0,006(5)

H8	0,056(3)	0,470(2)	0,6432(19)	0,023(7)
H9	-0,092(2)	0,1036(19)	0,8445(17)	0,012(6)
H10	0,001(3)	0,069(2)	0,914(2)	0,023(7)
H11	0,017(3)	-0,242(2)	0,6449(18)	0,014(6)
H12	-0,092(3)	-0,211(2)	0,6675(17)	0,015(6)
H13	0,195312	0,4386	0,964396	0,016(6)
H14	0,3225	0,4949	1,012901	0,033(8)
H15	0,5381	0,140203	0,5803	0,038(9)
H16	0,515903	0,115705	0,4878	0,029(8)
H17	0,589396	0,603004	0,7147	0,034(8)
H18	0,573	0,693316	0,6896	0,062(12)
H19	0,774776	0,5662	0,801003	0,033(9)
H20	0,7349	0,623405	0,8434	0,053(11)
H21	0,623507	0,3594	0,8726	0,035(9)
H22	0,613503	0,4539	0,850307	0,039(9)
H23	0,2299	0,1905	1,1064	0,060(12)
H24	0,2752	0,235991	1,0427	0,055(11)
H25	0,2561	0,001801	0,558805	0,050(11)
H26	0,306396	0,072	0,5242	0,023(7)
H27	-0,117	0,1047	0,6525	0,037(9)
H28	-0,1339	0,060205	0,567204	0,035(8)
H29	-0,0364	0,4136	0,9787	0,048(10)
H30	-0,010545	0,435987	0,8927	0,057(12)
H31	0,541903	0,0295	0,771399	0,025(7)
H32	0,4413	-0,0298	0,7938	0,027(7)
Н33	0,563(3)	0,009(2)	0,8579(19)	0,019(7)
H34	0,4656	0,2719	0,5121	0,022(7)
H35	0,532(3)	0,357(2)	0,4873(19)	0,022(7)
H36	0,4016	0,333302	0,475389	0,027(7)
H37	0,3105	0,6734	0,7508	0,032(8)
H38	0,3069	0,5828	0,775393	0,027(8)
H39	0,415(3)	0,626(2)	0,745(2)	0,028(8)
H40	-0,125(3)	0,344(2)	0,5583(18)	0,019(7)
H41	-0,0773	0,2677	0,5922	0,021(7)
H42	-0,0143	0,3295	0,5397	0,032(8)
H43	-0,08	0,194	0,975986	0,030(8)
H44	-0,0109	0,2648	0,9256	0,031(8)
h				

H45	0,056(3)	0,218(2)	0,9964(19)	0,019(7)
H46	0,0429	-0,0687	0,749	0,031(8)
H47	0,063(3)	-0,150(2)	0,783(2)	0,020(7)
H48	0,1569	-0,1003	0,7431	0,030(8)
N1	0,51117(14)	0,02082(11)	0,81615(10)	0,0087(3)
N2	0,47406(17)	0,33322(12)	0,51086(11)	0,0123(3)
N3	0,35874(15)	0,63857(12)	0,77744(11)	0,0116(3)
N4	-0,05496(15)	0,32917(12)	0,58037(10)	0,0106(3)
N5	-0,00919(16)	0,20816(12)	0,95723(11)	0,0125(3)
N6	0,06998(15)	-0,12126(12)	0,74223(10)	0,0092(3)
01	0,35500(13)	0,21180(10)	0,79125(9)	0,0099(2)
O1W	0,48591(13)	0,13537(11)	0,53024(9)	0,0144(3)
02	0,30354(13)	0,05434(10)	0,72033(9)	0,0097(2)
O2W	0,70644(13)	0,56719(11)	0,80489(10)	0,0165(3)
O3	0,33121(12)	0,25537(10)	0,61448(9)	0,0093(2)
O3W	0,53853(14)	0,63073(10)	0,68450(10)	0,0152(3)
O4	0,40514(13)	0,39550(10)	0,72275(9)	0,0096(2)
O4W	0,01333(15)	0,41362(12)	0,93922(11)	0,0212(3)
O5	0,46190(13)	0,54511(10)	0,90159(9)	0,0109(2)
O5W	0,23023(14)	0,24013(11)	1,07963(10)	0,0178(3)
O6	0,55444(13)	0,68630(10)	1,00570(9)	0,0112(2)
07	0,19684(13)	0,44015(10)	0,78446(9)	0,0099(2)
08	0,13329(12)	0,29115(9)	0,69407(9)	0,0086(2)
09	0,17019(12)	0,24650(10)	0,87435(9)	0,0104(2)
O10	0,08673(13)	0,10228(9)	0,77195(8)	0,0088(2)
011	0,03611(12)	-0,03544(9)	0,59888(9)	0,0091(2)
O12	-0,07566(12)	-0,17964(10)	0,50307(9)	0,0094(2)
O13	0,24250(13)	0,04250(10)	0,53258(9)	0,0096(2)
O14	-0,08380(12)	0,11593(10)	0,61113(9)	0,0098(2)
O15	0,59112(13)	0,40785(10)	0,87888(9)	0,0106(2)
O16	0,27009(13)	0,43796(11)	0,97565(9)	0,0144(3)
O17	0,74273(15)	0,60356(12)	0,57152(12)	0,0219(3)
O18	0,93476(13)	0,58165(11)	0,55285(10)	0,0159(3)
O19	0,75600(16)	0,53451(14)	0,42935(11)	0,0245(3)
O20	0,76102(14)	0,44044(11)	0,54606(11)	0,0175(3)
O21	0,64554(17)	0,26344(11)	0,40276(11)	0,0217(3)
O22	0,78998(14)	0,17173(13)	0,43207(10)	0,0221(3)

O23	0,68475(13)	0,16918(10)	0,28294(9)	0,0115(2)
O24	0,57352(14)	0,08487(10)	0,37887(9)	0,0151(3)
025	0,73554(17)	0,34160(14)	0,70979(15)	0,0367(5)
O26	0,85731(14)	0,23538(12)	0,75090(10)	0,0184(3)
027	0,74199(15)	0,28315(13)	0,84661(11)	0,0233(3)
O28	0,63436(14)	0,16993(12)	0,71050(10)	0,0188(3)
O29	-0,15924(14)	-0,10547(11)	0,78722(10)	0,0181(3)
O30	-0,27068(15)	-0,00282(11)	0,71823(11)	0,0211(3)
O31	-0,37712(15)	-0,14209(13)	0,77298(12)	0,0248(3)
032	-0,30429(17)	-0,16873(14)	0,64514(11)	0,0283(4)
O33	-0,14051(16)	0,03376(13)	1,05588(11)	0,0239(3)
O34	-0,26351(14)	0,11559(13)	0,96914(10)	0,0209(3)
O35	-0,30199(15)	0,07667(12)	1,10629(10)	0,0198(3)
O36	-0,35575(18)	-0,05205(13)	0,98000(11)	0,0301(4)
O37	-0,04619(14)	0,54704(10)	0,81670(10)	0,0169(3)
O38	-0,00526(15)	0,72330(11)	0,85383(10)	0,0181(3)
O39	0,13910(16)	0,64604(13)	0,92567(11)	0,0250(3)
O40	0,11725(15)	0,65957(12)	0,77284(11)	0,0201(3)

Таблица 4.2.7 - Параметры атомного смещения для II - С12H48Cl6Eu2N6O45

Атом	$U_{11}, Å^2$	U_{22} , Å ²	U ₃₃ , Å ²	$U_{12}, Å^2$	U_{13} , Å ²	U_{23} , Å ²
C1	0,0084(7)	0,0074(7)	0,0059(7)	0,0021(6)	0,0031(6)	0,0017(5)
C2	0,0091(7)	0,0070(7)	0,0068(7)	0,0025(6)	0,0002(6)	0,0002(5)
C3	0,0076(7)	0,0080(7)	0,0064(7)	0,0023(6)	0,0016(6)	0,0026(6)
C4	0,0097(7)	0,0089(7)	0,0082(8)	-0,0002(6)	0,0038(6)	0,0020(6)
C5	0,0074(7)	0,0084(7)	0,0068(7)	0,0014(6)	0,0025(6)	0,0030(6)
C6	0,0141(8)	0,0076(7)	0,0095(8)	0,0039(6)	0,0005(6)	0,0022(6)
C7	0,0070(7)	0,0073(7)	0,0072(7)	0,0022(6)	0,0021(6)	0,0017(6)
C8	0,0091(7)	0,0075(7)	0,0080(7)	0,0042(6)	0,0001(6)	-0,0005(6)
C9	0,0086(7)	0,0081(7)	0,0048(7)	0,0018(6)	0,0014(6)	0,0015(5)
C10	0,0107(8)	0,0078(7)	0,0081(8)	-0,0006(6)	0,0043(6)	0,0002(6)
C11	0,0058(7)	0,0067(7)	0,0055(7)	0,0017(5)	0,0017(5)	0,0011(5)
C12	0,0119(8)	0,0061(7)	0,0039(7)	0,0005(6)	0,0009(6)	0,0011(5)
Cl1	0,00971(17)	0,00935(17)	0,01329(19)	0,00381(14)	0,00314(14)	0,00451(14)
Cl2	0,01017(17)	0,00690(16)	0,00660(17)	0,00293(13)	0,00161(13)	0,00054(13)
C13	0,01209(19)	0,01219(19)	0,0175(2)	0,00544(16)	0,00563(16)	0,00691(16)

Cl4	0,01112(18)	0,00825(17)	0,01133(19)	0,00266(14)	0,00100(14)	-0,00020(14)
C15	0,01268(19)	0,01598(19)	0,00672(18)	-0,00135(15)	0,00137(14)	0,00239(14)
Cl6	0,01280(18)	0,01101(18)	0,01046(19)	0,00320(15)	0,00398(15)	0,00236(14)
Eu1	0,00587(4)	0,00290(4)	0,00291(4)	0,00053(3)	0,00051(3)	0,00028(3)
Eu2	0,00672(4)	0,00338(4)	0,00433(4)	0,00076(3)	0,00124(3)	0,00008(3)
N1	0,0097(6)	0,0081(6)	0,0073(7)	0,0039(5)	-0,0008(5)	0,0003(5)
N2	0,0179(8)	0,0105(7)	0,0111(7)	0,0039(6)	0,0089(6)	0,0033(5)
N3	0,0131(7)	0,0119(7)	0,0094(7)	0,0044(6)	0,0002(6)	0,0041(5)
N4	0,0101(7)	0,0109(7)	0,0084(7)	0,0030(5)	-0,0015(5)	0,0002(5)
N5	0,0122(7)	0,0130(7)	0,0101(7)	-0,0001(6)	0,0058(6)	-0,0015(6)
N6	0,0107(7)	0,0102(7)	0,0046(6)	0,0012(5)	0,0002(5)	0,0014(5)
01	0,0130(6)	0,0067(5)	0,0115(6)	0,0045(5)	0,0040(5)	0,0023(4)
O1W	0,0162(6)	0,0171(6)	0,0113(6)	0,0058(5)	0,0059(5)	0,0024(5)
O2	0,0115(6)	0,0088(6)	0,0066(6)	0,0036(5)	-0,0016(5)	-0,0012(4)
O2W	0,0117(6)	0,0160(7)	0,0203(7)	0,0021(5)	0,0040(5)	0,0026(5)
03	0,0104(6)	0,0068(5)	0,0088(6)	-0,0005(5)	0,0034(5)	0,0005(4)
O3W	0,0191(7)	0,0107(6)	0,0148(7)	0,0039(5)	0,0034(5)	0,0019(5)
O4	0,0130(6)	0,0084(5)	0,0061(6)	0,0018(5)	0,0024(5)	0,0009(4)
O4W	0,0197(7)	0,0211(7)	0,0230(8)	0,0066(6)	0,0053(6)	0,0055(6)
05	0,0132(6)	0,0064(5)	0,0113(6)	0,0024(5)	0,0006(5)	0,0014(4)
O5W	0,0208(7)	0,0209(7)	0,0121(7)	0,0060(6)	0,0045(6)	0,0053(5)
06	0,0149(6)	0,0087(6)	0,0075(6)	0,0027(5)	0,0001(5)	-0,0001(4)
07	0,0119(6)	0,0080(5)	0,0072(6)	0,0026(5)	-0,0011(5)	-0,0009(4)
08	0,0107(6)	0,0059(5)	0,0095(6)	0,0036(4)	0,0020(5)	0,0013(4)
09	0,0103(6)	0,0087(6)	0,0091(6)	-0,0022(5)	0,0040(5)	-0,0010(4)
O10	0,0135(6)	0,0070(5)	0,0046(5)	0,0012(5)	0,0028(4)	0,0002(4)
011	0,0119(6)	0,0050(5)	0,0085(6)	0,0007(4)	0,0015(5)	0,0013(4)
012	0,0124(6)	0,0078(5)	0,0051(6)	0,0016(5)	-0,0012(4)	0,0004(4)
013	0,0114(6)	0,0075(5)	0,0103(6)	0,0020(5)	0,0042(5)	0,0023(4)
014	0,0101(6)	0,0098(6)	0,0076(6)	0,0011(5)	0,0018(5)	-0,0002(4)
015	0,0107(6)	0,0099(6)	0,0109(6)	0,0029(5)	0,0033(5)	0,0007(5)
016	0,0116(6)	0,0157(6)	0,0121(6)	0,0014(5)	0,0028(5)	-0,0056(5)
017	0,0211(7)	0,0185(7)	0,0311(9)	0,0118(6)	0,0112(6)	0,0019(6)
018	0,0087(6)	0,0147(6)	0,0228(7)	0,0023(5)	0,0024(5)	0,0040(5)
019	0,0222(8)	0,0392(9)	0,0142(7)	0,0127(7)	0,0019(6)	0,0114(7)
O20	0,0163(7)	0,0104(6)	0,0271(8)	0,0025(5)	0,0078(6)	0,0086(5)
O21	0,0374(9)	0,0098(6)	0,0247(8)	0,0125(6)	0,0164(7)	0,0016(5)

O22	0,0139(7)	0,0365(9)	0,0134(7)	0,0088(6)	-0,0034(5)	0,0046(6)
O23	0,0158(6)	0,0116(6)	0,0074(6)	0,0029(5)	0,0045(5)	0,0029(4)
O24	0,0194(7)	0,0109(6)	0,0130(6)	-0,0013(5)	0,0085(5)	0,0008(5)
O25	0,0252(9)	0,0316(9)	0,0630(14)	0,0122(8)	0,0124(9)	0,0366(9)
O26	0,0172(7)	0,0229(7)	0,0205(7)	0,0120(6)	0,0087(6)	0,0035(6)
O27	0,0180(7)	0,0258(8)	0,0227(8)	0,0030(6)	0,0087(6)	-0,0062(6)
O28	0,0177(7)	0,0209(7)	0,0131(7)	0,0001(6)	0,0026(5)	0,0022(5)
O29	0,0136(6)	0,0198(7)	0,0171(7)	0,0070(6)	-0,0040(5)	-0,0011(5)
O30	0,0212(7)	0,0103(6)	0,0285(8)	0,0022(6)	0,0013(6)	0,0077(6)
031	0,0204(8)	0,0252(8)	0,0353(9)	0,0072(6)	0,0152(7)	0,0154(7)
O32	0,0290(9)	0,0329(9)	0,0172(8)	0,0160(7)	-0,0050(6)	-0,0141(7)
O33	0,0235(8)	0,0318(9)	0,0214(8)	0,0161(7)	0,0039(6)	0,0106(7)
O34	0,0143(7)	0,0317(8)	0,0171(7)	0,0043(6)	0,0021(5)	0,0170(6)
O35	0,0196(7)	0,0244(8)	0,0107(7)	-0,0006(6)	0,0058(5)	-0,0006(5)
O36	0,0355(10)	0,0226(8)	0,0167(8)	-0,0118(7)	0,0068(7)	-0,0057(6)
O37	0,0148(6)	0,0111(6)	0,0219(7)	0,0015(5)	0,0038(5)	0,0002(5)
O38	0,0271(8)	0,0124(6)	0,0203(7)	0,0095(6)	0,0133(6)	0,0031(5)
039	0,0227(8)	0,0275(8)	0,0172(8)	0,0021(7)	-0,0048(6)	0,0076(6)
O40	0,0210(7)	0,0262(8)	0,0205(8)	0,0101(6)	0,0149(6)	0,0087(6)

Таблица 4.2.8 - Межатомные расстояния для II - С12Н48Сl6Eu2N6O45

Атомы	Расстояние,	Атомы	Расстояние,	Атомы	Расстояние,
	Å		Å		Å
Eu1 – O11	2,3336(12)	C10 - N5	1,478(2)	N4 – H41	0,8795(16)
Eu1 – O8	2,3368(12)	C10 – C9	1,518(2)	N4 - H40	0,89(3)
Eu1 – O3	2,3792(13)	C12 – H12	0,93(3)	N5 - H45	0,82(3)
Eu1 ^(I) – O12	2,3856(13)	C12 – H11	0,94(3)	N5 – H43	0,8967(16)
Eu1 – O10	2,4133(13)	C12 - N6	1,488(2)	N5 – H44	0,9804(17)
Eu1 – O2	2,5212(13)	C12 – C11	1,513(2)	N6 – H47	0,79(3)
Eu1 – O13	2,5334(13)	Cl1 – O19	1,4367(16)	N6 – H46	0,8775(16)
Eu1 – O14	2,5693(13)	Cl1 - O18	1,4447(14)	N6 – H48	0,9502(16)
Eu1 – H25	2,78498(8)	Cl1 – O17	1,4453(15)	C1 – O2	1,254(2)
Eu1 – O1	2,7963(13)	Cl1 – O20	1,4466(14)	C1 – O1	1,263(2)
Eu1 – C1	3,0219(17)	Cl2 – O21	1,4287(14)	C3 - O4	1,258(2)
Eu1 – Eu2	4,21995(13)	Cl2 – O22	1,4391(15)	C3 - O3	1,261(2)
Eu2 - O1	2,3407(13)	Cl2 – O24	1,4500(14)	C5 - O5	1,254(2)

Eu2-O5	2,3663(13)	Cl2 – O23	1,4545(13)	C5 - O6	1,264(2)
Eu2-O4	2,3720(13)	Cl3 – O25	1,4279(16)	C7 – O8	1,258(2)
Eu2 – O9	2,3961(13)	Cl3 – O26	1,4369(15)	C7 – O7	1,260(2)
$Eu2^{(II)}-O6$	2,4164(13)	Cl3 – O28	1,4510(15)	C9 – O9	1,250(2)
Eu2-016	2,4391(14)	Cl3 – O27	1,4522(16)	C9 – O10	1,265(2)
Eu2 - O7	2,4454(13)	Cl4 – O32	1,4349(16)	C11 – O11	1,255(2)
Eu2-015	2,5374(13)	Cl4 - O30	1,4367(15)	C11 – O12	1,257(2)
Eu2-O8	3,0483(13)	Cl4 - O31	1,4451(16)	O1W - H15	0,8530(14)
Eu2-C7	3,1077(17)	Cl4 – O29	1,4473(14)	O1W – H16	0,8582(14)
C2 – H2	0,96(2)	Cl5 - O35	1,4376(15)	O2W - H19	0,7989(14)
C2 – H1	0,97(2)	Cl5 – O33	1,4379(16)	O2W - H20	0,8667(15)
C2 - N1	1,486(2)	Cl5 – O36	1,4393(16)	O3W - H18	0,8420(14)
C2 – C1	1,512(2)	Cl5 – O34	1,4481(15)	O3W - H17	0,8682(14)
C4 – H3	0,94(3)	Cl6 – O40	1,4340(15)	O4W - H30	0,8399(16)
C4 – H4	1,01(3)	Cl6 – O39	1,4415(16)	O4W - H29	0,9214(16)
C4 - N2	1,485(2)	Cl6 – O38	1,4501(15)	O5W - H23	0,8479(15)
C4 – C3	1,518(2)	Cl6 – O37	1,4556(14)	O5W – H24	0,8558(15)
C6 – H5	0,97(3)	N1 – H33	0,84(3)	O13 – H25	0,7664(13)
C6 – H6	0,99(3)	N1 – H31	0,8496(16)	O13 – H26	0,7787(13)
C6 – N3	1,488(2)	N1 – H32	0,8780(15)	O14 – H27	0,8224(13)
C6 - C5	1,518(2)	N2 - H35	0,83(3)	O14 – H28	0,9301(13)
C8 – H7	0,95(2)	N2 - H34	0,8396(16)	O15 – H22	0,8364(13)
C8 – H8	0,96(3)	N2 - H36	0,8885(18)	O15 – H21	0,8632(13)
C8 – N4	1,490(2)	N3 - H38	0,8317(16)	O16 – H13	0,8357(14)
C8 – C7	1,506(2)	N3 – H37	0,8976(15)	O16 – H14	0,9002(13)
C10 – H9	0,96(3)	N3 – H39	0,94(3)		
C10 - H10	0,96(3)	N4 - H42	0,8607(16)		

Таблица 4.2.9 - Валентные углы в структуре II - С12H48Cl6Eu2N6O45

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O13 – Eu1 – H25	15,67(3)	O16 – Eu2 – C7	88,59(5)	C8 - N4 - H41	113,40(15)
O2 – Eu1 – C1	24,05(4)	O1 - Eu2 - C7	94,67(5)	C10 - N5 - H44	104,92(15)
O1 – Eu1 – C1	24,68(4)	O5 - Eu2 - C7	98,05(4)	C10 - N5 - H45	105(2)
O1 - Eu1 - Eu2	31,38(3)	$O5-Eu2-O6^{(II)}\\$	99,98(5)	H43 - N5 - H44	105,19(17)
O8 - Eu1 - Eu2	44,87(3)	O16 – Eu2 – O8	104,68(4)	C10 - N5 - H43	111,66(15)
O2 - Eu1 - O1	48,73(4)	O15 - Eu2 - Eu1	110,32(3)	H43 - N5 - H45	115(2)

O2 – Eu1 – H25	54,19(3)	$O6^{(II)} - Eu2 - Eu1$	114,97(3)	H44-N5-H45	115(2)
C1 - Eu1 - Eu2	55,85(3)	O1 – Eu2 – O7	117,02(4)	C12 - N6 - H46	106,17(15)
O11 – Eu1 – H25	61,46(3)	O5 - Eu2 - O8	119,05(4)	H47 - N6 - H48	108(2)
O3 - Eu1 - Eu2	65,53(3)	O16 – Eu2 – O15	122,09(4)	H46 - N6 - H47	109(2)
O3 – Eu1 – O1	66,22(4)	O4 - Eu2 - O9	124,67(5)	C12 - N6 - H47	110(2)
O2 – Eu1 – O13	67,80(4)	O16 - Eu2 - Eu1	126,57(3)	H46 - N6 - H48	110,50(16)
O10 – Eu1 – Eu2	67,85(3)	O15 – Eu2 – O8	131,16(4)	C12 - N6 - H48	113,50(15)
O10 – Eu1 – O1	68,61(4)	O7 – Eu2 – O15	133,74(4)	O17 - C11 - O20	108,51(9)
O11 – Eu1 – O13	69,30(4)	$O4-Eu2-O6^{(\rm II)}$	136,72(5)	O18 - Cl1 - O20	109,11(9)
O10 – Eu1 – C1	69,90(5)	O15 - Eu2 - C7	136,96(4)	O19 - Cl1 - O20	109,54(10)
O12 ^(I) – Eu1 – O14	70,06(4)	O1 – Eu2 – O16	138,84(5)	O19 - Cl1 - O18	109,58(10)
O10 – Eu1 – O14	70,33(4)	$O6^{(II)} - Eu2 - O8$	139,50(4)	O19 - Cl1 - O17	110,03(10)
O11 – Eu1 – O14	70,38(4)	O5 - Eu2 - O9	140,12(5)	O18 - Cl1 - O17	110,05(9)
O8 – Eu1 – O14	72,05(4)	O4 - Eu2 - O16	142,49(5)	O22 - C12 - O24	108,41(10)
O3 – Eu1 – O13	72,45(4)	O5 - Eu2 - Eu1	142,90(3)	O22 - C12 - O23	108,98(9)
C1 – Eu1 – H25	73,74(3)	O9 - Eu2 - O15	143,97(5)	O24 - C12 - O23	109,26(8)
O10 – Eu1 – O2	74,23(4)	O1 - Eu2 - O5	146,78(5)	O21 - C12 - O23	109,43(9)
$O3 - Eu1 - O12^{(I)}$	75,46(5)	$O6^{(II)} - Eu2 - O7$	147,92(5)	O21 - C12 - O24	110,36(9)
O3 – Eu1 – C1	75,64(5)	$O6^{(II)} - Eu2 - C7$	151,16(5)	O21 - C12 - O22	110,37(10)
O8 – Eu1 – O1	76,25(4)	O2 - C1 - Eu1	55,00(9)	O28 - Cl3 - O27	108,19(9)
O8 – Eu1 – O3	76,79(5)	O1 – C1 – Eu1	67,61(10)	O26 - C13 - O27	108,54(9)
O12 ^(I) – Eu1 – O13	77,10(4)	O1 – C1 – C2	117,45(15)	O25 - C13 - O27	109,58(12)
O11 – Eu1 – O10	77,42(4)	O2 - C1 - C2	119,95(15)	O26 - Cl3 - O28	110,01(9)
O11 – Eu1 – O2	77,70(4)	O2 - C1 - O1	122,59(16)	O25 - C13 - O26	110,11(10)
O8 – Eu1 – O10	78,05(4)	C2 - C1 - Eu1	174,93(12)	O25 - Cl3 - O28	110,37(11)
O2 – Eu1 – Eu2	79,74(3)	C1 - C2 - H1	107,0(14)	O31 - Cl4 - O29	108,73(10)
O3 – Eu1 – H25	81,20(3)	N1 - C2 - H2	107,7(14)	O32 - C14 - O31	108,90(11)
$O8 - Eu1 - O12^{(I)}$	82,63(4)	N1 - C2 - H1	109,2(14)	O30 - Cl4 - O31	109,08(10)
O13 – Eu1 – C1	84,53(4)	H1 - C2 - H2	109,8(19)	O32 - Cl4 - O29	109,67(9)
O3 – Eu1 – O2	87,45(4)	N1 - C2 - C1	110,44(14)	O30 - C14 - O29	110,09(9)
O12 ^(I) – Eu1 – H25	91,78(3)	C1 - C2 - H2	112,6(14)	O32 - C14 - O30	110,34(11)
O1 – Eu1 – H25	95,07(3)	H3 - C4 - H4	107(2)	O36 - C15 - O34	107,82(10)
$O11-Eu1-O12^{(I)}$	96,49(4)	C3 - C4 - H4	107,7(16)	O33 - C15 - O34	108,76(9)
O11 – Eu1 – C1	99,76(5)	C3 - C4 - H3	109,5(18)	O35 - C15 - O33	109,33(10)
O8 – Eu1 – C1	100,61(5)	N2 - C4 - H3	110,2(18)	O35 - C15 - O34	109,53(10)
O13 – Eu1 – O1	102,61(4)	N2 - C4 - C3	111,17(14)	O35 - C15 - O36	109,81(10)
O14 – Eu1 – Eu2	108,71(3)	N2 - C4 - H4	111,2(16)	O33 - C15 - O36	111,54(12)

O10 – Eu1 – H25	118,05(3)	C5-C6-H5	107,9(15)	O38 - C16 - O37	108,55(9)
$O12^{(I)} - Eu1 - Eu2$	118,91(3)	H5-C6-H6	109(2)	O39 - C16 - O37	108,86(9)
O11 – Eu1 – O1	121,80(4)	N3-C6-H6	109,3(16)	O40 - C16 - O38	109,30(9)
O13 – Eu1 – O14	123,57(4)	N3 - C6 - H5	109,5(15)	O39 - Cl6 - O38	109,55(10)
O8 – Eu1 – O2	124,17(4)	C5-C6-H6	109,6(17)	O40 - C16 - O37	109,88(10)
Eu2 – Eu1 – H25	124,170(3)	N3 - C6 - C5	111,77(14)	O40 - C16 - O39	110,67(10)
O14 – Eu1 – H25	125,95(3)	O7 – C7 – Eu2	47,75(9)	O4 - C3 - C4	115,18(15)
O13 – Eu1 – Eu2	127,31(3)	O8 - C7 - Eu2	75,57(10)	O3 - C3 - C4	117,04(15)
O14 – Eu1 – O1	132,08(4)	O7 - C7 - C8	117,29(15)	O4 - C3 - O3	127,77(16)
O3 – Eu1 – O10	132,14(4)	O8 - C7 - C8	119,37(15)	O6 - C5 - C6	115,68(15)
O10 – Eu1 – O13	133,53(4)	O8 - C7 - O7	123,31(16)	O5-C5-C6	118,64(15)
O3 – Eu1 – O14	135,71(4)	C8 - C7 - Eu2	165,03(12)	O5 - C5 - O6	125,68(16)
O2 – Eu1 – O14	136,29(4)	C7-C8-H8	107,8(17)	O10 - C9 - C10	116,01(15)
$O12^{(I)} - Eu1 - O1$	139,40(4)	C7 - C8 - H7	108,2(14)	O9 - C9 - C10	116,89(15)
$O12^{(I)} - Eu1 - O10$	139,60(5)	H7 - C8 - H8	109(2)	O9 - C9 - O10	127,09(17)
O11 – Eu1 – O8	140,19(5)	N4-C8-H8	109,6(17)	O12 - C11 - C12	116,48(15)
O14 – Eu1 – C1	140,21(4)	N4-C8-H7	110,8(14)	O11 - C11 - C12	117,80(15)
O11 – Eu1 – O3	141,75(5)	N4 - C8 - C7	111,35(14)	O11 - C11 - O12	125,71(16)
O11 – Eu1 – Eu2	142,54(3)	C9 – C10 – H10	108,0(18)	C1 - O1 - Eu1	87,71(10)
$O12^{(I)}-Eu1-O2$	144,26(4)	C9 - C10 - H9	108,7(16)	Eu2 - O1 - Eu1	110,15(5)
O8 – Eu1 – O13	146,47(4)	H9 - C10 - H10	109(2)	C1 - O1 - Eu2	159,83(12)
$O12^{(I)} - Eu1 - C1$	149,30(5)	N5-C10-H9	109,1(15)	C7 - O8 - Eu2	80,87(10)
O8 – Eu1 – H25	157,99(3)	N5 - C10 - C9	110,09(14)	Eu1 - O8 - Eu2	102,38(4)
O7 - Eu2 - C7	22,41(4)	N5 - C10 - H10	111,6(17)	C7 - O8 - Eu1	173,81(12)
O8 - Eu2 - C7	23,56(4)	N6-C12-H12	105,0(16)	Eu1 – O13 – H25	101,14(11)
O8 – Eu2 – Eu1	32,74(2)	N6-C12-H11	108,4(16)	H25 - O13 - H26	106,07(16)
O1 – Eu2 – Eu1	38,47(3)	H11 – C12 – H12	109(2)	Eu1 – O13 – H26	117,54(11)
O7 – Eu2 – O8	45,97(4)	N6-C12-C11	110,97(14)	H27 - O14 - H28	100,33(13)
C7 - Eu2 - Eu1	56,24(3)	C11 – C12 – H11	111,1(17)	Eu1 – O14 – H28	112,34(10)
O9 – Eu2 – Eu1	62,31(3)	C11 – C12 – H12	111,6(16)	Eu1 - O14 - H27	118,54(11)
O9 - Eu2 - O8	63,08(4)	H31 – N1 – H32	103,48(16)	Eu2 – O15 – H22	107,65(10)
O4 - Eu2 - Eu1	64,28(3)	C2 - N1 - H33	109,0(19)	H21 – O15 – H22	114,80(15)
O4 - Eu2 - O8	64,57(4)	C2 - N1 - H32	109,89(15)	Eu2 – O15 – H21	120,46(11)
O4 - Eu2 - C7	68,08(5)	H31 – N1 – H33	110,0(19)	H13 - O16 - H14	111,28(15)
O5 – Eu2 – O15	68,46(4)	C2 - N1 - H31	110,42(15)	Eu2-016-H14	115,34(11)
O9 – Eu2 – O16	69,22(5)	H32 – N1 – H33	113,9(19)	Eu2 – O16 – H13	121,61(11)
O4 – Eu2 – O15	69,61(4)	H34 - N2 - H36	104,64(18)	C1 - O2 - Eu1	100,96(11)

$O6^{(II)} - Eu2 - O15$	71,18(5)	C4 - N2 - H36	107,94(16)	H15 - O1W - H16	108,41(15)
O1 – Eu2 – O8	71,21(4)	H35 - N2 - H36	109(2)	C3 – O3 – Eu1	137,36(12)
O9 – Eu2 – C7	71,31(5)	H34 - N2 - H35	110(2)	H19 - O2W - H20	94,36(14)
O5 – Eu2 – O16	72,26(5)	C4 - N2 - H35	111(2)	C3 - O4 - Eu2	138,98(12)
O1 – Eu2 – O9	73,09(5)	C4 - N2 - H34	114,53(16)	H17 – O3W – H18	111,27(16)
O16 – Eu2 – O7	73,09(5)	H37 – N3 – H38	103,32(17)	C5 - O5 - Eu2	161,34(12)
O1 – Eu2 – O4	74,47(4)	C6 – N3 – H37	106,14(15)	H29 - O4W - H30	113,87(17)
O4 - Eu2 - O7	75,17(5)	H38 – N3 – H39	106,4(19)	$C5-O6-Eu2^{(II)} \\$	131,76(11)
$O6^{(II)} - Eu2 - O16$	75,82(5)	C6 – N3 – H39	111,8(19)	H23 - O5W - H24	105,20(16)
O5 - Eu2 - O7	77,98(4)	H37 – N3 – H39	113,0(19)	C7 – O7 – Eu2	109,84(11)
O7 - Eu2 - Eu1	78,64(3)	C6 – N3 – H38	115,93(16)	C9 - O9 - Eu2	145,07(12)
$O9 - Eu2 - O6^{(II)}$	80,44(5)	C8 – N4 – H40	106,9(18)	C9 – O10 – Eu1	131,22(11)
O1 – Eu2 – O15	81,34(4)	H40 - N4 - H41	107,7(18)	C11 – O11 – Eu1	174,70(12)
O9 - Eu2 - O7	81,36(5)	H40 - N4 - H42	108,3(18)	$C11 - O12 - Eu1^{(I)}$	133,83(11)
O5 - Eu2 - O4	82,07(5)	H41 - N4 - H42	108,65(17)		
$O1 - Eu2 - O6^{(II)}$	82,28(5)	C8 - N4 - H42	111,68(16)		

Таблица 4.2.10 - Пар	раметры водород	цных связей для	II -	$C_{12}H_{48}$	3Cl6Eu2	2N6O45
----------------------	-----------------	-----------------	------	----------------	---------	--------

Атомы	D – H, Å	H … A, Å	D … A, Å	D – H … A, °
O13 – H26 … O1W	0,7787(13)	1,9717(14)	2,7330(19)	165,72(11)
O15 – H22 … O2W	0,8364(13)	1,9451(15)	2,763(2)	165,63(10)
N3 – H39 … O3W	0,94(3)	1,85(3)	2,771(2)	168(3)
O16 – H13 … O4W	0,8357(14)	1,9503(16)	2,776(2)	169,42(11)
O3W – H17 … O2W	0,8682(14)	1,9254(15)	2,776(2)	166,17(10)
$O16 - H14 \cdots O15^{(I)}$	0,9002(13)	1,9164(13)	2,7803(19)	160,22(10)
O13 – H25 … O2	0,7664(13)	2,4281(13)	2,8193(18)	113,18(10)
N3 – H37 … O40	0,8976(15)	2,2641(15)	2,838(2)	121,46(12)
O1W – H16 … O24	0,8582(14)	1,9886(14)	2,8390(19)	170,82(10)
$O14 - H28 \cdots O13^{(II)}$	0,9301(13)	1,9194(13)	2,8443(18)	172,65(9)
O15 – H21 ··· O27	0,8632(13)	2,0169(16)	2,846(2)	160,73(10)
O1W – H15 … O28	0,8530(14)	2,0142(15)	2,848(2)	165,65(10)
$N2 - H34 \cdots O1W$	0,8396(16)	2,0298(14)	2,855(2)	167,34(13)
N5 – H45 … O5W	0,82(3)	2,04(3)	2,855(2)	172(3)
$N5 - H44 \cdots O4W$	0,9804(17)	2,0043(16)	2,866(2)	145,46(11)
$O2W - H20 \cdots O5W^{(I)}$	0,8667(15)	2,0240(15)	2,879(2)	168,59(11)
$O2W-H19\cdotsO37^{(III)}$	0,7989(14)	2,0991(15)	2,882(2)	166,70(12)

N5 – H43 … O34	0,8967(16)	2,0519(15)	2,889(2)	154,98(12)
$O14 - H27 \cdots O26^{(IV)}$	0,8224(13)	2,3727(15)	2,898(2)	122,40(10)
N3 – H38 … O7	0,8317(16)	2,0830(13)	2,909(2)	171,89(11)
N6 – H46 … O29	0,8775(16)	2,4388(16)	2,909(2)	114,02(11)
O4W – H30 … O37	0,8399(16)	2,1266(15)	2,915(2)	156,17(12)
$N4 - H42 \cdots O18^{(V)}$	0,8607(16)	2,1859(15)	2,930(2)	144,50(11)
$N2 - H36 \cdots O17^{(V)}$	0,8885(18)	2,1093(15)	2,936(2)	154,55(11)
$N4-H40\cdotsO20^{(IV)}$	0,89(3)	2,12(3)	2,936(2)	154(2)
$N1 - H32 \cdots O23^{(VI)}$	0,8780(15)	2,1163(13)	2,957(2)	160,03(11)
$N1 - H33 \cdots O34^{(III)}$	0,84(3)	2,33(3)	2,960(2)	132(2)
$N1 - H32 \cdots O35^{(VII)}$	0,8780(15)	2,4673(15)	2,972(2)	117,07(11)
$N6-H47$ ··· $O38^{(VIII)}$	0,79(3)	2,24(3)	2,988(2)	158(3)
$N6 - H48 \cdots O35^{(VII)}$	0,9502(16)	2,4808(15)	2,996(2)	114,02(10)
N4 – H41 … O14	0,8795(16)	2,1601(13)	3,015(2)	163,80(11)
$O4W-H29\cdotsO4W^{(IX)}$	0,9214(16)	2,5206(16)	3,022(3)	114,58(9)
$N2-H36$ ··· $O32^{(II)}$	0,8885(18)	2,5996(16)	3,027(2)	110,50(11)
N1 – H31 ··· O28	0,8496(16)	2,3610(15)	3,028(2)	135,76(11)
$O5W - H24 \cdots O6^{(I)}$	0,8558(15)	2,2757(14)	3,030(2)	147,02(11)
$N1 - H31 \cdots O24^{(VI)}$	0,8496(16)	2,5300(14)	3,036(2)	119,21(11)
$O5W - H23 \cdots O29^{(VII)}$	0,8479(15)	2,2983(16)	3,039(2)	146,11(11)
$O13 - H25 \cdots O22^{(VI)}$	0,7664(13)	2,3663(18)	3,045(2)	148,25(10)
$O4W - H29 \cdots O39^{(IX)}$	0,9214(16)	2,1836(18)	3,049(2)	156,22(11)
N6 – H46 … O10	0,8775(16)	2,2748(13)	3,057(2)	148,43(11)
$N3 - H37 \cdots O23^{(V)}$	0,8976(15)	2,3100(13)	3,076(2)	143,22(11)
$N6 - H47 \cdots O33^{(VII)}$	0,79(3)	2,65(3)	3,077(2)	115(2)
$O3W - H18 \cdots O32^{(X)}$	0,8420(14)	2,322(2)	3,090(3)	151,90(11)
$N1 - H33 \cdots O36^{(III)}$	0,84(3)	2,28(3)	3,093(2)	161(3)
N2 – H35 ···· O20	0,83(3)	2,46(3)	3,098(2)	134(2)
$N2 - H35 \cdots O3W^{(V)}$	0,83(3)	2,65(3)	3,108(2)	116(2)
$C2 - H1 \cdots O35^{(VII)}$	0,97(2)	2,60(2)	3,109(2)	113,0(16)
$O3W - H18 \cdots O31^{(X)}$	0,8420(14)	2,3652(18)	3,111(2)	147,99(11)
N2 – H35 ···· O21	0,83(3)	2,53(3)	3,117(2)	128(2)
$C10 - H9 \cdots \overline{O26^{(IV)}}$	0,96(3)	2,58(3)	3,128(2)	116,2(19)
$N6 - H48 \cdots O23^{(VI)}$	0,9502(16)	2,3560(14)	3,145(2)	140,15(10)
$C8 - H8 \cdots O19^{(V)}$	0,96(3)	2,64(3)	3,150(3)	113(2)
C12 – H12 ···· O29	0,93(3)	2,62(3)	3,198(2)	121(2)
$O5W - H23 \cdots O31^{(VII)}$	0,8479(15)	2,5157(17)	3,198(2)	138,19(11)

N6 – H48 … O2	0,9502(16)	2,4575(14)	3,198(2)	134,68(10)
$N4-H42\cdotsO12^{(II)}$	0,8607(16)	2,6585(13)	3,199(2)	122,03(11)
O14 – H27 … O30	0,8224(13)	2,4591(16)	3,206(2)	151,55(10)
$C4 - H4 \cdots O19^{(V)}$	1,01(3)	2,65(3)	3,207(2)	114,7(19)
C4 – H3 … O25	0,94(3)	2,42(3)	3,251(3)	147(2)
$C4 - H4 \cdots O3W$	1,01(3)	2,44(3)	3,253(2)	138(2)
$N1 - H31 \cdots O30^{(III)}$	0,8496(16)	2,5844(17)	3,257(2)	136,90(11)
$C10-H10\cdotsO33^{(VII)}$	0,96(3)	2,42(3)	3,259(2)	145(2)
C8 – H7 … O37	0,95(2)	2,48(2)	3,269(2)	141,5(19)
$C12 - H11 \cdots O18^{(XI)}$	0,94(3)	2,52(3)	3,277(2)	138(2)
C2 – H2 … O27	0,96(2)	2,36(2)	3,279(2)	160,8(19)
$O13-H25\cdotsO24^{(VI)}$	0,7664(13)	2,6331(15)	3,291(2)	145,14(10)
$C2 - H1 \cdots O36^{(VII)}$	0,97(2)	2,39(2)	3,348(2)	168,7(19)
C12 – H12 … O32	0,93(3)	2,61(3)	3,375(3)	140(2)
$C8 - H7 \cdots O25^{(IV)}$	0,95(2)	2,61(2)	3,382(3)	139,1(18)
C10 – H9 ··· O30	0,96(3)	2,48(3)	3,396(2)	159(2)
$C6 - H6 \cdots O31^{(X)}$	0,99(3)	2,52(3)	3,412(2)	151(2)
O1W – H16 … Cl2	0,8582(14)	2,8011(4)	3,5482(14)	146,45(10)
$N1 - H32 \cdots Cl2^{(VI)}$	0,8780(15)	2,9097(4)	3,5932(16)	135,97(10)
$O3W - H18 \cdots Cl4^{(X)}$	0,8420(14)	2,7926(4)	3,6238(14)	169,50(10)
$N1 - H33 \cdots Cl5^{(III)}$	0,84(3)	2,83(3)	3,6254(16)	158(2)
N5 – H43 … C15	0,8967(16)	2,8779(4)	3,6563(17)	146,07(11)
$O2W - H19 \cdots Cl6^{(III)}$	0,7989(14)	2,9507(4)	3,6906(15)	155,08(11)
$O5W - H23 \cdots Cl4^{(VII)}$	0,8479(15)	2,9357(4)	3,7056(15)	151,98(10)
O15 – H21 … Cl3	0,8632(13)	2,9758(5)	3,7057(14)	143,53(9)
$C2 - H1 \cdots C15^{(VII)}$	0,97(2)	2,99(2)	3,7861(18)	140,4(17)
	•		•	

Symmetry codes: I) -x+1, -y+1, -z+2; II) -x, -y, -z+1; III) x+1, y, z; IV) x-1, y, z; V) -x+1, -y+1, -z+1; VI) - x+1, -y, -z+1; VII) -x, -y, -z+2; VIII) x, y-1, z; IX) -x, -y+1, -z+2; X) x+1, y+1, z; XI) x-1, y-1, z;

Таблица 4.2.11 - Список атомов для III - С12Н48Сl6Gd2N6O45

Атом	X	У	Z	Ueq, Å ²
C1	0,37309(14)	0,12734(12)	0,78253(10)	0,0081(3)
C2	0,48103(15)	0,11263(12)	0,85006(10)	0,0089(3)
C3	0,40045(14)	0,34383(12)	0,65019(10)	0,0084(3)
C4	0,49289(15)	0,39589(12)	0,60001(11)	0,0101(3)
C5	0,48520(14)	0,63685(12)	0,92931(10)	0,0082(3)
C6	0,42599(16)	0,69792(12)	0,86837(11)	0,0116(3)

C7	0,12408(14)	0,37654(12)	0,71602(10)	0,0081(3)
C8	0,01907(15)	0,40771(12)	0,66162(11)	0,0098(3)
C9	0,09193(15)	0,16207(12)	0,84100(10)	0,0084(3)
C10	-0,01123(15)	0,12541(12)	0,88805(11)	0,0104(3)
C11	-0,01709(14)	-0,12843(11)	0,57999(10)	0,0069(2)
C12	-0,01314(15)	-0,18721(12)	0,65634(10)	0,0088(3)
Cl1	0,79860(3)	0,54059(3)	0,52449(3)	0,01129(7)
C12	0,67341(3)	0,17315(3)	0,37478(2)	0,00900(6)
C13	0,74254(4)	0,25800(3)	0,75329(3)	0,01424(8)
Cl4	-0,27734(4)	-0,10424(3)	0,73028(3)	0,01188(7)
C15	-0,26484(4)	0,04263(3)	1,02831(3)	0,01440(7)
Cl6	0,05271(4)	0,64414(3)	0,84212(3)	0,01243(7)
Gd1	0,15266(2)	0,13577(2)	0,63773(2)	0,00522(2)
Gd2	0,35582(2)	0,36935(2)	0,86111(2)	0,00602(2)
H1	0,455(2)	0,1050(16)	0,9052(14)	0,009(5)
H2	0,554(2)	0,1690(17)	0,8634(15)	0,012(5)
H3	0,577(2)	0,4085(19)	0,6350(17)	0,019(6)
H4	0,479(2)	0,4606(18)	0,5934(16)	0,019(6)
H5	0,366(2)	0,7206(17)	0,8927(15)	0,013(5)
H6	0,490(2)	0,7569(19)	0,8646(16)	0,017(6)
H7	-0,035(2)	0,4165(17)	0,6989(15)	0,011(5)
H8	0,056(2)	0,4701(18)	0,6427(16)	0,019(6)
H9	-0,094(2)	0,1026(17)	0,8429(16)	0,015(6)
H10	0,002(2)	0,0698(19)	0,9138(17)	0,020(6)
H11	0,019(2)	-0,2418(18)	0,6471(15)	0,012(5)
H12	-0,094(2)	-0,2105(18)	0,6658(16)	0,018(6)
H13	0,195312	0,4386	0,964477	0,024(7)
H14	0,3225	0,4949	1,012901	0,035(7)
H15	0,5381	0,140203	0,5803	0,032(7)
H16	0,515903	0,115705	0,4878	0,025(6)
H17	0,589484	0,603004	0,7147	0,035(7)
H18	0,573	0,693316	0,6896	0,055(10)
H19	0,774884	0,5662	0,801003	0,043(9)
H20	0,7349	0,623317	0,8434	0,044(9)
H21	0,623507	0,3594	0,8726	0,035(7)
H22	0,613503	0,4539	0,850307	0,043(8)
H23	0,2299	0,1905	1,1064	0,063(11)
	1	1		

H24	0,2752	0,236082	1,0427	0,045(9)
H25	0,2561	0,001801	0,558805	0,045(9)
H26	0,306484	0,072	0,5242	0,028(7)
H27	-0,117	0,1047	0,6525	0,046(9)
H28	-0,1339	0,060205	0,567204	0,034(7)
H29	-0,0364	0,4136	0,9787	0,070(12)
H30	-0,010418	0,435987	0,8927	0,063(11)
H31	0,541903	0,0295	0,771399	0,024(6)
H32	0,4413	-0,0298	0,7938	0,025(6)
H33	0,562(3)	0,009(2)	0,8576(18)	0,027(7)
H34	0,4656	0,2719	0,5121	0,030(7)
H35	0,534(3)	0,358(2)	0,4875(18)	0,029(7)
H36	0,4016	0,333302	0,475489	0,028(7)
H37	0,3105	0,6734	0,7508	0,035(7)
H38	0,3069	0,5828	0,775393	0,024(6)
H39	0,416(3)	0,624(2)	0,7443(19)	0,034(8)
H40	-0,123(2)	0,3460(18)	0,5593(16)	0,019(6)
H41	-0,0773	0,2677	0,5922	0,017(6)
H42	-0,0143	0,3295	0,5397	0,042(8)
H43	-0,08	0,194	0,975992	0,031(7)
H44	-0,0109	0,2648	0,9256	0,037(8)
H45	0,059(3)	0,222(2)	0,9999(18)	0,029(7)
H46	0,0429	-0,0687	0,749	0,022(6)
H47	0,060(3)	-0,152(2)	0,7833(18)	0,026(7)
H48	0,1569	-0,1003	0,7431	0,032(7)
N1	0,51088(13)	0,02080(10)	0,81594(9)	0,0099(2)
N2	0,47410(15)	0,33308(11)	0,51143(10)	0,0134(3)
N3	0,35831(14)	0,63778(11)	0,77705(9)	0,0126(3)
N4	-0,05530(13)	0,32952(11)	0,58047(9)	0,0119(2)
N5	-0,00891(14)	0,20844(11)	0,95695(10)	0,0139(3)
N6	0,07002(13)	-0,12117(11)	0,74222(9)	0,0101(2)
01	0,35594(11)	0,21272(9)	0,79274(8)	0,0109(2)
O1W	0,48559(12)	0,13498(10)	0,53023(8)	0,0156(2)
O2	0,30383(11)	0,05591(9)	0,72021(8)	0,0107(2)
O2W	0,70623(12)	0,56678(10)	0,80498(9)	0,0176(2)
03	0,33122(11)	0,25479(9)	0,61520(8)	0,0101(2)
O3W	0,53862(12)	0,63074(9)	0,68421(8)	0,0158(2)

O4	0,40449(11)	0,39510(9)	0,72318(8)	0,0105(2)
O4W	0,01362(13)	0,41378(11)	0,93953(10)	0,0231(3)
05	0,46172(11)	0,54439(9)	0,90126(8)	0,0120(2)
O5W	0,23058(13)	0,24047(10)	1,07976(9)	0,0187(3)
O6	0,55433(11)	0,68536(9)	1,00535(8)	0,0120(2)
07	0,19732(11)	0,43873(9)	0,78460(8)	0,0106(2)
08	0,13266(11)	0,29015(9)	0,69299(8)	0,0096(2)
09	0,17076(11)	0,24735(9)	0,87409(8)	0,0115(2)
O10	0,08770(11)	0,10295(9)	0,77165(8)	0,0101(2)
011	0,03688(11)	-0,03479(9)	0,59919(8)	0,0103(2)
012	-0,07614(11)	-0,17855(9)	0,50289(8)	0,0103(2)
013	0,24201(11)	0,04298(9)	0,53284(8)	0,0108(2)
014	-0,08303(11)	0,11578(9)	0,61106(8)	0,0111(2)
015	0,59046(11)	0,40770(9)	0,87895(8)	0,0117(2)
016	0,27038(12)	0,43796(10)	0,97539(8)	0,0156(2)
017	0,74296(13)	0,60399(11)	0,57133(10)	0,0228(3)
018	0,93484(11)	0,58158(10)	0,55298(9)	0,0171(2)
019	0,75631(14)	0,53444(12)	0,42913(9)	0,0253(3)
O20	0,76052(12)	0,44051(10)	0,54622(10)	0,0187(3)
O21	0,64585(15)	0,26344(10)	0,40274(10)	0,0226(3)
O22	0,79015(13)	0,17166(12)	0,43229(9)	0,0230(3)
O23	0,68494(11)	0,16911(9)	0,28292(8)	0,0123(2)
O24	0,57370(12)	0,08476(9)	0,37881(8)	0,0160(2)
O25	0,73569(16)	0,34141(13)	0,70919(14)	0,0383(4)
O26	0,85738(12)	0,23521(11)	0,75095(9)	0,0195(3)
O27	0,74225(13)	0,28369(11)	0,84655(10)	0,0247(3)
O28	0,63395(13)	0,16996(11)	0,71067(9)	0,0204(3)
O29	-0,15916(12)	-0,10549(10)	0,78722(9)	0,0196(3)
O30	-0,27045(13)	-0,00274(10)	0,71801(10)	0,0223(3)
O31	-0,37688(14)	-0,14176(11)	0,77316(11)	0,0259(3)
O32	-0,30435(15)	-0,16901(13)	0,64520(10)	0,0294(3)
O33	-0,13985(14)	0,03420(12)	1,05604(10)	0,0252(3)
O34	-0,26337(13)	0,11550(12)	0,96882(9)	0,0223(3)
O35	-0,30184(13)	0,07682(11)	1,10614(9)	0,0210(3)
O36	-0,35536(16)	-0,05230(12)	0,98020(10)	0,0317(4)
O37	-0,04614(12)	0,54698(10)	0,81676(9)	0,0183(2)
O38	-0,00483(14)	0,72329(10)	0,85391(9)	0,0194(3)

O39	0,13920(14)	0,64592(12)	0,92574(10)	0,0265(3)
O40	0,11697(13)	0,65935(11)	0,77268(9)	0,0214(3)

Таблица 4.2.12	- Параметры атомного	смещения для III -	$C_{12}H_{48}Cl_6Gd_2N_6O_{45}$
----------------	----------------------	--------------------	---------------------------------

Атом	U ₁₁ , Å ²	$U_{22}, Å^2$	U ₃₃ , Å ²	U_{12} , Å ²	U ₁₃ , Å ²	U_{23} , Å ²
C1	0,0084(6)	0,0098(7)	0,0071(6)	0,0032(5)	0,0032(5)	0,0020(5)
C2	0,0088(6)	0,0080(6)	0,0089(6)	0,0027(5)	0,0008(5)	0,0000(5)
C3	0,0075(6)	0,0098(7)	0,0081(6)	0,0024(5)	0,0022(5)	0,0027(5)
C4	0,0095(6)	0,0102(7)	0,0103(7)	0,0012(5)	0,0043(5)	0,0017(5)
C5	0,0064(6)	0,0094(6)	0,0090(6)	0,0017(5)	0,0031(5)	0,0027(5)
C6	0,0132(7)	0,0094(7)	0,0112(7)	0,0042(6)	0,0001(5)	0,0023(5)
C7	0,0070(6)	0,0092(6)	0,0086(6)	0,0025(5)	0,0027(5)	0,0020(5)
C8	0,0094(6)	0,0096(7)	0,0099(6)	0,0048(5)	0,0001(5)	-0,0001(5)
C9	0,0092(6)	0,0100(7)	0,0063(6)	0,0028(5)	0,0027(5)	0,0022(5)
C10	0,0102(7)	0,0100(7)	0,0100(7)	0,0003(5)	0,0050(5)	0,0004(5)
C11	0,0059(6)	0,0075(6)	0,0077(6)	0,0021(5)	0,0026(5)	0,0013(5)
C12	0,0105(6)	0,0076(6)	0,0063(6)	0,0009(5)	0,0010(5)	0,0008(5)
Cl1	0,00921(15)	0,01138(16)	0,01487(17)	0,00453(13)	0,00366(13)	0,00436(13)
Cl2	0,00987(15)	0,00895(15)	0,00833(14)	0,00370(12)	0,00223(12)	0,00044(12)
C13	0,01187(17)	0,01466(18)	0,01994(19)	0,00660(15)	0,00645(15)	0,00750(15)
Cl4	0,01046(15)	0,01036(16)	0,01333(16)	0,00307(13)	0,00155(13)	-0,00036(13)
C15	0,01254(16)	0,01839(18)	0,00855(15)	-0,00067(14)	0,00215(13)	0,00252(13)
Cl6	0,01251(16)	0,01313(16)	0,01231(16)	0,00389(13)	0,00459(13)	0,00253(13)
Gd1	0,00537(3)	0,00479(3)	0,00490(3)	0,00116(3)	0,00096(2)	0,00026(2)
Gd2	0,00617(3)	0,00527(4)	0,00613(4)	0,00133(3)	0,00161(3)	0,00010(2)
N1	0,0094(6)	0,0097(6)	0,0100(6)	0,0043(5)	0,0001(5)	0,0006(5)
N2	0,0179(7)	0,0127(6)	0,0130(6)	0,0051(5)	0,0099(5)	0,0033(5)
N3	0,0125(6)	0,0140(6)	0,0110(6)	0,0047(5)	0,0006(5)	0,0041(5)
N4	0,0100(6)	0,0140(6)	0,0102(6)	0,0043(5)	-0,0006(5)	0,0011(5)
N5	0,0119(6)	0,0153(7)	0,0126(6)	0,0000(5)	0,0070(5)	-0,0016(5)
N6	0,0100(6)	0,0125(6)	0,0064(6)	0,0027(5)	0,0006(5)	0,0017(5)
01	0,0134(5)	0,0084(5)	0,0132(5)	0,0053(4)	0,0050(4)	0,0025(4)
O1W	0,0160(6)	0,0197(6)	0,0131(6)	0,0069(5)	0,0067(5)	0,0025(5)
O2	0,0103(5)	0,0108(5)	0,0091(5)	0,0041(4)	-0,0009(4)	-0,0012(4)
O2W	0,0117(5)	0,0179(6)	0,0215(6)	0,0025(5)	0,0047(5)	0,0016(5)
03	0,0103(5)	0,0089(5)	0,0098(5)	0,0008(4)	0,0037(4)	0,0000(4)
O3W	0,0165(6)	0,0126(6)	0,0170(6)	0,0038(5)	0,0033(5)	0,0015(4)

O4	0,0121(5)	0,0105(5)	0,0080(5)	0,0018(4)	0,0032(4)	0,0007(4)
O4W	0,0198(6)	0,0246(7)	0,0262(7)	0,0083(6)	0,0058(6)	0,0067(6)
05	0,0117(5)	0,0081(5)	0,0138(5)	0,0016(4)	0,0010(4)	0,0011(4)
O5W	0,0202(6)	0,0226(7)	0,0138(6)	0,0062(5)	0,0054(5)	0,0047(5)
O6	0,0138(5)	0,0110(5)	0,0088(5)	0,0028(4)	0,0003(4)	0,0004(4)
07	0,0106(5)	0,0094(5)	0,0094(5)	0,0026(4)	-0,0007(4)	-0,0008(4)
08	0,0099(5)	0,0084(5)	0,0109(5)	0,0042(4)	0,0025(4)	0,0008(4)
09	0,0106(5)	0,0110(5)	0,0106(5)	-0,0004(4)	0,0044(4)	-0,0005(4)
O10	0,0128(5)	0,0093(5)	0,0074(5)	0,0016(4)	0,0038(4)	0,0002(4)
011	0,0109(5)	0,0073(5)	0,0108(5)	0,0009(4)	0,0019(4)	0,0012(4)
O12	0,0115(5)	0,0101(5)	0,0068(5)	0,0021(4)	-0,0006(4)	0,0005(4)
013	0,0112(5)	0,0100(5)	0,0116(5)	0,0027(4)	0,0046(4)	0,0021(4)
O14	0,0099(5)	0,0120(5)	0,0097(5)	0,0021(4)	0,0018(4)	-0,0001(4)
O15	0,0105(5)	0,0115(5)	0,0132(5)	0,0036(4)	0,0035(4)	0,0012(4)
016	0,0122(5)	0,0181(6)	0,0132(6)	0,0020(5)	0,0038(4)	-0,0053(5)
O17	0,0212(6)	0,0203(7)	0,0325(8)	0,0130(5)	0,0114(6)	0,0022(6)
O18	0,0084(5)	0,0163(6)	0,0251(7)	0,0025(5)	0,0031(5)	0,0041(5)
O19	0,0222(7)	0,0409(9)	0,0160(6)	0,0138(6)	0,0031(5)	0,0115(6)
O20	0,0165(6)	0,0124(6)	0,0295(7)	0,0036(5)	0,0091(5)	0,0088(5)
O21	0,0360(8)	0,0115(6)	0,0273(7)	0,0124(6)	0,0171(6)	0,0015(5)
O22	0,0134(6)	0,0382(8)	0,0153(6)	0,0094(6)	-0,0022(5)	0,0042(6)
O23	0,0151(5)	0,0131(5)	0,0092(5)	0,0035(4)	0,0050(4)	0,0031(4)
O24	0,0188(6)	0,0122(5)	0,0149(6)	-0,0013(5)	0,0087(5)	0,0004(4)
O25	0,0249(8)	0,0348(9)	0,0656(12)	0,0133(7)	0,0137(8)	0,0374(9)
O26	0,0161(6)	0,0253(7)	0,0231(7)	0,0128(5)	0,0092(5)	0,0042(5)
O27	0,0182(6)	0,0271(7)	0,0254(7)	0,0037(6)	0,0091(5)	-0,0070(6)
O28	0,0181(6)	0,0237(7)	0,0155(6)	0,0013(5)	0,0036(5)	0,0025(5)
O29	0,0133(6)	0,0227(7)	0,0194(6)	0,0079(5)	-0,0033(5)	-0,0008(5)
O30	0,0214(7)	0,0129(6)	0,0298(7)	0,0035(5)	0,0014(5)	0,0081(5)
O31	0,0199(7)	0,0276(7)	0,0374(8)	0,0082(6)	0,0163(6)	0,0159(6)
O32	0,0293(8)	0,0355(8)	0,0181(7)	0,0171(7)	-0,0045(6)	-0,0138(6)
O33	0,0233(7)	0,0344(8)	0,0237(7)	0,0173(6)	0,0045(6)	0,0102(6)
O34	0,0140(6)	0,0348(8)	0,0190(6)	0,0054(6)	0,0028(5)	0,0173(6)
O35	0,0193(6)	0,0267(7)	0,0129(6)	0,0004(5)	0,0069(5)	-0,0011(5)
O36	0,0350(8)	0,0253(8)	0,0194(7)	-0,0129(7)	0,0093(6)	-0,0056(6)
O37	0,0154(6)	0,0131(6)	0,0243(7)	0,0027(5)	0,0050(5)	0,0003(5)
O38	0,0281(7)	0,0145(6)	0,0216(6)	0,0103(5)	0,0142(5)	0,0038(5)

O39	0,0222(7)	0,0311(8)	0,0191(7)	0,0029(6)	-0,0038(5)	0,0082(6)
O40	0,0206(6)	0,0288(7)	0,0229(7)	0,0110(6)	0,0158(5)	0,0088(6)

Таолица 4.2.13 - Межатомные рассто	'ОЯНИЯ ДЛЯ III - С12Н48СІ6Gd2N6O4
------------------------------------	-----------------------------------

Атомы	Расстояние,	Атомы	Расстояние,	Атомы	Расстояние,
	Å		Å		Å
Gd1-011	2,3240(11)	C12 – H11	0,94(2)	N4 - H40	0,87(3)
Gd1 - O8	2,3250(11)	C12-H12	0,94(2)	N4 – H41	0,8835(15)
Gd1 - O3	2,3705(11)	C12 - N6	1,490(2)	N5 – H45	0,87(3)
Gd1 ^(I) - O12	2,3734(11)	C12 – C11	1,516(2)	N5 – H43	0,9022(14)
Gd1 - O10	2,4028(11)	Cl1 – O19	1,4376(14)	N5 – H44	0,9751(16)
Gd1 - O2	2,5086(12)	Cl1 – O17	1,4452(13)	N6 – H47	0,82(3)
Gd1 - O13	2,5220(12)	Cl1 – O18	1,4475(12)	N6 – H46	0,8773(14)
Gd1-014	2,5621(12)	Cl1 – O20	1,4490(13)	N6 – H48	0,9501(14)
Gd1 - O1	2,8177(12)	Cl2 – O21	1,4293(13)	C1 - O2	1,2547(19)
Gd1 - C1	3,0260(16)	Cl2 – O22	1,4405(13)	C1 - O1	1,2624(19)
Gd2-01	2,3278(11)	Cl2 – O24	1,4497(12)	C3 – O4	1,2558(19)
Gd2 - O5	2,3562(12)	Cl2 – O23	1,4557(12)	C3 - O3	1,2615(19)
Gd2 - O4	2,3659(11)	Cl3 – O25	1,4299(15)	C5 - O5	1,2526(19)
Gd2 - 09	2,3855(12)	Cl3 – O26	1,4395(13)	C5 - O6	1,2630(19)
$Gd2^{(II)}-O6$	2,4074(12)	Cl3 – O27	1,4521(14)	C7 – O8	1,2590(19)
Gd2-016	2,4308(12)	Cl3 – O28	1,4528(14)	C7 – O7	1,2620(19)
Gd2 - 07	2,4338(12)	Cl4 – O32	1,4354(14)	C9 – O9	1,2521(19)
Gd2 - O15	2,5281(12)	Cl4 – O30	1,4381(14)	C9 – O10	1,2655(18)
C2 – H2	0,94(2)	Cl4 – O31	1,4448(14)	C11 – O11	1,2548(18)
C2 – H1	0,97(2)	Cl4 – O29	1,4488(13)	C11 – O12	1,2559(18)
C2 – N1	1,490(2)	Cl5 – O35	1,4389(13)	O1W – H15	0,8535(13)
C2 – C1	1,512(2)	Cl5 – O33	1,4398(15)	O1W – H16	0,8585(12)
C4 – H3	0,95(3)	Cl5 – O36	1,4407(14)	O2W - H19	0,8018(13)
C4 – H4	0,98(2)	Cl5 – O34	1,4496(14)	O2W - H20	0,8693(13)
C4 - N2	1,485(2)	Cl6 – O40	1,4330(13)	O3W – H18	0,8415(12)
C4 – C3	1,520(2)	Cl6 – O39	1,4422(14)	O3W – H17	0,8707(13)
C6 – H5	0,96(2)	Cl6 – O38	1,4503(13)	O4W - H30	0,8431(15)
C6 – H6	0,96(3)	Cl6 – O37	1,4554(13)	O4W - H29	0,9198(15)
C6 – N3	1,487(2)	N1 – H33	0,83(3)	O5W – H23	0,8506(14)
C6 – C5	1,518(2)	N1 – H31	0,8481(14)	O5W – H24	0,8549(13)
C8 – H7	0,95(2)	N1 – H32	0,8757(14)	O13 – H25	0,7719(12)

C8 – H8	0,97(2)	N2-H34	0,8367(15)	O13 – H26	0,7841(12)
C8 – N4	1,489(2)	N2 – H35	0,86(3)	O14 – H27	0,8280(12)
C8 – C7	1,507(2)	N2 – H36	0,8928(16)	O14 – H28	0,9304(11)
C10 – H10	0,95(3)	N3 – H38	0,8229(15)	O15 – H22	0,8404(12)
C10 – H9	0,99(2)	N3 – H37	0,9011(14)	O15 – H21	0,8672(12)
C10 – N5	1,479(2)	N3 – H39	0,96(3)	O16 – H13	0,8396(13)
C10 – C9	1,519(2)	N4 – H42	0,8650(14)	O16 – H14	0,9010(12)

Таблица 4.2.14 - Валентные углы в структуре III - С12H48Cl6Gd2N6O45

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O2 - Gd1 - C1	23,94(4)	C2 - C1 - Gd1	174,31(11)	O19 - Cl1 - O17	110,15(9)
O1 - Gd1 - C1	24,62(4)	C1 - C2 - H1	107,6(13)	O22 - C12 - O24	108,42(9)
O2 - Gd1 - O1	48,56(4)	H1 - C2 - H2	107,8(18)	O22 - C12 - O23	109,01(8)
O3 - Gd1 - O1	66,02(4)	N1 - C2 - H2	109,2(13)	O24 - Cl2 - O23	109,19(7)
O2 - Gd1 - O13	67,93(4)	N1 - C2 - H1	109,8(13)	O21 - Cl2 - O23	109,31(8)
O10 - Gd1 - O1	68,27(4)	N1 - C2 - C1	110,56(12)	O21 - Cl2 - O22	110,36(9)
O11 - Gd1 - O13	69,32(4)	C1 - C2 - H2	111,8(14)	O21 - C12 - O24	110,53(8)
O10 - Gd1 - C1	69,75(4)	C3 - C4 - H4	106,6(14)	O27 - C13 - O28	108,17(8)
$O12^{(I)} - Gd1 - O14$	70,13(4)	H3 - C4 - H4	108(2)	O26 - Cl3 - O27	108,48(8)
O11 - Gd1 - O14	70,42(4)	N2 - C4 - H3	109,5(15)	O25 - C13 - O27	109,64(11)
O10 - Gd1 - O14	70,45(4)	C3 - C4 - H3	109,5(15)	O25 - C13 - O26	110,05(9)
O8 - Gd1 - O14	71,87(4)	N2 - C4 - C3	111,21(13)	O26 - Cl3 - O28	110,15(9)
O3 - Gd1 - O13	72,51(4)	N2 - C4 - H4	111,5(14)	O25 - C13 - O28	110,31(10)
O10 - Gd1 - O2	74,28(4)	H5-C6-H6	107,0(19)	O31 - Cl4 - O29	108,68(9)
O3 - Gd1 - C1	75,24(4)	N3 - C6 - H5	107,3(13)	O32 - Cl4 - O31	108,92(10)
$O3 - Gd1 - O12^{(I)}$	75,84(4)	C5-C6-H6	109,6(15)	O30 - Cl4 - O31	109,11(9)
O8 - Gd1 - O1	76,37(4)	N3 - C6 - H6	110,2(15)	O32 - Cl4 - O29	109,53(8)
$O12^{(I)} - Gd1 - O13$	76,83(4)	C5-C6-H5	110,6(13)	O30 - Cl4 - O29	110,12(8)
O8 - Gd1 - O3	76,86(4)	N3 - C6 - C5	112,00(13)	O32 - C14 - O30	110,45(10)
O11 - Gd1 - O10	77,55(4)	C7 - C8 - H7	107,8(13)	O36 - C15 - O34	107,98(9)
O11 - Gd1 - O2	77,97(4)	C7 - C8 - H8	108,6(15)	O33 - C15 - O34	108,77(9)
O8 - Gd1 - O10	78,07(4)	N4-C8-H8	108,8(14)	O35 - C15 - O33	109,32(9)
$O8 - Gd1 - O12^{(I)}$	82,62(4)	N4-C8-H7	109,3(13)	O35 - C15 - O34	109,42(9)
O13 - Gd1 - C1	84,73(4)	H7 - C8 - H8	111,0(19)	O35 - C15 - O36	109,65(9)
O3 - Gd1 - O2	86,87(4)	N4 - C8 - C7	111,31(13)	O33 - C15 - O36	111,67(10)
$O11 - Gd1 - O12^{(I)}$	96,39(4)	C9 - C10 - H10	107,9(15)	O38 - C16 - O37	108,64(8)

O11 - Gd1 - C1	99,86(4)	C9 - C10 - H9	108,7(13)	O39 - C16 - O37	108,84(9)
O8 - Gd1 - C1	100,69(4)	H9 – C10 – H10	109(2)	O40 - C16 - O38	109,20(8)
O13 - Gd1 - O1	102,86(4)	N5-C10-H9	109,4(13)	O39 - Cl6 - O38	109,47(9)
O11 - Gd1 - O1	121,75(4)	N5 - C10 - C9	110,06(13)	O40 - C16 - O37	109,85(8)
O13 - Gd1 - O14	123,52(4)	N5 - C10 - H10	111,5(15)	O40 - C16 - O39	110,81(9)
O8 - Gd1 - O2	124,20(4)	N6-C12-H12	106,2(14)	O4 - C3 - C4	115,12(14)
O3 - Gd1 - O10	131,67(4)	N6-C12-H11	106,3(14)	O3 - C3 - C4	117,03(13)
O14 - Gd1 - O1	131,88(4)	C11 – C12 – H12	109,9(14)	O4 - C3 - O3	127,84(15)
O10 - Gd1 - O13	133,65(4)	H11 – C12 – H12	110(2)	O6 - C5 - C6	115,73(14)
O3 - Gd1 - O14	135,96(4)	N6-C12-C11	110,92(12)	O5 - C5 - C6	118,52(14)
O2 - Gd1 - O14	136,56(4)	C11 - C12 - H11	113,2(14)	O5-C5-O6	125,75(15)
$O12^{(I)}-Gd1-O1$	139,58(4)	H31 – N1 – H32	103,81(14)	O7 - C7 - C8	117,25(14)
$O12^{(I)} - Gd1 - O10$	139,80(4)	C2 – N1 – H33	108,3(18)	O8 - C7 - C8	119,31(14)
O11 - Gd1 - O8	140,10(4)	C2 - N1 - H32	110,15(13)	O8 - C7 - O7	123,41(15)
O14 - Gd1 - C1	140,19(4)	C2 - N1 - H31	110,59(14)	O10 - C9 - C10	115,98(14)
O11 - Gd1 - O3	141,81(4)	H31 – N1 – H33	110,7(18)	O9 - C9 - C10	116,93(13)
$O12^{(I)}-Gd1-O2$	144,07(4)	H32 – N1 – H33	113,2(18)	O9 - C9 - O10	127,08(14)
O8 - Gd1 - O13	146,38(4)	H34 - N2 - H36	104,53(16)	O12 - C11 - C12	116,37(13)
$O12^{(I)}-Gd1-C1$	149,25(4)	C4 - N2 - H36	108,10(14)	O11 – C11 – C12	117,66(13)
O5 - Gd2 - O15	68,49(4)	H35 - N2 - H36	108,2(18)	O11 - C11 - O12	125,96(14)
O9 - Gd2 - O16	69,27(4)	H34 - N2 - H35	110,0(18)	C1 - O1 - Gd1	86,97(9)
O4 - Gd2 - O15	69,72(4)	C4 – N2 – H35	110,6(18)	Gd2 - O1 - Gd1	110,08(4)
$O6^{(\rm II)}-Gd2-O15$	71,27(4)	C4 - N2 - H34	115,07(15)	C1 - O1 - Gd2	160,78(11)
O5 - Gd2 - O16	72,39(4)	H37 - N3 - H38	103,82(15)	Gd1 - O13 - H25	101,84(9)
O16-Gd2-O7	73,11(4)	C6 - N3 - H37	105,67(14)	H25 - O13 - H26	105,08(14)
O1 - Gd2 - O9	73,16(4)	H38 – N3 – H39	106,2(17)	Gd1 - O13 - H26	118,25(10)
O1-Gd2-O4	74,59(4)	C6 – N3 – H39	111,7(18)	H27 - O14 - H28	99,84(12)
O4-Gd2-O7	74,94(4)	H37 – N3 – H39	113,9(17)	Gd1 - O14 - H28	112,98(9)
$O6^{(\rm II)}-Gd2-O16$	75,86(4)	C6 - N3 - H38	115,55(15)	Gd1 - O14 - H27	119,07(10)
O5-Gd2-O7	78,21(4)	C8 - N4 - H40	105,9(16)	Gd2-O15-H22	108,13(9)
$O9-Gd2-O6^{(\mathrm{II})}$	80,82(4)	H41 - N4 - H42	107,89(15)	H21 – O15 – H22	114,07(13)
O9-Gd2-O7	80,85(4)	H40 - N4 - H42	108,5(16)	Gd2 - O15 - H21	120,93(9)
O1 - Gd2 - O15	81,14(4)	H40 - N4 - H41	109,6(16)	H13 – O16 – H14	110,83(14)
O5-Gd2-O4	82,01(4)	C8 - N4 - H42	111,62(14)	Gd2 - O16 - H14	115,64(9)
$O1-Gd2-O6^{(II)}$	82,20(4)	C8 - N4 - H41	113,19(14)	Gd2 - O16 - H13	122,15(10)
$O5-Gd2-O6^{(\rm II)}$	100,00(4)	C10 - N5 - H44	105,10(13)	C1 - O2 - Gd1	101,82(10)
O1 - Gd2 - O7	116,93(4)	H43 - N5 - H44	105,20(15)	H15 - O1W - H16	108,27(14)

O16-Gd2-O15	122,32(4)	C10 - N5 - H45	108,2(18)	C3 - O3 - Gd1	137,38(10)
O4-Gd2-O9	124,22(4)	C10 - N5 - H43	111,74(14)	H19-O2W-H20	94,01(13)
O7 - Gd2 - O15	133,87(4)	H44 - N5 - H45	112,9(19)	C3 - O4 - Gd2	139,01(11)
$O4-Gd2-O6^{\rm (II)}$	136,97(4)	H43 - N5 - H45	113,4(18)	H17 – O3W – H18	111,21(14)
O1-Gd2-O16	138,82(4)	C12 - N6 - H46	105,97(13)	C5 - O5 - Gd2	161,24(11)
O5-Gd2-O9	140,19(4)	H46 - N6 - H47	108,4(18)	H29-O4W-H30	113,72(16)
O4-Gd2-O16	142,30(4)	C12 - N6 - H47	108,6(19)	$C5-O6-Gd2^{(II)} \\$	131,93(10)
O9 - Gd2 - O15	144,24(4)	H47 - N6 - H48	109,6(19)	H23-O5W-H24	105,07(15)
O1 - Gd2 - O5	146,65(4)	H46 - N6 - H48	110,64(15)	C7 - O7 - Gd2	110,66(10)
$O6^{(II)}-Gd2-O7$	147,92(4)	C12 - N6 - H48	113,50(13)	C7 - O8 - Gd1	174,39(11)
O2 - C1 - Gd1	54,24(8)	O17 - C11 - O20	108,57(8)	C9 - O9 - Gd2	145,07(10)
O1 - C1 - Gd1	68,41(9)	O18 - C11 - O20	109,07(8)	C9 - O10 - Gd1	131,37(10)
O1 - C1 - C2	117,27(14)	O19 - Cl1 - O18	109,48(8)	C11 - O11 - Gd1	175,24(11)
O2 - C1 - C2	120,09(14)	O19 - Cl1 - O20	109,59(9)	$C11 - O12 - Gd1^{(I)}$	134,28(10)
O2 - C1 - O1	122,63(15)	O17 - Cl1 - O18	109,95(8)		

Таблица 4.2.15 - Па	раметры водородных	связей для II	I - C1	12H48Cl6Gd2N6	5 O 45
---------------------	--------------------	---------------	--------	---------------	---------------

Атомы	D – H, Å	H … A, Å	D ··· A, Å	D – H … A, °
O13 – H26 … O1W	0,7841(12)	1,9673(13)	2,7344(17)	165,88(10)
O13 – H26 … O1W	0,7841(12)	1,9673(13)	2,7344(17)	165,88(10)
O15 – H22 … O2W	0,8404(12)	1,9395(13)	2,7625(18)	165,99(9)
O15 – H22 … O2W	0,8404(12)	1,9395(13)	2,7625(18)	165,99(9)
O16 – H13 … O4W	0,8396(13)	1,9485(14)	2,7782(19)	169,53(10)
O16 – H13 … O4W	0,8396(13)	1,9485(14)	2,7782(19)	169,53(10)
O3W – H17 … O2W	0,8707(13)	1,9276(13)	2,7816(19)	166,44(9)
O3W – H17 … O2W	0,8707(13)	1,9276(13)	2,7816(19)	166,44(9)
$O16 - H14 \cdots O15^{(I)}$	0,9010(12)	1,9174(12)	2,7838(17)	160,71(9)
$O16 - H14 \cdots O15^{(I)}$	0,9010(12)	1,9174(12)	2,7838(17)	160,71(9)
O13 – H25 ··· O2	0,7719(12)	2,4278(11)	2,8105(17)	112,08(9)
O13 – H25 ··· O2	0,7719(12)	2,4278(11)	2,8105(17)	112,08(9)
N3 – H37 ··· O40	0,9011(14)	2,2667(13)	2,841(2)	121,32(10)
N3 – H37 ··· O40	0,9011(14)	2,2667(13)	2,841(2)	121,32(10)
O1W – H16 … O24	0,8585(12)	1,9905(12)	2,8417(17)	171,05(10)
O1W – H16 … O24	0,8585(12)	1,9905(12)	2,8417(17)	171,05(10)
O1W – H15 … O28	0,8535(13)	2,0143(13)	2,8488(18)	165,53(9)
O1W – H15 ··· O28	0,8535(13)	2,0143(13)	2,8488(18)	165,53(9)

$O14 - H28 \cdots O13^{(II)}$	0,9304(11)	1,9233(12)	2,8489(16)	172,98(8)
O14 – H28 ···· O13 ^(II)	0,9304(11)	1,9233(12)	2,8489(16)	172,98(8)
O15 – H21 ··· O27	0,8672(12)	2,0158(14)	2,8498(18)	160,99(9)
O15 – H21 ··· O27	0,8672(12)	2,0158(14)	2,8498(18)	160,99(9)
$N2 - H34 \cdots O1W$	0,8367(15)	2,0354(13)	2,857(2)	167,23(11)
$N2 - H34 \cdots O1W$	0,8367(15)	2,0354(13)	2,857(2)	167,23(11)
N5-H44 ··· O4W	0,9751(16)	2,0071(15)	2,864(2)	145,47(9)
N5-H44 ··· O4W	0,9751(16)	2,0071(15)	2,864(2)	145,47(9)
$O2W-H20\cdotsO5W^{(I)}$	0,8693(13)	2,0216(14)	2,8788(19)	168,57(10)
$O2W-H20\cdotsO5W^{(I)}$	0,8693(13)	2,0216(14)	2,8788(19)	168,57(10)
$O2W-H19\cdotsO37^{(III)}$	0,8018(13)	2,1000(13)	2,8854(18)	166,35(10)
$O2W-H19\cdotsO37^{(III)}$	0,8018(13)	2,1000(13)	2,8854(18)	166,35(10)
N5 – H43 … O34	0,9022(14)	2,0502(13)	2,8923(19)	154,82(10)
N5 – H43 … O34	0,9022(14)	2,0502(13)	2,8923(19)	154,82(10)
$O14-H27\cdotsO26^{(IV)}$	0,8280(12)	2,3717(13)	2,9037(17)	122,68(9)
$O14-H27\cdotsO26^{(IV)}$	0,8280(12)	2,3717(13)	2,9037(17)	122,68(9)
N6 – H46 … O29	0,8773(14)	2,4386(14)	2,9090(19)	114,08(10)
N6 – H46 … O29	0,8773(14)	2,4386(14)	2,9090(19)	114,08(10)
N3 – H38 ···· O7	0,8229(15)	2,0985(12)	2,9151(19)	171,60(10)
N3 – H38 ··· O7	0,8229(15)	2,0985(12)	2,9151(19)	171,60(10)
O4W – H30 … O37	0,8431(15)	2,1262(14)	2,916(2)	155,91(11)
O4W – H30 … O37	0,8431(15)	2,1262(14)	2,916(2)	155,91(11)
$N4-H42\cdotsO18^{(V)}$	0,8650(14)	2,1873(13)	2,932(2)	144,08(10)
$N4 - H42 \cdots O18^{(V)}$	0,8650(14)	2,1873(13)	2,932(2)	144,08(10)
$N2 - H36 \cdots O17^{(V)}$	0,8928(16)	2,1084(14)	2,940(2)	154,59(10)
$N2 - H36 \cdots O17^{(V)}$	0,8928(16)	2,1084(14)	2,940(2)	154,59(10)
$N1 - H32 \cdots O23^{(VI)}$	0,8757(14)	2,1165(12)	2,9551(18)	160,11(9)
$N1 - H32 \cdots O23^{(VI)}$	0,8757(14)	2,1165(12)	2,9551(18)	160,11(9)
$N1 - H32 \cdots O35^{(VII)}$	0,8757(14)	2,4705(13)	2,9747(19)	117,21(10)
$N1 - H32 \cdots O35^{(VII)}$	0,8757(14)	2,4705(13)	2,9747(19)	117,21(10)
$N6-H48$ ···· $O35^{(VII)}$	0,9501(14)	2,4817(14)	2,9965(19)	114,00(9)
$N6-H48\cdotsO35^{(VII)}$	0,9501(14)	2,4817(14)	2,9965(19)	114,00(9)
$O4W-H29\cdotsO4W^{(VIII)}$	0,9198(15)	2,5187(15)	3,017(3)	114,41(9)
$O4W-H29\cdotsO4W^{(VIII)}$	0,9198(15)	2,5187(15)	3,017(3)	114,41(9)
N1 – H31 ··· O28	0,8481(14)	2,3588(14)	3,024(2)	135,64(10)
N4 – H41 ··· O14	0,8835(15)	2,1650(12)	3,0240(19)	163,97(10)
N1 – H31 ··· O28	0,8481(14)	2,3588(14)	3,024(2)	135,64(10)

N4 – H41 … O14	0,8835(15)	2,1650(12)	3,0240(19)	163,97(10)
$O5W - H24 \cdots O6^{(I)}$	0,8549(13)	2,2773(12)	3,0270(18)	146,46(10)
$O5W - H24 \cdots O6^{(I)}$	0,8549(13)	2,2773(12)	3,0270(18)	146,46(10)
$N2 - H36 \cdots O32^{(II)}$	0,8928(16)	2,5985(14)	3,030(2)	110,58(10)
$N2 - H36 \cdots O32^{(II)}$	0,8928(16)	2,5985(14)	3,030(2)	110,58(10)
$N1 - H31 \cdots O24^{(VI)}$	0,8481(14)	2,5284(12)	3,0312(18)	118,96(10)
$N1 - H31 \cdots O24^{(VI)}$	0,8481(14)	2,5284(12)	3,0312(18)	118,96(10)
$O5W - H23 \cdots O29^{(VII)}$	0,8506(14)	2,2982(15)	3,041(2)	146,08(10)
$O5W - H23 \cdots O29^{(VII)}$	0,8506(14)	2,2982(15)	3,041(2)	146,08(10)
$O4W-H29\cdotsO39^{(VIII)}$	0,9198(15)	2,1825(15)	3,047(2)	156,26(10)
$O4W-H29\cdotsO39^{(VIII)}$	0,9198(15)	2,1825(15)	3,047(2)	156,26(10)
$O13 - H25 \cdots O22^{(VI)}$	0,7719(12)	2,3657(16)	3,050(2)	148,40(9)
$O13 - H25 \cdots O22^{(VI)}$	0,7719(12)	2,3657(16)	3,050(2)	148,40(9)
N6 – H46 … O10	0,8773(14)	2,2841(12)	3,0643(18)	148,13(10)
N6 – H46 … O10	0,8773(14)	2,2841(12)	3,0643(18)	148,13(10)
$O3W - H18 \cdots O32^{(IX)}$	0,8415(12)	2,3189(19)	3,085(2)	151,58(9)
$O3W - H18 \cdots O32^{(IX)}$	0,8415(12)	2,3189(19)	3,085(2)	151,58(9)
$N3 - H37 \cdots O23^{(V)}$	0,9011(14)	2,3125(12)	3,0862(19)	143,85(10)
$N3 - H37 \cdots O23^{(V)}$	0,9011(14)	2,3125(12)	3,0862(19)	143,85(10)
$C2 - H1 \cdots O35^{(VII)}$	0,97(2)	2,62(2)	3,113(2)	111,6(15)
$C2 - H1 \cdots O35^{(VII)}$	0,97(2)	2,62(2)	3,113(2)	111,6(15)
$O3W - H18 \cdots O31^{(IX)}$	0,8415(12)	2,3706(16)	3,118(2)	148,34(9)
$O3W - H18 \cdots O31^{(IX)}$	0,8415(12)	2,3706(16)	3,118(2)	148,34(9)
$C10 - H9 \cdots O26^{(IV)}$	0,99(2)	2,57(2)	3,124(2)	115,2(16)
$C10 - H9 \cdots O26^{(IV)}$	0,99(2)	2,57(2)	3,124(2)	115,2(16)
$N6-H48$ ··· $O23^{(VI)}$	0,9501(14)	2,3549(12)	3,1443(19)	140,21(9)
$N6 - H48 \cdots O23^{(VI)}$	0,9501(14)	2,3549(12)	3,1443(19)	140,21(9)
C8 – H8 ···· O19 ^(V)	0,97(2)	2,64(2)	3,146(2)	113,2(17)
C8 – H8 ···· O19 ^(V)	0,97(2)	2,64(2)	3,146(2)	113,2(17)
C12 – H12 … O29	0,94(2)	2,62(2)	3,197(2)	120,2(17)
C12 – H12 ··· O29	0,94(2)	2,62(2)	3,197(2)	120,2(17)
$O5W - H23 \cdots O31^{(VII)}$	0,8506(14)	2,5154(16)	3,198(2)	137,99(10)
$O5W - H23 \cdots O31^{(VII)}$	0.8506(14)	2,5154(16)	3,198(2)	137,99(10)
$014 - H27 \cdots 030$	0,8300(14)	, , ,		
011 1127 050	0,8280(12)	2,4549(14)	3,2071(19)	151,53(9)
O14 – H27 ··· O30	0,8300(14) 0,8280(12) 0,8280(12)	2,4549(14) 2,4549(14)	3,2071(19) 3,2071(19)	151,53(9) 151,53(9)
$\begin{array}{c} 0.14 - H27 \cdots 0.30 \\ \hline 0.14 - H27 \cdots 0.30 \\ \hline N6 - H48 \cdots 0.2 \end{array}$	0,8300(14) 0,8280(12) 0,8280(12) 0,9501(14)	2,4549(14) 2,4549(14) 2,4760(12)	3,2071(19) 3,2071(19) 3,2125(19)	151,53(9) 151,53(9) 134,32(9)
$\begin{array}{c} 0.14 - H27 \cdots 0.30 \\ \hline 0.14 - H27 \cdots 0.30 \\ \hline N6 - H48 \cdots 0.2 \\ \hline N6 - H48 \cdots 0.2 \end{array}$	0,8300(14) 0,8280(12) 0,8280(12) 0,9501(14) 0,9501(14)	2,4549(14) 2,4549(14) 2,4760(12) 2,4760(12)	3,2071(19)3,2071(19)3,2125(19)3,2125(19)	151,53(9) 151,53(9) 134,32(9) 134,32(9)

$C4 - H4 \cdots O19^{(V)}$	0,98(2)	2,65(2)	3,214(2)	116,8(17)
$C4 - H4 \cdots O19^{(V)}$	0,98(2)	2,65(2)	3,214(2)	116,8(17)
C4 – H3 … O25	0,95(3)	2,40(3)	3,248(2)	148(2)
C4 – H3 … O25	0,95(3)	2,40(3)	3,248(2)	148(2)
$C4 - H4 \cdots O3W$	0,98(2)	2,46(2)	3,254(2)	138,3(19)
$C4 - H4 \cdots O3W$	0,98(2)	2,46(2)	3,254(2)	138,3(19)
$C10 - H10 \cdots O33^{(VII)}$	0,95(3)	2,43(3)	3,262(2)	146(2)
$C10 - H10 \cdots O33^{(VII)}$	0,95(3)	2,43(3)	3,262(2)	146(2)
$N1 - H31 \cdots O30^{(III)}$	0,8481(14)	2,5894(15)	3,263(2)	137,19(10)
$N1 - H31 \cdots O30^{(III)}$	0,8481(14)	2,5894(15)	3,263(2)	137,19(10)
C8 – H7 … O37	0,95(2)	2,49(2)	3,269(2)	139,1(17)
C8 – H7 … O37	0,95(2)	2,49(2)	3,269(2)	139,1(17)
$C12 - H11 \cdots O18^{(X)}$	0,94(2)	2,54(2)	3,282(2)	136,0(18)
$C12 - H11 \cdots O18^{(X)}$	0,94(2)	2,54(2)	3,282(2)	136,0(18)
C2 – H2 … O27	0,94(2)	2,39(2)	3,285(2)	159,4(18)
C2 – H2 … O27	0,94(2)	2,39(2)	3,285(2)	159,4(18)
$O13-H25\cdotsO24^{(VI)}$	0,7719(12)	2,6323(14)	3,2986(18)	145,68(9)
O13 – H25 ···· O24 ^(VI)	0,7719(12)	2,6323(14)	3,2986(18)	145,68(9)
$C2 - H1 \cdots O36^{(VII)}$	0,97(2)	2,39(2)	3,343(2)	166,9(18)
$C2 - H1 \cdots O36^{(VII)}$	0,97(2)	2,39(2)	3,343(2)	166,9(18)
C12 – H12 ··· O32	0,94(2)	2,58(2)	3,373(2)	141,7(19)
C12 – H12 ··· O32	0,94(2)	2,58(2)	3,373(2)	141,7(19)
$C8 - H7 \cdots O25^{(IV)}$	0,95(2)	2,59(2)	3,378(2)	140,5(17)
$C8 - H7 \cdots O25^{(IV)}$	0,95(2)	2,59(2)	3,378(2)	140,5(17)
C10 – H9 ··· O30	0,99(2)	2,45(2)	3,398(2)	159,9(19)
C10 – H9 ··· O30	0,99(2)	2,45(2)	3,398(2)	159,9(19)
$C6 - H6 \cdots O31^{(IX)}$	0,96(3)	2,56(2)	3,418(2)	149,9(19)
$C6 - H6 \cdots O31^{(IX)}$	0,96(3)	2,56(2)	3,418(2)	149,9(19)
O1W – H16 … Cl2	0,8585(12)	2,8008(4)	3,5506(13)	146,83(9)
O1W – H16 … Cl2	0,8585(12)	2,8008(4)	3,5506(13)	146,83(9)
$N1 - H32 \cdots Cl2^{(VI)}$	0,8757(14)	2,9097(4)	3,5906(14)	135,89(9)
$N1 - H32 \cdots Cl2^{(VI)}$	0,8757(14)	2,9097(4)	3,5906(14)	135,89(9)
$O3W - H18 \cdots Cl4^{(IX)}$	0,8415(12)	2,7944(4)	3,6253(13)	169,63(9)
$O3W - H18 \cdots Cl4^{(IX)}$	0,8415(12)	2,7944(4)	3,6253(13)	169,63(9)
N5 – H43 … Cl5	0,9022(14)	2,8747(4)	3,6591(15)	146,21(10)
N5 – H43 ··· Cl5	0,9022(14)	2,8747(4)	3,6591(15)	146,21(10)
$O2W - H19 \cdots Cl6^{(III)}$	0,8018(13)	2,9515(4)	3,6954(13)	155,37(9)

$O2W - H19 \cdots Cl6^{(III)}$	0,8018(13)	2,9515(4)	3,6954(13)	155,37(9)
$O5W - H23 \cdots Cl4^{(VII)}$	0,8506(14)	2,9361(4)	3,7073(14)	151,75(9)
$O5W - H23 \cdots Cl4^{(VII)}$	0,8506(14)	2,9361(4)	3,7073(14)	151,75(9)
O15 – H21 ···· Cl3	0,8672(12)	2,9773(4)	3,7126(12)	143,80(8)
O15 – H21 ···· Cl3	0,8672(12)	2,9773(4)	3,7126(12)	143,80(8)
$C2 - H1 \cdots Cl5^{(VII)}$	0,97(2)	3,01(2)	3,7893(16)	138,8(16)
$C2 - H1 \cdots Cl5^{(VII)}$	0,97(2)	3,01(2)	3,7893(16)	138,8(16)

Symmetry codes: I) -x+1, -y+1, -z+2; II) -x, -y, -z+1; III) x+1, y, z; IV) x-1, y, z; V) -x+1, -y+1, -z+1; VI) -x+1, -y, -z+1; VII) -x, -y, -z+2; VIII) -x, -y+1, -z+2; IX) x+1, y+1, z; X) x-1, y-1, z;

4.3 Кристаллографические данные и параметры уточнения структуры для [Dy₂ (Gly)₆·7H₂O](ClO₄)₆

Гаолица 4.5.1 - Список атомов для С12н38С16Dy21\6O40						
Атом	X	У	Z	Заселенность	Ueq, Ų	
C1	0,6455(4)	0,3278(3)	0,38550(19)	1	0,0158(6)	
C2	0,5972(4)	0,3721(3)	0,4583(2)	1	0,0196(6)	
C3	0,7362(4)	0,4364(3)	0,18273(18)	1	0,0147(6)	
C4A	0,6260(8)	0,5149(6)	0,1497(4)	0,5	0,0184(9)	
C4B	0,7001(8)	0,5395(5)	0,1293(4)	0,5	0,0184(9)	
C5	0,1902(4)	0,4253(3)	0,27623(18)	1	0,0152(6)	
C6	0,1448(4)	0,5411(3)	0,2834(2)	1	0,0209(7)	
C7	-0,2456(4)	0,1610(3)	0,1345(2)	1	0,0203(7)	
C8	-0,2150(4)	0,1206(4)	0,0609(2)	1	0,0291(9)	
C9	-0,3315(4)	0,0539(3)	0,33223(18)	1	0,0144(6)	
C10	-0,2769(4)	-0,0528(3)	0,3720(2)	1	0,0184(6)	
C11	0,2179(4)	0,0770(3)	0,22600(17)	1	0,0123(5)	
C12	0,2873(4)	-0,0287(3)	0,20492(19)	1	0,0142(6)	
Cl1	0,64402(14)	0,85569(9)	-0,00100(6)	1	0,0343(2)	
Cl2	0,90864(10)	0,85291(8)	0,18011(5)	1	0,02247(17)	
C13	0,88073(11)	0,65039(7)	0,46549(5)	1	0,02289(17)	
Cl4	0,47438(10)	0,33774(7)	0,69487(5)	1	0,02112(16)	
C15	0,24001(10)	-0,08746(7)	0,44991(5)	1	0,01979(15)	
Cl6A	0,2893(2)	0,58112(14)	0,04998(10)	0,5	0,0234(2)	
Cl6B	0,1819(2)	0,58757(14)	0,04142(10)	0,5	0,0234(2)	
Dy1	0,47427(2)	0,24110(2)	0,26352(2)	1	0,01349(4)	
Dy2	-0,06899(2)	0,25424(2)	0,25159(2)	1	0,01376(4)	
H1A	0,772709	0,306152	0,500278	1	0,031	
H1B	0,69101	0,38532	0,54256	1	0,031	
H1C	0,788072	0,420207	0,470334	1	0,031	
H2A	0,555961	0,445318	0,446981	1	0,023	
H2B	0,519436	0,329234	0,491721	1	0,023	
H2A1	0,499284	0,493372	0,111884	0,5	0,03	
H2A2	0,570094	0,595358	0,085435	0,5	0,03	
H2A3	0,470302	0,575408	0,158403	0,5	0,03	
H2B1	0,70702	0,638098	0,164937	0,5	0,03	
H2B2	0,613452	0,647903	0,109381	0,5	0,03	

Таблица 4.3.1 - Список атомов для C12H38Cl6Dy2N6O40

H2B3	0 775271	0.643476	0.086083	0.5	0.03
H3A	-0.031413	0,043470	0,000005	1	0,032
H3R	-0.030647	0.63949	0,237566	1	0.032
H3C	-0.072851	0,037492	0.318854	1	0,032
НЛА	-0.047878	0,337472	0.012754	1	0,032
	-0,047078	0,212333	0,012734	1	0,115
	-0,043938	0,120332	-0,023148	1	0,113
	0,399039	0,552380	0,191099	0,5	0,022
П4А2 114D1	0,099301	0,539400	0,114363	0,5	0,022
	0,700330	0,520712	0,001012	0,5	0,022
	0,098013	0,326962	0,123700	0,3	0,022
П4С 115 л	0,005000	0,107013	0,04852	1	0,115
HJA	-0,005/8/	-0,072040	0,321391	1	0,025
HSB	-0,085475	-0,108174	0,402479	1	0,025
HSC	-0,083624	0,005956	0,370405	1	0,025
H6A	0,495968	0,011166	0,188184	1	0,028
H6B	0,486205	-0,104363	0,19725	1	0,028
H6C	0,448917	-0,052803	0,262572	1	0,028
H6D	0,158935	0,552685	0,331536	1	0,025
H6E	0,208602	0,588383	0,244256	1	0,025
H8A	-0,228465	0,043919	0,070571	1	0,035
H8B	-0,284963	0,156394	0,030017	1	0,035
H10A	-0,325778	-0,064044	0,424548	1	0,022
H10B	-0,30298	-0,10991	0,350099	1	0,022
H12A	0,230557	-0,087501	0,236458	1	0,017
H12B	0,282791	-0,028808	0,153109	1	0,017
H13A	0,126(8)	0,273(3)	0,1035(16)	1	0,063(15)
H13B	0,103(8)	0,3787(6)	0,123(2)	1	0,063(15)
H14B	0,0946	0,162601	0,368402	1	0,026(9)
H14A	-0,0419	0,165009	0,4079	1	0,026(9)
H15B	0,470(5)	0,292(4)	0,0979(18)	1	0,069(16)
H15A	0,334(2)	0,343(5)	0,135(3)	1	0,069(16)
H16B	0,2849	0,239468	0,4121	1	0,036(11)
H16A	0,3163	0,1457	0,4008	1	0,036(11)
N1	0,7252(4)	0,3708(3)	0,49675(18)	1	0,0207(6)
N2A	0,5389(7)	0,5456(5)	0,1257(4)	0,5	0,0200(8)
N2B	0,6989(7)	0,6194(5)	0,1222(4)	0,5	0,0200(8)
N3	-0,0133(4)	0,5685(3)	0,27707(19)	1	0,0213(6)
N4	-0,0604(5)	0,1423(7)	0,0207(2)	1	0,077(2)
N5	-0,1112(3)	-0,0574(2)	0,36601(17)	1	0,0169(5)
N6	0,4454(3)	-0,0453(2)	0,21416(18)	1	0,0187(6)
01	0,5417(3)	0,2974(2)	0,36314(15)	1	0,0198(5)
02	0,7831(3)	0,3270(2)	0,35532(15)	1	0,0187(5)
03	0,6622(4)	0,3563(3)	0,21133(18)	1	0,0420(9)
04	0,8674(3)	0,4402(2)	0,18841(17)	1	0,0258(6)
05	0,3269(3)	0,3995(2)	0,26880(16)	1	0,0220(5)
06	0,0888(3)	0,3645(2)	0,27938(16)	1	0,0224(5)
O7	-0,1391(3)	0,2011(2)	0,14988(15)	1	0,0242(6)
08	-0,3765(3)	0,1495(2)	0,17252(15)	1	0,0211(5)
09	-0,4680(3)	0,0636(2)	0,32911(15)	1	0,0187(5)
O10	-0,2434(3)	0,12820(19)	0,30632(14)	1	0,0172(5)
011	0,0803(3)	0,0943(2)	0,22769(15)	1	0,0184(5)
012	0,3016(3)	0,14046(19)	0,23915(14)	1	0,0155(4)
------	------------	-------------	--------------	-----	------------
013	0,1144(3)	0,3110(2)	0,13726(15)	1	0,0228(5)
014	0,0053(3)	0,1564(2)	0,36515(14)	1	0,0186(5)
015	0,4237(3)	0,3186(3)	0,13573(16)	1	0,0271(6)
016	0,2848(3)	0,1978(2)	0,37920(14)	1	0,0188(5)
017A	0,7680(8)	0,7726(5)	-0,0108(4)	0,5	0,0342(10)
O17B	0,6706(8)	0,7333(5)	0,0181(4)	0,5	0,0342(10)
018	0,5561(6)	0,8600(4)	0,0696(2)	1	0,0657(14)
019A	0,7382(8)	0,9615(6)	-0,0234(4)	0,5	0,0323(11)
O19B	0,7593(8)	0,9082(6)	-0,0135(4)	0,5	0,0323(11)
O20	0,5601(3)	0,8675(3)	-0,05903(17)	1	0,0291(6)
O21	0,8822(4)	0,7615(3)	0,1512(2)	1	0,0427(9)
O22	0,9774(3)	0,8160(2)	0,24502(16)	1	0,0245(5)
O23	1,0101(3)	0,9207(3)	0,12253(17)	1	0,0316(7)
O24	0,7726(4)	0,9136(3)	0,20151(19)	1	0,0412(9)
O25	0,7809(4)	0,7424(2)	0,47697(19)	1	0,0355(7)
O26	1,0138(5)	0,6851(4)	0,4120(2)	1	0,0564(12)
O27	0,9198(5)	0,5994(3)	0,5348(2)	1	0,0496(10)
O28	0,8107(4)	0,5787(2)	0,4333(2)	1	0,0350(7)
O29	0,5791(3)	0,4072(2)	0,64156(17)	1	0,0281(6)
O30	0,3364(4)	0,3994(3)	0,71319(19)	1	0,0401(8)
031	0,5346(4)	0,3001(3)	0,76245(18)	1	0,0423(9)
O32	0,4537(5)	0,2487(3)	0,6633(2)	1	0,0462(9)
O33	0,2087(4)	0,0099(2)	0,48017(18)	1	0,0353(7)
O34	0,3791(4)	-0,1370(3)	0,4645(2)	1	0,0405(8)
O35	0,1207(3)	-0,1603(2)	0,48613(16)	1	0,0264(6)
036	0,2406(4)	-0,0634(3)	0,37095(16)	1	0,0291(6)
O37B	0,0448(7)	0,6505(5)	0,0308(4)	0,5	0,0337(14)
O37A	0,3998(8)	0,4977(5)	0,0298(4)	0,5	0,0368(15)
O38	0,1792(5)	0,5470(4)	0,1155(2)	1	0,0621(13)
O39B	0,1806(9)	0,4905(5)	0,0132(4)	0,5	0,0372(15)
039A	0,3538(12)	0,6617(6)	0,0735(5)	0,5	0,061(3)
O40B	0,3073(8)	0,6475(5)	0,0025(5)	0,5	0,0449(19)
O40A	0,2236(12)	0,6252(6)	-0,0145(5)	0,5	0,051(2)

Таблица 4.3.2 - Параметры атомного смещения для C12H38Cl6Dy2N6O40

Атом	U11, Å ²	$U_{22}, Å^2$	U33, Å ²	U12, Å ²	U13, Å ²	U23, Å ²
C1	0,0178(15)	0,0130(14)	0,0171(14)	0,0037(11)	-0,0052(12)	-0,0043(11)
C2	0,0207(16)	0,0212(16)	0,0188(15)	0,0034(13)	-0,0067(13)	-0,0074(13)
C3	0,0168(14)	0,0135(14)	0,0150(14)	0,0027(11)	-0,0063(11)	-0,0038(11)
C4A	0,020(3)	0,013(2)	0,023(3)	0,0013(18)	-0,009(2)	0,0017(18)
C4B	0,020(3)	0,013(2)	0,023(3)	0,0013(18)	-0,009(2)	0,0017(18)
C5	0,0217(15)	0,0114(13)	0,0132(13)	-0,0018(11)	-0,0043(12)	-0,0025(11)
C6	0,0214(16)	0,0114(14)	0,0337(19)	-0,0006(12)	-0,0127(14)	-0,0052(13)
C7	0,0150(15)	0,0302(18)	0,0153(15)	-0,0012(13)	-0,0051(12)	-0,0011(13)
C8	0,0199(17)	0,049(3)	0,0174(16)	0,0064(17)	-0,0044(14)	-0,0073(16)
C9	0,0150(14)	0,0142(14)	0,0140(13)	0,0002(11)	-0,0045(11)	-0,0017(11)
C10	0,0155(15)	0,0149(14)	0,0248(17)	-0,0035(11)	-0,0093(13)	0,0034(12)
C11	0,0134(13)	0,0128(13)	0,0103(12)	-0,0011(10)	-0,0015(10)	-0,0018(10)
C12	0,0114(13)	0,0127(13)	0,0189(14)	0,0004(10)	-0,0034(11)	-0,0036(11)

Cl1	0,0455(6)	0,0383(5)	0,0274(5)	0,0180(5)	-0,0217(4)	-0,0198(4)
Cl2	0,0162(4)	0,0318(4)	0,0174(4)	-0,0044(3)	-0,0026(3)	0,0010(3)
Cl3	0,0328(5)	0,0154(4)	0,0234(4)	0,0012(3)	-0,0113(3)	-0,0054(3)
Cl4	0,0184(4)	0,0267(4)	0,0169(4)	0,0009(3)	-0,0024(3)	-0,0029(3)
Cl5	0,0206(4)	0,0190(4)	0,0180(4)	-0,0027(3)	-0,0039(3)	0,0013(3)
Cl6A	0,0317(6)	0,0143(5)	0,0225(6)	0,0000(5)	-0,0056(5)	-0,0002(4)
Cl6B	0,0317(6)	0,0143(5)	0,0225(6)	0,0000(5)	-0,0056(5)	-0,0002(4)
Dy1	0,01052(7)	0,01528(7)	0,01519(7)	-0,00285(5)	-0,00268(5)	-0,00291(5)
Dy2	0,01531(7)	0,00931(7)	0,01650(7)	-0,00216(5)	-0,00062(5)	-0,00403(5)
N1	0,0240(15)	0,0197(14)	0,0202(14)	-0,0009(11)	-0,0065(12)	-0,0062(11)
N2A	0,022(2)	0,0147(19)	0,023(2)	0,0015(15)	-0,0087(17)	-0,0008(15)
N2B	0,022(2)	0,0147(19)	0,023(2)	0,0015(15)	-0,0087(17)	-0,0008(15)
N3	0,0207(14)	0,0176(14)	0,0272(16)	-0,0006(11)	-0,0088(12)	-0,0038(12)
N4	0,021(2)	0,189(7)	0,0166(18)	-0,002(3)	0,0002(15)	-0,017(3)
N5	0,0159(13)	0,0132(12)	0,0215(14)	0,0013(10)	-0,0066(11)	-0,0012(10)
N6	0,0131(12)	0,0191(14)	0,0240(14)	0,0031(10)	-0,0048(11)	-0,0047(11)
01	0,0172(11)	0,0239(13)	0,0203(12)	-0,0002(9)	-0,0059(9)	-0,0067(10)
O2	0,0144(11)	0,0217(12)	0,0225(12)	0,0019(9)	-0,0045(9)	-0,0099(10)
03	0,0456(19)	0,061(2)	0,0248(15)	-0,0437(18)	0,0079(14)	-0,0165(15)
O4	0,0163(12)	0,0341(15)	0,0301(14)	-0,0076(11)	-0,0026(11)	-0,0123(12)
05	0,0209(12)	0,0165(12)	0,0305(14)	-0,0008(9)	-0,0084(11)	-0,0054(10)
06	0,0240(13)	0,0148(11)	0,0309(14)	-0,0072(10)	-0,0063(11)	-0,0065(10)
07	0,0165(12)	0,0348(15)	0,0204(12)	-0,0085(11)	-0,0073(10)	0.0040(11)
08	0,0145(11)	0,0299(14)	0.0203(12)	-0,0037(10)	-0,0009(9)	-0,0091(10)
09	0.0134(11)	0.0199(12)	0.0226(12)	-0.0006(9)	-0.0061(9)	-0.0006(9)
O10	0,0170(11)	0,0142(11)	0.0196(11)	-0,0015(9)	-0,0046(9)	0,0001(9)
011	0.0121(10)	0.0178(11)	0.0282(13)	0.0030(9)	-0.0056(9)	-0.0111(10)
012	0.0136(10)	0.0151(11)	0.0188(11)	-0.0020(8)	-0.0048(9)	-0.0032(9)
013	0.0204(12)	0.0240(13)	0.0225(13)	-0.0037(10)	0.0006(10)	-0.0043(10)
014	0.0130(11)	0.0224(12)	0.0204(12)	-0.0010(9)	-0.0022(9)	-0.0046(10)
015	0.0197(13)	0.0404(17)	0.0206(13)	-0.0083(12)	-0.0040(10)	-0.0016(12)
016	0.0172(11)	0.0224(12)	0.0172(11)	-0.0037(9)	-0.0027(9)	-0.0038(9)
017A	0.043(3)	0.030(2)	0.029(2)	0.0060(19)	-0.009(2)	-0.0068(18)
017B	0.043(3)	0.030(2)	0.029(2)	0.0060(19)	-0.009(2)	-0.0068(18)
018	0.090(4)	0.090(4)	0.0177(16)	-0.032(3)	0.0003(19)	-0.0107(19)
019A	0.030(2)	0.029(3)	0.044(3)	-0.007(3)	-0.0163(19)	-0.008(3)
019R	0.030(2)	0.029(3)	0.044(3)	-0.007(3)	-0.0163(19)	-0.008(3)
0190	0.0303(15)	0.0350(16)	0.0256(14)	-0.0095(12)	-0.0130(12)	-0.0025(12)
020	0.051(2)	0.053(2)	0.0309(17)	-0.0250(18)	-0.0086(15)	-0.0109(15)
021	0.0260(14)	0.0267(14)	0.0210(13)	0.0021(11)	-0.0096(11)	-0.0012(10)
022	0,0232(14)	0,0207(14)	0.0220(14)	-0.0098(13)	-0.0010(11)	0.0012(10)
023	0.0232(11)	0.055(2)	0.0220(17)	0.0113(14)	0.0008(13)	0,0007(12)
024	0.053(13)	0.033(2)	0.0329(16)	0,0113(14)	-0.0167(15)	-0.0088(12)
025	0,053(2)	0,0220(14)	0,0520(10)	-0.031(2)	-0,0107(13)	-0.034(2)
020	0,034(2)	0,070(3)	0,030(2)	-0,031(2)	0,0123(17)	-0,03+(2)
$\frac{027}{028}$	0,080(3)	0,0304(19)	0,0328(18)	0,0223(19)	-0,0279(19)	-0,0008(13)
020	0,049(2) 0.0208(15)	0,0207(14) 0.0200(15)	0,0+0.9(10) 0.0252(14)	-0,0003(13)	-0.0173(13)	-0,0000(13)
029	0,0290(13) 0.0210(14)	0.0290(13)	0,0232(14) 0.0207(16)	-0,0000(12)	-0,0020(11)	-0,0000(11)
030	0,0210(14)	0,000(2)	0,0307(10)	0.0103(13)	-0,0073(12)	-0,0130(10) 0.0022(15)
031	0.0500(10)	0,070(3)	0,019/(14)	0.0110(10)	-0,0007(12)	0,0033(13)
032	0,050(2)	0,02/4(1/)	0,000(2)	-0,0134(10)	-0,0142(19)	-0,0102(10)
035	0,055(2)	0,0245(15)	0,0293(13)	-0,0090(14)	-0,0053(15)	-0,0073(12)

O34	0,0260(15)	0,0420(19)	0,046(2)	-0,0030(14)	-0,0109(14)	0,0141(15)
O35	0,0280(14)	0,0229(13)	0,0257(14)	-0,0056(11)	0,0008(11)	-0,0034(11)
O36	0,0331(15)	0,0352(16)	0,0168(12)	-0,0047(12)	-0,0037(11)	0,0002(11)
O37B	0,031(3)	0,021(3)	0,044(4)	0,001(2)	-0,006(3)	0,002(3)
O37A	0,047(4)	0,032(3)	0,029(3)	0,005(3)	-0,006(3)	-0,005(3)
O38	0,055(3)	0,068(3)	0,042(2)	0,008(2)	0,0099(19)	0,015(2)
O39B	0,051(4)	0,019(3)	0,044(4)	0,003(3)	-0,016(3)	-0,010(3)
O39A	0,098(7)	0,027(4)	0,069(6)	-0,019(4)	-0,036(5)	-0,007(4)
O40B	0,032(4)	0,023(3)	0,066(5)	-0,007(3)	0,014(4)	0,001(3)
O40A	0,086(7)	0,030(4)	0,044(4)	0,016(4)	-0,038(5)	-0,010(3)

Таблица 4.3.3 - Межатомные расстояния для C12H38Cl6Dy2N6O40

Атомы	Расстояние,	Атомы	Расстояние,	Атомы	Расстояние,
	Å		Å		Å
Dy2-010	2,302(2)	Cl5 – O33	1,439(3)	Cl6B – O37B	1,452(7)
Dy2-06	2,304(3)	Cl5 – O35	1,461(3)	C11 – O12	1,254(4)
Dy2-07	2,351(3)	Cl4 - O32	1,419(4)	C11 – O11	1,254(4)
$Dy2 - O2^{(I)}$	2,400(2)	Cl4 - O30	1,437(3)	C11 – C12	1,519(4)
Dy2-011	2,404(2)	Cl4 – O29	1,445(3)	C9 – O10	1,254(4)
Dy2-014	2,415(3)	Cl4 – O31	1,450(3)	C9 – O9	1,258(4)
Dy2-013	2,438(3)	C12 - O24	1,427(3)	C9 - C10	1,503(4)
$Dy2 - O4^{(I)}$	2,493(3)	Cl2 – O21	1,434(4)	C1 – O1	1,236(4)
$Dy2 - O3^{(I)}$	2,844(4)	Cl2 – O22	1,450(3)	C1 – O2	1,266(4)
Dy1-O3	2,292(3)	Cl2 – O23	1,453(3)	C1 – C2	1,529(5)
Dy1-012	2,295(2)	Cl3 – O27	1,418(3)	C5 - O6	1,249(4)
Dy1-O5	2,323(3)	Cl3 – O25	1,437(3)	C5 - O5	1,250(4)
Dy1-01	2,323(3)	Cl3 – O26	1,442(4)	C5-C6	1,515(5)
$Dy1 - O8^{(II)}$	2,362(3)	Cl3 – O28	1,445(3)	C7 - O7	1,251(4)
$Dy1 - O9^{(II)}$	2,407(3)	C3 – O4	1,235(4)	C7 – O8	1,261(4)
Dy1-016	2,459(3)	C3 – O3	1,241(4)	C7 - C8	1,516(5)
Dy1-015	2,497(3)	C3 – C4A	1,489(7)	N1 – C2	1,493(5)
Cl1 – O19B	1,259(7)	C3 - C4B	1,532(7)	N6 - C12	1,486(4)
Cl1 – O18	1,392(4)	Cl6A – O39A	1,411(8)	N3 - C6	1,481(5)
Cl1 – O20	1,426(3)	Cl6A – O38	1,427(4)	N5 - C10	1,496(4)
Cl1 – O17A	1,483(7)	Cl6A – O40A	1,441(7)	C8 – N4	1,477(6)
$\overline{C11 - O17B}$	1,532(7)	$Cl\overline{6A} - O3\overline{7A}$	1,443(7)	$C\overline{4A} - N2\overline{A}$	1,004(9)
Cl1 – O19A	1,603(7)	Cl6B – O38	1,363(5)	N2B - C4B	0,996(9)
Cl5 – O34	1,421(3)	Cl6B – O40B	1,420(7)		
Cl5 – O36	1,432(3)	Cl6B – O39B	1,435(6)		

Symmetry codes: I) x-1, y, z; II) x+1, y, z;

Таблица 4.3.4 - Валентные углы в структуре С12Н38Сl6Dy2N6O40

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
$O4^{(I)} - Dy2 - O3^{(I)}$	47,46(9)	$O1-Dy1-O9^{(II)}$	84,22(9)	O39A - Cl6A - O37A	111,1(6)
$O7 - Dy2 - O3^{(I)}$	64,43(10)	O12 - Dy1 - O5	97,89(9)	O38 - Cl6A - O40A	112,1(5)
$O13 - Dy2 - O4^{(I)}$	68,64(9)	$O3-Dy1-O9^{(II)}$	119,72(13)	O38 - Cl6A - O37A	114,1(4)
O11 – Dy2 – O14	69,51(9)	O16 - Dy1 - O15	125,97(9)	O38 - Cl6B - O39B	100,8(4)
$O2^{(I)} - Dy2 - O3^{(I)}$	70,34(9)	$O1-Dy1-O8^{(II)}\\$	128,76(9)	O39B - Cl6B - O37B	107,3(4)
O7 – Dy2 – O13	70,58(9)	$O9^{(II)} - Dy1 - O15$	135,27(10)	O40B - C16B - O37B	109,8(4)
$O2^{(I)} - Dy2 - O14$	72,17(9)	$O8^{(II)} - Dy1 - O16$	137,81(9)	O40B - C16B - O39B	111,2(5)
O7 - Dy2 - O11	72,41(9)	$O5 - Dy1 - O8^{(II)}$	139,00(10)	O38 - Cl6B - O37B	111,2(4)
O6 - Dy2 - O13	72,52(10)	O1 – Dy1 – O15	139,20(10)	O38 - C16B - O40B	116,0(5)

$010 - Dv^2 - 014$	72,97(9)	03 - Dv1 - 016	140 18(10)	03 - C3 - C4A	103 0(4)
$0.00 - Dy2 - O4^{(I)}$	73,74(9)	012 - Dy1 - 01	140,70(9)	O4 - C3 - C4B	106,3(4)
011 – Dy2 – 013	74,46(9)	O3 – Dy1 – O12	145,20(10)	O4 - C3 - O3	122,6(4)
06 - Dy2 - 014	75,16(9)	$O5 - Dy1 - O9^{(II)}$	146,05(10)	O3 - C3 - C4B	130,8(4)
010 - Dy2 - 07	75,38(9)	O18 – Cl1 – O17B	92,6(3)	O4 - C3 - C4A	134,3(4)
$O6 - Dy2 - O2^{(I)}$	75,90(9)	017A - Cl1 - 019A	99,7(4)	$C3 - O3 - Dy2^{(II)}$	86,2(2)
$O10 - Dy2 - O2^{(I)}$	76,06(9)	O20 - Cl1 - O17B	101,9(3)	$Dy1 - O3 - Dy2^{(II)}$	107,79(15)
$O10 - Dy2 - O3^{(I)}$	76,67(9)	O20 - Cl1 - O19A	103,5(3)	C3 – O3 – Dy1	165,0(4)
$O2^{(I)} - Dy2 - O4^{(I)}$	78,78(9)	O18 - Cl1 - O19A	105,8(4)	O5 - C5 - C6	116,2(3)
O10 – Dy2 – O11	80,72(9)	O20 - Cl1 - O17A	110,8(3)	O6 - C5 - C6	117,6(3)
$O7 - Dy2 - O4^{(I)}$	84,77(10)	O19B - Cl1 - O18	112,1(4)	O6 - C5 - O5	126,2(3)
$O13 - Dy2 - O3^{(I)}$	101,70(9)	O18 - C11 - O20	113,6(3)	O9 - C9 - C10	116,2(3)
O6 - Dy2 - O11	105,89(9)	O19B - Cl1 - O17B	115,1(4)	O10 - C9 - C10	120,1(3)
$O6 - Dy2 - O3^{(I)}$	115,78(9)	O19B - Cl1 - O20	118,3(4)	O10 - C9 - O9	123,7(3)
O14 - Dy2 - O13	121,61(9)	O18 - Cl1 - O17A	120,8(4)	O11 - C11 - C12	116,6(3)
$O10 - Dy2 - O4^{(I)}$	123,70(9)	O36 - C15 - O35	108,13(18)	O12 - C11 - C12	118,1(3)
$O7 - Dy2 - O2^{(I)}$	130,65(9)	O33 - C15 - O35	108,45(19)	O11 - C11 - O12	125,2(3)
O7 – Dy2 – O14	133,44(9)	O34 - C15 - O35	109,51(19)	O1 - C1 - C2	114,2(3)
$O11 - Dy2 - O3^{(I)}$	134,94(9)	O36 - C15 - O33	109,56(19)	O2 - C1 - C2	117,8(3)
$O14 - Dy2 - O3^{(I)}$	136,17(9)	O34 - C15 - O33	109,9(2)	O1 - C1 - O2	128,0(3)
$O2^{(I)} - Dy2 - O11$	139,51(9)	O34 - C15 - O36	111,2(2)	08 - C7 - C8	115,2(3)
$O2^{(I)} - Dy2 - O13$	139,56(9)	O30 - C14 - O29	108,4(2)	07 - C7 - C8	116,4(3)
O11 – Dy2 – O4 ^(I)	141,38(9)	O29 - C14 - O31	108,7(2)	07 - C7 - 08	128,4(4)
$O14 - Dy2 - O4^{(I)}$	141,56(9)	O30 - C14 - O31	109,0(2)	C11 – O12 – Dy1	173,7(2)
O6 - Dy2 - O7	142,03(10)	O32 - C14 - O29	109,4(2)	C11 - O11 - Dy2	127,1(2)
O10 – Dy2 – O13	142,48(9)	O32 - C14 - O31	109,7(2)	$C9 - O9 - Dy1^{(I)}$	109,4(2)
O10 - Dy2 - O6	142,57(10)	O32 - C14 - O30	111,6(2)	$C3-O4-Dy2^{(\mathrm{II})}$	103,4(2)
O1 – Dy1 – O16	69,02(9)	O21 - C12 - O23	108,8(2)	C9 - O10 - Dy2	174,7(2)
$O8^{(II)}-Dy1-O15$	69,23(10)	O21 - C12 - O22	108,9(2)	C1 - O1 - Dy1	144,8(2)
$O9^{(II)}-Dy1-O16\\$	70,64(9)	O22 - C12 - O23	109,06(18)	C5 - O6 - Dy2	164,5(3)
O5 - Dy1 - O15	70,96(10)	O24 - C12 - O22	109,31(19)	C5 - O5 - Dy1	135,7(2)
O12 - Dy1 - O15	71,63(9)	O24 - C12 - O23	109,4(2)	$C1-O2-Dy2^{(\mathrm{II})}$	134,1(2)
O12 - Dy1 - O16	72,18(9)	O24 - C12 - O21	111,3(2)	$C7 - O8 - Dy1^{(I)}$	132,9(3)
$O8^{(II)} - Dy1 - O9^{(II)}$	73,74(9)	O26-Cl3-O28	107,2(2)	C7 - O7 - Dy2	140,2(2)
O3 - Dy1 - O1	73,86(10)	O25 - C13 - O26	109,2(3)	N5 - C10 - C9	111,0(3)
O5 - Dy1 - O16	75,88(9)	O27 - C13 - O25	109,4(2)	N6 - C12 - C11	111,2(3)
O3 - Dy1 - O15	76,09(11)	O25 - C13 - O28	109,4(2)	N3 - C6 - C5	111,6(3)
$O12-Dy1-O9^{(II)}$	77,33(8)	O27 - C13 - O26	109,5(3)	N1 - C2 - C1	111,6(3)
$O3-Dy1-O8^{(\rm II)}$	78,09(11)	O27 - C13 - O28	112,1(2)	N4 - C8 - C7	109,8(4)
$O12-Dy1-O8^{(II)} \\$	78,65(9)	O39A - Cl6A - O38	100,4(5)	N2A - C4A - C3	161,3(8)
O5 - Dy1 - O1	78,68(9)	040A - Cl6A - O37A	107,9(4)	N2B - C4B - C3	142,2(8)
O3 - Dy1 - O5	83,33(13)	O39A - Cl6A - O40A	111,1(5)		

Symmetry codes: I) x-1, *y*, *z*; *II*) *x*+1, *y*, *z*;

Таблица 4.3.5 - Параметры водородных связей для C12H38Cl6Dy2N6O40

Атомы	D – H, Å	H … A, Å	D … A, Å	D – H · · · A, °
$N2A^a - H2A1^a \cdots O37A^a$	0,89	1,92	2,587(10)	130,3
$N2A^a - H2A1^a \cdots O37A^a$	0,89	1,92	2,587(10)	130,3
$N4 - H4A \cdots O37B^{b(I)}$	0,89	1,77	2,622(10)	160,5
$N4 - H4A \cdots O37B^{b(I)}$	0,89	1,77	2,622(10)	160,5
$C4B^b - H4B1^b \cdots O39B^b^{(II)}$	0,97	1,78	2,723(11)	163,1
$C4B^b - H4B1^b \cdots O39B^b^{(II)}$	0,97	1,78	2,723(11)	163,1
$O13 - H13A \cdots O17A^{a(II)}$	0,850(2)	1,95(3)	2,738(7)	153(6)
$O13 - H13A \cdots O17A^{a(II)}$	0,850(2)	1,95(3)	2,738(7)	153(6)
O14 – H14B … O16	0,845(2)	1,900(3)	2,739(4)	171,16(19)
O14 – H14B … O16	0,845(2)	1,900(3)	2,739(4)	171,16(19)
$N4 - H4C \cdots O19B^{b(II)}$	0,89	2,13	2,755(9)	126,2
$N4 - H4C \cdots O19B^{b(II)}$	0,89	2,13	2,755(9)	126,2

$O14 - H14A \cdots O35^{(III)}$	0,841(3)	1,934(3)	2,762(4)	167,6(2)
$O14 - H14A \cdots O35^{(III)}$	0,841(3)	1,934(3)	2,762(4)	167,6(2)
O16 – H16A ··· O33	0,767(3)	2,193(3)	2,768(4)	132,4(2)
O16 – H16A ··· O33	0,767(3)	2,193(3)	2,768(4)	132,4(2)
N2B^b – H2B1^b ··· O21	0,89	2,29	2,778(7)	114,3
N2B^b – H2B1^b ··· O21	0,89	2,29	2,778(7)	114,3
N1 – H1C … O28	0,89	2,01	2,781(4)	144,4
N1 – H1C … O28	0,89	2,01	2,781(4)	144,4
O16 – H16A ···· O9 ^(IV)	0,767(3)	2,411(3)	2,814(4)	114,1(2)
O16 – H16A ···· O9 ^(IV)	0,767(3)	2,411(3)	2,814(4)	114,1(2)
N1 – H1B … O29	0.89	1.96	2,840(4)	168.8
O15 – H15A … O13	0,850(2)	2,08(3)	2,840(4)	148(6)
N1 – H1B … O29	0.89	1.96	2,840(4)	168.8
O15 – H15A ···· O13	0.850(2)	2.08(3)	2.840(4)	148(6)
O16 – H16B ···· O25 ^(V)	0.884(3)	2.069(3)	2.844(4)	145.80(19)
$O16 - H16B \cdots O25^{(V)}$	0.884(3)	2.069(3)	2.844(4)	145.80(19)
$N4 - H4B \cdots O23^{(II)}$	0.89	1.97	2.857(6)	177.1
$N4 - H4B \cdots O23^{(II)}$	0.89	1.97	2.857(6)	177.1
$\frac{1}{N1 - H1A \cdots O35^{(VI)}}$	0.89	2.01	2,896(4)	177.1
$\frac{1}{N1 - H1A \cdots O35^{(VI)}}$	0.89	2.01	2,896(4)	177,1
013 – H13B ··· 039B^b	0.850(2)	2.26(4)	2,903(8)	133(4)
$O13 - H13B \cdots O39B^{h}$	0.850(2)	2,26(4)	2,903(8)	133(4)
$\frac{\text{C8} - \text{H8A} \cdots \text{O19A}^{2}}{\text{C8} - \text{H8A} \cdots \text{O19A}^{2}}$	0.97	2,20(1)	2,903(8)	120.4
$\frac{C8 - H8A \cdots O19A^{a}}{(VII)}$	0.97	2,29	2,904(8)	120,1
$\frac{1}{N5 - H5A \cdots O22^{(VII)}}$	0.89	2,15	2,951(4)	148.8
$\frac{100 \text{ Hom} 022}{\text{N5} - \text{H5A} \cdots \text{O22}^{(\text{VII})}}$	0.89	2,15	2,951(4)	148.8
$N2B^{h} - H2B1^{h} \cdots O31^{(V)}$	0.89	2,48	2,953(7)	113.5
$N2B^{h} - H2B1^{h} - O31^{(V)}$	0.89	2.48	2,953(7)	113,5
$\frac{112D}{N3} - H3A \cdots O4^{(VIII)}$	0.89	2.13	2,954(4)	152.8
$\frac{100 \text{ HBH} 0000000000000000000000000000000000$	0.89	2,13	2,954(4)	152,8
$N2B^{h} - H2B1^{h} \cdots O30^{(V)}$	0.89	2,13	2,951(7)	132,0
$N2B^{h} - H2B1^{h} \cdots O30^{(V)}$	0.89	2,17	2,961(7)	147.7
$015 - H15B \cdots 020^{(II)}$	0.850(2)	2,35(4)	2,972(5)	131(5)
$O15 - H15B \cdots O20^{(II)}$	0.850(2)	2,35(4)	2,972(5)	131(5)
$\frac{1}{N6 - H6A \cdots O8^{(IV)}}$	0.89	2.14	2,977(4)	156 1
$\frac{11011000}{\text{N6} - \text{H6A} \cdots \text{O8}^{(\text{IV})}}$	0.89	2,14	2,977(4)	156.1
$\frac{110}{110} \frac{11011}{100} \frac{1000}{1000}$	0.89	2.13	3,008(4)	171.3
$\frac{1100 \text{ H}}{1000 \text{ H}} = 0.11$	0.89	2,13	3,008(4)	171.3
$\frac{110 \text{ G}^{-110} \text{ G}^{-11$	0.89	2.3	3.022(5)	138.2
$\frac{1100 \text{ H} \text{ H} \text{ C}}{\text{N} 3 - \text{H} 3 \text{C}} \cdots \text{ O} 28^{(\text{VIII})}$	0.89	2.3	3.022(5)	138,2
$\frac{100 \text{ He} \text{ C}}{\text{N6} - \text{H6C}} \approx 0.20$	0.89	2.37	3,031(4)	130,2
$\frac{100 \text{ HeC}}{\text{N6} - \text{H6C}} \approx 0.000 \text{ M}^{(\text{IV})}$	0.89	2,37	3,031(4)	130,9
$\frac{1100 \text{ H} \text{ H} \text{ S}}{\text{N5} - \text{H5B} \cdots \text{O25}^{(\text{VII})}}$	0.89	2.38	3,033(5)	129.9
$\frac{100 \text{ HoB}}{\text{N5} - \text{H5B}} \cdots \text{O25}^{(\text{VII})}$	0.89	2,38	3,033(5)	129,9
$013 - H13B \cdots 038$	0.850(2)	2,28(3)	3,044(6)	149(6)
$013 - H13B \cdots 038$	0.850(2)	2,28(3)	3,044(6)	149(6)
$\frac{C4A^{a} - H4A1^{a} \cdots O30^{(V)}}{C4A^{a} - H4A1^{a} \cdots O30^{(V)}}$	0.97	2.18	3.051(8)	148.2
$C4A^{a} - H4A1^{a} \cdots O30^{(V)}$	0.97	2,18	3.051(8)	148.2
$\frac{C2 - H2B \cdots O34^{(VI)}}{C2 - H2B \cdots O34^{(VI)}}$	0.97	2.57	3.052(5)	111.1
$\frac{C2 - H2B \cdots O34^{(VI)}}{C2 - H2B \cdots O34^{(VI)}}$	0.97	2.57	3.052(5)	111.1
$C8 - H8B \cdots O40B^{b(I)}$	0,97	2,44	3,056(9)	120.8
			· · · /	

$C8 - H8B \cdots O40B^{b(I)}$	0,97	2,44	3,056(9)	120,8
$N2A^a - H2A3^a \cdots O31^{(V)}$	0,89	2,36	3,064(8)	136,6
$N2A^{a} - H2A3^{a} \cdots O31^{(V)}$	0,89	2,36	3,064(8)	136,6
$N3 - H3B \cdots O22^{(VIII)}$	0,89	2,2	3,079(4)	167,9
$N3 - H3B \cdots O22^{(VIII)}$	0,89	2,2	3,079(4)	167,9
N6 – H6C ··· O36	0,89	2,45	3,086(4)	128,5
N6 – H6C ··· O36	0,89	2,45	3,086(4)	128,5
$N6 - H6B \cdots O18^{(IX)}$	0,89	2,44	3,093(5)	130,7
$N6 - H6B \cdots O18^{(IX)}$	0,89	2,44	3,093(5)	130,7
C10 – H10A ··· O33 ^(III)	0,97	2,48	3,096(5)	120,8
C10 – H10A ··· O33 ^(III)	0,97	2,48	3,096(5)	120,8
N1 – H1A ···· O34 ^(VI)	0,89	2,57	3,107(5)	119,6
N1 – H1A ···· O34 ^(VI)	0,89	2,57	3,107(5)	119,6
$N4 - H4C \cdots O19A^{a(II)}$	0.89	2.42	3.124(9)	135.7
N2A^a – H2A1^a ··· O15	0.89	2.32	3.124(7)	150.3
$N4 - H4C \cdots O19A^{a(II)}$	0.89	2.42	3.124(9)	135.7
N2A^a – H2A1^a ··· O15	0.89	2.32	3.124(7)	150.3
$O15 - H15B \cdots O40B^{b(II)}$	0.850(2)	2.52(4)	3.148(8)	132(5)
$O15 - H15B \cdots O40B^{(II)}$	0.850(2)	2.52(4)	3,148(8)	132(5)
$\frac{1}{N4 - H4C \cdots O23^{(VII)}}$	0.89	2.49	3,153(8)	131.7
$\frac{1}{N4 - H4C \cdots O23^{(VII)}}$	0.89	2.49	3,153(8)	131,7
$C8 - H8B \cdots O20^{(l)}$	0.97	2.5	3,160(5)	125.2
$C8 - H8B \cdots O20^{(l)}$	0.97	2,5	3 160(5)	125,2
$N6 - H6B \cdots O31^{(VI)}$	0.89	2,46	3 172(5)	137
$\frac{100 \text{ HoB}}{100 \text{ COM}} = 0.031^{(\text{VI})}$	0.89	2,10	3 172(5)	137
$\frac{1100 \text{ Hob} \text{ CS1}}{\text{N4} - \text{H4A} \cdots \text{O40A}^{\text{a}^{(I)}}}$	0.89	2,10	3,172(3)	133.7
$\frac{1}{N4} - H4A \cdots O40A^{A}a^{(I)}$	0.89	2,19	3,174(11)	133,7
$\frac{1}{N3} - H3A \cdots O38$	0.89	2,49	3 186(5)	120
$\frac{113}{N3} - H3A \cdots O38$	0.89	2,65	3,186(5)	120
$C4A^{a} - H4A1^{a} \cdots O31^{(V)}$	0.97	2,05	3 195(8)	146.2
$\frac{C4A^{a} - H4A1^{a} \cdots O31^{(V)}}{C4A^{a} - H4A1^{a} \cdots O31^{(V)}}$	0.97	2,31	3 195(8)	146.2
$\frac{C_{\text{H}}}{C_{\text{I}}} = \frac{C_{\text{H}}}{H_{\text{I}}} = \frac{1}{H_{\text{I}}} \frac$	0.97	2,54	3,175(0) 3,204(5)	116.2
$\frac{C10 - H10B}{C10 - H10B} \cdots O24^{(VII)}$	0,97	2,00	3,204(5)	116,2
1000000000000000000000000000000000000	0,97	2,00	3,204(5)	123.6
$\frac{1}{1} \frac{1}{1} \frac{1}$	0,89	2,05	3,227(6)	123,0
$\frac{111}{013} - \frac{1112}{113} + 111$	0,850(2)	2,03	3,227(0)	123,0
$\begin{array}{c} 013 - 113A \\ 017B \\ 013 - 113A \\ 017B^{h(II)} \end{array}$	0,850(2)	2,01(5)	3,2++(7) 3,244(7)	132(5)
$\frac{O15 \text{ HISR } O17B \text{ B}}{C6 - \text{H6D} \cdots \text{O26}^{(\text{VIII})}}$	0.97	2,01(5)	3,2++(7) 3,255(5)	132(3)
$\frac{C6 - H6D \cdots O26^{(VIII)}}{C6 - H6D \cdots O26^{(VIII)}}$	0.97	2,50	3,255(5)	128,4
$\frac{100}{100} \frac{100}{100} \frac{100}{100}$	0,97	2,30	3,233(9)	152.2
$N2B^{h} - H2B^{3} + \cdots + O3^{7}B^{h} + W^{(IV)}$	0.89	2,47	3,202(9)	152,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,07	2,47	3,202(9)	132,2
$\begin{array}{c} C8 + R8 \Lambda \cdots C24 \end{array}$	0,97	2,05	3,302(0)	124,9
$C8 H8\Lambda \cdots O10B^{h(VII)}$	0,97	2,03	3,302(0)	124,7
$\begin{array}{c} C8 + H8A \cdots O19B \circ b \\ \hline C8 + H8A \cdots O19B \circ b \\ \hline \end{array}$	0,97	2,57	3,316(8)	133,8
$C10 - H10R \cdots O22^{(III)}$	0.07	2,57	3 3 3 5 (5)	155,0
$\begin{array}{c c} \hline \hline$	0.97	$2, \pm 2$	3 335(5)	156.7
$\begin{array}{c} C10 - 1110D + 0.052 \\ C12 + 112B + 0.104 \land_{0}(II) \end{array}$	0,97	2,42	3 357(8)	150,7
$\begin{array}{c} C_{12} - III_{2D} \cdots O_{19A} a^{(7)} \\ C_{12} - III_{2D} \cdots O_{10A} a^{(II)} \end{array}$	0,97	2,43	3,332(0)	1507
$\frac{C12 - \Pi12D \cdots U19A^{*}a^{*}}{N5 \dots O25}$	0,97	2,43	3,332(8)	139,/
N5 U5D 025	0,89	2,03	3,387(4)	141,0
N2 – H2B ···· 032	0,89	2,65	3,389(4)	141,6

$C2 - H2A \cdots O29^{(V)}$	0,97	2,63	3,496(5)	148,7
$C2 - H2A \cdots O29^{(V)}$	0,97	2,63	3,496(5)	148,7
$N1 - H1A \cdots Cl5^{(VI)}$	0,89	2,75	3,541(3)	148,2
$N1 - H1A \cdots Cl5^{(VI)}$	0,89	2,75	3,541(3)	148,2
$N4 - H4A \cdots Cl6B^{b^{(I)}}$	0,89	2,81	3,548(8)	141,6
$N4 - H4A \cdots Cl6B^{(I)}$	0,89	2,81	3,548(8)	141,6
$N2B^b - H2B1^b \cdots Cl4^{(V)}$	0,89	2,83	3,551(7)	139,2
$N2B^b - H2B1^b \cdots Cl4^{(V)}$	0,89	2,83	3,551(7)	139,2
O13 – H13B … Cl6B^b	0,850(2)	2,86(3)	3,652(3)	157(6)
O13 – H13B … Cl6B^b	0,850(2)	2,86(3)	3,652(3)	157(6)
$C4A^{a} - H4A1^{a} \cdots Cl4^{(V)}$	0,97	2,69	3,656(8)	178,4
$C4A^{a} - H4A1^{a} \cdots Cl4^{(V)}$	0,97	2,69	3,656(8)	178,4
$O14 - H14A \cdots C15^{(III)}$	0,841(3)	2,9128(8)	3,671(3)	150,96(18)
$O14 - H14A \cdots C15^{(III)}$	0,841(3)	2,9128(8)	3,671(3)	150,96(18)
$N4 - H4B \cdots Cl2^{(II)}$	0,89	2,88	3,677(4)	150,6
$N4 - H4B \cdots Cl2^{(II)}$	0,89	2,88	3,677(4)	150,6
$C4B^b - H4B1^b \cdots Cl6B^{(II)}$	0,97	2,88	3,749(8)	150
$C4B^b - H4B1^b \cdots Cl6B^{(II)}$	0,97	2,88	3,749(8)	150
$O16 - H16B \cdots Cl3^{(V)}$	0,884(3)	2,9705(9)	3,759(3)	149,50(16)
$\overline{O16} - H16B \cdots Cl3^{(V)}$	0,884(3)	2,9705(9)	3,759(3)	149,50(16)
$N3 - H3B \cdots Cl2^{(VIII)}$	0,89	2,96	3,776(3)	153,1
$N3 - H3B \cdots Cl2^{(VIII)}$	0,89	2,96	3,776(3)	153,1

Symmetry codes: I) -x, -y+1, -z; II) -x+1, -y+1, -z; III) -x, -y, -z+1; IV) x+1, y, z; V) -x+1, -y+1, -z+1; VI) -x+1, -y, -z+1; VII) x-1, y-1, z; VIII) x-1, y, z; IX) x, y-1, z; X) -x+2, -y+1, -z+1;

4.4 Кристаллографические данные и параметры уточнения структуры для [La (Gly)₃·2H₂O](ClO₄)₃

Атомы	Расстояние.	Атомы	Расстояние.	Атомы	Расстояние.
	Å		Å		Å
C1 - O2	1,233(2)	C6 - H6A	0,97	O7 - La1	2,6609(17)
C1 - O1	1,253(2)	C6 - H6B	0,97	O7 - H4	0,850(2)
C1 - C2A	1,514(4)	N1A - H1A1	0,89	O7 - H3	0,850(2)
C1 - C2B	1,540(4)	N1A - H1A2	0,89	O8 - La1	2,6051(17)
C1 - La1 ⁱ	3,1328(16)	N1A - H1A3	0,89	O8 - H2	0,84(5)
C3 - O4	1,246(2)	N1B - H1B1	0,89	O8 - H1	0,86(5)
C3 - O3	1,253(2)	N1B - H1B2	0,89	O9 - Cl1	1,387(3)
C3 - C4	1,525(3)	N1B - H1B3	0,89	O10 - Cl1	1,354(3)
C2A - N1A	1,475(6)	N2 - H2A	0,89	011 - Cl1	1,412(3)
C2A - H2A1	0,97	N2 - H2B	0,89	O12 - Cl1	1,425(3)
C2A - H2A2	0,97	N2 - H2C	0,89	O13 - Cl2A	1,402(3)
C2B - N1B	1,461(7)	N3 - H3A	0,89	O13 - Cl2B	1,408(4)
C2B - H2B1	0,97	N3 - H3B	0,89	O14 - Cl2B	1,282(5)
C2B - H2B2	0,97	N3 - H3C	0,89	014 - Cl2A	1,420(3)
C4 - N2	1,481(3)	O1 - La1	2,4558(14)	O15A - Cl2A	1,436(5)
C4 - H4A	0,97	O1 - La1 ⁱ	2,8396(18)	O15B - Cl2B	1,325(15)
C4 - H4B	0,97	O2 - La1 ⁱ	2,6637(17)	016 - Cl2A	1,371(3)
C5 - O6	1,2409(19)	O3 - La1 ⁱ	2,5248(14)	O16 - Cl2B	1,398(5)
C5 - O5	1,2704(18)	O4 - La1	2,4870(14)	017 - Cl3	1,425(2)

Таблица 4.4.1 - Межатомные расстояния для I - С₆ Н₁₉ Cl₃ La N₃ O₂₀

C5 -	C6 1	1,508(2)	O5 - La1	2,5655(12)	O18 - Cl3	1,429(3)
C5 -	La1 ⁱⁱ 3,	0771(15)	O5 - La1 ⁱⁱ	2,6853(12)	O19 - Cl3	1,442(3)
C6 -	N3 1	1,472(3)	O6 - La1 ⁱⁱ	2,7310(14)	O20 - Cl3	1,423(3)

Symmetry codes: i) -x, -y+2, -z+1; ii) -x+1, -y+2, -z+1;

Таблица 4.4.2 - Валентные углы в структуре I - С₆ H₁₉ Cl₃ La N₃ O₂₀

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O2 - C1 - O1	121,67(17)	H2A - N2 - H2C	109,5	07 - La1 - O6 ⁱⁱ	91,25(6)
O2 - C1 - C2A	129,9(2)	H2B - N2 - H2C	109,5	O2 ⁱ - La1 - O6 ⁱⁱ	151,71(5)
O1 - C1 - C2A	108,3(2)	C6 - N3 - H3A	109,5	O5 ⁱⁱ - La1 - O6 ⁱⁱ	47,95(4)
O2 - C1 - C2B	105,1(2)	C6 - N3 - H3B	109,5	01 - La1 - O1 ⁱ	71,73(6)
O1 - C1 - C2B	133,2(2)	H3A - N3 - H3B	109,5	04 - La1 - O1 ⁱ	69,50(5)
O2 - C1 - La1 ⁱ	56,72(10)	C6 - N3 - H3C	109,5	O3 ⁱ - La1 - O1 ⁱ	67,31(5)
O1 - C1 - La1 ⁱ	64,97(10)	H3A - N3 - H3C	109,5	O5 - La1 - O1 ⁱ	118,61(4)
C2A - C1 - La1 ⁱ	173,21(18)	H3B - N3 - H3C	109,5	08 - La1 - O1 ⁱ	129,22(5)
O4 - C3 - O3	128,02(16)	C1 - O1 - La1	155,47(14)	07 - La1 - O1 ⁱ	88,04(5)
O4 - C3 - C4	115,93(16)	C1 - O1 - La1 ⁱ	91,45(11)	O2 ⁱ - La1 - O1 ⁱ	46,34(4)
O3 - C3 - C4	116.03(16)	La1 - O1 - La1 ⁱ	108.27(6)	O5 ⁱⁱ - La1 - O1 ⁱ	159.67(5)
N1A - C2A - C1	106.6(3)	C1 - O2 - La1 ⁱ	100.51(12)	06 ⁱⁱ - La1 - O1 ⁱ	129.84(4)
N1A - C2A - H2A1	110.4	C3 - O3 - La1 ⁱ	141.41(12)	01 - La1 - C5 ⁱⁱ	98.64(5)
C1 - C2A - H2A1	110.4	C3 - O4 - La1	137.48(12)	O4 - La1 - C5 ⁱⁱ	137.95(5)
N1A - C2A - H2A2	110.4	C5 - O5 - La1	145.82(10)	$O3^i$ - La1 - $C5^{ii}$	81.52(5)
C1 - C2A - H2A2	110.4	$C5 - 05 - La1^{ii}$	95.41(9)	05 - La1 - C5 ⁱⁱ	86.14(4)
H2A1 - C2A - H2A2	108.6	La1 - 05 - La1 ⁱⁱ	117.94(4)	$08 - La1 - C5^{ii}$	71.75(5)
N1B - C2B - C1	109.1(3)	$C5 - 06 - La1^{ii}$	93 98(10)	00° La1 $ 05^{\circ}$	80.32(5)
N1B - C2B - H2B1	109.9	La1 - 07 - H4	99(4)	0.02^{i} - La1 - C5 ⁱⁱ	140,90(5)
$\frac{1112}{C1 - C2B - H2B1}$	109.9	La1 - 07 - H3	108(4)	02^{ii} - La1 - C5 ⁱⁱ	24.27(4)
N1B - C2B - H2B2	109,9	H4 - 07 - H3	112(5)	$05^{ii} - La1 - C5^{ii}$	23,27(4)
$\frac{1112}{C1} = \frac{C2D}{C1} = \frac{112D2}{112D2}$	109,9	La1 - 08 - H2	122(3)	00^{1} - La1 - C5 ⁱⁱ	14883(4)
H2B1 - C2B - H2B2	109,9	La1 - 08 - H1	122(3) 113(3)	$\begin{array}{c} 01 \text{ Lat } 03 \\ 01 \text{ Lat } 01 \text{ C}1^{i} \end{array}$	94 58(5)
$\frac{112D1}{N2} = \frac{C4}{C3}$	109,63(16)	H2 - 08 - H1	98(4)	$04 - La1 - C1^{i}$	69 39(5)
$N_2 = C_4 = C_3$	109,05(10)	01 - L a1 - 04	74 60(5)	$O^{4} - La^{1} - C^{1}$	79.64(5)
$C_3 = C_4 = H_4 \Delta$	109,7	01 - La1 - 04	71,23(5)	05 - Lat - Ct	96 28(4)
N2 - C4 - H4B	109,7	$01 - La1 - 03^{i}$	131.18(5)	03 - La1 - C1	135.94(5)
$\begin{array}{c} 112 - C4 - 114B \\ \hline C3 - C4 - H4B \\ \hline \end{array}$	109,7	$\begin{array}{c} 04 - La1 - 05 \\ 01 La1 05 \end{array}$	131,10(3) 146,39(5)	$\begin{array}{c} 03 - La1 - C1 \\ 07 La1 C1^{i} \end{array}$	73.61(5)
	109,7	01 - La1 - 05	79.69(4)	$\frac{O^{2i}}{O^{2i}} L_{2} \frac{L_{2}}{L_{2}} \frac{C^{1i}}{L_{2}}$	73,01(3)
$\frac{11+A-C+-11+B}{06-C5-05}$	100,2 122 46(15)	O_{4}^{2i} La1 O_{5}^{2i}	1/2,09(4)	$O_2 - La_1 - C_1$	1/3/4/(4)
06 C5 C6	122,40(15) 120,13(15)	$\begin{array}{c} 0.1 \\$	73.20(6)	$O5^{ii}$ Lat C1 ⁱ	143,44(4) 145,73(5)
05 C5 C6	120,13(13) 117.41(14)	$\begin{array}{c} 01 - La1 - 03 \\ 04 La1 08 \end{array}$	66 55(5)	$\begin{array}{c} 00^{i} - La1 - C1 \\ 01^{i} La1 C1^{i} \end{array}$	143,73(3) 23.57(4)
05 - C5 - C0	62 30(0)	O_4^{i} La1 O_8^{i}	131.04(6)	$\begin{array}{c} \text{C5}^{\text{ii}} \text{ Lat - C1} \\ \text{C5}^{\text{ii}} \text{ Lat } \text{C1}^{\text{ii}} \end{array}$	152.09(4)
$\begin{array}{c} 00 - C5 - La1 \\ \hline 05 C5 La1^{ii} \end{array}$	60.32(8)	05 - La1 - 08	76.02(5)	$\begin{array}{c} CJ = Lal = Cl \\ 0.10 Cl1 0.00 \end{array}$	132,09(4) 112.6(3)
$\frac{\text{C6} \text{ C5} \text{ Lat}}{\text{C6} \text{ C5} \text{ Lat}^{\text{ii}}}$	174.35(12)	0.1 Lat 0.07	138.92(5)	010 - C11 - 011	112,0(3) 115.0(4)
$\frac{1}{10000000000000000000000000000000000$	174,33(12) 111.18(16)	01 - La1 - 07	136,92(0) 131.76(6)	010 - C11 - 011	113,9(4) 100.0(3)
N3 C6 H6A	100 4	O_4^{i} La1 O_7^{i}	68 00(6)	09 - C11 - 011	100,9(3) 100,0(2)
N3-C0-H0A	109,4	05 - La1 - 07	74.68(5)	010 - C11 - 012	109,0(2)
N2 C6 H6P	109,4	03 - La1 - 07	14,00(3)	09 - CH - 012	110,0(3) 108.0(2)
N3 - C0 - H0B	109,4	$0_{0} - Lal - 0/$	141,12(3) 116.40(5)	011 - C11 - 012	100,0(2)
	109,4	01 - La1 - 02	72.01(5)	010 - C12A - 013	115,3(3)
$\frac{10A - C0 - H0B}{C2A - N1A - H1A1}$	100 5	O_4^{2i} La1 O_2^{2i}	72,01(3)	010 - C12A - 014 013 C12A 014	110,9(3)
$C_{2A} - NIA - HIAI$	109,5	$05^{\circ} - La1 - 02^{\circ}$	93,30(3)	013 - C12A - 014	110,3(2)
$\frac{C2A - NIA - HIA2}{H1A1 - N1A - H1A2}$	109,5	03 - La1 - 02	122.82(6)	010 - C12A - 015A	106,0(3)
$\frac{\text{HIAI} - \text{NIA} - \text{HIA2}}{\text{C2A} - \text{NIA} - \text{HIA2}}$	109,5	$08 - La1 - 02^{4}$	132,82(0)	013 - C12A - 015A	103,4(3)
$\begin{array}{c} \textbf{U}_{2A} - \textbf{N}_{1A} - \textbf{H}_{1A3} \\ \textbf{U}_{1A1} - \textbf{N}_{1A} - \textbf{U}_{1A2} \\ \end{array}$	109,5	$07 - Lat - 02^{\circ}$	02,11(3) 120,01(5)	014 - 012A - 015A	103,1(3)
$\begin{array}{c c} \Pi IAI - INIA - HIA3 \\ \hline HIA2 & NIA & HIA2 \\ \end{array}$	109,5	01 - La1 - 05''	120,01(5) 127,90(4)	O14 - C12B - O15B	91,0(/)
$\frac{\Pi IA2 - INIA - HIA3}{C2D - N1D - H1D1}$	109,5	04 - Lai - 05''	127,89(4)	014 - C12B - 010	123,2(4)
C2D NID HID2	109,5	$05^{\circ} - La1 - 05^{\circ}$	99,44(4)	013B - C12B - 016	105,9(9)
ULD - NIB - HIB2	109,5	05 - Lai - 05"	02,00(4)	014 - C12B - 013	119,0(4)
HIBI - NIB - HIB2	109,5	08 - Lal - 05"	/1,09(5)	015B - Cl2B - Ol3	92,9(7)
ULD NID HID?	109,5	O' - Lal - O5''	12,34(5)	010 - CI2B - O13	111,6(4)
HIBI - NIB - HIB3	109,5	$O2^4$ - Lal - $O5^{11}$	125,53(4)	020 - C13 - 017	112,03(19)
H1B2 - N1B - H1B3	109,5	01 - La1 - O6"	/6,64(5)	020 - CI3 - 018	108,8(2)

C4 - N2 - H2A	109,5	O4 - La1 - O6 ⁱⁱ	136,08(5)	017 - Cl3 - O18	111,1(2)
C4 - N2 - H2B	109,5	O3 ⁱ - La1 - O6 ⁱⁱ	66,13(5)	O20 - Cl3 - O19	107,93(19)
H2A - N2 - H2B	109,5	O5 - La1 - O6 ⁱⁱ	109,38(4)	O17 - Cl3 - O19	107,88(18)
C4 - N2 - H2C	109,5	08 - La1 - O6 ⁱⁱ	73,77(6)	O18 - Cl3 - O19	108,97(19)

Symmetry codes: i) -x, -y+2, -z+1; ii) -x+1, -y+2, -z+1;

Таблица 4.4.3 - Параметры водородных связей для I - С6 Н19 Cl3 La N3 O20

Атомы	D – H, Å	H … A, Å	D … A, Å	$\mathbf{D} - \mathbf{H} \cdots \mathbf{A},$
$C2A^a - H2A1^a - O6^i$	0,97	2,48	3,157(4)	126,9
C2A^a - H2A1^a ··· O18 ⁱⁱ	0,97	2,59	3,332(5)	133,3
C2A^a - H2A2^a ··· O8	0,97	2,64	3,416(4)	137,1
C2B^b - H2B1^b … O14 ⁱⁱⁱ	0,97	2,52	3,022(7)	112,2
C2B^b - H2B2^b - O18 ⁱⁱ	0,97	2,54	3,365(6)	143
C2B^b - H2B2^b - O20 ⁱⁱ	0,97	2,54	3,447(6)	155,3
C4 - H4A ··· O16 ⁱⁱⁱ	0,97	2,58	3,334(5)	134,4
C4 - H4B ··· O19 ^{iv}	0,97	2,63	3,476(4)	145,5
C6 - H6A ··· O2 ^v	0,97	2,26	3,121(3)	147,4
N1A^a - H1A1^a \cdots O14 ⁱⁱⁱ	0,89	2,48	3,190(7)	136,7
N1A^a - H1A2^a … O11 ^{vi}	0,89	1,98	2,801(5)	153,3
N1A^a - H1A2^a ··· O20 ^{vii}	0,89	2,39	2,872(5)	114,4
N1A^a - H1A3^a - O11 ⁱⁱⁱ	0,89	2,47	3,073(6)	125,5
N1A^a - H1A3^a ··· O20 ⁱⁱ	0,89	2,42	3,218(6)	149,5
$N1B^b - H1B1^b \cdots O6^i$	0,89	2,37	3,173(5)	149,5
N1B^b - H1B1^b ··· O8	0,89	2,43	3,042(5)	126,4
N1B^b - H1B2^b … O11 ^{vi}	0,89	2,21	3,021(6)	150,4
N2 - H2A ···· O18 ^{iv}	0,89	2,13	2,954(4)	154
N2 - H2B ···· O12 ^{viii}	0,89	1,98	2,854(3)	166
N2 - H2B ···· C11 ^{viii}	0,89	2,95	3,787(2)	157,9
N2 - H2C ··· O13 ^{viii}	0,89	2,21	3,041(4)	155,3
N2 - H2C ··· Cl2B^b ^{viii}	0,89	2,91	3,630(4)	138,8
N3 - H3A ···· O17 ⁱⁱⁱ	0,89	2,26	3,082(4)	154
N3 - H3B ··· O19 ⁱⁱⁱ	0,89	2,55	3,045(3)	115,6
N3 - H3B ···· O19 ^{iv}	0,89	2,46	3,138(4)	133,8
N3 - H3B ···· O20 ^{iv}	0,89	2,59	3,270(4)	133,7
N3 - H3C ··· O9 ⁱ	0,89	2,35	3,085(5)	139,4
N3 - H3C ··· O10 ^{ix}	0,89	2,27	2,840(4)	122
08 - H2 ··· O7 ⁱ	0,84(5)	1,99(5)	2,797(2)	160(4)
O8 - H1 ··· O16 ⁱⁱⁱ	0,86(5)	2,59(5)	3,341(5)	146(4)
O7 - H4 ··· O13 ^x	0,850(2)	2,17(2)	2,959(4)	154(5)
O7 - H4 ··· O15B^b ^x	0,850(2)	2,13(4)	2,816(13)	137(5)
$O7 - H4 \cdots Cl2B^{b^x}$	0,850(2)	2,71(3)	3,442(5)	145(5)
O7 - H3 ··· O12 ⁱ	0,850(2)	2,46(4)	3,076(4)	130(4)
O7 - H3 ··· O14 ⁱ	0,850(2)	2,36(2)	3,133(4)	152(5)
$C2A^a - H2A1^a - O6^i$	0,97	2,48	3,157(4)	126,9
C2A^a - H2A1^a ··· O18 ⁱⁱ	0,97	2,59	3,332(5)	133,3
C2A^a - H2A2^a ··· O8	0,97	2,64	3,416(4)	137,1
C2B^b - H2B1^b … O14 ⁱⁱⁱ	0,97	2,52	3,022(7)	112,2
C2B^b - H2B2^b ··· O18 ⁱⁱ	0,97	2,54	3,365(6)	143
C2B^b - H2B2^b - O20 ⁱⁱ	0,97	2,54	3,447(6)	155,3
C4 - H4A ··· O16 ⁱⁱⁱ	0,97	2,58	3,334(5)	134,4
C4 - H4B ··· O19 ^{iv}	0,97	2,63	3,476(4)	145,5
C6 - H6A ···· O2 ^v	0,97	2,26	3,121(3)	147,4

N1A^a - H1A1^a … O14 ⁱⁱⁱ	0,89	2,48	3,190(7)	136,7
N1A^a - H1A2^a ··· O11 ^{vi}	0,89	1,98	2,801(5)	153,3
N1A^a - H1A2^a ··· O20 ^{vii}	0,89	2,39	2,872(5)	114,4
N1A^a - H1A3^a ··· O11 ⁱⁱⁱ	0,89	2,47	3,073(6)	125,5
N1A^a - H1A3^a - O20 ⁱⁱ	0,89	2,42	3,218(6)	149,5
N1B^b - H1B1^b ··· O6 ⁱ	0,89	2,37	3,173(5)	149,5
N1B^b - H1B1^b ··· O8	0,89	2,43	3,042(5)	126,4
N1B^b - H1B2^b … O11 ^{vi}	0,89	2,21	3,021(6)	150,4
N2 - H2A … O18 ^{iv}	0,89	2,13	2,954(4)	154
N2 - H2B … O12 ^{viii}	0,89	1,98	2,854(3)	166
N2 - H2B … Cl1 ^{viii}	0,89	2,95	3,787(2)	157,9
N2 - H2C ···· O13 ^{viii}	0,89	2,21	3,041(4)	155,3
N2 - H2C ···· Cl2B^b ^{viii}	0,89	2,91	3,630(4)	138,8
N3 - H3A … O17 ⁱⁱⁱ	0,89	2,26	3,082(4)	154
N3 - H3B ··· O19 ⁱⁱⁱ	0,89	2,55	3,045(3)	115,6
N3 - H3B ··· O19 ^{iv}	0,89	2,46	3,138(4)	133,8
N3 - H3B ···· O20 ^{iv}	0,89	2,59	3,270(4)	133,7
N3 - H3C ···· O9 ⁱ	0,89	2,35	3,085(5)	139,4
N3 - H3C ··· O10 ^{ix}	0,89	2,27	2,840(4)	122
08 - H2 ··· O7 ⁱ	0,84(5)	1,99(5)	2,797(2)	160(4)
O8 - H1 ··· O16 ⁱⁱⁱ	0,86(5)	2,59(5)	3,341(5)	146(4)
O7 - H4 ⋯ O13 ^x	0,850(2)	2,17(2)	2,959(4)	154(5)
O7 - H4 ··· O15B^b ^x	0,850(2)	2,13(4)	2,816(13)	137(5)
$O7 - H4 \cdots Cl2B^b^x$	0,850(2)	2,71(3)	3,442(5)	145(5)
07 - H3 ··· 012 ⁱ	0,850(2)	2,46(4)	3,076(4)	130(4)
07 - H3 ··· O14 ⁱ	0,850(2)	2,36(2)	3,133(4)	152(5)

 $\underbrace{Symmetry\ codes:\ i)\ -x+1,\ -y+2,\ -z+1;\ ii)\ x,\ y+1,\ z+1;\ iii)\ x+1,\ y,\ z;\ iv)\ -x,\ -y+1,\ -z+2;\ v)\ -x,\ -y+1,\ -z+1;\ ix)\ x,\ y,\ z+1;\ x)\ x+1,\ y+1,\ z;}$

\mathbf{I} a UJINILA T.T.T - IVICATUMINDIC DACCIUNNIN AJIN II - COILLY CIS LA INST	томные расстояния для II - С6 Н19 Сl3 I	La N3 O2
--	---	----------

Атомы	Расстояние,	Атомы	Расстояние,	Атомы	Расстояние,
	Å		Å		Å
C1 - O1	1,238(4)	C11 - C12	1,508(4)	O23 - Cl2	1,377(3)
C1 - O2	1,275(4)	C11 - La2 ⁱⁱ	3,071(3)	O24 - Cl2	1,392(4)
C1 - C2	1,506(4)	C12 - N6	1,472(5)	O25 - Cl3	1,436(3)
C1 - La1 ⁱ	3,049(3)	O1 - La1 ⁱ	2,725(2)	O26 - Cl3	1,441(3)
C2 - N1	1,479(4)	O2 - La1	2,552(2)	O27 - Cl3	1,436(3)
C3 - O3	1,248(4)	O2 - La1 ⁱ	2,641(2)	O28 - Cl3	1,432(3)
C3 - O4	1,254(4)	O3 - La1	2,487(2)	O29 - Cl4B	1,373(4)
C3 - C4	1,531(5)	O4 - La2	2,516(2)	029 - Cl4A	1,408(5)
C4 - N2	1,486(5)	O5 - La1	2,588(2)	O30 - Cl4A	1,327(5)
C5 - O5	1,234(4)	O6 - La2	2,453(2)	O30 - Cl4B	1,384(4)
C5 - O6	1,247(4)	O6 - La1	2,905(3)	O31 - Cl4B	1,387(4)
C5 - C6B	1,514(17)	O7 - La1	2,524(2)	O31 - Cl4A	1,400(5)
C5 - C6A	1,537(7)	O8 - La2	2,482(2)	032A - Cl4A	2,036(7)
C5 - La1	3,116(3)	O9 - La1	2,452(2)	O32B - O36B	1,78(2)
C6A - N3A	1,484(8)	O9 - La2	2,734(3)	O32B - Cl4B	2,009(8)
C6B - N3B	1,454(16)	O10 - La2	2,724(3)	O33 - Cl5A	1,415(4)
C7 - O8	1,250(4)	O11 - La2	2,548(2)	O33 - C15B	1,432(11)
C7 - O7	1,253(4)	011 - La2 ⁱⁱ	2,668(2)	O34 - Cl5B	1,203(12)
C7 - C8	1,530(5)	012 - La2 ⁱⁱ	2,734(2)	034 - Cl5A	1,432(4)

C8 - N4	1,482(5)	O13 - La2	2,665(3)	O35 - Cl5A	1,421(4)
C9 - O10	1,236(4)	O14 - La1	2,653(3)	O35 - Cl5B	1,452(11)
C9 - O9	1,264(4)	O15 - La2	2,613(3)	O36A - Cl5A	1,441(4)
C9 - C10B	1,513(6)	O16 - La1	2,582(3)	O36B - Cl5B	1,50(3)
C9 - C10A	1,547(17)	O17 - Cl1	1,439(3)	O37 - Cl6	1,379(4)
C9 - La2	3,108(3)	O18 - Cl1	1,438(3)	O38 - Cl6	1,415(4)
C10A - N5A	1,47(2)	O19 - Cl1	1,441(3)	O39 - Cl6	1,418(4)
C10B - N5B	1,488(7)	O20 - Cl1	1,440(3)	O40 - Cl6	1,363(4)
C11 - O12	1,240(4)	O21 - Cl2	1,378(4)		
C11 - O11	1,275(4)	O22 - Cl2	1,391(5)		

Symmetry codes: i) -x, -y+1, -z+2; ii) -x+1, -y+1, -z+1;

Таблица 4.4.5 - Валентные углы в структуре II - С6 Н19 Сl3 La N3 О20

Атомы	Угол, °	Атомы	Угол, °	Атомы	Угол, °
O1 - C1 - O2	122,6(3)	O3 - La1 - O2 ⁱ	127,90(8)	O15 - La2 - O9	129,48(8)
O1 - C1 - C2	120,5(3)	O7 - La1 - O2 ⁱ	100,43(7)	O13 - La2 - O9	86,86(8)
O2 - C1 - C2	116,9(3)	O2 - La1 - O2 ⁱ	62,61(8)	011 ⁱⁱ - La2 - O9	159,21(8)
O1 - C1 - La1 ⁱ	63,16(17)	O16 - La1 - O2 ⁱ	71,14(7)	O10 - La2 - O9	47,19(7)
O2 - C1 - La1 ⁱ	59,47(16)	O5 - La1 - O2 ⁱ	123,56(7)	O6 - La2 - O12 ⁱⁱ	74,26(8)
C2 - C1 - La1 ⁱ	174,8(2)	O9 - La1 - O14	138,69(9)	O8 - La2 - O12 ⁱⁱ	134,56(8)
N1 - C2 - C1	111,1(3)	O3 - La1 - O14	131,32(9)	O4 - La2 - O12 ⁱⁱ	65,86(8)
O3 - C3 - O4	128,3(3)	O7 - La1 - O14	68,10(8)	O11 - La2 - O12 ⁱⁱ	109,21(7)
O3 - C3 - C4	115,9(3)	O2 - La1 - O14	74,55(8)	O15 - La2 - O12 ⁱⁱ	72,89(8)
O4 - C3 - C4	115,8(3)	O16 - La1 - O14	141,34(8)	O13 - La2 - O12 ⁱⁱ	93,97(9)
N2 - C4 - C3	109,4(3)	O5 - La1 - O14	62,57(9)	O11 ⁱⁱ - La2 - O12 ⁱⁱ	48,07(7)
O5 - C5 - O6	122,5(3)	02 ⁱ - La1 - O14	72,32(8)	010 - La2 - 012 ⁱⁱ	154,22(8)
O5 - C5 - C6B	132,1(6)	09 - La1 - O1 ⁱ	78,07(8)	O9 - La2 - O12 ⁱⁱ	129,70(7)
O6 - C5 - C6B	105,0(6)	O3 - La1 - O1 ⁱ	137,73(8)	O6 - La2 - C11 ⁱⁱ	96,61(9)
O5 - C5 - C6A	111,3(4)	07 - La1 - O1 ⁱ	65,72(8)	O8 - La2 - C11 ⁱⁱ	137,67(8)
O6 - C5 - C6A	126,1(4)	O2 - La1 - O1 ⁱ	110,69(7)	O4 - La2 - C11 ⁱⁱ	79,87(8)
O5 - C5 - La1	53,86(17)	016 - La1 - O1 ⁱ	74,85(8)	O11 - La2 - C11 ⁱⁱ	86,20(8)
O6 - C5 - La1	68,70(19)	O5 - La1 - O1 ⁱ	150,83(8)	O15 - La2 - C11 ⁱⁱ	71,88(8)
C6B - C5 - La1	172,7(6)	O2 ⁱ - La1 - O1 ⁱ	48,48(7)	013 - La2 - C11 ⁱⁱ	81,90(9)
C6A - C5 - La1	165,1(3)	014 - La1 - O1 ⁱ	90,18(9)	011 ⁱⁱ - La2 - C11 ⁱⁱ	24,39(8)
N3A - C6A - C5	110,1(4)	O9 - La1 - O6	70,41(8)	O10 - La2 - C11 ⁱⁱ	141,64(8)
N3B - C6B - C5	106,6(10)	O3 - La1 - O6	69,27(8)	O9 - La2 - C11 ⁱⁱ	148,17(8)
O8 - C7 - O7	128,3(3)	O7 - La1 - O6	66,40(8)	O12 ⁱⁱ - La2 - C11 ⁱⁱ	23,77(8)
O8 - C7 - C8	116,1(3)	O2 - La1 - O6	117,91(7)	O6 - La2 - C9	96,41(9)
O7 - C7 - C8	115,6(3)	O16 - La1 - O6	129,09(8)	O8 - La2 - C9	69,19(8)
N4 - C8 - C7	108,9(3)	O5 - La1 - O6	46,22(7)	O4 - La2 - C9	81,15(9)
O10 - C9 - O9	121,9(3)	02 ⁱ - La1 - O6	159,74(8)	O11 - La2 - C9	96,27(8)
O10 - C9 - C10B	125,2(4)	O14 - La1 - O6	88,11(8)	O15 - La2 - C9	135,25(8)
O9 - C9 - C10B	112,9(3)	01 ⁱ - La1 - O6	128,86(7)	O13 - La2 - C9	72,67(9)
O10 - C9 - C10A	101,8(7)	O9 - La1 - C1 ⁱ	99,88(8)	011 ⁱⁱ - La2 - C9	143,63(8)
O9 - C9 - C10A	136,3(7)	O3 - La1 - C1 ⁱ	138,57(8)	O10 - La2 - C9	23,30(8)
O10 - C9 - La2	60,66(18)	O7 - La1 - C1 ⁱ	82,14(8)	O9 - La2 - C9	23,90(8)
O9 - C9 - La2	61,23(17)	O2 - La1 - C1 ⁱ	87,04(8)	012 ⁱⁱ - La2 - C9	147,00(8)
C10B - C9 - La2	174,0(3)	016 - La1 - C1 ⁱ	71,87(8)	C11 ⁱⁱ - La2 - C9	152,63(9)
C10A - C9 - La2	161,7(7)	O5 - La1 - C1 ⁱ	141,20(8)	018 - Cl1 - O17	110,6(2)
N5A - C10A - C9	108,8(12)	O2 ⁱ - La1 - C1 ⁱ	24,57(8)	O18 - Cl1 - O20	110,7(2)
N5B - C10B - C9	107,9(4)	O14 - La1 - C1 ⁱ	80,12(9)	O17 - Cl1 - O20	109,2(2)
O12 - C11 - O11	122,2(3)	O1 ⁱ - La1 - C1 ⁱ	23,92(8)	O18 - Cl1 - O19	108,7(2)
O12 - C11 - C12	120,5(3)	O6 - La1 - C1 ⁱ	148,54(8)	017 - Cl1 - O19	108,8(2)
O11 - C11 - C12	117,4(3)	O9 - La1 - C5	93,15(9)	O20 - Cl1 - O19	108,8(2)

O12 - C11 - La2 ⁱⁱ	62,72(17)	O3 - La1 - C5	68,69(8)	O23 - Cl2 - O21	108,6(3)
O11 - C11 - La2 ⁱⁱ	59,83(16)	O7 - La1 - C5	79,04(8)	O23 - Cl2 - O22	107,2(3)
C12 - C11 - La2 ⁱⁱ	171,9(2)	O2 - La1 - C5	95,49(8)	O21 - Cl2 - O22	118,3(5)
N6 - C12 - C11	110,9(3)	O16 - La1 - C5	135,77(8)	O23 - Cl2 - O24	110,8(3)
C1 - O1 - La1 ⁱ	92,91(19)	O5 - La1 - C5	22,65(8)	O21 - Cl2 - O24	111,1(3)
C1 - O2 - La1	146,0(2)	O2 ⁱ - La1 - C5	143,60(8)	O22 - Cl2 - O24	100,6(4)
C1 - O2 - La1 ⁱ	95,96(18)	O14 - La1 - C5	73,94(9)	O28 - Cl3 - O25	109,0(2)
La1 - O2 - La1 ⁱ	117,39(8)	O1 ⁱ - La1 - C5	144,68(8)	O28 - Cl3 - O27	108,9(2)
C3 - O3 - La1	138,1(2)	O6 - La1 - C5	23,58(8)	O25 - Cl3 - O27	109,5(2)
C3 - O4 - La2	140,0(2)	C1 ⁱ - La1 - C5	152,18(9)	O28 - Cl3 - O26	110,3(2)
C5 - O5 - La1	103,5(2)	O6 - La2 - O8	75,35(8)	O25 - Cl3 - O26	110,2(2)
C5 - O6 - La2	159,2(2)	O6 - La2 - O4	72,80(9)	O27 - Cl3 - O26	108,8(2)
C5 - O6 - La1	87,7(2)	O8 - La2 - O4	133,12(8)	O33 - Cl5A - O35	111,9(3)
La2 - O6 - La1	105,38(10)	O6 - La2 - O11	145,83(9)	O33 - Cl5A - O34	111,7(3)
C7 - O7 - La1	141,1(2)	O8 - La2 - O11	79,80(7)	O35 - Cl5A - O34	109,6(2)
C7 - O8 - La2	135,9(2)	O4 - La2 - O11	140,66(8)	O33 - Cl5A - O36A	108,0(3)
C9 - O9 - La1	149,7(2)	O6 - La2 - O15	72,12(9)	O35 - Cl5A - O36A	107,9(3)
C9 - O9 - La2	94,87(19)	O8 - La2 - O15	66,06(8)	O34 - Cl5A - O36A	107,6(3)
La1 - O9 - La2	110,74(9)	O4 - La2 - O15	131,34(9)	O40 - Cl6 - O37	114,2(4)
C9 - O10 - La2	96,0(2)	O11 - La2 - O15	76,55(8)	O40 - Cl6 - O38	107,8(2)
C11 - O11 - La2	145,3(2)	O6 - La2 - O13	139,93(9)	O37 - Cl6 - O38	110,9(3)
C11 - O11 - La2 ⁱⁱ	95,78(18)	O8 - La2 - O13	130,53(9)	O40 - Cl6 - O39	115,0(4)
La2 - O11 - La2 ⁱⁱ	117,97(8)	O4 - La2 - O13	67,50(9)	O37 - Cl6 - O39	101,2(4)
C11 - O12 - La2 ⁱⁱ	93,51(19)	011 - La2 - 013	74,24(8)	O38 - Cl6 - O39	107,4(3)
O36B - O32B - Cl4B	166,6(12)	O15 - La2 - O13	141,68(8)	O30 - Cl4A - O31	116,4(3)
Cl5B - O36B - O32B	163(2)	06 - La2 - 011 ⁱⁱ	118,09(8)	O30 - Cl4A - O29	117,6(3)
O9 - La1 - O3	74,23(8)	08 - La2 - O11 ⁱⁱ	127,88(7)	O31 - Cl4A - O29	113,9(3)
O9 - La1 - O7	70,98(8)	04 - La2 - O11 ⁱⁱ	97,51(7)	O30 - Cl4A - O32A	77,7(3)
O3 - La1 - O7	130,41(8)	011 - La2 - 011 ⁱⁱ	62,03(8)	O31 - Cl4A - O32A	80,1(3)
O9 - La1 - O2	146,64(8)	015 - La2 - 011 ⁱⁱ	71,27(7)	029 - Cl4A - O32A	77,1(3)
O3 - La1 - O2	79,09(8)	013 - La2 - 011 ⁱⁱ	73,35(8)	O29 - Cl4B - O30	116,1(3)
O7 - La1 - O2	142,34(8)	O6 - La2 - O10	118,45(8)	O29 - Cl4B - O31	117,0(3)
O9 - La1 - O16	73,58(8)	O8 - La2 - O10	71,10(8)	O30 - Cl4B - O31	113,5(3)
O3 - La1 - O16	67,11(8)	O4 - La2 - O10	95,26(8)	O29 - Cl4B - O32B	76,4(3)
07 - La1 - O16	131,07(8)	O11 - La2 - O10	73,65(7)	O30 - Cl4B - O32B	74,5(3)
O2 - La1 - O16	77,83(8)	O15 - La2 - O10	131,08(8)	O31 - Cl4B - O32B	82,0(3)
O9 - La1 - O5	114,81(8)	O13 - La2 - O10	61,55(9)	O34 - C15B - O33	126,5(9)
O3 - La1 - O5	71,13(8)	O11 ⁱⁱ - La2 - O10	123,34(7)	O34 - C15B - O35	122,5(9)
O7 - La1 - O5	92,81(8)	O6 - La2 - O9	73,48(9)	O33 - C15B - O35	109,1(8)
O2 - La1 - O5	73,72(7)	O8 - La2 - O9	70,21(8)	O34 - Cl5B - O36B	95,5(14)
O16 - La1 - O5	132,87(8)	O4 - La2 - O9	68,31(8)	O33 - Cl5B - O36B	96,9(15)
O9 - La1 - O2 ⁱ	121,43(8)	O11 - La2 - O9	119,20(7)	O35 - Cl5B - O36B	91,3(13)
Symmetry codes: i) -x, -	-y+1, -z+2; i	i) -x+1, -y+1, -z+1	;		

Таблица 4.4.6 - Параметры водородных связей для II - С₆ Н₁₉ Cl₃ La N₃ O₂₀

Атомы	D – H , Å	H … A, Å	D … A, Å	D – H … A , °
C2 - H2A1 ··· O5	0,97	2,21	3,060(5)	145,9
C4 - H4A1 ··· O31 ⁱ	0,97	2,56	3,275(5)	130,5
C4 - H4B2 ···· O27 ⁱⁱ	0,97	2,54	3,384(5)	144,8
C6A^a - H6A1^a ··· O25 ⁱⁱ	0,97	2,56	3,439(7)	150,2
C6B^b - H6B2^b … O12 ⁱⁱⁱ	0,97	2,43	3,095(15)	125,8
C6B^b - H6B2^b ··· O25 ⁱⁱ	0,97	2,61	3,376(18)	136,5
C8 - H8A ··· O19 ⁱⁱ	0,97	2,64	3,486(5)	146,3
C8 - H8B ···· O33	0,97	2,54	3,234(5)	128,9

C10A^a - H10A^a - O30 ⁱ	0,97	2,35	2,867(18)	112,6
C10A^a - H10B^a ··· O17 ⁱⁱ	0,97	2,42	3,252(18)	143,3
C10A^a - H10B^a - O20 ⁱⁱ	0,97	2,53	3,426(18)	153,2
C10B^b - H10C^b … O1 ^{iv}	0,97	2,42	3,132(6)	130,1
C10B^b - H10C^b ··· O17 ⁱⁱ	0,97	2,53	3,222(6)	128,4
C10B^b - H10D^b ··· O16	0.97	2.62	3.375(6)	134.5
$C12 - H12A \cdots O35^{v}$	0.97	2.65	3,170(5)	114.2
C12 - H12B ··· O10	0.97	2.22	3.076(4)	146.5
$\frac{0.12}{\text{N1} - \text{H1A}} = 0.10$	0.89	2,12	2,974(5)	161.2
$\frac{1}{1} + \frac{1}{1} + \frac{1}$	0.89	2.93	3 614(4)	134.6
$\frac{1}{1} \frac{1}{1} \frac{1}$	0.89	2,53	3,017(1) 3,147(5)	127.7
$\frac{1111}{\text{N1} - \text{H1B} \cdots \text{O27}^{\text{iv}}}$	0.89	2,52	3,054(4)	111.5
111111111111111111111111111111111111	0.89	2,01	3 160(5)	140.7
$\frac{1111}{1112} \frac{1112}{112} $	0.89	2,12	3,100(3) 3,042(7)	142.4
$\frac{1}{1} \frac{1}{1} \frac{1}$	0,89	2,29	2,042(7)	172,1
$\frac{1}{1} \frac{1}{1} \frac{1}$	0,89	2,17	2,70+(3) 2,912(5)	122,1
$\frac{112}{112} + \frac{112}{112} + $	0,89	2,00	2,912(3) 2,822(5)	162.4
$\frac{112D}{112D} = \frac{112D}{112D} = \frac{112D}{112D$	0,89	1,90	2,022(3)	102,4
$\frac{N2 - H2B \cdots Cl0}{N2 - H2C \cdots O25^{i}}$	0,89	2,92	3,709(3)	150,9
$\frac{1}{1}$	0,89	2,12	2,972(4)	139,7
$\frac{N2 - H2C \cdots CI3B}{N2}$	0,89	2,79	3,529(12)	141,2
$N_{2}A_{3} - H_{2}A_{1}A_{3} - O_{3}O_{4}A_{3}$	0,89	2,13	2,999(7)	165,4
N3A^a - H3A1^a ··· Cl5A^a	0,89	2,87	3,678(6)	152,6
$N3A^{A}a - H3A2^{A}a \cdots O22^{m}$	0,89	2,15	2,920(8)	144,6
$N3A^{A}a - H3A3^{A}a \cdots O12^{m}$	0,89	2,29	3,109(6)	153,6
	0,89	2,43	2,995(5)	121,6
$N3B^{h}b - H3B1^{h}b \cdots 028^{h}$	0,89	2,35	3,219(13)	166,8
$\frac{N3B}{b} - H3B}{b} \cdots O39^{t}$	0,89	2,38	2,863(12)	114,2
$N3B^{b} - H3B2^{b} \cdots O20^{t}$	0,89	2,06	2,701(12)	127,8
N3B^b - H3B2^b ··· O22 ^m	0,89	2,05	2,717(12)	130,4
N3B^b - H3B3^b O34	0,89	2,63	3,285(12)	130,8
N3B^b - H3B3^b O38 ¹	0,89	2,65	3,432(12)	147,8
N4 - H4A ···· O29	0,89	2,23	3,032(5)	150,5
N4 - H4A ···· Cl4A^a	0,89	2,92	3,591(5)	133,1
N4 - H4B ··· O23 ^{viii}	0,89	1,99	2,870(5)	167,7
$N4 - H4B \cdots Cl2^{vm}$	0,89	2,97	3,783(3)	152,3
N4 - H4C ··· O17 ⁿ	0,89	2,09	2,917(5)	154,9
N5A^a - H5A1^a \cdots O1 ^{1V}	0,89	2,24	3,109(13)	166,2
$N5A^a - H5A2^a \cdots O39^{IX}$	0,89	2,37	3,174(14)	149,8
N5A^a - H5A3^a \cdots O32A^a^1	0,89	2,27	3,084(16)	151,5
N5B^b - H5B1^b ··· O23 ^x	0,89	2,52	3,253(6)	140,1
N5B^b - H5B1^b ··· O30 ⁱ	0,89	2,45	3,118(6)	131,6
N5B^b - H5B2^b ··· O28 ⁱ	0,89	2,41	2,900(5)	115,1
N5B^b - H5B2^b ··· O39 ^{1x}	0,89	1,99	2,816(6)	154,7
N5B^b - H5B3^b ··· O20 ⁱⁱ	0,89	2,22	3,065(6)	159
N6 - H6A ···· O21	0,89	2,27	2,865(6)	123,7
N6 - H6A ··· O24 ^x	0,89	2,32	3,015(7)	135,2
N6 - H6B ··· O19 ⁱⁱ	0,89	2,34	3,073(5)	139,4
N6 - H6B … 019 ⁱⁱⁱ	0,89	2,39	3,001(5)	126,1
N6 - H6C ··· 018 ⁱⁱⁱ	0,89	2,28	3,023(5)	140,7
O16 - H1 ··· 014 ^{iv}	0,850(2)	1,930(12)	2,765(4)	167(5)
O16 - H2 ··· O31 ⁱ	0,850(2)	2,30(2)	3,108(5)	158(5)

O15 - H4 ··· O13 ⁱⁱⁱ	0,850(2)	1,922(10)	2,766(4)	172(6)
O15 - H3 ··· O8	0,850(2)	2,32(5)	2,780(3)	114(5)
O15 - H3 ··· O33	0,850(2)	2,52(3)	3,296(5)	152(5)
O13 - H6 ··· O32B^b ⁱ	0,850(2)	2,60(5)	3,005(7)	111(4)
O13 - H6 ··· O35 ⁱ	0,850(2)	2,15(3)	2,928(5)	152(5)
O13 - H6 ··· O36B^b ⁱ	0,850(2)	2,02(5)	2,71(2)	138(5)
O13 - H6 ··· Cl5B^b ⁱ	0,850(2)	2,72(4)	3,480(16)	150(6)
O14 - H8 ··· O5	0,850(2)	2,25(7)	2,722(4)	115(6)
O14 - H8 ··· O34	0,850(2)	2,42(3)	3,068(4)	134(4)
O14 - H8 ···· O38 ^{iv}	0,850(2)	2,26(4)	2,942(5)	138(5)
O14 - H7 ··· O7	0,850(2)	2,45(6)	2,901(4)	114(5)
O14 - H7 ··· O29	0,850(2)	2,32(3)	3,019(5)	140(5)
O14 - H7 ··· O32B^b	0,850(2)	2,08(4)	2,773(7)	138(6)
O14 - H7 ··· O36B^b	0,850(2)	2,59(5)	3,09(2)	119(4)
O14 - H7 ··· Cl4A^a	0,850(2)	2,73(5)	3,414(5)	139(6)
O13 - H5 ··· O23 ^x	0,850(2)	2,45(4)	3,177(5)	144(6)
O13 - H5 ··· O30 ⁱ	0,850(2)	2,42(4)	3,123(4)	140(5)
C2 - H2A1 ··· O5	0,97	2,21	3,060(5)	145,9
C4 - H4A1 … O31 ⁱ	0,97	2,56	3,275(5)	130,5
C4 - H4B2 ···· O27 ⁱⁱ	0,97	2,54	3,384(5)	144,8
C6A^a - H6A1^a ··· O25 ⁱⁱ	0,97	2,56	3,439(7)	150,2
C6B^b - H6B2^b - O12 ⁱⁱⁱ	0,97	2,43	3.095(15)	125,8
C6B^b - H6B2^b - O25 ⁱⁱ	0,97	2,61	3.376(18)	136,5
C8 - H8A ··· O19 ⁱⁱ	0,97	2,64	3,486(5)	146,3
С8 - Н8В … О33	0,97	2,54	3,234(5)	128,9
C10A^a - H10A^a - O30 ⁱ	0,97	2,35	2,867(18)	112,6
C10A^a - H10B^a - O17 ⁱⁱ	0,97	2,42	3,252(18)	143,3
C10A^a - H10B^a - O20 ⁱⁱ	0,97	2,53	3,426(18)	153,2
C10B^b - H10C^b - O1 ^{iv}	0,97	2,42	3,132(6)	130,1
C10B^b - H10C^b … O17 ⁱⁱ	0,97	2,53	3,222(6)	128,4
C10B^b - H10D^b ··· O16	0,97	2,62	3,375(6)	134,5
C12 - H12A ···· O35 ^v	0,97	2,65	3,170(5)	114,2
C12 - H12B ··· O10	0,97	2,22	3,076(4)	146,5
N1 - H1A ··· O26 ^{iv}	0,89	2,12	2,974(5)	161,2
N1 - H1A ···· Cl3 ^{iv}	0,89	2,93	3,614(4)	134,6
N1 - H1B … O27 ⁱⁱ	0,89	2,52	3,147(5)	127,7
N1 - H1B ··· O27 ^{iv}	0,89	2,61	3,054(4)	111,5
N1 - H1B ··· O28 ⁱⁱ	0,89	2,42	3,160(5)	140,7
N1 - H1C ··· O37 ^{iv}	0,89	2,29	3,042(7)	142,4
N1 - H1C ···· O40 ^{vi}	0,89	2,19	2,764(5)	122,1
N2 - H2A … O25 ⁱⁱ	0,89	2,08	2,912(5)	155,6
N2 - H2B ···· O38 ^{vii}	0,89	1,96	2,822(5)	162,4
N2 - H2B ··· Cl6 ^{vii}	0,89	2,92	3,769(3)	158,9
N2 - H2C ··· O35 ⁱ	0,89	2,12	2,972(4)	159,7
N2 - H2C ··· Cl5B^b ⁱ	0,89	2,79	3,529(12)	141,2
N3A^a - H3A1^a - O36A^a	0,89	2,13	2,999(7)	165,4
N3A^a - H3A1^a ··· Cl5A^a	0,89	2,87	3,678(6)	152,6
N3A^a - H3A2^a ··· O22 ⁱⁱⁱ	0,89	2,15	2,920(8)	144,6
N3A^a - H3A3^a ··· O12 ⁱⁱⁱ	0,89	2,29	3,109(6)	153,6
N3A^a - H3A3^a ··· O15	0,89	2,43	2,995(5)	121,6
N3B^b - H3B1^b ··· O28 ⁱⁱ	0,89	2,35	3,219(13)	166,8

N3B^b - H3B1^b ··· O39 ^{iv}	0,89	2,38	2,863(12)	114,2
N3B^b - H3B2^b - O20 ⁱ	0,89	2,06	2,701(12)	127,8
N3B^b - H3B2^b ··· O22 ⁱⁱⁱ	0,89	2,05	2,717(12)	130,4
N3B^b - H3B3^b - O34	0,89	2,63	3,285(12)	130,8
N3B^b - H3B3^b - O38 ^{iv}	0,89	2,65	3,432(12)	147,8
N4 - H4A ··· O29	0,89	2,23	3,032(5)	150,5
N4 - H4A ··· Cl4A^a	0,89	2,92	3,591(5)	133,1
N4 - H4B ··· O23 ^{viii}	0,89	1,99	2,870(5)	167,7
N4 - H4B … Cl2 ^{viii}	0,89	2,97	3,783(3)	152,3
N4 - H4C ··· O17 ⁱⁱ	0,89	2,09	2,917(5)	154,9
N5A^a - H5A1^a ··· O1 ^{iv}	0,89	2,24	3,109(13)	166,2
N5A^a - H5A2^a ··· O39 ^{ix}	0,89	2,37	3,174(14)	149,8
N5A^a - H5A3^a ··· O32A^a ⁱ	0,89	2,27	3,084(16)	151,5
N5B^b - H5B1^b ··· O23 ^x	0,89	2,52	3,253(6)	140,1
N5B^b - H5B1^b ··· O30 ⁱ	0,89	2,45	3,118(6)	131,6
N5B^b - H5B2^b ··· O28 ⁱ	0,89	2,41	2,900(5)	115,1
N5B^b - H5B2^b ··· O39 ^{ix}	0,89	1,99	2,816(6)	154,7
N5B^b - H5B3^b ··· O20 ⁱⁱ	0,89	2,22	3,065(6)	159
N6 - H6A … O21	0,89	2,27	2,865(6)	123,7
N6 - H6A ··· O24 ^x	0,89	2,32	3,015(7)	135,2
N6 - H6B ··· O19 ⁱⁱ	0,89	2,34	3,073(5)	139,4
N6 - H6B ··· O19 ⁱⁱⁱ	0,89	2,39	3,001(5)	126,1
N6 - H6C ··· O18 ⁱⁱⁱ	0,89	2,28	3,023(5)	140,7
O16 - H1 ··· O14 ^{iv}	0,850(2)	1,930(12)	2,765(4)	167(5)
O16 - H2 ··· O31 ⁱ	0,850(2)	2,30(2)	3,108(5)	158(5)
O15 - H4 ··· O13 ⁱⁱⁱ	0,850(2)	1,922(10)	2,766(4)	172(6)
O15 - H3 ··· O8	0,850(2)	2,32(5)	2,780(3)	114(5)
O15 - H3 ··· O33	0,850(2)	2,52(3)	3,296(5)	152(5)
O13 - H6 ···· O32B^b ⁱ	0,850(2)	2,60(5)	3,005(7)	111(4)
O13 - H6 ··· O35 ⁱ	0,850(2)	2,15(3)	2,928(5)	152(5)
O13 - H6 ···· O36B^b ⁱ	0,850(2)	2,02(5)	2,71(2)	138(5)
O13 - H6 ··· Cl5B^b ⁱ	0,850(2)	2,72(4)	3,480(16)	150(6)
O14 - H8 ···· O5	0,850(2)	2,25(7)	2,722(4)	115(6)
O14 - H8 ··· O34	0,850(2)	2,42(3)	3,068(4)	134(4)
O14 - H8 ···· O38 ^{iv}	0,850(2)	2,26(4)	2,942(5)	138(5)
O14 - H7 ···· O7	0,850(2)	2,45(6)	2,901(4)	114(5)
O14 - H7 ··· O29	0,850(2)	2,32(3)	3,019(5)	140(5)
O14 - H7 ··· O32B^b	0,850(2)	2,08(4)	2,773(7)	138(6)
O14 - H7 ···· O36B^b	0,850(2)	2,59(5)	3,09(2)	119(4)
O14 - H7 ···· Cl4A^a	0,850(2)	2,73(5)	3,414(5)	139(6)
O13 - H5 ··· O23 ^x	0,850(2)	2,45(4)	3,177(5)	144(6)
O13 - H5 ··· O30 ⁱ	0,850(2)	2,42(4)	3,123(4)	140(5)

Symmetry codes: i) x+1, y, z; ii) x+1, y+1, z; iii) -x+1, -y+1, -z+1; iv) -x, -y+1, -z+2; v) -x, -y+1, -z+2; viii) x, y+1, z; vii) -x+1, -y+1, -z+2; viii) -x, -y+2, -z+1; ix) -x, -y+2, -z+2; x) -x+1, -y+2, -z+1;