Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

На правах рукописи

Caputona

САРМИНИ ЮЛИЯ АЛЕКСАНДРОВНА

ТЕРМОДИНАМИКА КРЕМНИЙОРГАНИЧЕСКИХ ДЕНДРИМЕРОВ И СООТВЕТСТВУЮЩИХ ИМ НАНОГЕЛЕЙ

Специальность 1.4.4. – физическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель: доктор химических наук, профессор Маркин Алексей Владимирович

Нижний Новгород 2022

ОГЛАВЛЕНИЕ

C	mp.
СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ	4
ВВЕДЕНИЕ	5
ГЛАВА 1. ОБЩАЯ ХАРАКТЕРИСТИКА И ФИЗИКО-ХИМИЧЕСКИЕ	
СВОЙСТВА ДЕНДРИМЕРОВ С РАЗЛИЧНЫМ ЯДРОМ И ВНЕШНИМ	
СЛОЕМ И НАНОГЕЛЕЙ (ОБЗОР СВЕДЕНИЙ ЛИТЕРАТУРЫ) 1	10
1.1. Дендримеры и наногели – перспективные макромолекулярные	
нанообъекты	10
1.2. Исследование термодинамических свойств дендримеров с	
различной природой ядра и концевых групп	33
1.2.1. Карбосилановые дендримеры	33
1.2.2. Карбосиланциклосилоксановые дендримеры	59
1.2.3. Пиридинсодержащие полифениленовые дендримеры	63
1.2.4. Гибридные дендримеры	69
1.3. Исследование теплофизических свойств силоксановых наногелей с	
различными органическими заместителями	76
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	80
2.1. Используемая калориметрическая аппаратура и методика	
проведения эксперимента	80
2.1.1. Адиабатическая вакуумная установка для снятия значений	
теплоемкости в интервале 6 – 350 К	80
2.1.2. Полностью автоматизированный высокочувствительный	
калориметр DSC 204 F1 Phoenix	90
2.1.3. Термогравиметрический анализатор TG 209 F1 Iris	91
2.2. Методы обработки экспериментальных результатов	94
2.2.1. Сглаживание экспериментальных данных	94
2.2.2. Параметры физических превращений	94
2.2.3. Расчёт стандартных термодинамических функций	95

2.3. Характеристики изученных образцов	97
ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ	108
3.1. Дендримеры с карбосилановым ядром и фенилдиоксолановыми	
группами во внешнем слое $G1[(C_6H_4)C_3H_5O_2]_8$	
и G3[(C ₆ H ₄)C ₃ H ₅ O ₂] ₃₂	108
3.2. Полиметилсилсеквиоксановые наногели с блокирующими	
триметилсилильными группами I и II	116
3.3. Дендримеры с силоксановым ядром и триметилсилильными	
группами во внешнем слое $GX[(CH_3)_3SiO]z$ (X = 1, 2, 3, 4)	127
3.4. Сравнительный анализ термодинамических свойств дендримеров	
и наногелей различной природы	142
ВЫВОДЫ	151
СПИСОК ЛИТЕРАТУРЫ	152
ПРИЛОЖЕНИЕ	169

СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- *T* температура
- *p* давление
- $C_{\rm p}^{\rm o}$ изобарная теплоемкость
- *C*_v изохорная теплоемкость
- $T_{
 m g}^{
 m o}$ температура расстеклования
- $\Delta C_{
 m p}^{
 m o}(T_{
 m g}^{
 m o})$ увеличение теплоемкости при расстекловании
- $[H^{\circ}(T)-H^{\circ}(0)]$ изменение энтальпии при нагревании вещества от 0 К до T
- $[S^{\circ}(T)-S^{\circ}(0)]$ изменение энтропии при нагревании вещества от 0 К до T
- $S^{\circ}(T)$ абсолютная энтропия вещества при температуре T
- $S^{\circ}(0)$ остаточная энтропия при 0 К
- $S_{
 m conf}^{
 m o}$ конфигурационная энтропия
- $[G^{\circ}(T)-H^{\circ}(0)]$ изменение функции Гиббса при нагревании вещества от 0 К до T
- ΔT температурный интервал превращения
- $T_{
 m tr}^{\,
 m o}$ температура превращения
- $\Delta_{\rm tr} H^{\rm o} -$ стандартная энтальпия превращения
- $\Delta_{tr}S^{o}-c$ тандартная энтропия превращения
- $\Delta_{\rm f} S^{\circ}-$ стандартная энтропия образования

введение

Актуальность исследования

Сверхразветвленные полимеры представляют собой трехмерные молекулы с древовидной структурой и высокой плотностью ветвления. В последние годы особое внимание исследователей уделяется этому классу соединений благодаря их функциональности и уникальности физических и химических свойств. Среди полимеров, обладающих сверхразветвленной архитектурой, наиболее перспективными представителями являются кремнийорганические дендримеры и наногели.

Таким образом, на сегодняшний день важной и актуальной задачей является исследование термодинамики сверхразветвленных полимеров, а также изучение зависимостей их свойств от химической природы и структуры. Использование высокоточных методов калориметрии, таких как адиабатическая вакуумная и дифференциальная сканирующая калориметрия, позволяет получить И свойства проанализировать термодинамические функциональных кремнийорганических дендримерных макромолекул в широком интервале температур.

Настоящая диссертационная работа является продолжением исследований по изучению термодинамических свойств карбосилановых дендримеров и осуществлялась совместно с научной группой академика А.М. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук, г. Москва).

Диссертационная работа выполнялась при финансовой поддержке Госзадания Министерства науки и высшего образования РФ (№ 0729–2020–0053).

Цель и задачи работы

Основной целью нашей работы являлось комплексное исследование стандартных термодинамических свойств кремнийорганических дендримеров с различными концевыми функциональными группами и соответствующих им наногелей в широком диапазоне температур; выявление возможных физических и фазовых переходов, получение и анализ качественных и количественных изменений свойств в зависимости от состава и структуры полимеров.

В соответствии с поставленной целью нами решались следующие задачи:

1. Изучение калориметрического поведения, а также получение экспериментальных зависимостей теплоемкостей от температуры кремниорганических дендримеров с различным внешним слоем и природой ядра и соответствующих им наногелей в области 6–(400–570) К;

2. Выявление возможных физических и фазовых переходов во всем изученном диапазоне температур; определение и анализ их термодинамических характеристик;

3. Расчёт стандартных термодинамических функций: теплоёмкости, энтальпии [H°(T)–H°(0)], энтропии [S°(T)–S°(0)] и функции Гиббса [G°(T)–H°(0)] при T \rightarrow 0 до (400–570) К и стандартных энтропий образования веществ Δ fS° при T = 298.15 K;

4. Анализ и сопоставление термодинамических параметров исследованных дендримеров и наногелей; получение практически важных зависимостей изменения свойств от состава и структуры соединений

Научная новизна работы

Впервые определены температурные зависимости теплоемкостей двух с карбосилановым ядром первой и третьей генерации и дендримеров фенилдиоксолановыми группами во внешнем слое, четырех дендримеров с силоксановым ядром первой-четвертой генерации и триметилсилильными группами во внешнем слое и двух соответствующих им наногелей с блокирующими триметилсислильными группами. Методом высокоточной адиабатической вакуумной калориметрии определена низкотемпературная теплоемкость в области 6-350 К и методом дифференциальной сканирующей калориметрии в температурной области 350-570 К. Для всех изученных соединений были обнаружены: аномальное изменение теплоемкости, являющееся низкотемпературной структурной аномалией, а также переход, связанный с образцов. расстеклованием Методом термогравиметрического анализа

исследована термическая стабильность соединений. Экспериментальные данные использованы для получения комплекса стандартных термодинамических функций изученных соединений для области от $T \rightarrow 0$ до (400–570) K; рассчитаны стандартные энтропии их образования в расстеклованном состоянии при T = 298.15 K.

В результате сравнительного анализа было установлено, что температура расстеклования и термодинамические характеристики дендримеров определяются в большей степени природой функциональных групп, нежели номером их генерации. С помощью полученных нами зависимостей изменений термодинамических свойств макромолекул от природы их внешнего слоя можно прогнозировать свойства ранее не исследованных дендримеров различного строения.

Практическая значимость работы

Полученный массив термодинамических свойств кремнийорганических дендримеров и наногелей представляет собой важный раздел фундаментальных сведений о макромолекулярных нанообъектах. Достоверные экспериментальные данные и полученные зависимости могут быть использованы при подготовке лекций и практических занятий соответствующего раздела курса физической химии. Все термодинамические характеристики веществ определены впервые и представляют собой справочные величины, которые впоследствии могут быть эффективно использованы для разного рода теплофизических и технологических расчётов, при планировании и проведении научных разработок синтеза и исследовании свойств новейших дендримерных материалов, перспективных для их применения в нанокатализе и биомедицине.

Личный вклад автора. Диссертантом проведен анализ научной литературы, выполнены все необходимые экспериментальные опыты по определению термодинамических свойств изученных образцов, сделаны все представленные в работе расчёты, обработка и интерпретация полученных результатов. Все положения, вынесенные на защиту, также были сформулированы лично

диссертантом. Совместно с научным руководителем были поставлены основные задачи, подготовлены и оформлены научные публикации, проведено обсуждение результатов.

Автор выражает благодарность заведующему лабораторией химической термодинамики д.х.н, профессору Смирновой Н.Н. и к.х.н., доценту кафедры физической химии Сологубову С.С., принимавшим участие в работе и обсуждении результатов.

Апробация работы. Результаты настоящей диссертации были обсуждены и представлены на Международной конференции по химической термодинамике [RCCT-2022] (г. Казань, Россия, 2022), 5-ой конференции по термическому анализу и калориметрии [CEEC-TAC5] (г. Рим, Италия, 2019), XL Национальном конгрессе калориметрии И термическому анализу по И прикладной термодинамике (г. Пиза, Италия, 2018 г.), XXII на XIV Международной конференции по термическому анализу и калориметрии в России [RTAC-2016] (г. Санкт-Петербург, 2016 г.), VII Бакеевской Всероссийской с Международным участием конференции «Макромолекулярные нанообъекты и полимерные нанокомпозиты», Всероссийской конференции с международным участием молодых учёных по химии [«Менделеев-2014»] (г. Санкт-Петербург, 2014 г.), XXI Всероссийской конференции молодых ученых-химиков (с международным участием, Нижний Новгород, 2014, 2015, 2018 гг.) и региональных конференциях [«Нижегородская сессия молодых ученых»] (Нижний Новгород, 2016 г, работа отмечена высоким уровнем доклада).

Также автору были присуждены стипендия имени академика Г.А. Разуваева, стипендия Ученого совета ННГУ, диплом за лучший доклад на всероссийской научной конференции (2018).

Публикации. По материалам настоящей диссертации опубликовано 17 научных работ: 6 статей в научных журналах, входящих в перечень ВАК при Минобрнауки России и индексируемых международными реферативно-

библиографическими базами научного цитирования Web of Science и Scopus, и **11** тезисов докладов международных и всероссийских научных конференций.

Структура и объём диссертации. Диссертационная работа представлена на 200 страницах машинописного текста и состоит из введения, литературного обзора, экспериментальной части, обсуждения полученных результатов, выводов, списка цитируемой литературы (133 наименования) и приложения. Диссертация содержит 80 рисунков и 45 таблиц в основном тексте, а также 8 таблиц в приложении.

Соответствие диссертации паспорту специальности. Настоящая 2 диссертация соответствует п. «Экспериментальное определение термодинамических свойств веществ, расчет термодинамических функций простых и сложных систем, в том числе на основе методов статистической термодинамики, изучение термодинамики фазовых превращений и фазовых переходов» паспорта специальности 1.4.4. – физическая химия (химические науки) и критериям 9–14 Положения о присуждении ученых степеней.

ГЛАВА 1. ОБЩАЯ ХАРАКТЕРИСТИКА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ДЕНДРИМЕРОВ С РАЗЛИЧНЫМ ЯДРОМ И ВНЕШНИМ СЛОЕМ И НАНОГЕЛЕЙ (ОБЗОР СВЕДЕНИЙ ЛИТЕРАТУРЫ)

1.1. Дендримеры и наногели – перспективные макромолекулярные нанообъекты

В последние годы в области химии и физико-химии высокомолекулярных соединений внимание исследователей привлекают сверхразветвленные полимеры с древовидной структурой молекул, особенностью которых является возможность модифицирования внешнего слоя, что позволяет изменять их свойства в соответствии с поставленными задачами. К таким полимерам, в частности, относятся дендримеры [1 – 5].

Типичная структура молекулы дендримера строится из ядра, повторяющихся мономерных звеньев и внешнего слоя, образованного функциональными группами (рис. 1).

Дендроны, подобно ветвям дерева, вырастают из корня – ядра дендримера. На конце каждого дендрона имеются концевые группы, напоминающие листья дерева [6, 7].

Рис. 1. Схематическое изображение архитектуры молекулы дендримера

Под генерацией понимают количество ветвлений, а номер генерации (n) – это количество слоев, которые последовательно образуются вокруг ядра. Ядро дендримера условно можно представить как дендример нулевой генерации,

используя который осуществляют последовательный синтез дендримеров с различными генерациями.

Методики синтеза дендримеров

В настоящее время разработаны три принципиальных метода синтеза сверхразветвленных полимеров различной химической природы: дивергентный [8–10], конвергентный [11] и комбинированный (сочетание дивергентного и конвергентного способов). Схемы конвергентного и дивергентного методов представлены на рис. 2.

Дивергентный метод

Рис. 2. Схемы методов синтеза дендримеров [12]

Дивергентный метод был впервые описан в работе Vogtle [13]. Согласно данному подходу, рост дендримера происходит «наизнанку», то есть от ядра к внешнему слою. К ядру, соединенному с n функциональными группами ($n \ge 2$), присоединяются молекулы мономера типа AB_n молекул мономера, где A - активная присоединяющая функциональная группа, а B - бездействующий или защищенный заместитель. При следующем этапе роста снимается защита с внешних групп B, что приводит к появлению активных новых групп и образованию дендримера первой генерации. Повторение двух перечисленных стадий позволяет

получить дендримеры второй и последующих генераций, затем поверхность дендримеров можно модифицировать для получения желаемого свойства. Основной проблемой при синтезе может стать неполное замещение в стадии роста молекулы или активации бездействующих групп, что приводит к структурным дефектам. Этого можно избежать, используя определенные органические реакции. Дивергентный метод коммерчески более доступен и чаще используется [14].

Конвергентный метод был предложен научной группой Hawker и M.J. Frechet [11]. Рост в данном случае происходит способом, обратным дивергентному, – от внешнего слоя к ядру. То есть сначала синтезируются отдельные дендроны (ветви дендримера), которые затем присоединяются к ядру. Дендроны могут быть синтезированы дивергентно – путем последовательных реакций присоединения и дальнейшей активации «бездействующих» групп при каждом последующем слое.

Рост дендрона при конвергентном методе легче контролировать из-за его меньшего размера и менее сложной архитектуры, что позволяет избежать структурных дефектов.

Основным минусом метода является сложность осуществления синтеза дендримеров высоких генераций, так как из-за стерических затруднений прикрепление дендрона к ядру становится проблематичным, и чтобы провести реакцию до конца, требуются более жесткие условия. Это приводит к низким выходам реакции при синтезе дендримеров четвертой и последующих генераций.

Были предложены и другие методики синтеза молекул дендримера, которые в основном базируются на классических способах, но отличаются ускоренным ростом и благоприятными условиями реакции, такие как: двухэтапный конвергентный метод, ортогональный рост, стратегия гипермономера, двойной экспоненциальный рост и современный подход «клик»-химии.

Стратегия гипермономеров была представлена научной группой Frechet [15]. Суть метода в использовании мономера с большим числом функциональных групп, например, AB₄ или AB₈, в результате чего количество функциональных групп увеличивается, и соответственно уменьшается число стадий. Авторы присоединили мономер AB₈ (который представлял собой дендрон третьей генерации) к мономеру AB₄ для получения дендрона пятой генерации.

Двухэтапный конвергентный метод еще называют комбинированным (рис. 3). Сначала синтезируется гиперкор («гиперядро», которое обычно представляет собой дендример первой генерации), и затем присоединяются дендроны. Плюсом метода является возможность синтеза дендримеров высоких генераций, так как удается избежать стерических препятствий, с которыми можно столкнуться в классическом конвергентом методе.

Рис. 3. Схематическое изображение двухэтапного конвергентного и двойного экспоненциального роста молекулы дендримера [13]

В той же научной группе Frechet в работе [16] представили синтез дендримера седьмой генерации, используя в качестве гиперкора дендример третьей генерации, к которому были присоединены дендроны четвертой генерации.

Научная группа Agrahari двухэтапным конвергентным [17] методом синтезировала гликодендримеры. Посредством реакции азид-алкинового циклоприсоединения CuAAC, были присоединены азид-функциональные дендроны к гиперкору.

Двойной экспоненциальный рост (рис. 3) является ускоренной схемой конвергентного метода и впервые был представлен группой Kawaguchi [18]. Рост молекулы дендримера идет в соответствии с функцией dp = (2⁽ⁿ⁺¹⁾-1), где n - генерация.

На рис. 4 представлена схема, демонстрирующая рост молекулы первых двух генераций. Процесс идет с использованием мономера типа $A_p(B_p)_2$ с защищёнными концевыми группами и включает в себя три повторяющиеся реакции. Селективное снятие защиты с защищенных групп ($A_p \rightarrow A$ и $B_p \rightarrow B$), затем связывание A и B ($A + B \rightarrow A$ -B).

Рис. 4. Схема двойного экспоненциального роста [18]

Дендрон первой генерации представляет собой тример, полученный связыванием производных концевых групп в соотношении 2:1, и имеет те же функциональные группы, что и исходный мономер, только количество групп B_p удваивается. При дальнейшем росте соотношение будет уже 4:1, и количество концевых групп $B_p = 16$. При третьем цикле получается дендрон со степенью

полимеризации 255, то есть его можно получить всего за 9 стадий от исходного мономера.

В работе [19] предложено использовать концепцию хемоселективности для ортогонального роста. Используется два мономера, например, AB₂ и CD₂ с хемоселективными функциональными группами, где группы A реагируют только с D, а соответственно группы B – только с группами C. В таком случае стадия активации «бездейственных» групп не нужна, и рост дендримера происходит быстрее, например, дендример четвертой генерации можно получить за четыре стадии вместо восьми.

Рис. 5. Схема ортогонального роста молекулы дендримера [13]

И, наконец, современный подход «клик»-химии, который впервые был предложен научной группой Sharpless [20] в 2001 году и получил распространение для ускоренного и упрощенного синтеза дендримеров, о чем свидетельствует активный рост числа публикаций по теме синтеза «клик»-дендримеров и их применения за последние пять лет. Реакции «клик»-химии можно сравнить со сбором конструктора, где из отдельных модульных «строительных блоков» – мономеров собирается новая молекула.

У реакций, подходящих под понятие клик-химии, существует ряд соответствующих параметров, чаще всего это реакция циклоприсоединения азидалкина, катализируемая солями Cu(I) (реакция CuAAC), или их сочетание, в результате которых и были получены клик-дендримеры [21]. Также к реакциям «клик»-химии относят тиол-еновую реакцию (реакция между алкеном и тиолом) и реакцию присоединения Дильса-Альдера. Так, в работе [22], используя модульные взаимозаменяемые мономеры типа AB₂ и CD₂ путем сочетания тиол-енового сочетания и CuAAC реакции, получили дендример пятой генерации всего в пять стадий и менее чем за 24 часа в мягких условиях и с упрощенной очисткой.

Отметим, что многоступенчатый синтез дендримеров обеспечивает контроль за увеличением молекулярной массы и числа концевых групп на поверхности макромолекулы. Природа внешнего слоя вносит наибольший вклад в свойства соединений данного класса.

Дендримеры в биомедицине

Благодаря своей низкой токсичности, биосовместимости, контролируемому размеру и поверхности, дендримеры заслуживают особого внимания как объекты применения в различных областях биомедицины, в том числе нанотераностике, таргетной терапии, доставке генов, а также в визуальных методах диагностики: МРТ, КТ и других [23–27]. Основными задачами, которые можно решить внедрением дендримеров в биомедицину являются: уменьшение значительной потери и ферментативного разрушения лекарства в процессе доставки к органу, улучшение растворимости и снижение токсичности препарата, контролируемое высвобождение и адресная доставка активного вещества, исключая здоровые ткани, и преодоление биологического барьера.

На сегодняшний день есть две фармацевтические компании, занимающиеся разработками лекарств на основе дендритных матриц – это фирма Starpharma (Австралия), а также Orpheris, Inc. (США), дочерняя компания Ashvattha Therapeutics (находятся на стадии клинических испытаний).

Дендримеры представляют собой симметриченые глобулярные трехмерные молекулы с высокой монодисперсностью и поливалентностью, что делает их пригодными для инкапсуляции лекарственных препаратов и создания комплексов, а благодаря поливалентности поверхность дендримера может быть функционализирована различными лигандами.

Биологически активное вещество может быть инкапсулировано в пустом пространстве внутри молекулы дендримера с помощью водородных связей,

электростатического присоединения или гидрофобных взаимодействий, либо же ковалентно конъюгировано с концевыми группами (рис. 6). Нацеливание лекарственного препарата на конкретный орган-мишень также может быть осуществлено путем конъюгации различных нацеливающих фрагментов.

Дендритная система может включать в себя функцию контролируемого высвобождения в ответ на определенные внутренние или внешние раздражители, такие как pH, температура, переменное магнитное поле (рис. 7) [28].

Рис. 6. Схемы конъюгатов на основе дендримеров для использования в диагностике и лечении рака [23]

Наноплатформы на основе дендримеров [29–33] помогают преодолевать физический и биологический барьеры. Доступ наноплатформы к раковым клеткам зависит от физико-химических свойств самого вещества, а также барьера, который необходимо преодолеть. Основным барьером, препятствующим достижению целевой ткани, является монуклеарная фагоцитарная система, которая идентифицирует наноплатформу как чужеродный объект и вызывает ее деградацию. На взаимодействие наноплатформы с макрофагами могут влиять размер и поверхностный заряд – наиболее сильное взаимодействие проявляют наноплатформы с катионным поверхностным зарядом. Для предотвращения поглощения макрофагами и увеличения времени циркуляции крови исследователи создают «невидимые» наноплатформы, модифицируя их поверхность нейтральными полимерами, например, полиэтиленгликолем [34].

Рис. 7. Схематическое изображение механизма высвобождение лекарственных препаратов из внутренних полостей дендримера [28]

Наночастицы проникают в опухолевую ткань через проницаемые сосуды и задерживаются там из-за уменьшенного лимфатического оттока. Однако в зависимости от типа опухоли может различаться ее микроокружение, а также специфические внутриопухолевые структуры, и, следовательно, возможно неоднородное распределение и различия в поглощении наноплатформ. Данная проблема может быть решена путем предварительной количественной оценки внутриопухолевого распределения и высвобождения лекарственного препарата ДЛЯ корректировки терапии. Нанотераностика использует «скрытую» наноплатформу препаратом, модифицированную c лекарственым функциональными лигандами для нацеливания (рис. 8) [35, 36].

Рис. 8. Дендримеры, используемые в нанотераностике как носители с использованием МРТ [35]

Карбосилановые дендримеры, в частности, G2-S16, показали высокую эффективность в качестве микробицидов [37]. Дендример второй генерации с карбосилановым ядром и 16 сульфонатными концевыми группами продемонстрировал способность дестабилизировать комплекс GP120-CD4, блокируя проникновение ВИЧ-1 и слияние клеток.

В период «окна» – распространения ВИЧ-1 из макрофагов в другие ткани или циркулирующие клетки – дендример G2-S16 находится внутри клетки и сохраняет противовирусную активность благодаря своей способности интернализоваться в макрофаги и оставаться стабильным не менее 48 часов.

Дендример G2-S16, встроенный в макрофаги, устраняет вирулентность ВИЧ-1 благодаря способности не только ингибировать высвобождение вируса во внеклеточную среду, а также практически устранять его инфекционность.

Инфицированные макрофаги являются одним из основных факторов распространения ВИЧ-1 в различные ткани и органы из-за их способности переносить вирус без потери инфекционности в течение длительного времени, что приводит к более высокой инфекционности при контакте с Т-лимфоцитами CD4/CD8. Т-лимфоциты, обработанные дендримером G2-S16, несли в себе всего 20% инфекционных вирусных частиц, попавших к ним из макрофагов. Таким образом, дендример G2-S16 способен минимизировать количество инфекционных вирусных частиц, достигающих Т-клеток CD4/CD8, и ликвидировать 80% их вирулентности in vitro.

Дендример G2-S16 может действовать на разных стадиях ВИЧ-1-инфекции. Основной целью дендримера G2-S16 является его использование в качестве микробицида – создание физического барьера, который защищает слизистую оболочку от разрушения и ингибирует некоторые вирусные инфекции.

Применение дендримеров в диагностических методах молекулярной визуализации, таких как МРТ, ПЭТ, ОИ, КТ, в качестве платформы для контрастных веществ возможно благодаря контролируемой архитектуре молекулы [38].

Контрастный агент, как и лекарственный препарат, может быть инкапсулирован внутри молекулы или связан с поверхностью дендримера, тем самым уменьшая токсичность и увеличивая период полувыведения из кровотока. Поверхностные и внутренние группы молекулы дендримера могут быть функционализированы для различных контрастных агентов. В настоящее время активно исследуются наноструктуры на основе дендримеров и супермагнитного оксида железа и гадолиния для тераностики рака с использованием MPT [35].

Дендримеры могут применяться как для T1-взвешенного, так и для T2-взвешенного MPT [23,39].

Для T1-взвешанного MPT применяют контрастные агенты на основе гадолиния, меди и др. Наиболее подходящими дендримерами для применения в

МРТ являются ПАМАМ, ДАБ И ППИ из-за их растворимости в водных растворах и аминогрупп, подходящих для связывания хелатирующих агентов.

В работе [40] были синтезированы и исследованы шесть контрастных агентов на основе ПАМАМ И ДАБ дендримеров, и оценена зависимость их свойств от размера и природы ядра. Агенты на основе диаминобутиловых дендримеров выводились из организма быстрее, чем полиамидоаминовые дендримеры. Размер самой молекулы дендримера тоже играет роль – чем она меньше, тем быстрее скорость ее выведения. Данные вещества могут быть использованы в клинической практике для диагностики состояния почек.

В группе Кодзима [41] модифицировали поверхность ПАМАМ дендримеров четвертой и пятой генерации полиэтиленгликолем для улучшения растворимости и снижения токсичности наночастиц. Кроме того, это помогает молекуле остаться незамеченной макрофагической системой. Проведено сравнение снижения релаксации при пегилировании дендримеров разных размеров цепями ПЭГ различной длины и молекулярной массы (2 кДа и 5 кДа). У пегилированных ПАМАМ дендримеров в качестве концевых групп был лизин, a V непегилированного дендримера четвертой генерации на поверхности был ацетилированный лизин Ac-PAMAM (G4). Пегилированные дендримеры были гадолиния Gd-DTPA конъюгированы с хелатом через лизин. В случае длинной цепи 5 кДа и дендримера четвертой генерации время релаксации было меньше, чем у немодифицированного дендримера, в то время как дендример пятой генерации с короткой цепью имеет большее время релаксации, сравнимое с непегелированным дендримером четвёртой генерации.

Хотя размеры молекул модифицированных дендримеров G4-ПЭГ(5кДа) и G5-ПЭГ(2кДа) одинаковы, продемонстрирована связь генерации дендримера и длины цепи полиэтиленгликоля на релаксацию (рис. 9). Все модифицированные дендримеры показали длительное удержание в кровяном депо, а также минимальное поглощение печенью и почками. Таким образом, полностью

пегилированный дендример является отличной платформой для контрастных агентов MPT.

Т2-взвешанного МРТ в качестве контрастных агентов обычно Для используют супермагнетики на основе ферромагнитных материалов - магнетит Fe_3O_4 или маггемит γ - Fe_2O_3 . Для их применения в биомедицине ферромагнитные покрытие для сохранения вещества должны иметь кристалличности, биосовместимости и стабильности. Кроме того, стабилизация наночастиц агломерацию ферромагнетиков, обеспечивая предотвращает нужное биораспределение и удаление из организма.

Рис. 9. Трехмерные изображения МРТ сердца и сосудов в зависимости от контрастного агента – G5-ПЭГ(2кДа), G4-ПЭГ(5кДа), G4-ПЭГ(2кДа), Ac-PAMAM (G4). Только не пегилированный дендример демонстрирует уменьшение интенсивности в сердце и сосудах и усиление в паренхиме почек [41]

Например, в работе [42] использовали карбсоксилированные ПАМАМ дендримеры 4.5 генерации для создания стабильных нанокомпозитов на основе ферромагнитного оксида железа размером 20-30 нм (рис. 10). Авторы выбрали дендримеры с карбоксильными концевыми группами не случайно, а во избежание электростатистического влияния таких функциональных групп, как гидроксильные- и амино-группы.

Рис. 10. Схематическое изображение стабилизации наночастиц маггемита ПАМАМ дендримером 4.5 генерации с концевыми карбоксильными группами [42]

Также интересные исследования области безметаллических есть В контрастных агентов, основанные на парамагнитных свойствах некоторых органических радикалов. Авторами [43] была представлена безметаллическая молекулярная модель контрастного агента на основе дендримера И спироциклогексил-нитроксильных радикалов (рис. 11).

Рис. 11. Мезметаллический контрастный агент на основе дендримера [43]

Дендримеры являются перспективными материалами и для такого метода визуализации, как КТ. Контрастными агентами метода являются вещества с высокой электронной плотностью для получения четкого изображения, чаще всего это вещества на основе йода и сульфата бария. Минусами их использования являются необходимость высокой концентрации вещества, что может быть токсично для человека, а также короткое время их визуализации. В работе [44] представили синтез контрастного агента на основе ПАМАМ дендримера с концевыми аминогруппами первой—четвертой генерации и производного тетрайодбензола. Молекулы обеспечили отличное усиление контрастности более чем на два часа, тем самым продемонстрировав свою высокую эффективность. Такая наноплатформа позволяет использовать более низкие дозировки йода, тем самым снижая токсичность и ускоряя полное выведение из организма.

Работа [45] посвящена созданию нанотераностических платформ на основе ПАМАМ дендримеров для направленной терапии и компьютерной томографии. Противораковый препарат доксорубицин ковалентно связан с частично ацетелированными ПАМАМ дендримерами пятой генерации, а наночастицы золота были инкапсулированы внутри молекулы. Поверхность дендримера модифицирована фолиевой кислотой в качестве нацеливающих лигандов (рис. 12). Препарат высвобождается при снижении рН. Данные платформы являются перспективными материалами для одновременной противораковой терапии и компьютерной томографии различных типов опухоли.

Рис. 12. Схематическое изображение процесса инкапсуляции наночастиц золота в модифицированный дендример [45]

Дендримеры в нанокатализе

Перспективной актуальной и одной из наиболее важных областей применения дендримеров является нанокатализ. Первые работы по данной теме были опубликованы в 1988-2000 гг. научными группами Tomalia, Crooks и Esumi [47-50].

В работе [47] представили новую концепцию подготовки нанокластеров меди Си в дендримерах, которые представляют собой нанореакторы. Данный подход может быть применим к любым катионам переходных металлов, способных экстрагироваться внутри дендримера. Кластеры готовятся путем распределения катионов меди внутри ПАМАМ дендримера с концевыми –ОН группами и последующим восстановлением. Размер кластеров может варьироваться от 4 до 64 атомов путем контролирования химической структуры и размера дендримеров.

С уменьшением размера кластеров увеличивается каталитическая активность, но в тоже время увеличивается вероятность кластерной агрегации. Важной задачей является разработка методов устранения агрегации без снижения каталитической активности.

Авторы [47] продемонстрировали, что использование дендримеров в качестве матрицы для роста кластера позволяет достичь его стабильности, а также полного контроля над его размером и распределением частиц, одновременно обеспечивая доступ субстрата к поверхности катализатора. Кроме того, научная группа R.M. Crooks исследовала комплексы дендримеров и с другими металлами, например, Pd [47] и Au [48].

Практически одновременно с работой научной группы R.M. Crooks была опубликована работа D. Tomalia [49], в которой также был представлен метод получения нанокомпозитов на основе ПАМАМ дендримеров с наночастицами меди. Нанокомпозит дендример-металл получали путем восстановления ионов меди после комплексообразования с ПАМАМ дендримером четвертой или пятой генерации. Растворимость определялась природой поверхностных групп дендримера. Водные и метанольные растворы нанокомпозитов были стабильны более 90 дней при комнатной температуре в отсутствие кислорода. В зависимости от полярности заместителей на поверхности дендримера, наночастицы металла могут быть расположены преимущественно вблизи периферии дендримера или ближе к ядру.

Спустя два года были опубликованы работы К. Esumi, посвященные исследованию полиамидоаминовых дендримеров с концевыми метилэфирными группами и инкапсулированными частицами платины [50] и золота [51]. Для синтеза нанокомплексов использовали ПАМАМ дендримеры 1.5, 3.5 и 5.5 генераций и H₂PtCl₆. Восстановление PtCl₆²⁻ осуществляли добавлением диметиламиноборана, растворенного в этилацетате. Авторы пришли к выводу, что генерация и форма дендримеров играют ключевую роль в контролировании размеров наночастиц металла.

Наночастицы металла могут быть инкапсулированы внутри макромолекулы дендримера или располагаться на периферии (рис. 13) [52].

Рис. 13. Наночастицы золота стабилизированные несколькими молекулами дендримеров (а) и инкапсулированные внутри дендримера (b) [52]

В основном, это наночастицы Cu, Au, Ag, Pt, Pd и Rh. Нанокомпозиты чаще всего получают путем восстановления катионов металлов, например, боргидридом натрия.

Особый интерес к использованию дендримеров как носителей в нанокатализе заключается в том, что наночастицы могут быть стабилизированы дендримером без агломерации и удерживаться за счет стерических эффектов, и следовательно, существенная часть их поверхности будет непассивирована [53].

Также ветви дендримера могут быть использованы как селективные ворота для контроля доступа малых молекул к инкапсулированным наночастицам. Например, как показано в работе [54]. Причем дендримеры более высоких генераций, например, четвертой, менее пористые вследствие стерически затрудненных концевых групп, и следовательно, имеют меньшую вероятность доступа для субстрата к инкапсулированному металлу. Также было показано, что путем модификации поверхностного слоя можно контролировать растворимость гибридного нанокомпозита, тем самым облегчая связывание с поверхностями.

Довольно много современных работ по данной теме посвящено изучению каталитической активности наночастиц палладия, стабилизированных ПАМАМ и ДАБ дендримерами на примере реакции Сузуки.

Авторы [55] сравнивали стабильность и каталитическую активность наночастиц дендример-Pd, используя ПАМАМ дендример четвертой генерации с гидроксильными концевыми группами, с ранее изученными наночастицами ПВП-Pd в реакции Сузуки между фенилборной кислотой и йодбензолом. Показано, что отношения выхода продукта реакции, образующегося во втором цикле, выше в случае реакции, катализируемой комплексом дендример-Pd, чем для реакции, катализируемой ПВП-Pd. Авторы предполагают, что это может быть связано с большей стабильностью наночастиц дендример-Pd, а также увеличением их размера в ходе реакции.

В работе [56] изучали каталитическую активность наночастиц палладия, инкапсулированных в ПАМАМ дендример четвертого поколения с концевыми гидроксильными группами на примере реакции Сузуки между арилгалогенидами и 4-толилборной кислотой. Наиболее высокий выход реакции был получен в случае сочетания арилиодида с 4-толилборной кислотой, сочетание с арилбромидом требует более высоких температур и длительного времени реакции. В случае с арилхлоридом желаемый продукт реакции не был получен. Катализатор мог использоваться несколько раз, но постепенно терял свою реакционную способность из-за образования палладиевой черни.

Авторы [57] инкапсулировали наночастицы палладия в диаминобутановые дендримеры (ДАБ) с первой по пятую генерацию. Каталитическая активность наночастиц была исследована на примере реакции Сузуки между йодбензолом и фенилборной кислотой. Открытая структура дендримеров первой-третьей генерации способствовала образованию каталитически неактивной палладиевой черни, однако они проявляли более высокую каталитическую активность, чем дендримеры более высоких генераций.

Для синтеза нанокатализаторов на основе дендримеров также используется упомянутая выше концепция «клик»-химии.

Реакцию «клик»-химии можно осуществить между дендримерами с азидными концевыми группами и алкинами [58, 59] или с алкиновыми концевыми группами и азидпроизводными [60].

Дендримеры, полученные с помощью «клик»-химии, являются отличными носителями для каталитически активных наночастиц, а внутридендритные триазольные лиганды, образующиеся в результате клик-синтеза, определяют размер и точное положение наночастиц металла.

В обзоре [61] авторами рассмотрены дендритные макромолекулы с ферроценовыми концевыми группами, полученные клик-реакцией, и их каталитические свойства. Клик-дендримеры стабилизируют наночастицы металла либо на переферии, либо инкапсулируют их внутри молекулы. В первом случае молекулы дендримеров окружают наночастицы металлов, и это приводит к большему размеру нанокомпозита, чем в случае инкапсулирования. Триазольные лиганды способствуют образованию внутридендритных комплексов за счет взаимодействия триазола и наночастиц металла, например, наночастиц золота. [62].

и триазольные лиганды позволяют Ферроценовые концевые группы контролировать атомов в образованных наночастицах. Кликколичество дендримеры показывают лучшие результаты ПО сравнению С полиамидоаминовыми и полипропилениминовыми дендримерами, и могут быть использованы в качестве катализаторов для реакций крос-сочетания С-С, гидрирования, восстановления 4-нитрофенола и т.д.

Так, работа [63] посвящена исследованию полифениленовых дендримеров с концевыми ферроценильными группами и инкапсулированными наночастицами Pd и Au. Каталитическую активность наблюдали по реакции восстановления 4-нитрофенола до 4-аминофенола с помощью боргидрида натрия при 20°C.

Дендримеры получали по реакции Дильса-Альдера с использованием ферроцена, содержащего циклопентадиенон. Полифениленовые дендримеры, содержащие пиридильные звенья и концевые этильные группы, были «защелкнуты» азидометиленфероценом в соответствии с реакцией CuAAC, с образованием полифениленовых дендримеров с 1,2,3-триазолилметиленферроценовыми концевыми группами. [64, 65].

Триазольные группы координируют катионы переходных металлов и стабилизируют наночастицы металла, что позволяет легче образовывать комплексы. Авторами [63] было показано, что способ получения нанокомпозитов влияет на размер наночастиц металлов, и это оказывает влияние на каталитическую активность.

Дендримеры с жестким полифениленовым ядром и объемными концевыми группами обеспечивают превосходную каталитическую активность и

стабильность, поскольку расположение наночастиц металла поддерживается лигандами азота во внутренней полости дендримера, а объемные концевые группы CH₂Fe могут свободно вращаться вокруг связи триазол-CH₂, обеспечивая адекватную координацию лигандов с катионами переходных металлов. Такие нанокомпозиты можно использовать несколько раз без потери каталитической активности и легко отделять от реакционной смеси.

В научной группе Yamamoto [66] исследовали каталитическую активность фенилазометиновых дендримеров четвертой генерации, с инкапсулированными наночастицами родия. Было установлено, что нанокомпозиты дендример-металл высокоэффективны для ускорения реакций гидрирования олефинов.

При использовании наночастиц металлов в качестве катализатора существует стабильностью и проблема отрицательной каталитической связи между активностью, поскольку стабилизация наночастиц металла различными веществами – такими как ПАВы, полимеры и дендримеры, приводит к снижению доступности субстрата. Авторами установлено, что на основе дендримеров можно доступные и стабильные металлические нанокатализаторы создать для гидрирования нитроаренов, поскольку дендример в данном случае действует как нанореактор, захватывающий субстрат. Полученные стабилизатор И как нанокластеры хорошо контролируются ПО исследованию каталитической активности нанокластеров родия, инкапсулированных в фенилазометиновый примере реакции гидрирования олефинов дендример на показало, что каталитическая активность данного комплекса больше в ~1460 раз, чем у других родиевых катализаторов.

Наногели – наноразмерные гидрогели, основанные на полимерной сетке, сшитой посредством химических связей или межмолекулярных взаимодействий [67–71] (рис. 14). Частица наногеля, размер которой варьируется от десяти до сотен нанометров, обладает формой сферы в водном растворе (рис. 15).

Рис. 14. Схематическое изображение молекулы наногеля [70]

Рис. 15. Криоэлектронное изображение наногеля [71]

В отличие от дендримеров, обладающих монодисперсностью и практически бездефектной молекулярной архитектурой, наногели представляют собой полидисперсные системы, а их ветвление имеет статический характер. Кроме того, процесс получения наногелей проходит в одну или две стадии в отличие от многостадийного и трудоемкого синтеза дендримеров [72].

Особый интерес к наногелям определяется весьма эффективным сочетанием чувствительности к свойствам среды (pH, температура, ионная сила), характерной

для макроскопических гелей, и высокой коллоидной стабильности, характерной для наночастиц. Они также обладают высокой термической стабильностью, низкими значениями характеристической вязкости растворов И биосовместимостью. Эти свойства наногелей обусловливают их применение в качестве носителей для создания биомелицине В молекулярных систем контролируемой доставки лекарственных препаратов [73–78] (рис. 16), а также в регенеративной фармакологии и тканевой инженерии [79]. Широкое признание получила способность наногелей инкапсулировать каталитически активные открывается ферменты. Благодаря этому возможность получения функционализированных биокатализаторов, обладающих высокой селективностью и специфичностью в физиологических условиях [80].

Рис. 16. Схема действия наногелей в процессе контролируемой доставки лекарственных препаратов [76]

Таким образом, дендримеры и наногели являются наиболее перспективными представителями сверхразветвленных полимеров. По своей природе их рассматривают как макромолекулярные нанообъекты [81], которые обладают комплексом уникальных физических и химических свойств.

Важно отметить, что исследование термодинамических свойств дендримеров и наногелей является актуальным направлением в таких областях, как химическая технология, материаловедение, биомедицинская инженерия. На основе

фундаментальных законов термодинамики осуществляются энергетические расчеты, определяются возможность и направление самопроизвольного протекания химических и биологических процессов.

Информация о термодинамических характеристиках дендримеров и наногелей различной природы позволяет установить практически важные зависимости свойств соединений от их химической природы и строения, а также может быть использована при расчетах технологических процессов.

1.2. Исследование термодинамических свойств дендримеров с различной природой ядра и концевых групп

1.2.1. Карбосилановые дендримеры

Впервые точные калориметрические данные по карбосилановым дендримерам были получены в работах [82, 83]. Авторы провели калориметрическое исследование дендримеров G-1(Und-Me)₈ и G-2(Und-Me)₁₆ с карбосилановым ядром и метоксиундециленатными группами во внешнем слое. Были получены температурные зависимости теплоемкостей веществ в интервале 5–340 К с использованием адиабатического вакуумного калориметра БКТ-3.

Исследования проводились совместно научной группой С академика A.M. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Ими были синтезировали изученные [84] образцы. На рис. 17 представлена схема синтеза дендримера первой генерации, где дендритной матрицей являлся дендример G-1(All)₈ с карбосилановым ядром и аллильными группами в качестве внешних заместителей, к которому был добавлен модифицирующий (тетраметилдисилоксил)ундекановой эфир кислоты С использованием катализатора [84]. При платинового помощи $^{1}\mathrm{H}$ ЯМР-спектроскопии подтверждали химический состав И структуру соединений.

На рис. 18 изображена экспериментальная кривая зависимости C_p^o от температуры карбосиланового дендримера первой генерации с метоксиундециленатными группами во внешнем слое G–1(Und–Me)₈. Образец был

помещен в калориметрическую ампулу и охлажден перед началом измерений от $T \sim 298.15$ до $T \sim 5$ K.

Авторами установлено [84], что $G-1(Und-Me)_8$ в изученном температурном интервале существует в четырех состояниях – двух кристаллических (crII и crI), жидком l и переохлажденном жидком l`.

Рис. 17. Схема синтеза образца дендримера первой генерации с карбосилановым ядром и метоксиундециленатными группами во внешнем слое G–1(Und–Me)₈

Теплоемкость дендримера G–1(Und–Me)₈ плавно увеличивается в интервалах 5–192 К и 230–340 К с ростом температуры, однако в диапазоне 46–76 К на графике наблюдается положительное отклонение зависимости $C_p^o = f(T)$ от ее нормального хода. Так проявляется низкотемпературная аномалия, которая представляет собой релаксационный переход, связанный с возможными колебаниями различных атомных групп в молекуле дендримера. Авторами

вычислены температура, энтальпия и энтропия перехода, значения которых составили: $T_{\rm tr}^{\rm o} = 69.1$ K, $\Delta_{\rm tr} H^{\rm o} = 0.248$ Дж/г, $\Delta_{\rm tr} S^{\rm o} = 0.136$ Дж/(К·г).

Рис. 18. Экспериментальная кривая зависимости C_p^o от температуры дендримера первой генерации с карбосилановым ядром и метоксиундециленатными группами во внешнем слое $G-1(Und-Me)_8[82]$

 $T^{\circ}(cr \Pi \rightleftharpoons l')$ – температура плавления $cr \Pi$ с образованием переохлажденной жидкости l'; $T^{\circ}(l' \rightleftharpoons cr \Pi)$ – температура кристаллизации l';

 $T^{\circ}(cr \Pi \rightleftharpoons cr I)$ – температура перехода $cr II \rightleftharpoons cr I$ – среднее значение $T^{\circ}(cr \Pi \rightleftarrows l')$ и $T^{\circ}(l' \rightleftarrows cr I); T^{\circ}(cr I \rightleftarrows l)$ – температура плавления cr I

Начиная с T = 192 К, наблюдаются переходы, связанные с фазовыми превращениями дендримера. Сначала происходит эндотермический процесс, связанный с плавлением кристаллов crII и образованием переохлажденной жидкости l', и одновременно происходит экзотермический процесс кристаллизации

l'
сгI, сопровождающийся экзоэфектом. Кристаллы сгI впоследствии плавятся в интервале 213–232 К.

В результате практически одновременного плавления crII и кристаллизации образующейся переохлажденной жидкости l' в кристаллы crI, мы наблюдаем фазовое превращение, связанное с переходом crII *≓* crI.

В табл. 1 приведены все термодинамические характеристики фазовых переходов дендримера первой генерации с карбосилановым ядром и метоксиундециленатными группами во внешнем слое G–1(Und–Me)₈.

Дендример второй генерации существовал также в четырех состояниях - crII и crI (кристаллическое состояние) 1 и 1°. (жидкое и переохлажденное жидкое состояние соответственно) [83].

На рис. 19 изображена экспериментальная кривая зависимости C_p^o от температуры карбосиланового дендримера второй генерации с метоксиундециленатными группами во внешнем слое G-2(Und-Me)₁₆. Как видно из рис. 19, дендримеры G-1(Und-Me)₈ и G-2(Und-Me)₁₆ имеют похожее поведение, но имеют некоторые различия. Так, у дендримера второй генерации низкотемпературная аномалия проявляется очень слабо, также нет перехода кристалл.

Теплоемкость вещества размеренно возрастает с ростом температуры, исключая области фазовых переходов. Так, в температурном интервале 190–210 К мы наблюдаем процесс, связанный с плавлением кристаллов crII и образованием переохлажденной жидкости l`, которая сразу же кристаллизовалась с образованием кристаллов crI из-за ее высокой термодинамической нестабильности. Кристаллы впоследствии плавились в интервале 212–229 К.

Используя полученные в работе экспериментальные значения темлоемкости, а также термодинамические характеристики фазовых переходов дендримеров первой и второй генерации с карбосилановым ядром и метоксиундециленатными
группами во внешнем слое, авторы рассчитали стандартные термодинамические функции для области от Т → 0 до 340 К (табл. 2).

Рис. 19. Экспериментальная кривая зависимости C_p^o от температуры дендримера второй генерации с карбосилановым ядром и метоксиундециленатными группами во внешнем слое $G-2(Und-Me)_{16}$ [83]:

 $T^{\circ}(cr \Pi \rightleftharpoons l')$ – температура плавления $cr \Pi$ с образованием переохлажденной жидкости l'; $T^{\circ}(l' \rightleftharpoons cr \Pi)$ – температура кристаллизации l'; $T^{\circ}(cr \Pi \rightleftarrows l)$ – температура плавления $cr \Pi$ Термодинамические характеристики фазовых переходов дендримеров первой и второй генерации с карбосилановым ядром и метоксиундециленатными

Ленлример	Перехол	ΔT	$T^{\mathrm{o}}_{\mathrm{tr}}$,	$\Delta_{\rm tr} H^{\circ}$,	$\Delta_{\rm tr} S^{\circ},$
Дондример	перелод	ŀ	K	кДж/г	Дж/(К•г)
	crII ≓ l'	192–204	201.5	52.7	0.262
G–1(Und–Me) ₈	l' ≓ crI	204–212	206.0	-37.3	-0.182
	crII ≓ crI	190–210	203.5	15.4	0.0757
	crI ≓ l	213–232	226.5	37.3	0.164
	crI ≓ l'	190–210	200.6	21.1	0.105
G-2(Und-Me) ₁₆	l' ≓ crI	210-212	210.0	-9.94	-0.0474
	crI ≓ l	212–229	223.0	9.94	0.0445

группами во внешнем слое

Таблица 2

Стандартные термодинамические функции дендримеров первой и второй генерации с карбосилановым ядром и метоксиундециленатными группами во

внешнем	слое	при	T =	298.	15	K
---------	------	-----	-----	------	----	---

Дендример	C_p° [$S^{\circ}(T)$ - $S^{\circ}(0)$]		$[H^{\circ}(T)-H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$	
		Дж/(К·г)	Дж/г		
G-1(Und-Me) ₈	1.894	2.111	353.4	305.8	
G-2(Und-Me) ₁₆	1.857	2.079	329.9	290.0	

Далее были представлены работы по карбосилановым дендримерам других генераций и с различными концевыми группами с целью выявления зависимости термодинамических свойств от номера генерации и концевых групп. Так, в работе [85] были изучены дендримеры с карбосилановым ядром и аллильными концевыми группами во внешнем слое с первой по пятую генерацию методом прецизионной адиабатической калориметрии в области от 6 до 340 К.

Дендримеры синтезировали в Институте синтетических полимерных материалов им. Н.С. Ениколопова РАН. Образцы, очищенные методом ВЭЖХ, при обычных условиях вещества представляли собой ярко-желтые вязкие жидкости. Химический состав и структуру соединений подтверждали методами элементного анализа, ИК- и ¹Н ЯМР-спектроскопии [86]. Структура дендримеров первых трех генераций представлена на рис. 20.

Рис. 20. Структура изученных дендримеров с первой по третью генерацию [86], где G – генерация, n – номер генерации, m – число концевых групп, *M* – метильные группы в структурных формулах

На рис. 21 приведены экспериментальные кривые зависимостей C_p^o от температуры дендримеров с первой по пятую генерацию с карбосилановым ядром и аллильными группами во внешнем слое. В области низких температур для дендримеров первой, третьей, четвертой и пятой генерации на графике наблюдается положительное отклонение зависимости $C_p^o = f(T)$ от ее нормального хода. Так проявляется низкотемпературная аномалия, которая представляет собой релаксационный переход, связанный с возбуждением возможных колебаний различных атомных групп в молекуле дендримера при нагревании и замораживанием колебаний при охлаждении.

Рис. 21. Экспериментальная кривая зависимости C_p^o от температуры дендримеров с первой по пятую генерацию с карбосилановым ядром и аллильными группами во внешнем слое:

 $T_{\rm g}^{\rm o}$ – температура расстеклования; $T_{m}^{\rm o}$ – температура плавления [85]

Выявленную аномалию следует рассматривать как равновесный релаксационный переход типа «порядок *⇒* беспорядок», характеристики которого приведены в табл. 3.

Как видно из рис. 21, для всех дендримеров было выявлено расстеклование. Интересно, что дендримеры второй – четвертой генераций расстекловываются в одном температурном интервале (температуры расстеклования равны 172, 174 и 172 К соответственно), а дендримеры первой и пятой генерации в области более низких температур (их температуры расстеклования составляют 154 и 162 К соответственно). Стандартные термодинамические характеристики расстеклования дендримеров приведены в табл. 4. Авторы [87] утверждают, что низкое значение температуры расстеклования для дендримера первой генерации вполне логично, поскольку это низкомолекулярное вещество с не полностью сформированной структурой. Снижение температуры расстеклования для дендримера пятой генерации, по-видимому, связано со снижением уровня межмолекулярного взаимодействия, которое происходит вследствие увеличения расстояний между аллильными группами во внешнем слое молекулы.

При дальнейшем нагревании дендримера G1–[All]₈, образовавшаяся переохлажденная жидкость самопроизвольно кристаллизуется при T ~ 175 К. При охлаждении образовавшихся кристаллов до начальной температуры измерения (T ~ 6 K) и последующем нагревании, наблюдается их плавление. Авторами определены стандартные термодинамические характеристики плавления: $T_{\rm m}^{\rm o} = 222.8 \text{ K}, \Delta_{\rm m} \text{H}^{\circ} = (39.2 \pm 1.2) \text{ кДж/моль}, \Delta_{\rm m} \text{S}^{\circ} = (175.9 \pm 1.2) \text{ Дж/(K·моль)}.$

Используя полученные экспериментальные значения теплоемкости, авторы рассчитали стандартные термодинамические функции дендримеров с карбосилановым ядром и аллильными группами во внешнем слое с первой по пятую генерацию для области от $T \rightarrow 0$ до 340 К (табл. 5).

Таблица 3

Характеристики низкотемпературной аномалии теплоемкости дендримеров первой, третьей, четвертой и пятой генерации с карбосилановым ядром и аллильными группами во внешнем слое

Дендример	$\Delta T, \mathbf{K}$	$\Delta_{ m tr} H^{ m o},$ Дж/моль	$\Delta_{ m tr}S^{\circ},$ Дж/(К·моль)
G-1(All) ₈	62 - 73	414.2	6.0
G-3(All) ₃₂	55 - 72	2422	35.4
$G-4(All)_{64}$	56 - 70	3537	57.7
G-5(All) ₁₂₈	51 - 72	15771	112.2

Стандартные термодинамические характеристики расстеклования и

Лециример	ΔΤ Κ	$T^{o} + 1 K$	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$,	$S_{ m conf}^{ m o}$
дендример	ΔI , K	$I_g \perp I, IX$	Дж/(К∙моль)	Дж/(К·моль)
G-1(All) ₈	150 - 160	154 ± 1	405.5	44
G-2(All) ₁₆	170 - 180	172 ± 1	810.0	206
G-3(All) ₃₂	170 - 180	174 ± 1	1640	417
G-4(All) ₆₄	170 - 180	172 ± 1	3660	931
G-5(All) ₁₂₈	160 - 170	162 ± 1	7922	2016

стеклообразного состояния изученных дендримеров

В работе [88] изучены калориметрические свойства дендримеров с карбосилановым ядром и бутильными группами во внешнем слое с третьей по шестую генерацию в интервале 6–340 К с помощью БКТ-3.

Таблица 5

	$C_{ m p}^{ m o}$	$[S^{\circ}(T) - S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$
Дендример				
	Дж/(К·моль)		кДж/моль	
G-1(All) ₈	1355	1615	256.4	225.2
G-2(All) ₁₆	3381	3740	576.9	538.2
G-3(All) ₃₂	7277	8130	1250	1174
$G-4(All)_{64}$	15564	16961	2622	2435
G-5(All) ₁₂₈	30632	34963	5346	5079

Стандартные термодинамические функции дендримеров при T = 298.15 K

Исследования проводились совместно с научной группой академика А.М. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Синтез соединений подробно описан в работе [89]. Образцы представляли собой бесцветные прозрачные вязкие жидкости. Химический состав и структуру соединений подтверждали методами элементного анализа, ИК- и ¹Н ЯМР-спектроскопии.

На рис. 22 для примера представлена структура дендримера третьей генерации с карбосилановым ядром и бутильными группами во внешнем слое G-3(Bu)₃₂.

На рис. 23 приведены экспериментальные кривые зависимостей C_p^{o} от температуры дендримеров с первой по пятую генерацию с карбосилановым ядром и аллильными группами во внешнем слое.

Образец был помещен в калориметрическую ампулу и охлажден перед началом измерений от $T \sim 298.15$ К до $T \sim 5$ К со средней скоростью ~ 0.01 К/с. На рис. 23 для примера приведены полученные экспериментальные кривые зависимостей C_p^o теплоемкостей дендримеров с карбосилановым ядром и бутильными группами во внешнем слое третьей и четвертой генерации.

Рис. 22. Структура дендримера третьей генерации с карбосилановым ядром и бутильными группами во внешнем слое G-3(Bu)₃₂ [88]

Рис. 23. Экспериментальная кривая зависимости $C_{\rm p}^{\rm o}$ от температуры дендримеров с карбосилановым ядром и бутильными группами во внешнем слое [88]: $T_{\rm g}^{\rm o}$ – температура расстеклования дендримера третьей генерации, $T_{\rm g}^{\rm o}$ - температура

расстеклования дендримера четвертой генерации

При нагревании теплоемкость полимеров равномерно возрастала с ростом температуры, затем для дендримеров третьей и четвертой генерации в области низких температур (68–90 К и 50–70 К для третьей и четвертой генерации соответственно) на графике наблюдается положительное отклонение зависимости $C_p^{o} = f(T)$ от ее нормального хода. Так проявляется низкотемпературная аномалия, которая представляет собой релаксационный переход, связанный с возбуждением возможных колебаний метильных групп в молекуле дендримера при нагревании и замораживанием колебаний при охлаждении. Интересно, что у дендримера четвертой генерации наблюдается аналогичная аномалия и в области высоких температур 289–306 К. Выявленную аномалию следует рассматривать как равновесный релаксационный переход типа «порядок \rightleftharpoons беспорядок», характеристики которого приведены в табл. 6.

Далее на кривой $C_p^{o} = f(T)$ всех дендримеров выявлен переход, связанный с их расстеклованием, рассчитанные параметры которого (температура и интервал перехода, увеличение теплоемкости при расстекловании, а также конфигурационная и нулевая энтропия) представлены в табл. 7.

Таблица б

Характеристики выявленных аномалий теплоемкости дендримеров третьей и четвертой генерации с карбосилановым ядром и бутильными группами во внешнем слое

Дендример	ΔT , K	Δ _{tr} H°, Дж/моль	∆ _{tr} S°, Дж/(К∙моль)	ΔT , K
G-3(Bu) ₃₂	68–90	76.4	1.397	0.0129
G-4(Bu) ₆₄	50-70	63.4	5.997	0.0816
G-4(Bu) ₆₄	289-306	298.3	6.359	0.0212

Таблица 7

Параметры расстеклования и стеклообразного состояния дендримеров третьей – шестой генерации с карбосилановым ядром и бутильными группами во внешнем слое

Π	T° V	$\Delta C_p^{\circ}(T_g^{\circ}),$	S_{conf}° ,	S ⁰ (0),
дендример	¹ g, K	кДж/(К∙моль)	кДж/(К∙моль)	кДж/(К∙моль)
G-3(Bu) ₃₂	179.8	1.904	0.485	0.485
G-4(Bu) ₆₄	186.0	3.82	0.973	0.973
G-5(Bu) ₁₂₈	186.5	9.29	2.366	2.366
G-6(Bu) ₂₅₆	186.2	17.26	4.395	4.395

При использовании экспериментальных значений теплоемкости, авторами были рассчитаны стандартные термодинамические функции (энтальпия, энтропия и функции Гиббса) изученных дендримеров от Т → 0 до 340 К (табл. 8).

Стандартные термодинамические функции дендримеров третьей – шестой генерации с карбосилановым ядром и бутильными группами во внешнем слое при

Дендример	$C_{ m p}^{ m o}$	$[S^{\circ}(T) - S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$	
	кДж/(К·моль)		кДж/моль		
G-3(Bu) ₃₂	8.801	1462	9.434	1351	
G-4(Bu) ₆₄	18.91	2973	19.20	2752	
G-5(Bu) ₁₂₈	35.94	7118	44.84	6251	
G-6(Bu) ₂₅₆	73.22	11940	76.80	10958	

Далее авторами [90, 91] изучено калориметрическое поведение дендримеров третьей генерации с карбосилановым ядром и этиленоксидными группами во внешнем слое G3[(OCH₂CH₂)₁OCH₃]₃₂ и G3[(OCH₂CH₂)₃OCH₃]₃₂ с одним и тремя этиленоксидными звеньями в цепи функциональной группы в температурном интервале 6–520 К.

Схематическая структура дендримеров изображена на рис. 24.

Рис. 24. Структура дендримеров третьей генерации с карбосилановым ядром и этиленоксидными группами во внешнем слое[90]: n = 1 или 3 – число этиленоксидных звеньев в цепи заместителя

Исследования проводились совместно с научной группой академика Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Синтез соединений подробно описан в работе [92]. Образцы, очищенные хроматографически, при н.у. представляли собой бесцветные прозрачные вязкие жидкости, нерастворимые в воде, но хорошо растворимые в низших спиртах. Дендример G3[(OCH₂CH₂)₁OCH₃]₃₂ имел лучшую растворимость в органических растворителях, чем G3[(OCH₂CH₂)₃OCH₃]₃₂, что связано с меньшим числом (OCH₂CH₂) в цепи функциональной группы внешнего слоя. Химический состав и структуру соединений подтверждали методами элементного анализа, ИК-и ¹Н ЯМР-спектроскопии.

На рис. 25 приведены экспериментальные кривые зависимостей C_p^o от температуры дендримеров третьей генерации с карбосилановым ядром и этиленоксидными группами во внешнем слое G3[(OCH₂CH₂)₁OCH₃]₃₂ и G3[(OCH₂CH₂)₃OCH₃]₃₂.

Рис. 25. Экспериментальная кривая зависимости от температуры изученных дендримеров G3[(OCH₂CH₂)₁OCH₃]₃₂ (*1*) и G3[(OCH₂CH₂)₃OCH₃]₃₂ (*2*) [90]:

 $T_{g}^{o}(l), T_{g}^{o}(2)$ – температуры расстеклования

Образцы были помещены в калориметрическую ампулу и охлаждены перед началом измерений от *T* ~ 298,15 (комнатная температура) до *T* ~ 5 K (температура жидкого гелия) со средней скоростью ~ 0.01 K/c.

На графике экспериментальных зависимостей $C_p^o = f(T)$ наблюдаются переходы, которые были выявлены и у ранее изученных дендримеров низких генераций. В работе [90] были проведены дополнительные исследования для более подробного описания природы выявленной аномалии на примере дендримера третьей генерации с одним этиленоксидным звеном в цепи заместителя, G3[(OCH₂CH₂)₁OCH₃]₃₂ при помощи ИК–спектроскопии. Установлено, что выявленный релаксационный переход связан с тонкими конформационными изменениями в дендримерах низких генераций. При T ≈ 60 К подвижность концевых групп дендримеров очень мала, однако возможны реориентационные движения метильных групп молекулы. Термодинамические характеристики низкотемпературных аномалий приведены в табл. 9.

Рис. 26. Ик-спектр для дендримера третьей генерации с карбосилановым ядром и одним этиленоксидным звеном в цепи заместителя в диапазоне 3050–2700 см⁻¹

Также оба дендримера расстекловывались. рассчитанные параметры перехода представлены в табл.10.

Таблица 9

Параметры низкотемпературных аномалий теплоемкостей дендримеров третьей генерации с карбосилановым ядром и этиленоксидными группами во внешнем слое G3[(OCH₂CH₂)₁OCH₃]₃₂ и G3[(OCH₂CH₂)₃OCH₃]₃₂

Дендример	ΔT , K	$\Delta_{ m tr} H^{\circ}$, Дж/моль	$\Delta_{\rm tr}S^{\rm o}, {\rm Д}{\it m}/({\rm K}\cdot{\rm молb})$
G3[(OCH ₂ CH ₂) ₁ OCH ₃] ₃₂	55–70	4.261 ± 0.043	71.7 ± 0.9
G3[(OCH ₂ CH ₂) ₃ OCH ₃] ₃₂	46-73	6.955 ± 0.070	99.3 ± 1.3

Используя полученные экспериментальные значения теплоемкости, авторы рассчитали термодинамические функции (энтальпию, энтропию и функцию Гиббса) изученных дендримеров от T — 0 до 520 К (табл. 11).

Таблица 10

Параметры расстеклования и стеклообразного состояния дендримеров третьей генерации с карбосилановым ядром и этиленоксидными группами во внешнем слое G3[(OCH₂CH₂)₁OCH₃]₃₂ и G3[(OCH₂CH₂)₃OCH₃]₃₂

Дендример	ΔT	$T_{\rm g}^{\rm o} \pm 1$	$\Delta C_{p}^{o}(T_{g}^{o})$	$S_{ m conf}^{ m o}$	<i>S</i> °(0)
	К		кДж/(К·моль)		
G3[(OCH ₂ CH ₂) ₁ OCH ₃] ₃₂	156–188	175	6.730 ± 0.067	1.714 ± 0.032	1.7
G3[(OCH ₂ CH ₂) ₃ OCH ₃] ₃₂	160-190	176	11.33 ± 0.11	2.885 ± 0.057	2.9

В 2016 году в работе [93] авторами изучено калориметрическое поведение жидкокристаллических дендримеров с карбосилановым ядром с первой по четвертую генерацию с метоксифенилбензоатными группами во внешнем слое G–X[Und-MPhB]_n, где X – номер генерации (1, 2, 3, 4), а n – число концевых групп (8, 16, 32, 64 соответственно) в интервале 6–370 К при помощи автоматизированной установки БКТ-3.

дендример	$C_{p}^{\circ}(T) \qquad [S^{\circ}(T) - S^{\circ}(0)]$		$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$	
	Дж/	(К•моль)	кДж/моль		
G3[(OCH ₂ CH ₂) ₁ OCH ₃] ₃₂	706.1	788.8	122.8	112.4	
G3[(OCH ₂ CH ₂) ₃ OCH ₃] ₃₂	902.5	992.0	156.1	139.7	

Стандартные термодинамические функции дендримеров при T = 298.15 K

Образцы синтезировали по методике, представленной в работе [94]. Для подтверждения химического состава и структуры соединений использовали ¹Н ЯМР-спектроскопию и поляризационную оптическую микроскопию (ПОМ), а также проводили рентгеноструктурный анализ (РСА).

На рис. 27 изображена схема синтеза дендримера первой генерации с карбосилановым ядром и метоксифенилбензоатными группами во внешнем слое.

Рис. 27. Схема синтеза жидкокристаллического дендримера первой генерации с карбосилановым ядром и метоксифенилбензоатными группами во внешнем слое [93]

Образцы были помещены в калориметрическую ампулу и охлаждены перед началом измерений от $T \sim 298.15$ K до $T \sim 5$ K со средней скоростью ~ 0.01 K/c. На рис. 28 для примера приведены полученные экспериментальные кривые зависимостей C_p^{o} теплоемкостей изученных жидкокристаллических дендримеров.

Рис. 28. Экспериментальная кривая зависимости теплоемкости жидкокристаллических дендримеров с первой по четвертую генерацию с карбосилановым ядром и метоксифенилбензоатными во внешнем слое [93]

Как видно из рис. 28, при нагревании теплоемкость изученных ЖК-дендримеров равномерно возрастала с ростом температуры, затем мы наблюдаем, что аморфная часть образца расстекловывается в интервале ~ 240-260 К. Параметры перехода (температура и интервал расстеклования, увеличение теплоемкости при расстекловании, а также конфигурационная и нулевая энтропия) представлены в табл. 12.

Далее на кривых температурной зависимости теплоемкости дендримеров выявлены фазовые превращения их кристаллической части. У дендримеров с первой по третью генерацию наблюдается следующие переходы:

• переход кристаллическая фаза *≈* смектическая мезофаза (*cr*II *≈ cr*I), обусловленный образованием ЖК-фазы дендримера, подтвержден методом РСА

• плавление кристаллов *cr*I, в результате которого образовывается изотропная жидкость l (*cr*I \rightleftharpoons *l*).

При *T* ~ 300 К для дендримера первой генерации также образуются переохлажденные жидкие кристаллы (*H*').

В случае дендримера четвертой генерации, начиная с T = 280 K, на кривой C_p^{o} = f(T) также выявлены фазовые переходы:

- переход *cr*Ш *⇒ cr*II, обусловленный образованием ЖК-фазы дендримера;
 переход не наблюдается для других гомологов
- переход кристаллическая фаза *⇄* смектическая мезофаза (переход *cr*II *⇄ cr*I, подтверждено методом PCA).
- плавление *cr*I с образованием изотропной жидкости *l* (переход *cr*I \rightleftharpoons *l*).

Параметры всех фазовых переходов представлены в табл. 13. Используя полученные экспериментальные значения теплоемкости, авторы рассчитали стандартные термодинамические функции (энтальпия, энтропия и функции Гиббса) изученных дендримеров от T — 0 до 370 К (табл. 14).

Таблица 12

Параметры расстеклования и стеклообразного состояния ЖК-дендримеров с карбосилановым ядром первой по четвертую генерацию и метоксифенилбензоатными группами во внешнем слое

Понтаньков	T° K	$\Delta C_{p}^{o}(T_{g}^{o}),$	S_{conf}° ,	S ⁰ (0),
дендример	1 _g , К	кДж/(К∙моль)	Дж/(К·моль)	Дж/(К·моль)
G-1(Und-MPhB) ₈	259	2.07 ± 0.02	525 ± 6	525
G-2(Und-MPhB) ₁₆	254	3.65 ±0.04	929 ± 10	929
G-3(Und-MPhB) ₃₂	250	6.30 ± 0.07	1604 ± 17	1604
G-4(Und-MPhB) ₆₄	258	15.7 ± 0.2	3998 ± 40	3998

Дендример	Переход	$(T_{\rm tr}^{\rm o} \pm 0.2), {\rm K}$	$\Delta_{ m tr} H^{ m o},$ кДж/моль	$\Delta_{ m tr} S^{\circ},$ Дж/(К·моль)
	TT \ T	200.1	((10 + 0.20	221.4 + 1.5
G-1(Und-MPhR)	$cr\Pi \rightleftarrows cr\Gamma$	300.1	66.42 ± 0.30	221.4 ± 1.5
	$crI \rightleftharpoons l$	347.5	40.50 ± 0.21	116.5 ± 0.8
G 2(Und MPhB).	crII ≓ crI	287.2 ± 0.2	166.8 ± 1.8	581.2 ± 5.8
$G-2(UIId-WIFIID)_{16}$	$crI \rightleftharpoons l$	351.1 ± 0.1	69.76 ± 0.71	198.7 ± 2.0
$C_{2}(L_{r} \downarrow MDhD)$	crII ≓ crI	286.1 ± 0.2	371.0 ± 3.2	1297 ± 12
$G-3(UIIII-IVII IIII)_{32}$	$crI \rightarrow l$	349.8 ± 0.1	1175+09	3359 ± 40
		5 15.0 = 0.1	11/10 = 0.5	55555 = 110
	crIII ≓ crII	287.2 ± 0.2	412.0 ± 4.0	1433 ± 15
		204 () 0.2	110.0 + 1.0	272.4 + 2.0
$G-4(Und-MPhB)_{64}$	$cr\Pi \rightleftarrows cr\Gamma$	294.6 ± 0.2	110.2 ± 1.0	373.4 ± 3.8
	$crI \rightleftharpoons l$	351.2 ± 0.1	174.2 ± 1.8	496.1 ± 5.0
G-4(Und-MPhB) ₆₄	$crIII \rightleftharpoons crII$ $crII \rightleftarrows crI$ $crII \rightleftarrows crI$ $crI \rightleftarrows l$	287.2 ± 0.2 294.6 ± 0.2 351.2 ± 0.1	412.0 ± 4.0 110.2 ± 1.0 174.2 ± 1.8	$ \begin{array}{r} 1433 \pm 15 \\ \hline 373.4 \pm 3.8 \\ \hline 496.1 \pm 5.0 \end{array} $

Параметры фазовых переходов ЖК-дендримеров с первой по четвертую генерацию с карбосилановым ядром и метоксифенилбензоатными группами

Таблица 14

Стандартные термодинамические функции ЖК-дендримеров с первой по четвертую генерацию с карбосилановым ядром и метоксифенилбензоатными

группами во внешнем слое при T = 298.15 K

Дендример	$C_{\rm p}^{\rm o}$	$[S^{\circ}(T) - S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$
	кДж/(К∙моль)		кДж/моль	
G-1(Und-MPhB) ₈	9.002	8.390	1293	1208
G-2(Und-MPhB)16	19.60	17.94	2866	2482
G-3(Und-MPhB) ₃₂	40.54	36.86	5945	5046
G-4(Und-MPhB) ₆₄	82.97	73.74	11731	10253

Авторы работ [95, 96] изучили калориметрическое поведение дендримеров первой, третьей и шестой генерации с карбосилановым ядром и фенилэтильными группами во внешнем слое G1[CH₂CH₂C₆H₅]₈, G3[CH₂CH₂C₆H₅]₃₂ и G6 [CH₂CH₂C₆H₅]₂₅₆ соответственно в температурном диапазоне 6–520 К с помощью БКТ-3 и ДСК.

Исследования проводились совместно с научной группой академика А.М. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Синтез соединений подробно описан в работе [97]. Химический состав и структуру соединений подтверждали методами элементного анализа, ИК- и ¹Н ЯМР-спектроскопии. Схема синтеза и структура на примере дендримера шестой генерации представлены на рис. 29.

Рис. 29. Схема синтеза дендримера шестой генерации с карбосилановым ядром и фенилэтильными группами во внешнем слое G6 [CH₂CH₂C₆H₅]₂₅₆ [96]

На рис. 30, 31 приведены полученные экспериментальные кривые теплоемкостей дендримеров с карбосилановым ядром и фенилэтильными группами во внешнем слое первой, третьей и шестой генерации.

Образцы был помещены в калориметрическую ампулу и охлаждены перед началом измерений от $T \sim 298.15$ К до $T \sim 5$ К со средней скоростью ~ 0.01 К/с. При нагревании ампулы в условиях эксперимента на графике наблюдается положительное отклонение зависимости $C_p^o = f(T)$ от ее нормального хода в интервале 53–75 К. Так проявляется низкотемпературная аномалия, которая представляет собой релаксационный переход, связанный с возбуждением возможных колебаний метильных групп в молекуле дендримера при нагревании и замораживанием колебаний при охлаждении. Низкотемпературная аномалия

Рис. 30. Экспериментальная кривая зависимости C_p^o от температуры дендримера G1[CH₂CH₂C₆H₅]₈ [95]: T_g^o – температура расстеклования

Рис. 31. Экспериментальная кривая зависимости C_p^o от температуры дендримеров G3 [CH₂CH₂C₆H₅]₃₂ (**1**) и G6 [CH₂CH₂C₆H₅]₂₅₆ (**2**) [96],

 $T_{\rm g}^{\rm o}$ – температура расстеклования

Рассчитанные параметры выявленных аномалий представлены в табл. 15. Термодинамические характеристики для дендримера третьей генерации были рассчитаны на моль звена, условно выделенного авторами (формула звена $[(CH_2)_3Si(CH_3)_4(CH_2)_2C_6H_5]$], $M_{3BeHa} = 290.556$ г/моль).

Далее, как видно из рис. 30, 31, у всех трех дендримеров при последующем нагревании имеет место переход, связанный с их расстеклованием, параметры которого (температура и интервал перехода, увеличение теплоемкости при расстекловании, а также конфигурационная и нулевая энтропия) представлены в табл.16 (характеристики для дендримеров третьей и шестой генерации были рассчитаны на моль условного звена (М_{звена} = 290.556 г/моль).

При повторных проведениях эксперимента расстеклование наблюдалось на экспериментальных кривых каждый раз, и при этом какие-либо параметры перехода не изменялись.

Рис. 32. Аномалия теплоемкости дендримера G1[CH₂CH₂C₆H₅]₈: BCD – кажущаяся теплоемкость; BD – нормальный (интерполяционный) ход теплоемкости

На экспериментальной кривой теплоемкости дендримера шестой генерации в области высоких температур 410-510 К имеет место второй переход, который по по форме напоминает расстеклование.

В результате изменения свободы взаимопроникновения структуры молекулы дендримера при увеличении номера генерации образуется так называемая «физическая сетка зацеплений» (рис. 33). Причем ее формирование происходит без специфических взаимодействий (например, водородные связи), за счет увеличения числа поколений для нескольких гомологичных рядов дендримеров. Были проведены физико-механические и физико-химические исследования данного перехода (например, вязкоупругие свойства дендримеров с кремниорганичским ядром и различным внешним слоем), взаимопроникновение ветвей дендримеров друг в друга также доказана экспериментально. Проявление данного эффекта зависит от молекулярной подвижности концевых групп дендримеров.

Наблюдаемый переход является релаксационным, и чем выше плотность поверхности дендримера, тем ярче проявление так называемого «наноразмерного эффекта».

Рис. 33. Схема образования зацеплений в классических полимерах (сверху) и образования физической сетки в дендримерах высших генераций [96]

Используя полученные экспериментальные значения теплоемкости, авторы рассчитали стандартные термодинамические функции (энтальпию, энтропию и функцию Гиббса) изученных дендримеров от $T \rightarrow 0$ до 520 К (табл. 17). Данные были рассчитаны на моль всей молекулы для G1[CH₂CH₂C₆H₅]₈ и на моль условного звена для G3 [CH₂CH₂C₆H₅]₃₂ и G6 [CH₂CH₂C₆H₅]₂₅₆.

Таблица 15

Параметры аномалии теплоемкости дендримеров первой и третьей генерации с карбосилановым ядром и фенилэтильными группами во внешнем слое

Понярникор		$\Delta_{\rm tr} H^{\circ},$	$\Delta_{\rm tr} S^{\circ},$
дендример	$\Delta 1, \mathbf{K}$	Дж/моль	Дж/(К·моль)
$G1[CH_2CH_2C_6H_5]_8$	53-75	1923 ± 15	27.59 ± 0.33
$G3[CH_2CH_2C_6H_5]_{32}$	49-72	263 ± 2.6	3.68 ± 0.05

Таблица 16

Параметры расстеклования и стеклообразного состояния изученных дендримеров с карбосилановым ядром и фенилэтильными группами во внешнем слое

Дендример	Tg°, K	∆С°р(Тg°), Дж/К∙моль	S° _{conf} , Дж/К∙моль	Ѕ⁰(0), Дж/К∙моль
$G1[CH_2CH_2C_6H_5]_8$	198 ± 1	961	245	245
$G3[CH_2CH_2C_6H_5]_{32}$	199 ± 1	140	36	36
G6 [CH ₂ CH ₂ C ₆ H ₅] ₂₅₆	201 ± 1	129	33	33

Таблица 17

Термодинамические функции изученных дендримеров при T = 298.15 K

Дендример	$C_p^{\circ}, \qquad [S^{\circ}(T) - S^{\circ}(0)]$		$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$	
	Дж	к/(К·моль)	кДж/моль		
$G1[CH_2CH_2C_6H_5]_8$	3811	4199	609.7	642.2	
$G3[CH_2CH_2C_6H_5]_{32}$	524.6	549.7	84.31	79.58	
G6 [CH ₂ CH ₂ C ₆ H ₅] ₂₅₆	499.8	522.0	80.52	75.12	

1.2.2. Карбосиланциклосилоксановые дендримеры

работы [98] изучено Авторами калориметрическое поведение карбосиланциклосилоксановых дендримеров третьей и шестой генерации с ядром диметилсилоксановыми с восьмичленными циклами BO внешнем слое G3[(Si(CH₃)₂O)₃Si(CH₃)O]₃₂ и G6[(Si(CH₃)₂O)₃Si(CH₃)O]₂₅₆ с помощью БКТ-3 и ДСК в температурном интервале 6–(350–450).

На рис. 34 для примера представлена структура дендримера третьей генерации.

Рис. 34. Структура дендримера

третьей генерации с восьмичленными диметилсилоксановыми циклами во внешнем слое [98]

Исследования проводились совместно с научной группой академика А.М. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Синтез соединений подробно описан в работе [99]. Внешне образцы представляли собой воскоподобные твердые вещества. Химический состав и структуру соединений подтверждали методами элементного анализа, также снимались ИК- и ¹Н ЯМР-спектры.

Для исследованных дендримеров представилось возможным выделить условное структурное звено. Формула в пределе повторяющегося звена: $[(CH_3)Si(C_3H_6)_2\{(Si(CH_3)_2O)_3Si(CH_3)O\}], M_{3BeHa} = 408.55 г/моль. Все расчеты были произведены на моль данного звена.$

На рис. 35, 36 приведены экспериментальные кривые зависимостей C_p^o от температуры изученных дендримеров третьей и шестой генерации с восьмичленными диметилсилоксановыми циклами во внешнем слое

Рис. 35. Экспериментальная кривая зависимости $C_{\rm p}^{\rm o}$ от температуры изученного дендримера третьей генерации, $T_{\rm g}^{\rm o}$ – температура расстеклования [98]

Образец был помещен в калориметрическую ампулу и охлажден перед началом измерений от $T \sim 298.15$ K до $T \sim 6$ K со средней скоростью ~ 0.02 K/c.

Как видно из рис. 35, 36, при нагревании теплоемкость полимеров равномерно возрастала с ростом температуры, затем в области низких температур на графике дендримера третьей генерации в интервале 55–73 К наблюдается положительное

отклонение зависимости $C_p^o = f(T)$ от ее нормального хода. Так проявляется низкотемпературная аномалия, которая представляет собой релаксационный переход, связанный с возбуждением возможных колебаний метильных групп в молекуле дендримера при нагревании и замораживанием колебаний при охлаждении, теплоемкость дендримеров плавно увеличивалась с ростом температуры.

 Рис. 36. Экспериментальная кривая зависимости C_p^o от температуры изученного дендримера

 шестой генерации. G6[(Si(CH₃)₂O)₃Si(CH₃)O]₂₅₆: T_g^o – температура расстеклования [98]

 Авторами
 были
 рассчитаны
 параметры
 выявленной
 аномалии:

 $\Delta_{tr}H^{\circ} = (225.0 \pm 0.6)$ Дж/моль, $\Delta_{tr}S^{\circ} = (3.21 \pm 0.02)$ Дж/(К·моль). Далее на кривой $C_{\rm p}^{\circ} = f(T)$ всех дендримеров наблюдается переход, связанный перехода, увеличение теплоемкости при расстекловании, а также конфигурационная и нулевая энтропия) представлены в табл. 18.

При исследовании дендримера шестой генерации методом дифференциальной сканирующей калориметрии (рис. 37) в области высоких температур (350–450 К) наблюдается релаксационный переход, внешне похожий на расстеклование.

Рис. 37. ДСК-кривая G6[(Si(CH₃)₂O)₃Si(CH₃)O]₂₅₆ [98]

Используя полученные экспериментальные значения теплоемкости, авторы рассчитали стандартные термодинамические функции в расчете на моль звена (энтальпию, энтропию и функцию Гиббса) изученных дендримеров от $T \rightarrow 0$ до 449 К (табл. 5).

Таблица 18

Параметры расстеклования и стеклообразного состояния дендримеров третьей и шестой генерации с диметилсилоксановыми циклами во внешнем слое

Дендример	ΔT	$T_{\rm g}^{\rm o} \pm 1$	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$	$S_{ m conf}^{ m o}$	<i>S</i> °(0)
	K		Дж/(К·моль)		
G3[(Si(CH ₃) ₂ O) ₃ Si(CH ₃)O] ₃₂	185–230	207	135 ± 1	35 ± 1	35
G6[(Si(CH ₃) ₂ O) ₃ Si(CH ₃)O] ₂₅₆	185–230	208	139 ± 1	36 ± 2	36

Стандартные термодинамические функции изученных дендримеров третьей и шестой генерации с восьмичленными диметилсилоксановыми циклами во

дендример	$C_{\rm p}^{\rm o}(T)$	$[S^{\circ}(T) - S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$
	Дж/(К·моль)		кДж/моль	
G3[(Si(CH ₃) ₂ O) ₃ Si(CH ₃)O] ₃₂	700.9	751.0	114.8	109.1
G6[(Si(CH ₃) ₂ O) ₃ Si(CH ₃)O] ₂₅₆	704.6	117.1	766.4	111.4

внешнем слое при T = 298.15 K

1.2.3. Пиридинсодержащие полифениленовые дендримеры

В 2010 году вышла работа [100], посвященная калориметрическому поведению пиридинсодержащего полифениленового дендримера второй генерации G2–Py24 в температурном интервале 6–320 К методом прецезионной адиабатической калориметрии.

Исследования проводились совместно с научной группой З.Б. Шифриной (Институт элементоорганических соединений им. А.Н. Несмеянова РАН). Синтез соединений подробно описан в работе [101]. Химический состав и структуру соединений подтверждали при помощи методов элементного анализа, ¹Н ЯМР-спектроскопии и MALDI-TOF масс-спектрометрии.Структура дендримера G2–Py24 представлена на рис. 38

Рис. 38. Структура дендримера G2-Ру24 [100]

На рис. 39 изображена экспериментальная кривая зависимости $C_{\rm p}^{\rm o}$ от температуры пиридинсодержащего полифениленового дендримера G2–Py24.

Рис. 39. Температурная зависимость теплоемкости пиридинсодержащего полифениленового дендримера G2–Py24

Как видно из рис. 39, теплоемкость G2–24Ру равномерно возрастает с увеличением температуры без каких-либо особенностей. В изученной области температур не выявлено физических и фазовых переходов, что, по-видимому, связано с жесткой структурой молекулы.

Авторами была оценена фрактальная размерность D для изученного дендримера для установления топологии его структуры, размерность D в интервале 20–50 К составила 1.3, что говорит о цепочечно-слоистой структуре.

С использованием закона кубов Дебая, теплоемкость вещества была экстраполирована от 6 К до 0 К. Рассчитаны стандартные термодинамические функции дендримера (в табл.20).

Авторами работы [102] изучено калориметрическое поведение пиридинсодержащих полифениленовых дендримеров в температурном интервале 6–300 К.

Термодинамические функции полифениленого дендримера	G2-24Py
(<i>M</i> = 4910.07 г/моль) при T = 298.15 K	

	$C_{\rm p}^{\rm o}(T)$,	[H°(T)-H°(0)],	$[S^{\circ}(T) – S^{\circ}(0)],$	-[G°(T)-H°(0)],
Ι, Λ	кДж/(К∙моль)	Дж/моль	кДж/(К∙моль)	Дж/моль
298.15	6067	869.9	5781	853.7

Исследования проводились совместно с научной группой З.Б. Шифриной (Институт элементоорганических соединений им. А.Н. Несмеянова РАН). Синтез соединений подробно описан в работе [101, 103]. Химический состав и структуру соединений подтверждали при помощи методов элементного анализа, ¹Н ЯМР-спектроскопии и MALDI-TOF масс-спектрометрии.

Авторами были сняты ТГ-кривые: установлена высокая термическая стабильность, потеря массы для всех образцов составляла около 10% при *T* ~ 848 K в атмосфере азота и при *T* ~ 753 K в воздухе.

В работе были изучены полифениленовые дендримеры первой генерации на тетрафенилметана G1-8Py, третьей основе генерации на основе 1,3,5-триэтинилбензола G3-42Pv И четвертой генерации на основе 1,3,5-триэтинилбензола G4-90Ру. На рис. 40 для примера изображена структура полифениленого дендримера G1-8Ру.

На рис. 41 приведены экспериментальные кривые зависимостей C_p^{o} от T изученных полифениленовых дендримеров и G2-24Py [100].

Как видно из рис. 41, теплоемкости дендримеров равномерно возрастали с ростом температуры без каких-либо особенностей в интервале 6–300 К. Фазовые или физические превращения также не были выявлены, что по-видимому, связано с их жесткой молекулярной структурой.

Используя полученные экспериментальные значения теплоемкости, авторы рассчитали стандартные термодинамические функции (энтальпию, энтропию и функцию Гиббса) изученных дендримеров (табл. 21).

Рис. 40. Структура полифениленового дендримера на основе тетрафенилметана G1-8Ру [102]

Рис. 41. Экспериментальные кривые теплоемкостей полифениленовых дендримеров с первой по четвертую генерацию [102]

66

Стандартные термодинамические функции изученных полифениленовых дендримеров при T = 298.15 K

Дендример	С ^о _р (T), Дж/(К∙моль)	[<i>H</i> °(<i>T</i>)− <i>H</i> °(0)], кДж/моль	[<i>S</i> °(<i>T</i>)− <i>S</i> °(0)], Дж/(К·моль)	-[<i>G</i> °(<i>T</i>)- <i>H</i> °(0)], кДж/моль
G1-8Py	2478	330.9	2120	301.1
G3-42Py	20555	2857	18516	2663
G4-90Py	9900	1392	9137	1332

В работе [104] изучены жесткие пиридинсодержащие полифениленовые дендримеры на основе 1,3,5-триэтинилбензола G1–12Py и G2–30Py в температурных диапазонах от 7—180 до 455—470 К.

Исследования проводились совместно с научной группой З.Б. Шифриной (Институт элементоорганических соединений им. А.Н. Несмеянова РАН). Синтез соединений подробно описан в работе [101, 103]. Химический состав и структуру соединений подтверждали при помощи методов элементного анализа, ¹Н ЯМР- спектроскопии и MALDI-TOF масс-спектрометрии.

На рис. 42 для изображена структура полифениленого дендримера первой генерации.

Рис. 42. Структура изученного полифениленого дендримера [104]

Теплоемкость пиридинсодержащих полифениленовых дендримеров первой и второй генерации G1–12Py и G2–30Py изучили в диапазоне от 7—180 К до 455—470 К соответственно, используя автоматизированную установку БКТ-3 и дифференциальный сканирующий калориметр.

На рис. 43 приведены экспериментальные кривые теплоемкостей дендримера второй генерации G2–30Ру в сравнении с ранее изученным G2–24Ру [100].

Рис. 43. Экспериментальные кривые теплоемкостей G2-24Py (1) и G2-30Py (2)

Теплоемкость G2–30Ру равномерно возрастала при нагревании без каких-либо особенностей. Подобное термическое поведение наблюдалось у полифениленовых дендримеров на основе тетрафенилметана первой и второй генерации, а также на основе 1,3,5-триэтинилбензола третьей и четвертой генеарции. У изученных дендримеров не выявлено расстеклование, что, по-видимому, связано с жесткой структурой молекулы.

Как видно из рис. 44, дендример G1–12Ру имеет иное термическое поведение. На кривой теплоемкости в интервале 290—350 К имеет место переход, связанный с расстеклованием. Рассчитаны параметры расстеклования и стеклообразного состояния G1–12Ру: $T_{\rm g}^{\rm o} = (323 \pm 1)$ K, $\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o}) = 225$ Дж/(К·моль), $S_{\rm conf}^{\rm o} = S^{\circ}(0) = 57$ Дж/(К·моль).

Рис. 44. Экспериментальная кривая теплоемкости G1-12Py [104]

Чтобы рассчитать энтальпии, энтропии и функции Гиббса нагревания для дендримера первой генерации, экспериментальные значения его теплоемкости были экстраполированы в интервале от 180 до 0 К при помощи метода Келли-Паркса. Для расчета функций G2–30Ру экстраполяцию от 6 до 0 К проводили при использовании закона кубов Дебая, полученные значения приведены в табл. 22.

Таблица 22

Стандартные термодинамические функции изученных полифениленовых

дендримеров при T = 298.15 K

Дендример	$C_{\rm p}^{\rm o}(T)$	$[S^{\circ}(T) \neg S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$
	Дж∕(К·моль)		кДж/моль	
G1-12Py	1100	1140	170	169
G2-30Py	4000	3752	574.1	544.6

1.2.4. Гибридные дендримеры

Относительно новый подход к синтезу дендримеров состоит в совмещении двух блоков, которые представляют собой независимые высокоупорядоченные структуры.

Так, в работе [105] изучали термодинамические свойства гибридного дендримера со структурой «карбосилановое ядро / фениленовая оболочка» G1{Si}₁₃[Ar]₃₂ (рис. 45), где G1 обозначает номер генерации дендримера, {Si}₁₃ – количество атомов кремния в ядре дендримера, и за [Ar]₃₂ принимали число фениленовых звеньев во внешнем слое молекулы дендримера.

Образец синтезировали в Институте элементоорганических соединений им. А.Н. Несмеянова РАН [106]. В качестве дендримерной матрицы использовали дендример первой генерации с карбосилановым ядром и аллильными группами во внешнем слое, который реагировал с избытком 2,3,4,5-тетрафенилциклопента-2,4диенона (реакция циклоприсоединения Дильса – Альдера).

Гибридный дендример, хроматографически очищенный, при н.у. внешне представлял твердое вещество светло-желтого цвета. Химический состав и структуру образца подтверждали методами элементного анализа, ¹Н ЯМРспектроскопии и MALDI-TOF масс-спектрометрии. В результате проведенного ГПХ-анализа определено, что содержание основного вещества в G1{Si}₁₃[CH₂CH=CH₂]₈ и G1{Si}₁₃[C₆H₅]₃₂ составило 98 мол. %.

Рис. 45. Структура гибридного дендримера первой генерации с фениленовым внешним слоем G1 {Si}₁₃[C₆H₅]₃₂[105]

Авторами [105] был проведен термогравиметрический анализ (рис. 46), в результате которого установлено, что гибридный дендример G1{Si}₁₃[C₆H₅]₃₂ характеризуется высокой термической стабильностью, температура начала разложения составила 600 К (потеря массы ~ 2%). Для сравнения, температура начала разложения дендримера с карбосилановым ядром и аллильными группами во внешнем слое G1[CH₂CH=CH₂]₈ составляет 330 К.

Рис. 46. ТГ - кривая гибридного дендримера первой генерации G1{Si}₁₃[C₆H₅]₃₂[100]

На рис. 47 представлена экспериментальная кривая теплоемкости гибридного дендримера первой генерации.

Образец был помещен в калориметрическую ампулу и охлажден перед началом измерений от $T \sim 298.15$ К до $T \sim 6$ К со средней скоростью ~ 0.01 К/с. Дендример с карбосилановым ядром и фениленовой оболочкой демонстрирует калориметрическое поведение, отличное от «классических» дендримеров с карбосилановыми ядрами. На экспериментальной кривой не наблюдается положительного отклонения теплоемкости в области низких температур, характерного для дендримеров ниже пятой генерации.

Рис. 47. Экспериментальная кривая теплоемкости гибридного дендримера первой генерации с фениленовым внешним слоем G1{Si}₁₃[C₆H₅]₃₂[105]

В интервале 300–350 К на рис. 47 наблюдается расстеклование дендримера. Рассчитаны параметры расстеклования и стеклообразного состояния, значения которых составили: $T_{\rm g}^{\rm o} = (323 \pm 1)$ К, $\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o}) = 1312$ Дж/(К·моль), $S_{\rm conf}^{\rm o} = S^{\circ}(0) = 334$ Дж/(К·моль).

Гибридный дендример имеет относительно высокую температуру расстеклования в сравнении с карбосилановыми и силоксановыми дендримерами. Авторы [105] предположили, что это обусловлено наличием жестких фениленовых фрагментов на внешнем слое гибридного дендримера, что приводит к закономерному уменьшению его молекулярной подвижности. Кроме того, гибридный дендример имеет сравнительно большое значение конфигурационной энтропии, что может указывать на неупорядоченную структуру дендритной макромолекулы.

Теплоемкость, а также энтальпии, энтропии и функции Гиббса нагревания гибридного дендримера первой генерации приведены в табл. 23.
Термодинамические функции изученного дендримера с карбосилановым ядром и фениленовой оболочкойG1{Si}₁₃[C₆H₅]₃₂ (M(C₃₀₄H₃₃₂Si₁₃) = 4350.93 г/моль)

Т	$C_{\rm p}^{\rm o}(T)$	$[S^{\circ}(T) – S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$
K	кДж/	(К·моль)	кДж/	моль
298.15	5.675	5.865	877.0	871.6

Авторами [107] было изучено калориметрическое поведение гибридного дендримера со структурой «карбосилановое ядро / силоксановая оболочка» G4([(CH₃)₃SiO])₆₄ (рис. 48).

Исследования проводились совместно с научной группой академика А.М. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН).

Дендритной матрицей при синтезе гибридного соединения являлся дендример третьей генерации с карбосилановым ядром и диаллилметилсилильными группами во внешнем слое. Модификация его внешнего слоя была проведена по реакции гидросилилирования в присутствии платинового катализатора при комнатной температуре; в качестве модификатора был использован 1,1,1,3,5,5,5-гептаметилтрисилоксан [108].

Рис. 48. Молекулярная структура карбосиланового дендримера четвертой генерации с концевыми триметилсилилсилоксановыми группами G4[OSi(CH₃)₃]₆₄[107]

73

Химический состав и структуру образцов подтверждали методами элементного анализа и малоуглового рентгеновского рассеяния, а также снимали ¹H, ¹³C и ²⁹Si ЯМР-спектры.

Внутримолекулярная структура и макроскопические характеристики дендримеров были оценены методом молекулярной динамики с использованием атомистических моделей. Образцы очищали методом ГПХ, содержание основного вещества в образце дендримеров составляло 99 мол.%.

Для дендримера был проведен термогравиметрический анализ и определена температура начала разложения G4[OSi(CH₃)₃]₆₄, которая составила T = 560 K (потеря массы – 2%). На рис. 49 представлена полученная TГ-кривая.

Рис. 49. ТГ-кривая дендримера четвертой генерации G4[OSi(CH₃)₃]₆₄

Экспериментальная кривая теплоемкости дендримера G4[OSi(CH₃)₃]₆₄ представлена на рис. 50.

Образец был помещен в калориметрическую ампулу и охлажден перед началом измерений от $T \sim 298.15$ К до $T \sim 5$ К со средней скоростью ~ 0.02 К/с. На графике видно, что при нагревании образца в диапазоне T = (46-68) К наблюдается положительное отклонение теплоемкости. Так проявляется низкотемпературная

аномалия, которая представляет собой релаксационный переход, связанный с колебаниями метильных групп в молекуле дендримера. При последующих экспериментах характер кривой воспроизводился (рис. 51).

Рис. 50. Экспериментальная кривая теплоемкости G4[OSi(CH₃)₃]₆₄:

AE – аморфное (стеклообразное) состояние; FG – аморфное (расстеклованное) состояние; BCD – кажущаяся теплоемкость в интервале низкотемпературной аномалии

Рис. 51. Низкотемпературный релаксационный переход G4[OSi(CH₃)₃]₆₄: BCD – кажущаяся теплоемкость; BD (пунктирная линия) – нормальный (интерполяционный) ход теплоемкости

Определены параметры низкотемпературного релаксационного перехода: $\Delta_{tr}H^{\circ} = 2980 \ \text{Дж/моль}, \ \Delta_{tr}S^{\circ} = 52.1 \ \text{Дж/(K·моль)}. \ \text{Данная аномалия проявляется на}$ кривой теплоемкости систематически и зависит в большей степени от номера генерации дендримера, а природа концевых групп и молекулярного скелета практически не оказывают влияния.

В интервале 176–196 К на рис. 49 мы наблюдаем расстеклование дендримера. Рассчитаны параметры расстеклования и стеклообразного состояния, значения которых составили: $T_{g}^{o} = (191 \pm 1)$ К, $\Delta C_{p}^{o}(T_{g}^{o}) = 3410$ Дж/(К·моль), $S_{conf}^{o} = S^{o}(0) = 868$ Дж/(К·моль). При последующих экспериментах характер кривой полностью воспроизводился, при этом характеристики перехода оставались неизменными.

Рассчитанные авторами теплоемкость, а также энтальпии, энтропии и функции Гиббса нагревания гибридного дендримера G4[OSi(CH₃)₃]₆₄ представлены в табл. 24.

Таблица 24

Стандартные термодинамические функции G4[OSi(CH₃)₃]₆₄

 $(M(C_{432}H_{1116}O_{64}Si_{125}) = 10848.1$ г/моль)

<i>T</i> , K	Ср°(Т),	[<i>H</i> °(<i>T</i>)– <i>H</i> °(0)],	[<i>S</i> °(<i>T</i>)− <i>S</i> °(0)],	-[<i>G</i> °(<i>T</i>)- <i>H</i> °(0)],
	кДж/(К∙моль)	Дж/моль	кДж/(К∙моль)	Дж/моль
298.15	20.02	3425	22.69	3341

1.3. Исследование теплофизических свойств силоксановых наногелей с различными органическими заместителями

	Авторами	работы	[109]	изучен	0 7	термич	ескс	е п	оведение
по.	пиметилсилсеси	квиоксановых	с (ПMC	С) н	наногел	ей	c	блокир	ующими
виі	нилдиметилсил	ИЛЬНЫМИ	(ВДМС	<i>Z</i>)	группа	ами		(рис. 52) и
по.	пивинилсилсес	квиоксановых	к (ПВС	С) н	аногел	ей	с	блокир	ующими
три	иметилсилильн	ыми (ТМС) гр	уппами (р	эис. 53)	методо	м ДСК	ζ.		

Рис. 52. Схематическая структура полиметилсилсесквиоксановых (ПМСС) наногелей с блокирующими винилдиметилсилильными (ВДМС) группами [109]

Рис. 53. Схематическая структура поливинилсилсесквиоксановых (ПВСС) наногелей с блокирующими триметилсилильными (ТМС) группами [109]

Степень сшивки ядра – важная характеристика наногелей со строением «ядро– оболочка», определяющая жесткость молекулярной структуры, которая зависит от интенсивности образования внутримолекулярных циклов при реакции поликонденсации. Для оценивания плотности сшивки использовали ДСК; а именно для определения значений температуры расстеклования.

Исследования проводились совместно с научной группой академика A.M. Музафарова (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН). Химический состав и структуру наногелей подтверждали методами элементного анализа, также снимались ИК-И ¹Н ЯМР-спектры. На рис. 54 представлены ДСК-кривые вышеперечисленных наногелей с различными органическими заместителями.

Рис. 54. ДСК-кривые полиметилсилсесквиоксановых (ПМСС) наногелей с блокирующими винилдиметилсилильными (ВДМС) группами (кривые 2, 4) и поливинилсилсесквиоксановых (ПВСС) наногелей с блокирующими триметилсилильными (ТМС) группами (кривые 1, 3) [109]

В табл. 25 приведены молекулярно-массовые характеристики и полученные значения температур расстеклования исследованных соединений. Установлено, что температура расстеклования наногелей, характеризующая подвижность элементов структуры макромолекул, зависит главным образом от их молекулярно-массовых характеристик, в то время как химическая природа органических заместителей в ядре и на поверхности влияет на T_g наногелей в меньшей степени.

Молекулярно-массовые характеристики и значения температур расстеклования

полиметил- и поливинилсилсесквиоксановых наногелей с различными органическими заместителями

Наногель	Время поликонденсации, мин	Соотношение ядро:оболочка	$M_{ m w}$, г/моль	PDI	Tg, ℃
ПМСС-ВЛМС	120	[CH ₃ SiO _{1.5}] _{2.2} :[C ₂ H ₃ (CH ₃) ₂ SiO _{0.5}]	4520	2.1	-58 (2)
писс-вдис	240	[CH ₃ SiO _{1.5}] _{2.6} :[C ₂ H ₃ (CH ₃) ₂ SiO _{0.5}]	9500	4.6	-39 (4)
IIBCC-TMC	120	[C ₂ H ₃ SiO _{1.5}] _{1.8} :[(CH ₃) ₃ SiO _{0.5}]	2600	1.7	-85 (1)
	240	[C ₂ H ₃ SiO _{1.5}] _{2.9} :[(CH ₃) ₃ SiO _{0.5}]	7630	3.1	-37 (3)

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Используемая калориметрическая аппаратура и методика проведения эксперимента

2.1.1. Адиабатическая вакуумная установка для снятия значений теплоемкости в интервале 6 – 350 К

При снятии экспериментальных значений теплоемкости наногелей и дендримеров в диапазоне 6 – 350 K, а также выявлении различных превращений нами применялся прецизионный адиабатический и полностью автоматизированный вакуумный калориметр БКТ–3, который был сделан в АОЗТ "Термис". Полный алгоритм проведения эксперимента, а также детальное описание устройства калориметра подробно представлены в работах [110, 111].

Измерительный прибор включает в себя следующие основные элементы:

- миникриостат погружного типа (**I**);
- блок аналогового регулирования (II);
- компьютерно-измерительная система КИС (III), работающая со скоростью 10 измерений в секунду и автоматически управляющая измерениями, с возможностью регулирования нужных параметров (рис. 55).

Верхняя часть криостата состоит из следующих элементов:

- вентиль (14);
- система предварительного вакуумирования (15);
- герметичный разъем с колодкой проводов, с помощью которых соединяют криостат с аксамитом.

Тонкостенная стальная трубка (17) надежно и герметично соединяет две части криостата, нижняя часть которого непосредственно погружается в хладагент. При проведении эксперимента криостат погружают в сосуд Дьюара с хладагентом таким образом, чтобы нижняя его часть полностью охлаждалась. Закрепляют прибор при помощи гайки (18), которая также защищает от испарения хладагента.

Для исследования в температурной области $T \le 80$ К хладагентом является жидкий гелий, а при $T \ge 80$ К – жидкий азот.

Калориметрическая ампула (1) изготовлена из титана, по форме представляет цилиндр с тонкими стенками, имеет массу ~ 1.8 г и объем 1.5 · см³. Сверху ампула герметично закрывается крышкой из бронзы (4) с дополнительным уплотнителем из индия. Ампула помещена внутрь медного экрана (2), к которому прикреплен нагреватель. В свою очередь, медный экран (2) с ампулой (1) с крышкой (4) подвешены внутри адиабатического экрана (3) и закреплены нейлоновой нитью (8) на текстолитовой трубке (10). Нижний конец трубки (10) приклеен к экрану (3), а верхний закреплен на втулке (11).

Четырехспайная дифференциальная термопара (6) контролирует разность температур между адиабатическим экраном (3) и калориметрической ампулой (1).

Перед началом эксперимента на бороздки с внешней стороны втулки наносится теплопроводная кремнийорганическая паста «КПТ-8» для создания вакуума между втулкой (11) и стаканом (12). Внутри калориметрического устройства помещен угольный адсорбент – также с целью поддержания вакуума (19).

Температура ампулы определяется железо-родиевым термометром сопротивления с величиной R°~ 100 Ом и чувствительностью 1·10⁻³ K (5). Чтобы уменьшить значения C_{p}^{o} пустой ампулы, термометр находится внутри адиабатического экрана (3).

Поддержание заданной разности температур осуществляется при помощи блока аналогового регулирования (**II**).

Аксамит АК-6 включает в себя аналого-цифровой преобразователь (чувствительность – 0.1 мкВ) и цифро-аналоговый преобразователь. Программное и аппаратное обеспечение на базе ПК служит центром управления за процессом измерения поступающих сигналов (преобразованных изначальных физических величин) и впоследствии совершает их математическую обработку для получения пригодных экспериментальных значений.

Рис. 55. Детальное описание элементов калориметрического устройства (CA) и криостата (CR) 1 – титановая калориметрическая ампула; 2 – медный экран; 3 – медный адиабатический экран;

- 4 бронзовая крышка; 5 железо-родиевый термометр сопротивления; 6 железо-медная термопара; 7 экран, покрытый лавсановой плёнкой и полированным алюминием;
 8 нейлоновая нить; 9 стальная пружина; 10 текстолитовая трубка; 11 втулка;
- 12 вакуумный стакан; 13 канавки на втулке; 14 вентиль; 15 патрубок для соединения с системой предварительного вакуумирования; 16 – разъём – колодка соединительных

проводов; 17 – стальная трубка; 18 – гайка; 19 – угольный адсорбер; 20 – алюминиевые диски

Контрольно-измерительная система (III) отвечает за такие характеристики, как мощность нагревателя калориметра, время протекания тока и температура ампулы.

Калориметр калибровали посредством измерения изобарной теплоемкости пустой ампулы *C*_к, экспериментальная кривая представлена на рис. 56. Видно, что

*С*_к равномерно возрастает по мере увеличения температуры во всей исследованной области 5 – 340 К.

Среднеквадратичное отклонение экспериментальных значений теплоемкости пустой титановой ампулы от усредняющей кривой составляет 0.16 %.

Рис. 56. Экспериментальная кривая теплоемкости пустой титановой ампулы

Для поверки надежности работы БКТ-3 нами перед началом эксперимента были измерены теплоемкости бензойной кислоты «К–3», корунда и меди «ОСЧ 11-4», которые являются эталонными образцами. Установлено, что отклонения полученных нами экспериментальный значений C_p^o эталонных образцов от их значений согласно паспортным данным составляют:

- ±(1.5-2) % в интервале 5–17 К,
- ±0.5% в области 17-40 К,
- $\pm (0.2-0.3)$ % в области T > 40 К.

Все полученные значения приведены в табл. 26 и табл. 27.

T II	С ^о р, Дж	к/(К∙моль)			С _р , Дж	к/(К∙моль)	
<i>T</i> , K	данные	паспортные	Δ, %	Т, К	данные	паспортные	Δ, %
	автора	данные			автора	данные	
6.12	0.018	0.0181	0.552	22.79	0.7089	0.7071	-0.255
7.02	0.0246	0.0243	-1.235	25.13	0.9724	0.9667	-0.590
8.16	0.0351	0.0345	-1.739	27.46	1.287	1.282	-0.390
9.85	0.0554	0.0558	0.717	30.44	1.763	1.758	-0.284
10.65	0.0682	0.0689	1.016	33.06	2.247	2.238	-0.402
11.26	0.0816	0.0803	-1.619	35.41	2.72	2.71	-0.369
11.99	0.0957	0.0959	0.209	37.76	3.214	3.217	0.093
12.89	0.119	0.118	-0.847	40.02	3.724	3.73	0.161
13.73	0.143	0.143	0.000	42.12	4.235	4.226	-0.213
14.88	0.185	0.182	-1.648	44.5	4.791	4.802	0.229
15.07	0.192	0.189	-1.587	47.48	5.555	5.54	-0.271
16.11	0.2337	0.2326	-0.473	49.83	6.124	6.127	0.049
17.35	0.2928	0.2937	0.306	52.34	6.751	6.755	0.059
18.06	0.3353	0.3337	-0.479	55.02	7.436	7.421	-0.202
18.74	0.3749	0.3756	0.186	57.37	8.009	7.997	-0.150
20.4	0.4931	0.4937	0.122	60.33	8.733	8.711	-0.253

Теплоёмкость особо чистой меди «ОСЧ 11-4»

Таблица 26 –продолжение

	С ^о р,Д	к/(К∙моль)			<i>С</i> _р , Дж	к/(К∙моль)	
<i>T</i> , K	данные автора	паспортные данные	Δ, %	<i>T</i> , K	данные автора	паспортные данные	Δ, %
63.13	9.358	9.371	0.139	172.02	21.523	21.573	0.232
65.57	9.917	9.929	0.121	177.9	21.863	21.813	-0.229
67.92	10.473	10.453	-0.191	183.88	22.053	22.033	-0.091
70.28	10.983	10.963	-0.182	189.24	22.243	22.223	-0.090
72.61	11.483	11.453	-0.262	194.6	22.433	22.403	-0.134
75.56	12.003	12.043	0.332	199.96	22.533	22.563	0.133
78.14	12.513	12.543	0.239	205.32	22.683	22.723	0.176
80.69	13.003	13.013	0.077	212.36	22.953	22.913	-0.175
83.04	13.473	13.433	-0.298	218.68	23.013	23.073	0.260
85.49	13.903	13.863	-0.289	225.07	23.263	23.223	-0.172
88.18	14.333	14.303	-0.210	231.43	23.393	23.363	-0.128
94.03	15.183	15.203	0.132	237.79	23.523	23.493	-0.128
99.89	15.963	16.013	0.312	244.39	23.583	23.623	0.169
105.74	16.773	16.753	-0.119	250.74	23.703	23.743	0.168
111.6	17.453	17.413	-0.230	257.26	23.823	23.863	0.168
117.46	18.053	18.013	-0.222	262.63	23.963	23.943	-0.084
122.47	18.553	18.483	-0.379	268.3	24.023	24.043	0.083
127.5	18.863	18.923	0.317	274.32	24.083	24.133	0.207
133.15	19.383	19.363	-0.103	279.62	24.223	24.203	-0.083
138.26	19.793	19.733	-0.304	280.29	24.243	24.213	-0.124
143.56	20.063	20.083	0.100	283.16	24.283	24.253	-0.124
148.7	20.433	20.403	-0.147	288.52	24.313	24.333	0.082
154.42	20.773	20.723	-0.241	290.12	24.373	24.353	-0.082
160.33	20.993	21.033	0.190	296.35	24.393	24.433	0.164
166.16	21.243	21.313	0.328	302.02	24.483	24.503	0.082

Таблица 26 – Окончание

<i>Т</i> , К	$C_{ m p}^{ m o}$, Дж/(К \cdot моль)			ΤX	С _р о, Дх		
	данные автора	паспортные данные	Δ , %	Т, К	данные автора	паспортные данные	Δ , %
307.45	24.543	24.573	0.122	334.82	24.883	24.873	-0.040
312.67	24.663	24.633	-0.122	339.18	24.923	24.913	-0.040
318.31	24.733	24.693	-0.162	343.89	24.983	24.953	-0.120
321.86	24.683	24.733	0.202	347.09	24.973	24.993	0.080
325.48	24.753	24.773	0.081	349.26	24.983	25.013	0.120
330.23	24.843	24.823	-0.081				

Таблица 27

Теплоемкость эталонной бензойной кислоты марки «К-2»

	$C_{\rm p}^{\rm o}$				$C_{ m p}^{ m o}$		
<i>Т</i> , К	данные автора	пасп. данные	Δ, %	<i>Т</i> , К	данные автора	пасп. данные	Δ, %
	Дж/(К∙м	моль)			Дж/(K	.моль)	
5.98	0.49	0.49	0	11.32	2.77	2.77	0
6.35	0.56	0.57	1.75	11.64	2.99	2.99	0
7.52	0.86	0.86	0	11.95	3.25	3.23	-0.61
8.09	1.05	1.04	-0.96	12.66	3.82	3.78	-1.05
8.78	1.30	1.31	0.76	13.82	4.78	4.77	-0.21
9.00	1.41	1.41	0	15.03	5.82	5.89	1.19
9.28	1.55	1.54	-0.65	16.26	6.989	7.085	1.35
9.59	1.71	1.68	-1.78	17.56	8.341	8.431	1.07
9.87	1.86	1.84	-1.08	18.84	9.684	9.756	0.74
10.12	2.00	1.99	-0.50	20.10	11.04	11.11	0.63
10.41	2.19	2.17	-0.92	25.69	17.27	17.29	0.11
10.71	2.38	2.35	-1.27	29.13	21.04	21.03	-0.05
11.01	2.54	2.55	0.39	32.59	24.72	24.65	-0.28

Таблица 27 – продолжение

	$C_{ m p}^{ m o}$				C	то Гр	
<i>T</i> , K	данные автора	пасп. данные	Δ, %	<i>Т</i> , К	данные автора	пасп. данные	Δ, %
	Дж/(К•ме	оль)			Дж/(K	•моль)	
36.15	28.253	28.143	-0.391	116.92	70.423	70.333	-0.128
39.78	31.443	31.463	0.064	119.91	71.493	71.453	-0.056
43.42	34.523	34.533	0.029	122.9	72.713	72.573	-0.193
47.07	37.523	37.383	-0.375	125.88	73.773	73.693	-0.109
50.73	39.933	40.003	0.175	128.86	74.763	74.823	0.080
54.45	42.513	42.443	-0.165	131.84	75.933	75.953	0.026
58.05	44.793	44.703	-0.201	134.82	77.023	77.083	0.078
61.73	46.983	46.833	-0.320	137.79	78.293	78.203	-0.115
65.4	48.853	48.833	-0.041	140.75	79.243	79.343	0.126
69.08	50.673	50.713	0.079	143.71	80.323	80.473	0.186
72.7	52.633	52.513	-0.229	146.67	81.803	81.603	-0.245
76.39	54.313	54.243	-0.129	149.62	82.533	82.743	0.254
80.07	56.023	55.913	-0.197	152.57	83.963	83.883	-0.095
83.5	57.623	57.513	-0.191	155.52	84.903	85.033	0.153
87.4	58.923	59.053	0.220	158.46	86.333	86.173	-0.186
91.05	60.443	60.543	0.165	161.41	87.253	87.323	0.080
92.91	61.153	61.233	0.131	164.35	88.203	88.473	0.305
95.92	62.453	62.413	-0.064	167.28	89.703	89.633	-0.078
98.93	63.573	63.563	-0.016	170.22	90.643	90.793	0.165
101.94	64.643	64.713	0.108	173.15	92.013	91.953	-0.065
104.94	65.823	65.843	0.030	176.08	92.973	93.123	0.161
107.94	66.963	66.973	0.015	179	94.193	94.293	0.106
110.93	68.253	68.093	-0.235	181.92	95.393	95.473	0.084
113.93	69.293	69.213	-0.116	184.84	96.763	96.653	-0.114
					1	1	1

Таблица 27 – продолжение

	$C_{ m p}^{ m o}$				C	то Гр	
<i>Т</i> , К	данные автора	пасп. ланные	Δ , %	<i>Т</i> , К	данные автора	пасп. ланные	Δ, %
	Дж/(К·м	оль)			Дж/(К	моль)	
187.74	07.80	97.83	-0.06	257 34	128.1	128.0	-0.08
107.74	99.15	99.02	-0.13	257.54	120.1	120.0	-0.08
193.56	100.3	100.2	-0.10	257.00	129.7	129.0	-0.08
196.46	101.5	100.2	-0.10	265.14	130.0	132.0	-0.08
100.40	102.6	101.4	-0.10	268.04	132.1	132.0	-0.00
199.37	102.0	102.0	0	200.74	133.3	133.3	0 15
202.27	103.8	103.8	0	271.82	134.9	134.7	-0.15
205.17	105.1	105.1	0	274.72	136.3	136.0	-0.22
208.07	106.3	106.3	0	277.60	137.4	137.3	-0.07
210.97	107.4	107.5	0.09	280.48	138.4	138.6	0.14
213.86	108.7	108.8	0.09	283.36	140.0	140.0	0
216.76	110.0	110.0	0	286.24	140.8	141.3	0.35
219.66	111.2	111.2	0	289.11	142.6	142.6	0
222.55	112.7	112.5	-0.18	291.97	143.9	144.0	0.07
225.43	114.1	113.8	-0.26	294.83	145.4	145.3	-0.07
228.33	114.7	115.0	0.26	297.68	146.7	146.6	-0.07
231.24	116.4	116.3	-0.08	300.52	147.9	147.9	0
234.14	117.7	117.6	-0.08	303.35	149.4	149.2	-0.13
237.04	119.0	118.9	-0.08	306.18	150.7	150.5	-0.13
239.94	120.2	120.2	0	309.00	151.7	151.8	0.06
242.84	121.4	121.5	0.08	311.82	152.9	153.1	0.13
245.73	122.8	122.8	0	314.64	154.4	154.4	0
248.63	124.1	124.1	0	317.39	156.1	155.7	-0.25
251.53	125.7	125.4	-0.24	320.21	157.2	157.0	-0.13
254.43	126.8	126.7	-0.08	323.02	158.6	158.3	-0.19

Таблица 27 – окончание

					$C_{ m p}^{ m o}$		
<i>Т</i> , К	данные автора	пасп. данные	Δ, %	<i>Т</i> , К	данные автора	пасп. данные	Δ, %
	Дж/(К∙мо	оль)	Дж/(К•м		-моль)	моль)	
325.83	159.6	159.6	0	339.87	166.2	166.1	-0.06
328.64	160.9	160.9	0	342.67	167.4	167.4	0
331.45	162.2	162.2	0	345.46	168.7	168.7	0
334.26	163.4	163.5	0.06	349.56	170.8	170.7	-0.06
337.07	164.9	164.8	-0.06				

Измерение теплоемкости проходит в адиабатичном режиме, который контролируется аналоговым регулятором температуры. После дискретного ввода энергии калориметр нагревается за 2-5 минут, при этом температура увеличивается на 0.6 - 1.0 К в диапазоне от 5 до 50 К и на 1.5 - 3.0 К при температуре выше 50 К. При этом устанавливается тепловое равновесие за 6-15 минут при равномерном увеличении теплоемкости и за 15-30 минут в случае физических превращений дендримеров и наногелей.

При расчетах молярной теплоемкости дендримеров и наногелей пользовались уравнением (1):

$$\mathbf{C}_{\mathrm{p}}^{\mathrm{o}} = \left[\left(\int_{0}^{\tau} \mathbf{U} \cdot I dT \right) \middle/ \left(T_{2} - T_{1} \right) - \mathbf{C}_{\kappa}^{\mathrm{o}} \right] \cdot M/m, \qquad (1)$$

где C_{κ} – теплоемкость пустого калориметра, \int_{0}^{t} UIdt – количество введенной энергии, U – падение напряжения в нагревателе, I – сила тока, t – время пропускания тока через нагреватель, T_1 и T_2 – температуры калориметра до и после его нагрева соответственно, *m* и *M* – масса образца исследуемого вещества и его молекулярная масса соответственно.

2.1.2. Полностью автоматизированный высокочувствительный калориметр DSC 204 F1 Phoenix

Для изучения термического поведения и снятия экспериментальных значений удельной теплоемкости дендримеров и наногелей в конденсированном состоянии в диапазоне 350 – 570 К нами был использован высокочувствительный калориметр DSC 204 *F1 Phoenix* с µ-сенсором (NETZSCH, Германия). Схема измерительной ячейки установки изображена на рис.57. Погрешность определения величин составляет ± 2 %. Основным плюсом методики является возможность загрузки относительно малых масс образцов – около нескольких мг. Это особенно актуально для веществ с очень трудоемким и количественно ограниченным синтезом.

Рис. 57. Схема измерительной ячейки калориметра DSC 204 *F1 Phoenix*:

1 – выходное отверстие для газа; 2 – система воздушного охлаждения; 3 – защитный газ;
 4 – стандарт; 5 – образец; 6 – сенсор постоянного теплового потока; 7 – печной блок;

8 – продувочный газ; 9 – циркулирующее охлаждение; 10 – система охлаждения азотом

Порядок проведения эксперимента и детальное описание конструкции установки опубликованы в работах [112, 113]. Поверку надежности работы прибора осуществляли посредством снятия экспериментальных данных для калибровочных веществ: хлорида цезия, индия, олова, ртути, свинца, висмута и цинка и определения их характеристик, таких как температура и энтальпия плавления. По результатам калибровочных измерений установлено, что в условиях данной аппаратуры измерение температуры фазовых превращений и энтальпии переходов возможно с погрешностью ±0.5 K и ±1 % соответственно.

При определении удельной теплоемкости наногелей и дендримеров необходимо снять три кривых для пустого тигля (базовая линия), корунда (стандартная линия) и непосредственно образца.

Для измерения теплоемкости вещество выдерживали при T=293 К в токе аргона высокой чистоты в течении получаса, далее образец нагревали со скоростью 5 К/мин. По завершении опыта система охлаждалась до комнатной температуры. Аналогичным образом снимались базовая линия и стандартный образец.

Далее полученные значения подставляли в уравнение (2) для получения значений C_p^{o} с погрешностью около ±2 % при различных температурах (2):

$$C_{\rm p}^{\rm o} = \frac{m_{std}}{m_s} \cdot \frac{DSC_s(T) - DSC_{bl}(T)}{DSC_{std}(T) - DSC_{bl}(T)} \cdot C_{p,std}^{\circ}, \tag{2}$$

где C_p° – удельная теплоемкость образца при температуре *T*, C_{p}° ,*std* – удельная теплоемкость стандарта (корунда) при температуре *T*, *m_{std}* – масса стандарта, *m_s* – масса исследованного образца, *DSC_s* – величина ДСК-сигнала при температуре *T* из кривой образца (мкВ), *DSC_{std}* – величина ДСК-сигнала при температуре *T* из кривой стандарта (мкВ), *DSC_{bl}* – величина ДСК-сигнала при температуре *T* из базовой линии (мкВ). Погрешность определения теплоемкости описанным методом составляет около ±2 %.

2.1.3. Термогравиметрический анализатор TG 209 F1 Iris

Термогравиметрический (ТГ) анализ – это надежный термоаналитический метод, который используется с целью получения информации о термической

устойчивости и составе исследуемых веществ. Внешний вид термогравиметрического анализатора TG 209 *F1 Iris* (NETZSCH, Германия) показан на рис. 58.

Рис. 58. Внешний вид термоанализатора TG 209 F1 Iris

Схема измерительной ячейки прибора представлена на рис. 59. ТГ-анализ исследуемых образцов дендримеров и наногелей был проведен в токе аргона особой чистоты с постоянной скоростью его подачи – 25 мл/мин. Образцы дендримеров и наногелей с массами около 20 мг были загружены в алюминиевые ампулы и исследованы в диапазоне 25–520 К со скоростью нагревания ампулы 5 К/мин.

Разность масс во время эксперимента фиксируют термомикровесы, точность составляет ± 0.1 мкг.

По стандартизированной методике испытания термогравиметрического анализа (ASTM E1131-08(2014) [114]) при потере массы ~2% фиксировали температуру начала разложения образца.

1 – выходное отверстие для газа; 2 – крышка; 3 – образец; 4 – держатель;
5 – система охлаждения; 6 – вакуум; 7 – входное отверстие для продувочного газа;
8 – система термостатирования; 9 – датчик давления; 10 – подъемник держателя;
11 – предохранительный клапан; 12 – термомикровесы;
13 – входное отверстие для защитного газа

2.2. Методы обработки экспериментальных результатов

2.2.1. Сглаживание экспериментальных данных

Полученные экспериментальные значения теплоемкости сглаживали экспоненциальными и полулогарифмическими полиномиальными уравнениями (3–5) во всем изученном диапазоне температур, причем полиномы подбирались таким образом, чтобы усредненная кривая не отклонялась от изначальных значений более, чем в пределах допустимой погрешности.

$$C_{\rm p}^{\rm o} = \sum_{i=0}^{n} A_i \cdot \left(\frac{T}{30}\right)^i,\tag{3}$$

$$C_{\rm p}^{\rm o} = \sum_{i=0}^{n} B_i \cdot \left(\ln\left(\frac{T}{30}\right) \right)^i, \tag{4}$$

$$\ln C_{\rm p}^{\rm o} = \sum_{i=0}^{n} C_{i} \cdot \left(\ln \left(\frac{T}{30} \right) \right)^{i}, \tag{5}$$

2.2.2. Параметры физических превращений

Низкотемпературная аномалия

Термодинамическими характеристиками низкотемпературной аномалии кремнийорганических полимеров являются ее температурный интервал ΔT , энтальпия $\Delta_{tr}H^{\circ}$ и энтропия $\Delta_{tr}S^{\circ}$. Интервал аномалии был определен по температурным зависимостям теплоемкостей изученных веществ. Температуры начала и конца аномальной зависимости $C_{\rm p}^{\rm o} = f(T)$ соответствуют температурам начала и конца превращения. С помощью разности интегралов по кривым кажущейся и нормальной (интерполяционной) теплоемкостей вещества $C_{\rm p}^{\rm o} = f(T)$ и $C_{\rm p}^{\rm o} = f(lnT)$ рассчитывали энтальпию $\Delta_{\rm tr}H^{\circ}$ и энтропию $\Delta_{\rm tr}S^{\circ}$ соответственно. *Расстеклование*

Для стеклования и стеклообразного состояния наногелей и дендримеров рассчитывались следующие термодинамическе характеристики: интервал перехода ΔT , температура расстеклования $T_{\rm g}^{\rm o}$, изменение теплоемкости при переходе $\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$, конфигурационная $S_{\rm conf}^{\rm o}$ и остаточная энтропия $S^{\rm o}(0)$.

Используя метод Алфорда и Дола [115] определяли $T_{\rm g}^{\rm o}$ – по перегибу температурной зависимости энтропии нагревания образца. Интервал перехода ΔT и $\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$ определяли по графику экспериментальных кривых. $S_{\rm conf}^{\rm o}$ вычисляли, используя уравнение (6) [116]:

$$S_{\rm conf}^{\rm o} = \Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o}) \ln (T_{\rm g}^{\rm o} / T_{\rm 2}), \qquad (6)$$

где T_2 – температура Кауцманна [117], соотношение ($T_{\rm g}^{\rm o}$ / T_2) = (1.29 ± 0.14) [118].

При расчетах принималось, что соотношение (T_g^o / T_2) применимо для изученных в настоящей диссертации веществ. Поскольку конфигурационная энтропия вносит наибольший вклад в значение остаточной энтропии, справедливо принять, что $S_{\text{conf}}^o = S^o(0)$. Нулевая энтропия использовалась при вычислении абсолютных энтропий дендримеров и наногелей.

2.2.3. Расчет стандартных термодинамических функций

Для дендримеров экспериментальные значения изобарной теплоемкости были экстраполированы от начальной температуры измерений до $T \rightarrow 0$ с использованием модели теплоёмкости Дебая [119], учитывая их кубическую зависимость теплоемкости от T в области низких температур.

$$C_{\rm p}^{\rm o} = n \mathbf{D} \left(\frac{\Theta_{\mathbf{D}}}{T} \right), \tag{7}$$

где \mathbf{D} – функция теплоёмкости Дебая, *n* и $\Theta_{\mathbf{D}}$ – специально подобранные параметры.

У наногелей выявлена квадратичная зависимость теплоемкости от температуры при T≤20 K, и соответственно при экстраполяции использовалось другое уравнение (8)

$$C_{\rm p}^{\rm o} = aT^{\rm b},\tag{8}$$

При экстраполяции нами допускалось, что уравнения (7, 8) будут описывать экспериментальные значения теплоемкости с погрешностью в пределах 2.5%.

96

Расчет стандартных термодинамических функций более подробно описан в работе [120]. При расчетах энтальпии, энтропии и функции Гиббса нагревания дендримеров и наногелей использовали уравнения (9 – 11) соответственно.

$$[H^{\circ}(T) - H^{\circ}(0)] = \int_{0}^{T} C_{p}^{\circ}(T) dT, \qquad (9)$$

$$[S^{\circ}(T) - S^{\circ}(0)] = \int_{0}^{T} C_{p}^{\circ}(T) d\ln T, \qquad (10)$$

$$[G^{\circ}(T) - H^{\circ}(0)] = [H^{\circ}(T) - H^{\circ}(0)] - T \cdot S^{\circ}(T),$$
(11)

где $C_p^{o} = f(T)$ – температурная зависимость теплоёмкости веществ в кристаллическом, стеклообразном, высокоэластическом и жидком состояниях

Погрешности определенных нами значений составили: $\pm (2 - 3)\%$ при 6 – 15 K, $\pm (0.7 - 1)\%$ при 15 – 40 K, $\pm (0.5 - 0.9)\%$ при 40 – 350 K и $\pm (2 - 3)\%$ при 350 – 520 K.

При расчете стандартных энтропий образования наногелей и дендримеров $\Delta_f S^\circ$ использовались значения энтропии нагревания [$S^\circ(T)-S^\circ(0)$] при T = 298.15, а также значения абсолютных энтропий соответствующих простых веществ при той же температуре [121,122] с погрешностью около ± 2%. При расчетах использовали следующее уравнение:

$$\Delta_{\rm f} S^{\circ}(298.15) = \sum_{j=1}^{n} S_{j}^{\circ}(298.15) - \sum_{i=1}^{m} S_{i}^{\circ}(298.15), \qquad (12)$$

где S_j^0 и S_i^0 – абсолютные энтропии продуктов реакции (*j*) и исходных веществ (*i*) соответственно.

Карбосилановые дендримеры первой и третьей генераций с концевыми фенилдиоксолановыми группами G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂

В настоящей диссертации изучены дендримеры первой и третьей генерации с карбосилановым ядром и фенилидиоксолановыми группами во внешнем слое G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂.

Исследования проводились совместно с научной группой академика Музафарова А.М. (Институт синтетических полимерных материалов ИМ. Н.С. Ениколопова РАН), которой был проведен [123] синтез дендримеров по гидросилилирования дендримеров реакции соотвествующих генераций с карбосилановым ядром и аллильными группами во внешнем слое. Также были подтверждены химический состав и структура соединений при помощи элементного анализа и ¹Н ЯМР-спектроскопии (Bruker WP-250 SY, прибор работает с частотой 250.13 МГц, в качестве внутреннего стандарта брали тетраметилсилан (CH₃)₄Si, растворителем являлся хлороформ CDCl₃).

К растворенным в безводном толуоле дендритным матрицам (G1[CH₂CH=CH₂]₈ и G3[CH₂CH=CH₂]₃₂) в присутствии катализатора Карстеда добавили фенилдиоксолан, являющийся модифицирующим агентом, в инертной атмосфере аргона. По исчезновению сигналов протонов двойной связи на ¹Н ЯМР – спектрах контролировали модификацию дендримера, конверсия аллильных групп составляла 100%.

Внешне образец G1[(C₆H₄)C₃H₅O₂] был жидким и вязким, а G3[(C₆H₄)C₃H₅O₂] – твердым и воскообразным, оба вещества были прозрачными.

Образцы плохо растворялись в воде и углеводородах, но хорошо растворялись в этилацетате, толуоле, дихлорметане и тетрагидрофуране.

На рис. 60 представлены структуры $G1[(C_6H_4)C_3H_5O_2]_8$ и $G3[(C_6H_4)C_3H_5O_2].$

 $G1[(C_6H_4)C_3H_5O_2]_8$

$G3[(C_6H_4)C_3H_5O_2]_{32}$

Рис. 60. Структуры карбосилановых дендримеров первой и третьей генераций с концевыми фенилдиоксолановыми группами [74]

Дендримеры были проанализированы с помощью гель-проникающей хроматографии. Хроматографические колонки длиной 300 мм с внутренним диаметром 7.8 мм, в качестве сорбента использовали Phenogel с частицами, размер которых был 5 мкм (размер пор 1000 Å), элюент – ТГФ (Т – 40°С, скорость элюирования 1 мл/мин).

По окончании анализа авторы установили, что образцы имеют узкое мономодальное распределение, ГПХ-кривые представлены на рис.61.

Значения гидродинамических радиусов соединений составили 0.9 нм и 1.7 нм для соединений G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂ соответственно.

Рис. 61. Кривые ГПХ изученных дендримеров с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое: $I - G1[(C_6H_4)C_3H_5O_2]_8; 2 - G3[(C_6H_4)C_3H_5O_2]_{32} [123]$

Очищали полученные образцы посредством газожидкостной хроматографии (хроматограф «Хроматэк-Кристалл 5000»). Хроматографические колонки длиной 2 м и внутренним диаметром – 3 мм, в качестве сорбента– твердый носитель (Хроматон N-AW). Неподвижная жидкая фаза - 5% SE-30, нанесена на твердый носитель, газом-носителем был гелий. Содержание основного вещества в изученных соединениях – более 99 мол.%.

Чтобы подробно изучить структуру дендримеров, авторами [123] снимались изотермы Ленгмюра. При помощи микроскопа ВАМ 300 были получены микрофотографии дендримеров под углом Брюстера (рис. 62) при различных растяжении и сжатии соединений.

Рис. 62. Изображение дендримера третьей генерации с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое размером 200×200 мкм. [123]

Чтобы рассчитать молярные массы изученных соединений, были использованы таблицы стандартных атомных масс ИЮПАК [124].

Полиметилсилсесквиоксановые наногели с блокирующими триметилсилильными группами

Исследования проводились совместно с научной группой академика Музафарова А.М. (Институт синтетических полимерных материалов ИМ. Н.С. Ениколопова которой PAH), был проведен синтез полиметилсилсесквиоксановых (IIMCC) наногелей блокирующими с триметилсилильными (TMC) группами I и II посредством двух последовательных Первым гидролитическая реакций. этапом являлась поликонденсация сверхразветвленных полиорганоэтоксисилоксанов в среде кипящей уксусной кислоты. При этом происходили процессы внутримолекулярной циклизации силсесквиоксанового (уплотнение структуры ядра) И межмолекулярной конденсации (увеличение молекулярной массы продуктов).

На втором этапе добавляли гексаметилдисилоксан, который является блокирующим агентом, и это приводило к прекращению роста частицы и модификации ее поверхности. Таким образом, добавление блокирующего агента на разных этапах роста наногеля является инструментом контроля массы и размеров молекулы [125].

Химический состав и структуру наногелей подтверждали при помощи элементного анализа и ¹Н ЯМР-спектроскопии (Bruker WP-250 SY, прибор работает с частотой 250.13 МГц, в качестве внутреннего стандарта брали тетраметилсилан (CH₃)₄Si, растворителем являлся хлороформ CDCl₃).

Завершенность реакций поликонденсации и блокирования оценивалась по отсутствию сигналов, соответствующих этоксильным группам у атомов кремния в спектрах ¹Н ЯМР, а также по отсутствию поглощения, соответствующему сигналам Si–OH в области 3300–3600 см⁻¹ в ИК-спектрах наногелей.

По исчезновению сигналов, обусловленных наличием этоксильных групп у атомов кремния в спектрах ¹Н ЯМР, и по отсутствию поглощения в области 3300– 3600 см⁻¹ (что соотвествует сигналам Si–OH) в ИК-спектрах соединений контролировали степень блокирования и завершенность поликонденсации.

Структура полиметилсилсесквиоксановых наногелей с блокирующими триметилсилильными группами схематически представлена на рис. 63. Исследуемые в данной работе наногели отличаются временем поликонденсации, то есть временем стадии роста сверхразветвленного полиметилсилсесквиоксана (30 мин для наногеля I; 160 мин для наногеля II). Это приводит к соответствующим изменениям молекулярно-массовых характеристик, а также мольного соотношения структурных звеньев ядра и оболочки соединений (табл. 28). Внешне образцы являлись прозрачными вязкими жидкостями, которые растворялись в неполярных органических растворителях. Химический состав И структуру образцов подтверждали при помощи элементного анализа, ИК- и ¹Н ЯМР-спектроскопии.

Рис. 63. Схематическая структура полиметилсилсесквиоксановых наногелей с блокирующими триметилсилильными группами [62]

Молекулярно-массовые характеристики полиметилсилсесквиоксановых

Наногель	Время	Соотношение	$M_{ m w}$,	וחס
	поликонденсации, мин	ядро:оболочка	г/моль	I DI
Ι	30	$[CH_3SiO_{1.5}]_{1.8}$: $[(CH_3)_3SiO_{0.5}]$	1827.2	1.39
II	160	$[CH_3SiO_{1.5}]_{2.8}$: $[(CH_3)_3SiO_{0.5}]$	7232.4	2.72

наногелей с блокирующими триметилсилильными группами

В результате проведенного термогравиметрического анализа было установлено, что наногели **I** и **II** термически стабильны вплоть до T = 500 K в атмосфере аргона.

Результаты элементного анализа и данные ЯМР-спектров исследуемых наногелей представлены ниже:

- Наногель І. Найдено (%): C, 28.35; H, 7.06; Si, 38.60. Спектр ¹Н ЯМР (CDCl₃, δ, м.д.): 0.09 (s, 3H, Si–C<u>H</u>₃).
- Наногель II. Найдено (%): C, 25.96; H, 6.51; Si, 39.25. Спектр ¹Η ЯМР (CDCl₃, δ, м.д.): 0.09 (s, 3H, Si–C<u>H</u>₃).

Для исследуемых наногелей **I** и **II** были выделены условные, в пределе повторяющиеся структурные звенья, характеристики которых приведены в табл. 29. Все расчеты были произведены на моль соответствующего звена.

Чтобы рассчитать молярные массы изученных соединений, были использованы таблицы стандартных атомных масс ИЮПАК [124].

Таблица 29

Молярные массы и формулы звеньев полиметилсилсесквиоксановых наногелей с

Наногель	Соотношение	Брутто-формула	$M_{\scriptscriptstyle 3BeHa},$
	ядро:оболочка	звена	г/моль
Ι	[CH ₃ SiO _{1.5}] _{1.8} :[(CH ₃) ₃ SiO _{0.5}]	C _{1.7} H _{5.1} SiO _{1.1}	72.140
II	[CH ₃ SiO _{1.5}] _{2.8} :[(CH ₃) ₃ SiO _{0.5}]	$C_{1.5}H_{4.6}SiO_{1.2}$	70.818

блокирующими триметилсилильными группами

Силоксановые дендримеры с концевыми триметилсилильными группами $GX[(CH_3)_3SiO]_z (X = 1, 2, 3, 4)$

Исследования проводились совместно с научной группой академика Музафарова А.М. (Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН), которой был проведен синтез дендримеров с силоксановым ядром и триметилсилильными группами во внешнем слое GX[(CH₃)₃SiO]_z с первой по четвертую генерацию (рис. 64).

Рис. 64. Структуры синтезированных силоксановых дендримеров с концевыми триметилсилильными группами [126]

Синтез силоксановых дендримеров состоит из последовательных реакций [126]:

1. Получение полиэтокси-, а затем полихлорпроизводного функционального дендримера соответствующей генерации из метилтрихлорсилана с использованием соли Реброва (натрия оксиметилдиэтоксисилан).

2. Гетерофункциональная конденсация гептаметилтрисилоксанола с полихлорпроизводным дендримера соответствующей генерации в присутствии пиридина.

Кроме того, были подтверждены [126] химический состав и структура соединений при помощи элементного анализа и ¹Н ЯМР-спектроскопии (Bruker WP-250 SY, прибор работает с частотой 250.13 МГц, в качестве внутреннего стандарта брали тетраметилсилан (CH₃)₄Si, растворителем являлся хлороформ CDCl₃).

Внешне дендримеры первой и второй генерации являлись вязкими жидкостями без окраски, а дендримеры третьей и четвертой генерации воскообразными и твердыми, все вещества были прозрачными, плохо растворялись в воде, и легко - в органических растворителях.

Результаты элементного анализа и данные ЯМР-спектров исследуемых силоксановых дендримеров представлены ниже:

G1[(CH₃)₃SiO]₆

Рассчитано (%): ММ: 755.6, С, 34.97; Н, 8.80; О, 19.06; Si, 37.17.

Найдено (%): С, 35.14; Н, 8.87; О, 19.08; Si, 36.91.

¹**H ЯМР** (J = 400.0 MHz) 0.05 (c, 9H, -(CH₃SiO)(CH₃)₃SiO)₂Si-C<u>H</u>₃), 0.09 (c, 3H, - (CH₃SiO)₃-Si-C<u>H</u>₃), 0.10 (c, 54H, -OSi-(C<u>H</u>₃)₃).

¹³**C ЯМР** (J = 100.0 MHz) -2.40 (-(CH₃SiO)₃-Si-<u>C</u>H₃), -2.13 (-(<u>C</u>H₃SiO)₃-Si-CH₃), 1.71 (-OSi-(<u>C</u>H₃)₃).

²⁹Si **MMP** (J = 80.0 MHz) -69.10, -66.00 (Si-CH₃), 7.48 Si(CH₃)₃.

 $d_4^{25} = 0.9477 \ \text{г/cm}^3; \ \boldsymbol{n_{25}^D} = 1.4010.$

G2[(CH₃)₃SiO]₁₂

Рассчитано (%): ММ: 1645.5, С, 33.58; Н, 8.45; О, 20.42; Si, 37.55.

Найдено (%): С, 33.46; Н, 8.29; О, 20.91; Si, 37.34.

¹**H ЯМР** (J = 400.0 MHz) 0.06 (c, 18H, -(CH₃SiO)(CH₃)₃SiO)₂SiCH₃), 0.10 (c, 108H, -

OSi- (CH₃)₃), 0.11 (c, 3H,-(CH₃SiO)₃-Si-CH₃), 0.14 (c, 9H, -(CH₃SiO)₃-Si-CH₃).

¹³C **MMP** (J = 100.0 MHz) -2.05 (-(CH₃SiO)₃-Si-CH₃), -1.91 (-(CH₃SiO)₃-Si-CH₃), 1.74 (-OSi-(CH₃)₃).

²⁹Si **ЯМР** (J = 80.0 MHz) -68.78, -68.48, -66.10 (Si-CH₃), 7.24 Si(CH₃)₃.

$$d_4^{25} = 0.9732 \text{ г/см}^3; n_{25}^{D} = 1.4071.$$

G3[(CH₃)₃SiO]₂₄

Рассчитано (%): ММ: 3425.2, С, 32.96; Н, 8.30; О, 21.02; Si, 37.72.

Найдено (%): С, 32.56; Н, 8.49; О, 21.48; Si, 37.47.

¹**Н ЯМР** (J = 400.0 MHz) 0.05 (c, 36H, -(CH₃SiO)(CH₃)₃SiO)₂Si–CH₃), 0.10 (c, 216H, –OSi– (CH₃)₃), 0.10 (br, 18H-(CH₃SiO)₃–Si–CH₃), 0.11 (br, 3H, -(CH₃SiO)₃–Si–CH₃), 0.17 (ш, 9H,-(CH₃SiO)₃–Si–CH₃).

¹³С ЯМР (J = 100.0 МНz) от – 3.13 до –1.55(–SiCH₃), 1.73 (–OSi-(CH₃)₃).

²⁹Si **MMP** (J = 80.0 MHz) -68.78, -67.97, -67.11, -66.10 (Si–CH₃), 7.42 Si(CH₃)₃.

 $d_{4}^{25} = 1.0167 \text{ }_{\Gamma/\text{CM}^3}; n_{25}^{D} = 1.4092.$

G4[(CH₃)₃SiO]₄₈

Рассчитано (%): ММ: 6984.5, С, 32.67; Н, 8.23; О, 21.30; Si, 37.80.

Найдено (%): С, 32.09; Н, 7.94; О, 23.54; Si, 36.43.

¹**Н ЯМР** (J = 400.0 MHz) 0.05 (c, 72H, -(CH₃SiO)(CH₃)₃SiO)₂SieCH₃), 0.10 (c, 432H, -OSi- (CH₃)₃), 0.11 (ш, 3H,-(CH₃SiO)₃-Si-CH₃), 0.11 (ш, 9H, -(CH₃SiO)₃-Si-CH₃), 0.11 (ш, 18H-(CH₃SiO)₃-Si-CH₃), 0.11 (ш, 36H -(CH₃SiO)₃-Si-CH₃).

¹³**C ЯМР** (J = 100.0 MHz) -2.67, -2.39, -2.21, -2.06, -1.96 (Si–CH₃), 1.77 (–OSi–(CH₃)₃).

²⁹Si **ЯМР** (J = 80.0 MHz) -68.81, -68.14, -67.93, -67.28, -66.01 (Si–CH₃), 7.28 Si(CH₃)₃.

$$d_4^{25} = 1.0394 \text{ r/cm}^3; n_{25}^{D} = 1.4129.$$

Дендримеры были анализированы с помощью гель-проникающей хроматографии (система Shimadzu, Япония). Колонка – Phenogel (Phenomenex, США) 500А (размер 300 × 21,2 мм); элюент - толуол; скорость потока 5 мл/мин. По окончании анализа авторы установили, что образцы имеют узкое мономодальное распределение, ГПХ-кривые представлены на рис.65.

Рис. 65. Кривые ГПХ дендримеров с силоксановым ядром и триметилсилильными группами во внешнем слое [126]

Чтобы рассчитать молярные массы изученных соединений, были использованы таблицы стандартных атомных масс ИЮПАК [124].

ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Дендримеры с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое G1[(C6H4)C3H5O2]8 и G3[(C6H4)C3H5O2]32

В настоящей работе нами впервые исследовано [127] калориметрическое поведение дендримеров первой и третьей генераций с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое G1[(C₆H₄)C₃H₅O₂]₈ И $G3[(C_6H_4)C_3H_5O_2]_{32}$ адиабатической **БКТ-3** при помощи установки И дифференциального сканирующего калориметра В диапазоне 6–520 Κ. В исследованной области температур для обоих образцов обнаружены аномалии в области низких температур и переход, связанный с расстеклованием образцов. Нами были рассчитаны термодинамические характеристики переходов, а также идентифицирована их природа. По полученным экспериментальным значениям теплоёмкости нами были рассчитаны термодинамические функции — энтальпии, энтропии и функции Гиббса нагревания в интервале от 0 до 520 К для всех физических состояний дендримеров. Определены стандартные энтропии образования $\Delta_{\rm f} S^{\circ}$ дендримеров при T = 298.15 К.

Экспериментальные кривые зависимостей теплоёмкости от температуры изученных дендримеров $G1[(C_6H_4)C_3H_5O_2]_8$ и $G3[(C_6H_4)C_3H_5O_2]_{32}$ в изученном диапазоне 6–520 К приведены на рис. 66. Все экспериментальные данные представлены в табл. 1, 2 Приложения.

До начала эксперимента в титановые ампулы загрузили 0.2510 г образца $G1[(C_6H_4)C_3H_5O_2]$ и 0.2432 г $G3[(C_6H_4)C_3H_5O_2]_{32}$ для проведения опыта в адиабатическом вакуумном калориметре. При исследовании веществ в области высоких температур в тигли ДСК были помещены 22.3 мг и 31.8 мг вещества дендримеров первой и третьей генераций, соответственно. Теплоемкость дендримеров составляет 24–60% от суммарной теплоемкости ампулы с загруженным веществом. Экспериментальные данные сглаживали с помощью полиномов, коэффициенты для которых подбирались при помощи программы (уравнения полиномов приведены в разделе 2.3 настоящей диссертации) в
изученной области температур, исключая области физических превращений. Сглаживание проводилось таким образом, чтобы усредняющая кривая отклонялась от экспериментальной не более, чем в пределах допустимых погрешностей: 2% при 6–15 K, ±0.5% при 15–40 K, ±0.2% при 40–(324–345) K, ±2% при (324 – 345) – 520 K.

Рис. 66. Экспериментальные кривые зависимостей теплоемкостей дендримеров с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое G1[(C₆H₄)C₃H₅O₂]₈ (1) и G3[(C₆H₄)C₃H₅O₂]₃₂ (2): A₁E₁, A₂E₂ – аморфное (стеклообразное) состояние; F₁G₁, F₂G₂ – аморфное (расстеклованное) состояние; T⁰_g, T⁰_g, – температуры расстеклования

В условиях проведения опыта в адиабатическом вакуумном калориметре образцы были охлаждены от T=298.15 К до температуры начала измерений — 6 К со средней скоростью 0.02 К/с. На рис. 67, 68 представлены экспериментальные кривые обоих дендримеров в низкотемпературной области, на которых наблюдается положительное отклонение теплоёмкости от ее интерполяционного хода в диапазонах 50–80 К и 45–85 К. Характер кривой не изменялся при повторных опытах, при которых образцы аналогично охлаждались и нагревались в процессе эксперимента.

Как это было отмечено в литературном обзоре (раздел 1.2 настоящей диссертации), подобные аномалии были также выявлены у дендримеров низких генераций (как правило, меньше пятой) с карбосилановым ядром и различной внешней оболочкой [82, 85, 88, 90, 95, 96, 98, 107]. Так проявляется низкотемпературная аномалия. которая, согласно термодинамической классификации Веструма–МакКаллафа [128, 129], является равновесным релаксационным переходом типа «порядок *д* беспорядок». Основываясь на литературных данных работы [90], можно сказать, что природа данной аномалии связана с тонкими конформационными изменениями в дендримерах низких генераций. При $T \approx 60$ К подвижность концевых групп дендримеров очень мала, однако возможны реориентационные движения метильных групп молекулы.

Переход имеет системный характер и зависит от номера генерации, в меньшей степени зависит от молекулярного скелета и практически не зависит от природы внешнего слоя.

Температурный интервал, энтальпия и энтропия аномалии для изученных соединений представлены в табл. 30. Методы расчета величин подробно описаны во второй главе настоящей диссертации.

Рис. 67. Экспериментальная кривая теплоемкости дендримера первой генерации G1[(C₆H₄)C₃H₅O₂]₈: в области низких температур. B₁C₁D₁ – кажущаяся теплоемкость; B₁D₁ – нормальный (интерполяционный) ход теплоемкости

Рис. 68.Экспериментальная кривая теплоемкости дендримера третьей генерации G3[(C₆H₄)C₃H₅O₂]₃₂ в области низких температур: B₁C₁D₁ – кажущаяся теплоемкость; B₁D₁ – нормальный (интерполяционный) ход теплоемкости

Таблица 30

Параметры аномалий теплоемкостей в низкотемпературной области дендримеров с карбосилановым ядром G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂

Образец	ΔT , K	$\Delta_{ m tr} H^{ m o},$ кДж/моль	$\Delta_{ m tr}S^\circ,$ Дж/(К \cdot моль)
$G1[(C_6H_4)C_3H_5O_2]_8$	50-80	3.15 ± 0.03	41.9 ± 0.5
$G3[(C_6H_4)C_3H_5O_2]_{32}$	45-85	17.1 ± 0.2	189 ± 3

Далее на экспериментальных кривых $C_p^o = f(T)$ изученных соединений наблюдается изменение теплоемкости, связанное с расстеклованием веществ.

Характер кривой не изменялся при охлаждении дендримеров до $T < T_g^o$ и при нагревании в последующих калориметрических опытах. Теплоемкости веществ плавно и равномерно возрастали с увеличением температуры в тех областях, где отсутствуют какие-либо переходы, причем в расстеклованном состоянии теплоемкость увеличивалась медленнее.

Параметры расстеклования и стеклообразного состояния изученных соединений, а именно температурный интервал и стандартная температура перехода, а также стандартные увеличение теплоемкости при переходе, конфигурационная и остаточная энтропия приведены в табл. 31. Методы расчета стандартных термодинамических характеристик подробно описаны во второй главе настоящей диссертации.

Таблица 31

Образец	Δ <i>Т.</i> К	$T_{\circ}^{\circ} \pm 1, \mathrm{K}$	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$,	$S_{ m conf}^{ m o}$	<i>S</i> °(0)
c of more	,	g	кДж/(К∙моль)	Дж/(К∙і	моль)
$G1[(C_6H_4)C_3H_5O_2]_8$	200–260	231	1.18 ± 0.01	301 ± 3	301
$G3[(C_6H_4)C_3H_5O_2]_{32}$	210–260	238	4.07 ± 0.04	1036 ± 10	1036

Параметры расстеклования и стеклообразного состояния дендримеров с карбосилановым ядром G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂

Чтобы рассчитать стандартные энтальпии, энтропии и функции Гиббса нагревания дендримеров G1[(C₆H₄)C₃H₅O₂]₈ и G3[(C₆H₄)C₃H₅O₂]₃₂, мы экстраполировали экспериментальные значения теплоемкостей до $T \rightarrow 0$, используя теорию теплоемлоемкости Дебая. При экстраполяции параметры n и $\Theta_{\rm D}$ подобрали таким образом, что погрешность экспериментальных значений в области 7–10 K была в пределах ±1.5%. Значения n и $\Theta_{\rm D}$ составили 3 и 81.0 K для дендримера первой генерации и 16 и 79.0 K для дендримера третьей генерации.

Все рассчитанные значения функций дендримеров первой и третьей генераций с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое приведены в табл. 32 и 33, соответственно. Погрешность стандартных термодинамических функций составляет: 2, 0.5, 0.2 и 2% для теплоемкости, 2.3, 0.8, 0.6 и 2.3% для энтропии нагревания [$S^{\circ}(T) - S^{\circ}(0)$], 2.2, 0.7, 0.5 и 2.2% для энтальпии нагревания [$H^{\circ}(T) - H^{\circ}(0)$], 3, 1, 0.9 и 3% для функции Гиббса нагревания [$G^{\circ}(T) - H^{\circ}(0)$] в диапазонах 6–15 K, 15–40 K, 40–350 K и 350–520 K.

Стандартные термодинамические функции дендримера с карбосилановым ядром

и фенилдиоксолановыми группами во внешнем слое	$e G1[(C_6H_4)C_3H_5O_2]_8$
--	-----------------------------

	$C_{\rm p}^{\rm o}(T),$	$[H^{\circ}(T) - H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
<i>1</i> , K	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
	Амор	офное (стеклообраз	вное) состояние	
5	0.0164	0.0215	5.76	0.00732
10	0.0689	0.226	32.1	0.0949
20	0.3272	2.247	160.3	0.9594
50	0.8421	20.34	675.6	13.43
100	1.524	84.26	1549	70.61
150	2.166	176.9	2292	166.8
200	2.825	302.3	3008	299.4
231	3.252	396.6	3446	399.7
	Амор	фное (расстеклован	нное) состояние	
231	4.436	396.6	3446	399.7
250	4.558	482.0	3801	468.2
298.15	4.764	705.3	4617	671.3
300	4.775	714.2	4647	679.9
350	5.02	959.5	5403	931.5
400	5.27	1216	6089	1219
450	5.54	1487	6724	1539
500	5.79	1770	7321	1891
520	5.88	1887	7550	2040

Стандартные термодинамические функции дендримера с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое G3[(C₆H₄)C₃H₅O₂]₃₂

TK	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T) - H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
1, К	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
	Амо	рфное (стеклообра	зное) состояние	
5	0.0577	0.0746	19.6	0.0246
10	0.286	0.895	124	0.350
20	1.115	7.792	569.7	3.601
50	3.596	79.55	2590	49.94
100	6.692	351.4	6267	275.3
150	9.008	748.0	9454	670.1
200	11.42	1260	12381	1217
238	13.47	1731	14533	1728
	Амој	офное (расстеклова	нное) состояние	
238	17.54	1731	14533	1728
250	17.82	1943	15403	1908
298.15	19.06	2831	18647	2729
300	19.11	2866	18765	2763
350	20.5	3857	21818	3779
400	21.6	4910	24628	4941
450	22.8	6021	27244	6239
500	23.8	7187	29700	7663
520	24.2	7668	30642	8266

Используя значения энтропий нагревания $[S^{\circ}(T)-S^{\circ}(0)]$ изученных соединений 298.15 Κ (табл. 32, 33), Т = нулевой энтропии $S^{\circ}(0)$ при (табл. 31) и абсолютных энтропий образования углерода, водорода, кислорода и кремния, нами были рассчитаны стандартные энтропии образования $\Delta_{\rm f}S^{\circ}$ дендримеров первой и третьей генераций с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое.

Значения полученных энтропий образования $\Delta_{\rm f} S^{\circ}$ составили:

$$\Delta_{\rm f} S^{\circ}(G1[(C_6H_4)C_3H_5O_2]_8) = -(11013 \pm 97)$$
 Дж/(К·моль),
 $\Delta_{\rm f} S^{\circ}(G3[(C_6H_4)C_3H_5O_2]_{32}) = -(51539 \pm 410)$ Дж/(К·моль),

что соответствует уравнениям реакций:

$$\begin{split} &128C_{(rp)} + 102H_{2(r)} + 8O_{2(r)} + 13Si_{(\kappa p)} \rightarrow C_{128}H_{204}O_{16}Si_{13(paccr)}, \\ &560C_{(rp)} + 462H_{2(r)} + 32O_{2(r)} + 61Si_{(\kappa p)} \rightarrow C_{560}H_{924}O_{64}Si_{61(paccr)}. \end{split}$$

Все методы расчета представлены во второй главе настоящей диссертации. Молярные массы дендримеров, рассчитанные по ИЮПАК, составили:

$$M(C_{128}H_{204}O_{16}Si_{13}) = 2363.90$$
 г/моль — что соответствует образцу
G1[(C₆H₄)C₃H₅O₂]₈
 $M(C_{560}H_{924}O_{64}Si_{61}) = 10393.68$ г/моль — что соответствует
образцу G3[(C₆H₄)C₃H₅O₂]₃₂.

3.2. Полиметилсилсесквиоксановые наногели с блокирующими триметилсилильными группами

Ранее термодинамические свойства наногелей не были изучены, и нами было впервые исследовано калориметрическое поведение полиметилсилсесквиоксановых наногелей с блокирующими триметилсилильными группами I и II в области низких температур при помощи автоматизированной адиабатической установки БКТ-3, а также методом ДСК в области T > 350 К [130] в температурном диапазоне 6-500 К. В указанном температурном интервале для обоих образцов наблюдалось расстеклование И аномальное изменение теплоёмкости в низкотемпературной области.

Нами были рассчитаны термодинамические характеристики переходов, а также идентифицирована их природа. По полученным экспериментальным значениям теплоёмкости нами были рассчитаны термодинамические функции — энтальпии, энтропии и функции Гиббса нагревания в интервале от 0 до 500 К для всех физических состояний наногелей. Определены стандартные энтропии образования $\Delta_f S^\circ$ наногелей при T = 298.15 К.

Экспериментальные кривые зависимостей теплоёмкости от температуры изученных наногелей в изученном диапазоне 6–500 К приведены на рис. 69. Все экспериментальные данные приведены в табл. 3 и 4 Приложения.

До начала эксперимента в титановые ампулы загрузили 0.3508 г образца наногеля I и 0.3249 г наногеля II для проведения опыта в адиабатическом вакуумном калориметре. При исследовании веществ в области высоких температур в тигли ДСК были помещены 18.3 мг и 25.5 мг наногелей I и II, соответственно. Теплоемкость наногелей составляет 22–78% от суммарной теплоемкости ампулы с загруженным веществом. Экспериментальные данные сглаживали с помощью полиномов, коэффициенты для которых подбирались при помощи программы (уравнения полиномов приведены в разделе 2.3 настоящей диссертации) в изученной области температур, исключая области физических превращений. Сглаживание проводилось таким образом, чтобы усредняющая кривая не отклонялась от сглаженной более, чем в пределах допустимых погрешностей: 2% при 6–15 К, ±0.5% при 15–40 К, ±0.2% при 40–(324–345) К, ±2% при (324–345)– 520 К.

Рис. 69. Экспериментальные кривые зависимостей теплоёмкостей от температуры наногелей I и II (кривые 1 и 2 соотвественно):A₁E₁, A₂E₂ – аморфное (стеклообразное) состояние; F₁G₁, F₂G₂ – аморфное (расстеклованное) состояние; B₁C₁D₁, B₂C₂D₂ – аномалии теплоемкостей; T⁰_a(1), T⁰_a(2) – температуры расстеклования

В условиях проведения опыта в адиабатическом вакуумном калориметре образцы были охлаждены от T = 298.15 К до температуры начала измерений — 6 К со средней скоростью 0.02 К/с. На экспериментальных кривых обоих образцов наногелей наблюдается положительное отклонение теплоёмкости от ее интерполяционного хода в интервалах 49–70 К и 47–72 К. Характер кривой не изменялся при повторных опытах, при которых образцы аналогично охлаждались и нагревались в процессе эксперимента. Экспериментальные кривые в области низких температур приведены на рис. 70, 71.

Подобные аномалии проявлялись в аналогичном диапазоне температур у дендримеров с карбосилановым ядром ниже пятой генерации с различным внешним слоем. Температурный интервал, энтальпия и энтропия выявленного перехода изученных образцов наногелей представлены в табл. 34. Методика расчетов величин приведена во второй главе настоящей диссертации.

Рис. 70. Экспериментальная кривая теплоемкости наногеля I в области низких температур: B₁C₁D₁ – кажущаяся теплоемкость; B₁D₁ – нормальный ход теплоемкости

Рис. 71. Экспериментальная кривая теплоемкости наногеля II в области низких температур: В₂C₂D₂ – кажущаяся теплоемкость; В₂D₂ – нормальный (интерполяционный) ход теплоемкости

Вещество	Δ <i>Τ</i> , Κ	$\Delta_{ m tr} H^{\circ},$ Дж/моль	$\Delta_{\rm tr}S^{\circ},$ Дж/(К·моль)
Наногель І	49–70	16.8 ± 0.2	0.155 ± 0.002
Наногель П	47–72	42.0 ± 0.4	0.499 ± 0.006

Параметры аномалий теплоемкостей полиметилсилсесквиоксановых наногелей

Даллее на экспериментальных кривых $C_p^o = f(T)$ изученных соединений наблюдается изменение теплоемкости, связанное с расстеклованием наногелей. Характер кривой не изменялся при охлаждении наногелей до $T < T_g^o$ и нагревании в последующих калориметрических опытах. Теплоемкости веществ плавно и равномерно возрастали с увеличением температуры в тех областях, где

отсутствуют какие-либо переходы, причем в расстеклованном состоянии теплоемкость увеличивалась медленнее.

Параметры расстеклования и стеклообразного состояния изученных соединений, а именно температурный интервал и стандартная температура перехода, а также стандартные увеличения теплоемкости при переходе, конфигурационная и остаточная энтропия приведены в табл. 35. Методы расчета стандартных термодинамических характеристик подробно описаны во второй главе настоящей диссертации.

Таблица 35

Вешество	ΔT $T_{\rm g}^{\rm o}$		$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$	$S_{ m conf}^{ m o}$	<i>S</i> °(0)
	K		Дж/(К·моль)		
Наногель І	176–208	192	12.8	3.2	3.2
Наногель II	210–240	228	9.8	2.5	2.5

Параметры расстеклования и стеклообразного состояния полиметилсилсесквиоксановых наногелей

Чтобы рассчитать стандартные энтальпии, энтропии и функции Гиббса нагревания наногелей **I и II**, мы экстраполировали экспериментальные значения теплоемкостей до $T \rightarrow 0$ при помощи степенного уравнения (глава 2, раздел 2 настоящей диссертации). При экстраполяции параметры *a* и *b* подобрали таким образом, чтобы с ними экспериментальные значения описывалась с погрешностью $\pm 1.5\%$. Значения *a* составили 0.0272 для наногеля **I**, 0.0253 для наногеля **II** и *b* = 2 для обоих образцов

Все рассчитанные значения функций наногелей **I и II** приведены в табл. 36 и 37 соответственно. Все расчёты были произведены на моль звена наногелей. Молярные массы звеньев составили:

 $M_{_{36eHa}} = 72.140$ г/моль — что соответствует наногелю I

 $M_{3 \text{вена}} = 70.818 \text{ г/моль}$ — что соответствует наногелю **II**

Погрешность стандартных термодинамических функций составляет: 2, 0.5, 0.2 и 2% для теплоемкости, 2.3, 0.8, 0.6 и 2.3% для энтропии нагревания $[S^{\circ}(T) - S^{\circ}(0)]$, 2.2, 0.7, 0.5 и 2.2% для энтальпии нагревания $[H^{\circ}(T) - H^{\circ}(0)]$, 3, 1, 0.9 и 3% для функции Гиббса нагревания $[G^{\circ}(T) - H^{\circ}(0)]$ в диапазонах 6–15 К, 15–40 К, 40–350 К и 350–500 К.

Используя значения энтропий нагревания $[S^{\circ}(T)-S^{\circ}(0)]$ изученных соединений при T = 298.15 К (табл. 36, 37), нулевой энтропии $S^{\circ}(0)$ (табл. 35) и абсолютных энтропий образования углерода, водорода, кислорода и кремния, мы рассчитали стандартные энтропии образования $\Delta_{f}S^{\circ}$ наногелей с блокирующими триметилсилильными группами.

Значения полученных энтропий образования $\Delta_{\rm f} S^{\circ}$ составили:

$$\Delta_{\rm f} S^{\circ}(\mathbf{I}) = -(366.6 \pm 1.9) \ {\rm Д} {\rm ж}/({\rm K} \cdot {\rm моль}),$$

 $\Delta_{\rm f} S^{\circ}({\bf II}) = -(343.2 \pm 1.7) \ {\rm Д} {\rm ж}/({\rm K} \cdot {\rm моль}),$

Что соответствует уравнениям реакций:

$$\begin{split} 1.7 C_{(rp)} + 2.55 H_{2(r)} + Si_{(\kappa p)} + 0.55 O_{2(r)} &\rightarrow C_{1.7} H_{5.1} SiO_{1.1(paccr)} \text{ для } \mathbf{I}, \\ 1.5 C_{(rp)} + 2.3 H_{2(r)} + Si_{(\kappa p)} + 0.6 O_{2(r)} &\rightarrow C_{1.5} H_{4.6} SiO_{1.2(paccr)} \text{ для } \mathbf{II}. \end{split}$$

Все методы расчета представлены во второй главе (раздел 2) настоящей диссертации.

Таблица 36

Т. К	$C_{ m p}^{ m o}$ (<i>T</i>). Дж/(К моль)	<i>H</i> °(<i>T</i>)− <i>H</i> °(0). кДж/моль	$S^{\mathrm{o}}(T) - S^{\mathrm{o}}(0)$. Дж/(К моль)	-[<i>G</i> °(<i>T</i>) <i>-H</i> °(0)]. кДж/моль
	Амс	орфное (стеклообразн	ое) состояние	I
5	0.654	0.00106	0.327	0.000544
10	2.60	0.00885	1.32	0.00441
15	5.219	0.02828	2.865	0.01470
20	8.022	0.06127	4.746	0.0336
30	13.62	0.1700	9.076	0.1023
40	18.71	0.3316	13.69	0.2160
50	24.53	0.5470	18.47	0.3766
60	30.96	0.8248	23.52	0.5864
70	35.26	1.161	28.70	0.8476
80	40.61	1.541	33.77	1.160
90	45.32	1.971	38.82	1.523
100	49.83	2.447	43.83	1.936
110	54.12	2.967	48.79	2.399
120	58.14	3.529	53.67	2.912
130	61.87	4.129	58.47	3.472
140	65.39	4.765	63.19	4.081
150	68.79	5.436	67.81	4.736
160	72.17	6.141	72.36	5.437
170	75.65	6.880	76.84	6.183
180	79.41	7.655	81.27	6.973
190	83.35	8.469	85.67	7.808
192	84.19	8.636	86.54	7.980

Стандартные термодинамические функции наногеля I

TK	$C_{\rm p}^{\rm o}(T).$	$H^{\circ}(T)-H^{\circ}(0).$	$S^{\circ}(T)-S^{\circ}(0).$	$-[G^{\circ}(T)-H^{\circ}(0)].$
<i>1</i> . K	Дж/(К моль)	кДж/моль	Дж/(К моль)	кДж/моль
	Аморф	эное (расстеклован	ное) состояние	
192	96.95	8.636	86.54	7.980
200	97.76	9.415	90.52	8.689
210	98.71	10.40	95.31	9.618
220	99.80	11.39	99.93	10.59
230	101.0	12.39	104.4	11.62
240	102.1	13.41	108.7	12.68
250	103.2	14.44	112.9	13.79
260	104.3	15.47	117.0	14.94
270	105.4	16.52	120.9	16.13
280	106.6	17.58	124.8	17.36
290	107.8	18.65	128.6	18.62
298.15	108.8	19.54	131.6	19.68
300	109.0	19.74	132.2	19.93
310	110.4	20.84	135.8	21.27
320	111.7	21.95	139.4	22.64
330	113.1	23.07	142.8	24.06
340	114.5	24.21	146.2	25.50
350	116.1	25.36	149.5	26.98
360	117.8	26.53	152.8	28.49
370	119.4	27.72	156.1	30.04
380	121.0	28.92	159.3	31.61
390	122.6	30.14	162.5	33.22
400	124.2	31.37	165.6	34.86

Т. К	$C_{\rm p}^{\rm o}(T).$	$H^{\circ}(T)-H^{\circ}(0).$	$S^{\circ}(T) - S^{\circ}(0).$	$-[G^{\circ}(T)-H^{\circ}(0)]$
	Дж/(К моль)	кДж/моль	Дж/(К моль)]. кДж/моль
	Аморо	рное (расстекловани	ное) состояние	
410	125.8	32.62	168.7	36.53
420	127.3	33.89	171.7	38.24
430	128.8	35.17	174.7	39.97
440	130.3	36.46	177.7	41.73
450	131.8	37.77	180.7	43.52
460	133.4	39.10	183.6	45.34
470	135.1	40.44	186.5	47.19
480	136.8	41.80	189.3	49.07
490	138.3	43.17	192.2	50.98
500	139.4	44.56	195.0	52.91

Таблица 36 – окончание

	$C^{\circ}(T)$	$H^{0}(T)$ $H^{0}(0)$	$S^{0}(T) = S^{0}(0)$	$\begin{bmatrix} C^0(T) & H^0(0) \end{bmatrix}$
<i>Т</i> , К		$\prod_{n \in \mathcal{N}} (1) = \prod_{n \in \mathcal{N}} (0),$	J(I) = J(0),	-[0](1)-11](0)],
		кдж/моль		КДЖ/МОЛЬ
5	0.615	0.00107	0.308	0.000513
10	2.46	0.00825	1.24	0.00412
15	4.930	0.02661	2.696	0.01379
20	7.600	0.05788	4.475	0.03160
30	12.98	0.1612	8.589	0.09646
40	17.91	0.3157	13.00	0.2043
50	23.18	0.5208	17.56	0.3570
60	31.16	0.7904	22.45	0.5565
70	33.02	1.125	27.60	0.8072
80	37.97	1.479	32.33	1.107
90	42.76	1.883	37.08	1.454
100	47.18	2.333	41.81	1.848
110	51.19	2.825	46.50	2.290
120	54.92	3.356	51.12	2.778
130	58.48	3.923	55.66	3.312
140	61.89	4.525	60.12	3.891
150	65.13	5.161	64.50	4.514
160	68.16	5.827	68.80	5.181
170	71.00	6.523	73.02	5.890
180	73.71	7.247	77.15	6.641
190	76.38	7.997	81.21	7.432
200	79.05	8.774	85.19	8.265

Стандартные термодинамические функции наногеля **II**

			Таолиц	ца 57 – проболжение		
	$C_{\rm p}^{\rm o}(T),$	$H^{\circ}(T)-H^{\circ}(0),$	$S^{\mathrm{o}}(T)-S^{\mathrm{o}}(0),$	$-[G^{\circ}(T)-H^{\circ}(0)],$		
<i>1</i> , K	Дж/(К моль)	кДж/моль	Дж/(К моль)	кДж/моль		
210	81.58	9.578	89.11	9.136		
220	84.17	10.41	92.97	10.05		
228	86.29	11.09	96.01	10.80		
	Аморфное (расстеклованное состояние)					
228	96.13	11.09	96.01	10.80		
230	96.35	11.28	96.85	11.00		
240	97.34	12.25	101.0	11.99		
250	98.42	13.23	105.0	13.02		
260	99.41	14.22	108.9	14.08		
270	100.3	15.22	112.6	15.19		
280	101.3	16.22	116.3	16.34		
290	102.2	17.24	119.9	17.52		
298.15	103.1	18.08	122.7	18.51		
300	103.2	18.27	123.3	18.73		
310	104.3	19.31	126.7	19.98		
320	105.3	20.35	130.1	21.27		
330	106.2	21.41	133.3	22.58		
340	107.4	22.48	136.5	23.93		
350	108.9	23.56	139.6	25.31		
360	110.5	24.66	142.7	26.73		
370	112.1	25.77	145.8	28.17		
380	113.6	26.90	148.8	29.64		
390	115.0	28.04	151.8	31.14		
400	116.3	29.20	154.7	32.68		

Таблица 37 – продолжение

Таблица 37-окончание

ТК	$C_{\mathrm{p}}^{\mathrm{o}}(T),$	$H^{\mathrm{o}}(T) - H^{\mathrm{o}}(0),$	$S^{\mathrm{o}}(T) - S^{\mathrm{o}}(0),$	$-[G^{\circ}(T)-H^{\circ}(0)],$
<i>1</i> , K	Дж/(К моль)	кДж/моль	Дж/(К моль)	кДж/моль
410	117.7	30.37	157.6	34.24
420	119.3	31.55	160.4	35.83
430	120.9	32.76	163.3	37.45
440	122.7	33.97	166.1	39.09
450	124.5	35.21	168.8	40.77
460	126.3	36.46	171.6	42.47
470	128.0	37.73	174.3	44.20
480	129.7	39.02	177.0	45.96
490	131.4	40.33	179.7	47.74
500	133.4	41.65	182.4	49.55

3.3. Дендримеры с силоксановым ядром и триметилсилильными группами во внешнем слое GX[(CH₃)₃SiO]_z (X = 1, 2, 3, 4)

Нами впервые исследовано [131 – 133] калориметрическое поведение дендримеров с силоксановым ядром и триметилсилильными группами во внешнем слое с первой по четвёртую генерацию G1[(CH₃)₃SiO]₆, G2[(CH₃)₃SiO]₁₂, G3[(CH₃)₃SiO]₂₄ и G4[(CH₃)₃SiO]₄₈ при помощи адиабатической установки БКТ-3 и дифференциального сканирующего калориметра в температурном диапазоне 6–(400–570) К. В исследованной области температур для всех образцов обнаружены аномалии в области низких температур и переход, связанный с их расстеклованием.

Нами были рассчитаны термодинамические характеристики переходов, а также идентифицирована их природа. По полученным экспериментальным значениям теплоёмкости нами были рассчитаны термодинамические функции для всех физических состояний дендримеров — энтальпии, энтропии и функции Гиббса нагревания в интервале от 0 до 570 К. Определены стандартные энтропии образования $\Delta_f S^\circ$ дендримеров при T = 298.15 К.

Для силоксановых дендримеров был проведен термогравиметрический анализ, в результате которого установлено, что температуры начала разложения исследуемых составили: T = 405 K; 545 K; 570 K; 590 K (потеря массы – 2%) для G1[(CH₃)₃SiO]₆, G2[(CH₃)₃SiO]₁₂, G3[(CH₃)₃SiO]₂₄ и G4[(CH₃)₃SiO]₄₈, соответственно. В качестве примеров на рис. 72, 73 представлены полученные TГ-кривые дендримеров G1[OSi(CH₃)₃]₆ и G3[(CH₃)₃SiO]₂₄, соответственно.

Рис. 73. ТГ- кривая силоксанового дендримера

третьей генерации G3[(CH₃)₃SiO]₂₄

Экспериментальные кривые зависимостей теплоёмкости от температуры изученных дендримеров G1[(CH₃)₃SiO]₆, G2[(CH₃)₃SiO]₁₂, G3[(CH₃)₃SiO]₂₄ и G4[(CH₃)₃SiO]₄₈ в изученном диапазоне 6–(400–570) К приведены на рис. 74. Все экспериментальные данные представлены в табл. 5 – 8 Приложения.

Рис. 74. Экспериментальные кривые теплоемкостей дендримеров с силоксановым ядром и триметилсилильными группами во внешнем слое первой–четвертой генераций G1[OSi(CH₃)₃]₆(1), G2[(CH₃)₃SiO]₁₂(2), G3[(CH₃)₃SiO]₂₄(3), G4[(CH₃)₃SiO]₄₈(4)

Для проведения калориметрического опыта в ампулы БКТ-3 и ДСК было загружено: 0.3001 г и 20.7 мг; 0.1128 г и 28.2 мг; 0.2435 г и 20.5 мг; 0.1317 г и 21.1 мг дендримеров G1[(CH₃)₃SiO]₆, G2[(CH₃)₃SiO]₁₂, G3[(CH₃)₃SiO]₂₄ и G4[(CH₃)₃SiO]₄₈ соответственно. Теплоемкость дендримеров составляет 20—60% от суммарной теплоемкости ампулы с загруженным веществом.

Экспериментальные данные сглаживали с помощью полиномов, коэффициенты для которых подбирались при помощи программы (уравнения полиномов приведены в разделе 2.3 настоящей диссертации) в изученной области

температур, исключая области физических превращений. Сглаживание проводилось таким образом, чтобы усредняющая кривая отклонялась от экспериментальной не более, чем в пределах допустимых погрешностей: $\pm 2\%$ в диапазоне 6–15 K, $\pm 0.5\%$ в интервале 15–40 K, $\pm 0.2\%$ при 40–(343–345) K, $\pm 2\%$ в диапазоне (343–345) – (400–570) K.

В условиях проведения опыта в адиабатическом вакуумном калориметре образцы $GX[(CH_3)_3SiO]_z$ были охлаждены от T=298.15 К до температуры начала измерений — 6 К со средней скоростью 0.02 К/с. На экспериментальных кривых изученных дендримеров наблюдается положительное отклонение теплоёмкости от ее интерполяционного хода в области низких температур. Характер кривой не изменялся при повторных опытах, при которых образцы аналогично охлаждались и нагревались в процессе эксперимента. Подобные аномалии были также выявлены у дендримеров низких генераций (как правило, меньше пятой) с карбосилановым ядром и различной внешней оболочкой [82, 85, 88, 90, 95, 96, 98, 107]. Экспериментальные кривые образцов в области низких температур приведены на рис. 75.

Так проявляется низкотемпературная аномалия, которая, согласно термодинамической классификации Веструма–МакКаллафа [128, 129], является равновесным релаксационным переходом типа «порядок *⇒* беспорядок». Переход имеет системный характер и практически не зависит от природы внешнего слоя.

Температурный интервал, энтальпия и энтропия аномалии для изученных соединений представлены в табл. 38. Методы расчета величин подробно описаны во второй главе (раздел 2) настоящей диссертации.

Рис. 75. Экспериментальные кривые теплоемкостей дендримеров с силоксановым ядром первой–четвертой генераций в области низких температур G1[OSi(CH₃)₃]₆(1), G2[(CH₃)₃SiO]₁₂ (2), G3[(CH₃)₃SiO]₂₄(3), G4[(CH₃)₃SiO]₄₈(4): B₁C₁D₁, B₂C₂D₂, B₃C₃D₃, B₄C₄D₄ – кажущаяся теплоемкость; B₁D₁, B₂D₂, B₃D₃, B₄D₄ – нормальный (интерполяционный) ход теплоемкости

Таблица 38

Параметры аномалий теплоемкостей в области низких температур силоксановых дендримеров GX[(CH₃)₃SiO]_z

Дендример	ΔT , K	$\Delta_{ m tr} H^{\circ},$ Дж/моль	$\Delta_{ m tr}S^{\circ},$ Дж/(К моль)
G1[(CH ₃) ₃ SiO] ₆	42–76	520 ± 5	2.03 ± 0.03
$G2[(CH_3)_3SiO]_{12}$	44–74	1959 ± 20	23.9 ± 0.4
G3[(CH ₃) ₃ SiO] ₂₄	49–69	794 ± 8	8.9 ± 0.1
G4[(CH ₃) ₃ SiO] ₄₈	43–65	1778 ± 12	50.2 ± 0.8

Далее на кривых теплоемкостей изученных дендримеров GX[(CH₃)₃SiO]_z выявлены превращения, связанные с расстеклованием веществ. Характер кривой не

изменялся при охлаждении дендримеров до $T < T_g^o$ и при нагревании в последующих калориметрических опытах. Теплоемкости веществ плавно равномерно возрастали с увеличением температуры в тех областях, где отсутствуют какие-либо переходы, причем в расстеклованном состоянии теплоемкость увеличивалась медленнее.

Параметры расстеклования и стеклообразного состояния изученных соединений, а именно температурный интервал и стандартная температура перехода, а также стандартные увеличение теплоемкости при переходе, конфигурационная и остаточная энтропия приведены в таблице в табл. 39. Методы расчета стандартных термодинамических характеристик подробно описаны во второй главе настоящей диссертации.

Таблица 39

Дендример	ΔT	$T_{\rm g}^{ m o}\pm 1$	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$	$S_{ m conf}^{ m o}$	<i>S</i> °(0)
	K		Дж/(К•моль)		
G1[(CH ₃) ₃ SiO] ₆	137–153	147	245 ± 3	63 ± 1	63
G2[(CH ₃) ₃ SiO] ₁₂	154–166	161	411±4	105 ± 2	105
G3[(CH ₃) ₃ SiO] ₂₄	150–190	170	770 ± 7	196 ± 3	196
G4[(CH ₃) ₃ SiO] ₄₈	157–187	176	1373 ± 14	350 ± 5	350

Стандартные термодинамические характеристики расстеклования и стеклообразного состояния силоксановых дендримеров GX[(CH₃)₃SiO]_z

Чтобы рассчитать стандартные энтальпии, энтропии и функции Гиббса нагревания дендримеров $GX[(CH_3)_3SiO]_z$, мы экстраполировали экспериментальные значения теплоемкостей до $T \rightarrow 0$ при помощи теории теплоемлоемкости Дебая. При экстраполяции параметры *n* и Θ_D подобрали таким образом, чтобы с ними экспериментальные значения в области 7–10 К описывались с погрешностью ±1.7%. Все рассчитанные значения функций дендримеров $GX[(CH_3)_3SiO]_z$ в табл. 40–43, соответственно. Погрешность стандартных термодинамических функций составляет: 2, 0.5, 0.2 и 2% для теплоемкости, 2.3, 0.8, 0.6 и 2.3% для энтропии нагревания [$S^{\circ}(T) - S^{\circ}(0)$], 2.2, 0.7, 0.5 и 2.2% для энтальпии нагревания [$H^{\circ}(T) - H^{\circ}(0)$], 3, 1, 0.9 и 3% для функции Гиббса нагревания [$G^{\circ}(T) - H^{\circ}(0)$] в диапазонах 6–15 K, 15–40 K, 40–350 K и 350–(400–570) K.

Используя значения энтропий нагревания $[S^{\circ}(T) - S^{\circ}(0)]$ изученных соединений при T = 298.15 К (табл. 40–43), нулевой энтропии $S^{\circ}(0)$ (табл. 39) и абсолютных энтропий образования углерода, водорода, кислорода и кремния, мы рассчитали стандартные энтропии образования $\Delta_{\rm f}S^{\circ}$ всех изученных дендримеров с силоксановым ядром и триметилсилильными группами во внешнем слое.

Значения полученных энтропий образования $\Delta_{\rm f} S^{\circ}$ составили:

$$\Delta_{f}S^{\circ}(G1[(CH_{3})_{3}SiO]_{6}) = -(3980 \pm 22) \ \mbox{Дж/(K·моль)},$$

 $\Delta_{f}S^{\circ}(G2[(CH_{3})_{3}SiO]_{12}) = -(8514 \pm 47) \ \mbox{Дж/(K·моль)},$
 $\Delta_{f}S^{\circ}(G3[(CH_{3})_{3}SiO]_{24}) = -(17802 \pm 95)\ \mbox{Дж/(K·моль)},$
 $\Delta_{f}S^{\circ}(G4[(CH_{3})_{3}SiO]_{48}) = -(36166 \pm 193) \ \mbox{Дж/(K·моль)}.$

что соответствует уравнениям реакций:

$$\begin{split} & 22C_{(rp)} + 33H_{2(r)} + 4.5O_{2(r)} + 10Si_{(\kappa)} \rightarrow C_{22}H_{66}O_9Si_{10(p)}, \\ & 46C_{(rp)} + 69H_{2(r)} + 10.5O_{2(r)} + 22Si_{(\kappa)} \rightarrow C_{46}H_{138}O_{21}Si_{22(p)}, \\ & 94C_{(rp)} + 141H_{2(r)} + 22.5O_{2(r)} + 46Si_{(\kappa)} \rightarrow C_{94}H_{282}O_{45}Si_{46}, \\ & 190C_{(rp)} + 285H_{2(r)} + 46.5O_{2(r)} + 94Si_{(\kappa)} \rightarrow C_{190}H_{570}O_{93}Si_{94(p)}, \end{split}$$

где (гр) – графит, (г) – газ, (к) – кристалл, (р) – расстеклованное состояние.

Все методы расчета представлены во второй главе (раздел 2) настоящей диссертации. Молярные массы дендримеров, рассчитанные по ИЮПАК, составили:

(M = 755.56 г/моль)— что соответствует дендримеру G1[(CH₃)₃SiO]₆; (M = 1645.35 г/моль)— что соответствует дендримеру G2[(CH₃)₃SiO]₁₂; (M = 3424.93 г/моль)— что соответствует дендримеру G3[(CH₃)₃SiO]₂₄; (M = 6984.10 г/моль)— что соответствует дендримеру G4[(CH₃)₃SiO]₄₈. Стандартные термодинамические функции силоксанового дендримера

G1[(CH₃)₃SiO]₆ (М = 755.56 г/моль)

	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T)-H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
<i>1</i> , K	кДж/(К∙моль)	кДж/моль	Дж/(К∙моль)	кДж/моль
	Аморфі	ное (стеклообразн	юе) состояние	
5	8.41	3.06	0.0114	0.00394
10	30.5	15.2	0.105	0.0472
15	69.71	34.49	0.3492	0.1682
20	112.5	60.53	0.8071	0.4035
25	148.2	89.55	1.461	0.7781
30	181.1	119.5	2.285	1.301
35	211.9	149.8	3.269	1.974
40	240.1	180.0	4.399	2.799
45	273.6	210.1	5.680	3.774
50	310.8	240.8	7.140	4.901
60	404.8	305.8	10.72	7.627
70	449.5	372.4	15.05	11.02
80	496.7	434.7	19.72	15.06
90	547.3	496.2	24.94	19.71
100	598.3	556.5	30.67	24.98
110	647.3	615.8	36.90	30.84
120	691.7	674.1	43.60	37.29
130	735.3	731.1	50.73	44.31
140	783.1	787.4	58.33	51.91
147	814.5	826.4	63.92	57.56
	Аморфи	ое (расстеклован	ное) состояние	
147	1060	826.4	63.92	57.56
150	1064	847.8	67.11	60.07
160	1075	916.8	77.80	68.89
170	1084	982.3	88.60	78.39
180	1094	1045	99.49	88.53
190	1104	1104	110.5	99.27
200	1115	1161	121.6	110.60
210	1127	1215	132.8	122.48
220	1139	1268	144.1	134.90
230	1152	1319	155.6	147.84
240	1165	1368	167.1	161.28
250	1179	1416	178.9	175.20

Таблица 40 - окончание

<i>Т</i> , К	С ^о _р (T), кДж/(К∙моль)	[<i>H</i> °(<i>T</i>)− <i>H</i> °(0)], кДж/моль	[<i>S</i> °(<i>T</i>)− <i>S</i> °(0)], Дж/(К∙моль)	−[<i>G</i> °(<i>T</i>)− <i>H</i> °(0)], кДж/моль
260	1192	1463	190.7	189.60
270	1206	1508	202.7	204.45
280	1221	1552	214.8	219.76
290	1236	1595	227.1	235.49
298.15	1249	1630	237.3	248.64
300	1252	1637	239.6	251.66
310	1268	1679	252.2	268.24
320	1286	1719	264.9	285.23
330	1303	1759	277.9	302.62
340	1321	1798	291.0	320.41
350	1340	1837	304.3	338.59
360	1358	1875	317.8	357.14
370	1377	1912	331.5	376.08
380	1394	1949	345.3	395.39
390	1411	1986	359.4	415.06
400	1427	2022	373.5	435.10

Таблица 41

Стандартные термодинамические функции силоксанового дендримера

	$C_{\rm p}^{\rm o}(T),$	$[H^{\circ}(T)-H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
1, К	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
	Аморфі	ное (стеклообразн	юе) состояние	
5	10.8	3.62	0.0136	0.00452
10	66.7	26.9	0.197	0.0719
15	149.7	69	0.731	0.3043
20	234.5	124.3	1.701	0.7845
25	306.4	184.7	3.061	1.556
30	376.8	246.7	4.767	2.634
35	446.4	310.0	6.827	4.025
40	513.0	374.0	9.225	5.735
45	589.1	438.7	11.97	7.765
50	678.5	505.4	15.14	10.12
60	982.2	651.7	23.22	15.88
70	1027	809.6	33.46	23.21
80	1035	941.4	43.34	31.97
90	1176	1072	54.42	42.04
100	1289	1202	66.76	53.41
110	1383	1329	80.13	66.06
120	1472	1453	94.41	79.98
130	1566	1575	109.6	95.12
140	1663	1694	125.7	111.5
150	1765	1812	142.9	129.0
160	1869	1930	161.0	147.7
161	1880	1941	162.9	149.6
	Аморфи	<u>юе (расстеклован</u>	ное) состояние	
161	2291	1941	162.9	149.6
170	2312	2067	183.6	167.7
180	2333	2199	206.8	189.0
190	2350	2326	230.3	211.7
200	2365	2447	253.8	235.5
210	2383	2563	277.6	260.6
220	2406	2674	301.5	286.8
230	2435	2782	325.7	314.0
240	2468	2886	350.2	342.4
250	2504	2987	375.1	371.8
260	2542	3086	400.3	402.1

Таблица 41 - окончание

	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T) - H^{\circ}(0)],$	$[S^{\circ}(T) \neg S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
<i>1</i> , K	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
270	2580	3183	425.9	433.5
280	2618	3278	451.9	465.8
290	2655	3370	478.3	499.0
298.15	2686	3433	499.4	524.2
300	2693	3461	505.0	533.2
310	2732	3550	532.2	568.2
320	2776	3637	559.7	604.2
330	2819	3723	587.7	641.0
340	2860	3808	616.1	678.6
350	2901	3891	644.9	717.1
360	2942	3974	674.1	756.4
370	2982	4055	703.7	796.6
380	3023	4135	733.7	837.5
390	3063	4214	764.1	879.3
400	3103	4292	795.0	921.8
410	3142	4369	826.2	965.1
420	3182	4445	857.8	1009
430	3222	4521	889.8	1054
440	3261	4595	922.2	1100
450	3301	4669	955.1	1146
460	3341	4742	988.3	1193
470	3381	4814	1022	1241
480	3421	4886	1056	1289
490	3462	4957	1090	1338
500	3502	5027	1125	1388
510	3541	5097	1160	1439
520	3580	5166	1196	1490

Таблица 42

Стандартные термодинамические функции силоксанового дендримера

Т. К	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T)-H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$	
-,	кДж/(К∙моль)	кДж/моль	Дж/(К∙моль)	кДж/моль	
	Аморф	ное (стеклообразно	е) состояние		
5	22.3	7.47	0.028	0.00935	
10	134.0	54.7	0.401	0.147	
15	296.3	138.7	1.466	0.6153	
20	479.2	248.7	3.401	1.573	
25	660.2	375.6	6.256	3.135	
30	825.0	510.7	9.973	5.347	
35	980.8	649.7	14.49	8.248	
40	1130	790.4	19.77	11.85	
45	1278	932.1	25.79	16.15	
50	1438	1075	32.57	21.17	
60 70	1786	1370	48.83	33.39	
/0	1959	1655	6/.33	48.53	
80	2192	1952	88.12	00.4/	
90	2404 2507	2205	111.1	07.15	
110	2377	2407	162.0	126.5	
120	2770	2723	103.0	150.5	
120	2952 2124	2972	191./	104.9	
130	3124 3201	3/52	222.0	195.9	
140	3464	3685	234.1	229.2	
160	3630	3005 301 <i>/</i>	323.3	302.9	
100	3798	4139	360 5	343.2	
	Аморфи	ное (расстеклованно	ое) состояние	0.1012	
170	1568	/120	360.5	343.2	
190	4308	4139	406.3	285.0	
100	4000	4401	400.5	303.9	
190	4627	4651	452.5	431.2	
200	4659	4889	498.9	478.9	
210	4697	5117	545.7	528.9	
220	4738	5336	592.8	581.2	
230	4781	5548	640.4	635.6	
240	4826	5752	688.5	692.1	
250	4872	5950	736.9	750.6	
260	4919	6142	785.9	811.1	
270	4967	6329	835.3	873.4	
280	5014	6510	885.2	937.6	
290	5061	6687	935.6	1004	
298.15	5099	6828	977.0	1059	
300	5107	6859	986.5	1071	
310	5153	7028	1038	1141	

 $G3[(CH_3)_3SiO]_{24}$ (M = 3424.93 г/моль)

Таблица 42 - окончание

	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T) - H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
1, K	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
320	5200	7192	1090	1212
330	5249	7353	1142	1285
340	5296	7510	1195	1359
350	5341	7664	1248	1435
360	5385	7815	1301	1512
370	5428	7964	1355	1591
380	5470	8109	1410	1671
390	5512	8251	1465	1753
400	5554	8392	1520	1837
410	5595	8529	1576	1921
420	5637	8664	1632	2007
430	5679	8798	1689	2094
440	5722	8929	1746	2183
450	5765	9058	1803	2273
460	5808	9185	1861	2364
470	5851	9310	1919	2457
480	5894	9434	1978	2550
490	5938	9556	2037	2645
500	5981	9676	2097	2741
510	6023	9795	2157	2839
520	6066	9913	2217	2937
530	6107	10020	2278	3037
540	6149	10140	2339	3138
550	6189	10260	2401	3240
560	6230	10370	2463	3343
570	6271	10480	2526	3447

Стандартные термодинамические функции силоксанового дендримера

		1			
	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T)-H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$	
<i>1</i> , K	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль	
	Аморфі	ное (стеклообразн	юе) состояние		
5	46.1	15.4	0.0577	0.0193	
10	283	115	0.839	0.306	
15	635.8	292.6	3.098	1.291	
20	1035	529.4	7.266	3.321	
25	1395	800.2	13.36	6.651	
30	1778	1088	21.28	11.36	
35	2125	1389	31.06	17.55	
40	2454	1694	42.51	25.26	
45	2809	2003	55.65	34.50	
50	3202	2319	70.65	45.31	
60	3910	2979	106.9	71.77	
70	4185	3592	146.7	104.7	
80	4613	4179	190.8	143.5	
90	4977	4744	238.8	188.2	
100	5292	5285	290.2	238.3	
110	5586	5803	344.6	293.8	
120	5896	6302	401.9	354.3	
130	6209	6787	462.5	419.8	
140	6498	7258	526.0	490.0	
150	6802	7716	592.5	564.9	
160	7122	8165	662.1	644.3	
170	7442	8607	735.0	728.2	
176	7633	8868	780.2	780.6	
Аморфное (расстеклованное) состояние					
176	9006	8868	780.2	780.6	
180	9024	9071	816.2	816.5	
190	9067	9560	906.7	909.7	
200	9111	10030	997.6	1008	
210	9157	10470	1089	1110	
220	9205	10900	1181	1217	
230	9268	11310	1273	1328	
240	9349	11710	1366	1443	
250	9447	12090	1460	1562	

G4[(CH₃)₃SiO]₄₈

Таблица 42 - окончание

	$C_{\rm p}^{\rm o}(T)$,	$[H^{\circ}(T)-H^{\circ}(0)],$	$[S^{\circ}(T) - S^{\circ}(0)],$	$-[G^{\circ}(T)-H^{\circ}(0)],$
1, К	кДж/(К∙моль)	кДж/моль	Дж/(К·моль)	кДж/моль
260	9556	12460	1555	1685
270	9669	12820	1651	1811
280	9786	13180	1749	1941
290	9907	13520	1847	2075
298.15	10010	13800	1928	2186
300	10040	13860	1947	2212
310	10190	14190	2048	2352
320	10350	14520	2151	2496
330	10490	14840	2255	2642
340	10640	15160	2361	2792
350	10790	15470	2468	2945
360	10940	15770	2576	3102
370	11090	16070	2687	3261
380	11240	16370	2798	3423
390	11390	16670	2911	3588
400	11540	16960	3026	3756
410	11690	17240	3142	3927
420	11840	17530	3260	4101
430	11990	17810	3379	4278
440	12140	18080	3500	4457
450	12290	18360	3622	4640
460	12440	18630	3745	4825
470	12590	18900	3871	5012
480	12740	19170	3997	5203
490	12890	19430	4125	5396
500	13040	19690	4255	5591
510	13190	19950	4386	5789
520	13330	20210	4519	5990

3.4. Сравнительный анализ термодинамических свойств дендримеров и наногелей различной природы

Зависимость температур расстеклования полимеров от номера генерации и молекулярно-массовых характеристик

Чтобы выявить зависимости термодинамических характеристик от номера генерации, внешнего слоя и молекулярного скелета изученных дендримеров и наногелей в настоящей диссертации и ранее [85, 88, 90, 95, 96, 98, 105, 107], мы проанализировали полученные значения и сравнили их с литературными данными. Так, в табл. 43 представлены параметры расстеклования и стеклообразного состояния изученных наногелей и кремнийорганических дендримеров различной природы.

В результате анализа данных, представленных в табл. 43, нами выделено несколько закономерностей. Исследованные дендримеры с силоксановым ядром с тремя ветвлениями от центрального атома кремния и триметилсилильными группами во внешнем слое $GX[(CH_3)_3SiO]_z$ (X = 1, 2, 3, 4) обладают самыми низкими температурами расстеклования в данном ряду, кроме того, их значения близки между собой. Снижение температуры перехода объясняется наличием гибких силоксановых фрагментов в ядре и во внешнем слое дендримера и соответственно увеличенной молекулярной подвижностью. Если мы сравним дендримеры с триметилсилильными группами во внешнем слое, но различным ядром, видно, что дендример с карбосилановым ядром [107] имеет более высокую температуру расстеклования, чем изученный в настоящей работе дендример с силоксановым ядром. Это обусловлено тем, что в карбосилановом ядре центральный атом имеет четыре ветвления и, соответственно, обладает меньшей молекулярной подвижностью, что и приводит к повышениям температуры расстеклования. Так, у дендримера G4[OSi(CH₃)₃]₆₄ (карбосилановое ядро) температура расстеклования составляет T = 191 K, а у дендримера G4[OSi(CH₃)₃]₄₈ (силоксановое ядро) — 176 К соответственно.

Таблица 43

Вещество	ΔT	$T_{ m g}^{ m o}$ ± 1	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$	$S_{ m conf}^{ m o}$	<i>S</i> °(0)	ссылка
	K		Дж/(К моль)			
G1[(CH3)3SiO]6	137–153	147	245	63	63	HД ^c
G1[(C6H4)C3H5O2]8	200–260	231	1180	301	301	НД
$G1[CH_2CH=CH_2]_8$ *	150–160	154	406	44	44	[85]
$G1[CH_2CH_2C_6H_5]_8^*$	176–215	198	961	245	245	[95]
$G1[C_6H_5]_{32}$	300-350	323	1312	334	334	[105]
G2[(CH3)3SiO]12	154-166	161	411	105	105	НД
G3[(CH3)3SiO]24	158–190	170	770	196	196	НД
G3[(C6H4)C3H5O2]32	210-260	238	4070	1036	1036	НД
G3[CH2CH=CH2] ₃₂ *	170–180	173	1640	417	417	[85]
$G3[(OCH_2CH_2)_1OCH_3]_{32}^*$	156–188	175	6730	1714	1714	[90]
G3[(OCH ₂ CH ₂) ₃ OCH ₃] ₃₂ *	160–190	176	11330	2885	2885	[90]
$G3[CH_2CH_2CH_2CH_3]_{32}^*$	175–195	180	1904	485	485	[88]
G3[CH ₂ CH ₂ C ₆ H ₅] ₃₂ *, b	178–218	199	4327	1113	1113	[96]
$G3[(Si(CH_3)_2O)_3Si(CH_3)O]_{32}^{b}$	185–230	207	4220	1096	1096	[98]
G4[(CH ₃) ₃ SiO] ₄₈	157–187	176	1373	350	350	НД
G4[(CH ₃) ₃ SiO] ₆₄	176-196	191	3410	868	868	[107]
$G4[CH_2CH=CH_2]_{64}$ *	170–180	172	3660	931	931	[85]
G4[CH ₂ CH ₂ CH ₂ CH ₃] ₆₄ *	170-200	186	3820	973	973	[88]
Наногель ІФ	176–208	192	(12.8)	(3.3)	(3.3)	НД
Наногель ПФ	210-240	228	(9.8)	(2.5)	(2.5)	НД

Параметры расстеклования и стеклообразного состояния дендримеров и наногелей различной природы

Ф Характеристики рассчитаны на моль условно выделенного звена наногеля.
* Литературные данные.
• Данные были пересчитаны на моль всей молекулы.

^с НД – настоящая диссертация

Видно, что T_g^0 дендримеров увеличивается в ряду $GX[(CH_3)_3SiO]_z \rightarrow GX[CH_2CH=CH_2]_z \rightarrow GX[(OCH_2CH_2)_iOCH_3]_z \rightarrow GX[CH_2CH_2C_6H_5]_z \rightarrow GX[(Si(CH_3)_2O)_3Si(CH_3)O]_z \rightarrow GX[(C_6H_4)C_3H_5O_2]_z \rightarrow GX[C_6H_5]_z$, что вполне логично и объясняется различной молекулярной подвижностью групп внешнего слоя. Например, аллильные концевые группы обладают высокой молекулярной подвижностью, а этиленоксидные группы более подвижны, чем фенилэтильные, включающие фенильные фрагменты, или чем карбосиланциклосилоксановая оболочка у дендримеров, содержащая жесткие циклические фрагменты.

Самую высокую температуру расстеклования имеет гибридный дендример с карбосилановым ядром и фениленовой оболочкой $G1[C_6H_5]_{32}$. Это объясняется большим количеством жестких фрагментов во внешнем слое, что значительно уменьшает его молекулярную подвижность. Интересно, что гибридный дендример $G1[C_6H_5]_{32}$ имеет такую же температуру расстеклования, как и полифениленовый дендример G1-12Py [104].

Далее, по величине температур расстеклования находятся изученные в настоящей работе дендримеры с карбосилановым ядром и фенилдиоксолановыми группами во внешнем слое, которые содержат объемные структурные фрагменты во внешнем слое.

Если сравнить дендримеры с силоксановым ядром по номеру генерации, становится понятно, что увеличение температуры расстеклования обусловлено снижением молекулярной подвижности, так как при росте генерации макромолекулы увеличивается плотность дендримера внешнего слоя. Проанализировав литературные данные, мы выявили, что такая закономерность прослеживается и у ранее изученных дендримеров.

На основе наших и литературных данных можно заключить, что температура расстеклования дендримеров зависит в большей степени от химической природы групп внешнего слоя и молекулярного скелета. Начиная с определенного значения номера генерации, температура расстеклования перестает зависеть от количества слоев дендримера и выходит на «плато».
Таким образом, инструментом регулирования физико-химических свойств и характеристик дендримера является модификация внешней оболочки, а также изменение химической природы ядра.

Анализируя данные из сводной табл. 43, мы видим, что в случае наногелей большее влияние оказывают именно молекулярно-массовые характеристики, что вполне логично, поскольку при росте наногеля и, соответственно, его молекулярной массы, их структура становится жестче за счет сшивок, что и становится причиной роста температуры расстеклования.

Было интересно построить зависимости температур перехода, связанного с расстеклованием от номера генерации дендримеров с разными ядрами и внешней оболочкой, исследованных в настоящей диссертации и ранее. Из рис. 76 видно, что модификация внешнего слоя группами с различной подвижностью, полярностью и природой позволяет получить макромолекулы дендримеров с нужной температурой расстеклования.

Зависимости термодинамических функций дендримеров от природы их поверхностного слоя

Нами были сравнены различные термодинамические функции дендримеров третьей генерации с разной природой ядра, исследованных в настоящей диссертации (G3[(CH₃)₃SiO]₂₄, G3[(C₆H₄)C₃H₅O₂]₃₂) и взятых из литературных данных — это дендримеры с карбосилановым ядром и различным внешним слоем, включающим в себя аллильные G3[CH₂CH=CH₂]₃₂, этиленоксидные с одним $G3[(OCH_2CH_2)_1OCH_3]_{32}$, этиленоксилные звеном с тремя звеньями G3[(OCH₂CH₂)₃OCH₃]₃₂, бутильные $G3[CH_2CH_2CH_2CH_3]_{32}$, $G3[(Si(CH_3)_2O)_3Si(CH_3)O]_{32},$ карбосиланциклосилоксановые фенилэтильные группы G3[CH₂CH₂C₆H₅]₃₂ [85, 88, 90, 96, 98].

Для удобства сравнения представилось возможным выделить для изученных кремнийорганических дендримеров третьей генерации с концевыми фенилдиоксолановыми и триметилсилильными группами в пределе повторяющееся условное звено.

Рис. 76. Зависимость температур расстеклования (T_g^0) дендримеров с различной природой функциональных групп от номера генерации (n):

$$\begin{aligned} \bullet \mathbf{1} &- \mathbf{G1}[(\mathbf{CH}_3)_3 \mathbf{SiO}]_6; \ \bullet \mathbf{2} - \mathbf{G1}[\mathbf{CH}_2 \mathbf{CH} = \mathbf{CH}_2]_8 \, [85]; \ \bullet \mathbf{3} - \mathbf{G1}[\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{C}_6 \mathbf{H}_5]_8 \, [95]; \\ \bullet \mathbf{4} &- \mathbf{G1}[(\mathbf{C}_6 \mathbf{H}_4) \mathbf{C}_3 \mathbf{H}_5 \mathbf{O}_2]_8; \ \bullet \mathbf{5} - \mathbf{G2}[(\mathbf{CH}_3)_3 \mathbf{SiO}]_{12}; \bullet \mathbf{6} - \mathbf{G3}[(\mathbf{CH}_3)_3 \mathbf{SiO}]_{24}; \\ \bullet \mathbf{7} &- \mathbf{G3}[\mathbf{CH}_2 \mathbf{CH} = \mathbf{CH}_2]_{32} \, [85]; \ \bullet \mathbf{8} - \mathbf{G3}[(\mathbf{OCH}_2 \mathbf{CH}_2)_1 \mathbf{OCH}_3]_{32} \, [90]; \\ \bullet \mathbf{9} &- \mathbf{G3}[(\mathbf{OCH}_2 \mathbf{CH}_2)_3 \mathbf{OCH}_3]_{32} \, [90]; \ \bullet \mathbf{10} - \mathbf{G3}[\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{CH}_3]_{32} \, [88]; \\ \bullet \mathbf{11} &- \mathbf{G3}[\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{C}_6 \mathbf{H}_5]_{32} \, [96]; \ \bullet \mathbf{12} - \mathbf{G3}[(\mathbf{Si}(\mathbf{CH}_3)_2 \mathbf{O})_3 \mathbf{Si}(\mathbf{CH}_3) \mathbf{O}]_{32} \, [98]; \\ \bullet \mathbf{13} &- \mathbf{G3}[(\mathbf{C}_6 \mathbf{H}_4) \mathbf{C}_3 \mathbf{H}_5 \mathbf{O}_2]_{32}; \ \bullet \mathbf{14} - \mathbf{G4}[(\mathbf{CH}_3)_3 \mathbf{SiO}]_{48}; \ \bullet \mathbf{15} - \mathbf{G4}[\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{CH}_2]_{64} \, [85]; \\ \bullet \mathbf{16} - \mathbf{G4}[\mathbf{CH}_2 \mathbf{CH}_2 \mathbf{CH}_2 \mathbf{CH}_3]_{64} \, [88]; \ \bullet \mathbf{17} - \mathbf{G4}[(\mathbf{CH}_3)_3 \mathbf{SiO}]_{64}[\mathbf{107}] \end{aligned}$$

Формулы и молярные массы звеньев представлены в табл. 44. Все термодинамические функции изученных ранее дендримеров также рассчитаны на моль структурного звена.

Таблица 44

Ленлример	Брутто-	Структурная формула звена;
A. When the second seco	формула	$M_{\rm 3BeHa},$ Г/МОЛЬ
$G3[(C_6H_4)C_3H_5O_2]_{32}$	$C_{18}H_{30}Si_2O_2$	$[(CH_2)_3Si(CH_3)\{(CH_2)_3Si(CH_3)_2C_6H_4C_3H_5O_2]$ 290.566
G3[(CH ₃) ₃ SiO] ₂₄	$C_4H_{12}Si_2O_2$	$[OSi(CH_3){OSi(CH_3)_3}]$ 148.298

Формулы и молярные массы звеньев изученных дендримеров

Мы построили изотермы зависимостей различных термодинамических функций дендримеров третьей генерации от молярных масс их условных структурных звеньев при двух температурах — 100 К и 298.15 К. Температуры выбраны не случайно – при 100 К все вещества находятся в стеклообразном физическом состоянии, а при комнатной температуре — в расстеклованном.

На рис. 77–80 изображены зависимости теплоемкостей, энтальпий $[H^{\circ}(T)-H^{\circ}(0)]$, энтропий $[S^{\circ}(T)-S^{\circ}(0)]$ и функций Гиббса $[G^{\circ}(T)-H^{\circ}(0)]$ от молярной массы условного звена соответственно.

Рис. 77. Зависимости C_p^{o} дендримеров третьей генерации с разным внешним слоем от M_{3BeHa} : 1 – изотермы при T = 100 K; 2 – изотермы при T = 298.15 K

Рис. 78. Зависимости $[H^{\circ}(T) - H^{\circ}(0)]$ дендримеров третьей генерации с разным внешним слоем от M_{3BeHa} : 1 – изотермы при T = 100 K; 2 – изотермы при T = 298.15 K

Рис. 79. Зависимости [$S^{\circ}(T)$ - $S^{\circ}(0)$] дендримеров третьей генерации с разным внешним слоем от $M_{\text{звена}}$: 1 – изотермы при T = 100 K; 2 – изотермы при T = 298.15 K

Рис. 80. Зависимости [$G^{\circ}(T) - H^{\circ}(0)$] дендримеров третьей генерации с разным внешним слоем от M_{3BeHa} : 1 – изотермы при T = 100 K; 2 – изотермы при T = 298.15 K

Все значения на рис. 67–70 расположены в пределе линий тренда, достоверность аппроксимации $R^2 = 0.99$ при T = 100 K и $R^2 = 0.98$ –0.99 при T = 298.15 K соответственно.

В табл. 45 приведены уравнения всех построенных нами изотерм, представляющих собой зависимости различных функций дендримеров третьей генерации с разным внешнем слоем от молярной массы условного звена *M*.

Анализируя полученные линейные зависимости, логично утверждать, что молярные массы условных звеньев имеют аддитивный вклад в термодинамические свойства дендримеров, что говорит о неизменности межмолекулярного взаимодействия в дендримерах при увеличении номера генерации. Используя данные уравнения, можно определять свойства новых, пока не изученных дендримеров с другим внешним слоем.

Таблица 45

Уравнения изотерм дендримеров третьей генерации с разным внешним слоем при температурах 100 К и 298.15 К

Дендример	Т	$C_{\rm p}^{\rm o}(T)$	$[S^{\circ}(T) - S^{\circ}(0)]$	$[H^{\circ}(T) - H^{\circ}(0)]$	$-[G^{\circ}(T)-H^{\circ}(0)]$	
	K	Дж/((К·моль)	кДж/моль		
G3[Y]z	100	0.672 <i>M</i> + 7.7714	0.5822 <i>M</i> + 14.491	0.0332 <i>M</i> - 0.6993	0.025 <i>M</i> + 0.7239	
	298.15	1.8672 <i>M</i> - 8.7201	1.9566 <i>M</i> + 10.583	0.3091 <i>M</i> + 0.7243	0.2743 <i>M</i> + 3.8638	

выводы

1. Впервые методами прецизионной калориметрии определены температурные зависимости теплоемкостей двух карбосилановых дендримеров первой и третьей генераций с концевыми фенилдиоксолановыми группами, четырех силоксановых дендримеров первой-четвертой генераций с концевыми триметилсилильными группами и двух соответствующих им наногелей в температурном интервале 6–570 К.

2. В изученной области температур для перечисленных дендримеров и наногелей выявлены физические превращения: низкотемпературная структурная аномалия и расстеклование; определены и проанализированы их термодинамические характеристики.

3. Определены стандартные термодинамические функции изученных дендримеров и наногелей для различных физических состояний в интервале от T \rightarrow 0 до 500 K, а также стандартные энтропии их образования в расстеклованном состоянии при T = 298.15 K.

4. Установлена зависимость температуры расстеклования дендримеров с различными концевыми группами. Выявлена тенденция к изменению температуры расстеклования за счёт модификации поверхностного слоя концевыми группами, отличающимися молекулярной подвижностью.

5. Установлено, что для изученных дендримеров, имеющих различные молекулярные скелеты, температура расстеклования в большей степени зависит от природы их поверхностного слоя, чем от номера генерации.

6. Установлено, что температура стеклования изученных наногелей зависит в основном от молекулярно-массовых характеристик. Структура наногелей становится более жесткой с увеличением их молекулярной массы.

7. Построены изотермы зависимостей (T = 100 K, T = 298.15 K) термодинамических свойств дендримеров третьей генерации от молярных масс, условно выделенных в пределе повторяющихся структурных звеньев; установлено, что изотермы зависимостей носят линейный характер, что позволяет прогнозировать свойства еще не изученных дендримеров этого ряда.

СПИСОК ЛИТЕРАТУРЫ

- Newkome G. R., Moorefield C. N., Vögtle F. Dendrimers and Dendrons: Concepts, Syntheses, Applications // Wiley-VCH Verlag GmbH, Weinheim. -2002. — 635 p.
- Frechet J. M. J., Tomalia D. A. Dendrimers and Other Dendritic Polymers // John Wiley & Sons Ltd, Chichester. — 2001. — 688 p.
- Dvornic P. R., Owen M. J. Advances in Silicon Science. V. 2. Silicon-Containing Dendritic Polymers // Springer Science + Business Media B.V., Dordrecht. — 2009. — 444 p.
- Ortega P., Sánchez-Nieves J., Cano. J. Gómez, R., de la Mata, F. Javier. Poly(carbosilane) Dendrimers and Other Silicon-containing Dendrimers. Dendrimer Chemistry: Synthetic Approaches Towards Complex Architectures // Chapter 5. Royal Society of Chemistry, London. — 2020. — P. 114-145.
- Vögtle F., Richardt G., Werner N. Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications // WILEY-VCH Verlag GmbH: Weinheim, Germany, —2009. —354 p.
- Tomalia D. A., Fréchet J. M. J. Discovery of dendrimers and dendritic polymers: a brief historical perspective // J. Polym. Sci. A: Polym. Chem. — 2002. — V. 40. — № 16. — P. 2719—2728.
- 7. Tomalia D. A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry // Prog. Polym. Sci. 2005.
 V. 30. № 3—4. P. 294—324.
- Buhleier E., Wehner W., Vögtle F. "Cascade"- and "nonskid-chain-like" syntheses of molecular cavity topologies // Synthesis. — 1978. — V. 1978. — № 2. — P. 155—158.
- Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: starburst-dendritic macromolecules // Polym. J. — 1985. — V. 17. — № 1. — P. 117—132.

- 10.Newkome G. R., Yao Z. Q., Baker G. R., Gupta V. K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol // J. Org. Chem. 1985. V. 50. № 11. P. 2003—2004.
- 11.Hawker C. J., Fréchet J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules // J. Am. Chem. Soc. — 1990. — V. 112. — № 21. —P. 7638—7647.
- 12. Yamamoto. K., Imaoka. T., Tanabe, M., Kambe. T. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers // Chemical reviews. 2020. V 120 № 2— P. 1397—1437.
- 13. Buhleier E., Wehner W., Vogtle F. Like Syntheses of Molecular Cavity Topologies Cascade-Chain-Like and Nonskid-Chain // Synthesis-Stuttgart. —1978. —V. — № 2. — P. 155-158.
- 14.Malkoch M., García-Gallego S. Introduction to dendrimers and other dendritic polymers
 // Chapter 1. Royal Society of Chemistry, London. 2020. —
 P. 1-20.
- 15. Wooley K. L., Hawker C. J., Fréchet J. M. J. A "Branched-Monomer Approach" for the Rapid Synthesis of Dendimers //Angewandte Chemie International Edition in English.
 1994. V. 33. №. 1. C. 82-85 P.
- 16.Wooley K. L., Hawker C. J., Fréchet J. M. J. Hyperbranched macromolecules via a novel double-stage convergent growth approach //Journal of the American Chemical Society. — 1991. — T. 113. — №. 11. — C. 4252-4261.
- 17.Agrahari A. K., Singh A. S., Mukherjee R., Tiwari V. K. An expeditious click approach towards the synthesis of galactose coated novel glyco-dendrimers and dentromers utilizing a double stage convergent method // RSC advances. 2020. V. 10. №. 52. P. 31553-31562.

- 18.Kawaguchi, T., Walker, K. L., Wilkins, C. L., & Moore, J. S. Double exponential dendrimer growth //Journal of the American Chemical Society. 1995. V. 117. No. 8. P. 2159-2165.
- 19.Spindler R., Fréchet J. M. J. Two-step approach towards the accelerated synthesis of dendritic macromolecules //Journal of the Chemical Society, Perkin Transactions 1. 1993. №. 8. C. 913-918.
- 20.Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry: diverse chemical function from a few good reactions //Angewandte Chemie International Edition. 2001. V. 40. №. 11. P. 2004-2021.
- 21.Meldal M., Tornøe C. W. Cu-catalyzed azide– alkyne cycloaddition //Chemical reviews. 2008. V. 108. №. 8. P. 2952-3015.
- 22.Maraval, V., Laurent, R., Marchand, P., Caminade, A. M., Majoral, J. P. Accelerated methods of synthesis of phosphorus-containing dendrimers //Journal of organometallic chemistry. — 2005. — V. 690. — №. 10. — P. 2458-2471.
- 23.Saluja V., Mishra Y., Mishra V., Giri N., Nayak P. Dendrimers based cancer nanotheranostics: An overview // International journal of pharmaceutics. 2021. V. 600. P. 120485.
- 24. Tekade R. K., Kumar P. V., Jain N. K. Dendrimers in oncology: an expanding horizon // Chemical reviews. — 2009. — V. 109. — №. 1. — P. 49-87.
- 25.Pan J., Attia S. A., Filipczak N., Torchilin V. P. 10 Dendrimers for drug delivery purposes // Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier, — 2020. — P. 201-242.
- 26.Svenson S., Tomalia D. A. Dendrimers in biomedical applications—reflections on the field //Advanced drug delivery reviews. — 2012. — V. 64. — P. 102-115.
- 27.Tomalia D. A., Reyna L. A., Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging //Biochem Soc Trans 2007. V. 35.
 P. 61—67

- 28.Saluja V., Mankoo A., Saraogi G. K., Tambuwala M. M., Mishra. V. Smart dendrimers: Synergizing the targeting of anticancer bioactives // Journal of Drug Delivery Science and Technologyю. — 2019. — V 52. — P. 15-26.
- 29.Li Y., Wang H., Wang K., Hu Q., Yao Q., Shen Y., Tang G. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer //Small. — 2017. — V. 13. — №. 2. — P. 1602697.
- 30.Ma Y., Mou Q., Wang D., Zhu X., Yan D Dendritic polymers for theranostics //Theranostics. — 2016. — V. 6. — №. 7. — P. 930.
- 31.Reichert S., Calderón M., Licha K., Haag R. Multivalent dendritic architectures for theranostics //Multifunctional Nanoparticles for Drug Delivery Applications. — Springer, Boston, MA, — 2012. — P. 315-344.
- 32.Wolinsky J. B., Grinstaff M. W. Therapeutic and diagnostic applications of dendrimers for cancer treatment //Advanced drug delivery reviews. 2008. V. 60. №. 9. P. 1037-1055.
- 33.Mishra V., Gupta U., Jain N. K. Surface-engineered dendrimers: a solution for toxicity issues //Journal of Biomaterials Science, Polymer Edition. 2009. V. 20. №. 2. P. 141-166.
- 34.Amoozgar Z., Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems //Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2012. V. 4. №. 2. P. 219-233.
- 35.Ray S., Li Z., Hsu C. H., Hwang L. P., Lin Y. C., Chou P. T., Lin Y. Y Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics //Theranostics. — 2018. — V. 8. — №. 22. — P. 6322.
- 36.Mignani S., Shi X., Ceña V., Rodrigues J., Tomas H., Majoral, J. P. Engineered noninvasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio) pharmaceuticals in cancer therapy //Journal of Controlled Release. — 2021. — V. 332. — P. 346-366.

- 37.Relaño-Rodríguez I., Espinar-Buitrago M. D. L. S., Martín-Cañadilla V., Gómez-Ramírez R., Muñoz-Fernández M. Á. G2-S16 Polyanionic Carbosilane Dendrimer Can Reduce HIV-1 Reservoir Formation by Inhibiting Macrophage Cell to Cell Transmission //International Journal of Molecular Sciences. 2021. V. 22. №. 16. P. 8366.
- 38.Langereis S., Dirksen A., Hackeng, T. M., Van Genderen M. H., Meijer E. W. Dendrimers and magnetic resonance imaging //New Journal of Chemistry. 2007. V. 31. №. 7. P. 1152-1160.
- 39.McMahon M. T., Bulte J. W. M. Two decades of dendrimers as versatile MRI agents: a tale with and without metals //Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2018. V. 10. №. 3. P. e1496.
- 40. Kobayashi H., Sato N., Hiraga A., Saga T., Nakamoto Y., Ueda H., Konishi J., Togashi K., Brechbiel M. W. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties //Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2001. V. 45. No. 3. P. 454-460.
- 41.Kobayashi H., Kawamoto S., Jo S. K., Bryant H. L., Brechbiel M. W., Star R. A. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores //Bioconjugate chemistry. 2003. V. 14. №. 2. P. 388-394.
- 42.Kojima C., Turkbey B., Ogawa M., Bernardo M., Regino C. A., Bryant Jr L. H., Kobayashi, H. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics //Nanomedicine: Nanotechnology, Biology and Medicine. 2011. V. 7. №. 6. P. 1001-1008.
- 43.Rajca A., Wang Y., Boska M., Paletta J. T., Olankitwanit A., Swanson M. A., MitchellD. G., Eaton S. S., Eaton G. R., Rajca S. Rajca A. Organic radical contrast agents for

magnetic resonance imaging //Journal of the American Chemical Society. — 2012. — V. 134. — №. 38. — P. 15724-15727

- 44. You S., Jung H. Y., Lee C., Choe Y. H., Heo J. Y., Gang G. T., Kim, Y. High-performance dendritic contrast agents for X-ray computed tomography imaging using potent tetraiodobenzene derivatives //Journal of Controlled Release. 2016. V. 226. P. 258-267.
- 45.Zhu J., Wang G., Alves C. S., Tomás H., Xiong Z., Shen M., Shi X. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging //Langmuir. 2018. V. 34. №. 41. P. 12428-12435.
- 46.MZhao M., Sun L., Crooks R. M. Preparation of Cu nanoclusters within dendrimer templates. // J. Am. Chem. Soc. 1998. V. 120. № 19. P. 4877—4878.
- 47.Chechik V., Zhao M., Crooks R. M. Self-assembled inverted micelles prepared from a dendrimer template: phase transfer of encapsulated guests //Journal of the American Chemical Society. 1999. V. 121. №. 20. P. 4910-4911.
- 48.Kim Y. G., Oh S. K., Crooks R. M. Preparation and characterization of 1- 2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions //Chemistry of Materials. 2004. V. 16. №. 1. P. 167-172.
- 49.Balogh L., Tomalia D. A. Poly (amidoamine) dendrimer-templated nanocomposites. 1.
 Synthesis of zerovalent copper nanoclusters //Journal of the American Chemical Society. 1998. T. 120. №. 29. C. 7355-7356.
- 50.Esumi K., Nakamura R., Suzuki A., Torigoe K. Esumi K. Preparation of platinum nanoparticles in ethyl acetate in the presence of poly (amidoamine) dendrimers with a methyl ester terminal group //Langmuir. 2000. V. 16. №. 20. P. 7842-7846.
- 51.Kameo A., Suzuki A., Torigoe K., Esumi K Fiber-like gold particles prepared in cationic micelles by UV irradiation: Effect of alkyl chain length of cationic surfactant on particle

size //Journal of colloid and interface science. — 2001. — V. 241. — №. 1. — P. 289-292.

- 52.Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity //Chemical society reviews. 2009. V. 38. №. 6. P. 1759-1782.
- 53.Fihri A., Bouhrara M., Nekoueishahraki B., Basset J. M., Polshettiwar V., Nanocatalysts for Suzuki cross-coupling reactions //Chemical Society Reviews. — 2011. — V. 40. — №. 10. — P. 5181-5203.
- 54.Crooks R. M., Zhao M., Sun L., Chechik V., Yeung L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis //Accounts of chemical research. — 2001. — V. 34. — №. 3. — P. 181-190.
- 55.Narayanan R., El-Sayed M. A. Effect of colloidal catalysis on the nanoparticle size distribution: Dendrimer– Pd vs PVP– Pd nanoparticles catalyzing the Suzuki coupling reaction //The Journal of Physical Chemistry B. — 2004. — V. 108. — №. 25. — P. 8572-8580.
- 56.Pittelkow M., Moth-Poulsen K., Boas U., Christensen J. B. Poly (amidoamine)dendrimer-stabilized Pd (0) nanoparticles as a catalyst for the Suzuki reaction //Langmuir. — 2003. — V. 19. — №. 18. — P. 7682-7684.
- 57.Lemo J., Heuzé K., Astruc D. Synthesis and catalytic activity of DAB-dendrimer encapsulated Pd nanoparticles for the Suzuki coupling reaction //Inorganica chimica acta. — 2006. — V. 359. — №. 15. — P. 4909-4911.
- 58.Ornelas C., Ruiz Aranzaes J., Cloutet E., Alves S., Astruc D. Click assembly of 1, 2, 3triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations //Angewandte Chemie. — 2007. — V. 119. — №. 6. — P. 890-895.
- 59.Astruc D, Liang L, Rapakousiou A, Ruiz J. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic

architectures and nanomaterials. //Accounts of chemical research. — 2012. — V. 45. — No. 4. — P. 630-640.

- 60.Camponovo J, Ruiz J, Cloutet E, Astruc D. New Polyalkynyl Dendrons and Dendrimers:"Click" Chemistry with Azidomethylferrocene and Specific Anion and Cation Electrochemical Sensing Properties of the 1, 2, 3-Triazole-Containing Dendrimers //Chemistry—A European Journal. 2009. V. 15. №. 12. P. 2990-3002.
- 61.Wang W., Ornelas C., Diallo A. K., Deraedt C., Wang Y., Lu F., Astruc, D. Ferrocenebased dendritic macromolecules as efficient supports in nanocatalysis. // Polymer. — 2022. — V. 246. — P. 124714.
- 62.Wang, Y., Salmon, L., Ruiz, J., & Astruc, D. (2014). Metallodendrimers in three oxidation states with electronically interacting metals and stabilization of size-selected gold nanoparticles. // Nature Communications. 2014. V. 5. №. 1. P. 1-12.
- 63. Wang W., Chamkina E. S., Cal E. G., Di Silvio D., Moro M. M., Moya S., Shifrina, Z.
 B. Ferrocenyl-terminated polyphenylene-type "click" dendrimers as supports for efficient gold and palladium nanocatalysis //Dalton Transactions. 2021. V. 50. No. 34. P. 11852-11860.
- 64.Serkova E. S., Chamkin A. A., Boldyrev K. L., Novikov V. V., Peregudov A. S., Shifrina Z. B. Synthesis and electrochemical behaviour of rigid ferrocenyl-terminated pyridylphenylene dendrimers //Polymer. 2019. V. 173. P. 34-42.
- 65. Serkova, E. S., Chamkin, A. A., Boldyrev, K. L., & Shifrina, Z. B. "Click" Synthesis and Electrochemical Behavior of Ferrocenyl-Terminated Pyridylphenylene Dendrimers //Macromolecules. — 2020. — V. 53. — №. 7. — P. 2735-2743.
- 66.Nakamula I., Yamanoi Y., Yonezawa T., Imaoka T., Yamamoto K., Nishihara H. Nanocage catalysts—rhodium nanoclusters encapsulated with dendrimers

as accessible and stable catalysts for olefin and nitroarene hydrogenations //Chemical communications. — 2008. — N_{2} . 44. — P. 5716-5718.

- 67.Oh J. K., Drumright R., Siegwart D. J, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications // Prog. Polym. Sci. 2008. V. 33. № 4. P. 448—477.
- 68.Kabanov A. V., Vinogradov S. V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities // Angew. Chem. Int. Ed. 2009. V. 48. № 30. P. 5418—5429.
- 69.Bencherif S. A., Siegwart D. J., Srinivasan A., Horkay F., Hollinger J. O., Washburn N. R., Matyjaszewski K. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization // Biomaterials.
 2009. V. 30. № 29. P. 5270—5278.
- 70.Molina M., Asadian-Birjand M., Balach J., Bergueiro J., Miceli E., Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine // Chem. Soc. Rev. 2015. V. 44. № 17. P. 6161—6186.
- 71.Tahara Y., Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy // Adv. Drug Deliv. Rev. 2015. V. 95. P. 65—76.
- 72.Sanson N., Rieger J. Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization // Polym. Chem. 2010. V. 1. № 7. P. 965—977
- 73.Sasaki Y., Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications // Chem. Rec. 2010. V. 10. № 6. P. 366—376.
- 74.Oishi M., Nagasaki Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy // Nanomedicine. 2010. V. 5. № 3. P. 451—468.
- 75. Yallapu M. M., Jaggi M., Chauhan S. C. Design and engineering of nanogels for cancer treatment // Drug Discov. Today. — 2011. — V. 16. — № 9—10. — P. 457—463.

- 76.Chacko R. T., Ventura J., Zhuang J., Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform // Adv. Drug Deliv. Rev. 2012. V. 64. № 9. P. 836—851.
- 77.Li Y., Maciel D., Rodrigues J., Shi X., Tomás H. Biodegradable polymer nanogels for drug/nucleic acid delivery // Chem. Rev. 2015. V. 115. № 16. P. 8564—8608.
- 78.Soni K. S., Desale S. S., Bronich T. K. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation // J. Control. Release. 2016. V. 240. P. 109—126.
- 79.Buwalda S. J., Vermonden T., Hennink W. E. Hydrogels for therapeutic delivery: current developments and future directions // Biomacromolecules. 2017. V. 18. № 2. P. 316—330.
- 80. Wu C., Böttcher C., Haag R. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins // Soft Matter. 2015. V. 11. № 5. P. 972—980.
- 81.Музафаров А. М., Василенко Н. Г., Татаринова Е. А., Игнатьева Г. М., Мякушев В. М., Обрезкова М. А., Мешков И. Б., Воронина Н. В., Новожилов О. В. Макромолекулярные нанообъекты перспективное направление химии полимеров // Высокомолек. соед. Сер. С. 2011. Т. 53. № 7. С. 1217—1230.
- 82.Лебедев Б. В., Смирнова Н. Н., Рябков М. В., Пономаренко С. А., Макеев Е. А., Бойко Н. И., Шибаев В. П. Термодинамические свойства карбосиланового дендримера первой генерации с концевыми метоксиундециленатными группами в области 0—340 К // Высокомолек. соед. Сер. А. 2001. Т. 43. № 3. С. 514—523.
- 83.Lebedev B. V., Kulagina T. G., Ryabkov M. V., Ponomarenko S. A., Makeev E. A., Boiko N. I., Shibaev V. P., Rebrov E. A., Muzafarov A. M. Carbosilane dendrimer of

second generation with terminal methoxyundecylenate groups // J. Therm. Anal. Calorim. $-2003. - V.71. - N_{2} 2. - P. 481-492.$

- 84.Ponomarenko S. A., Rebrov E. A., Bobrovsky A. Yu., Boiko N. I., Muzafarov A. M.,
 Shibaev V. P. Liquid crystalline carbosilane dendrimers: first generation // Liq. Cryst.
 1996. V. 21. № 1. —P. 1—12
- 85.Лебедев Б. В., Рябков М. В. Татаринова Е. А., Ребров Е. А., Музафаров А. М. Термодинамические свойства карбосилановых дендримеров первой—пятой генераций с концевыми алилльными группами // Изв. Акад. наук. Сер. хим. 2003. № 3. С. 523—529.
- 86.Игнатьева Г. М., Ребров Е. А., Мякушев В. Д., Музафаров А. М., Ильина М. Н., Дубовик И. И., Папков В. С. Полиаллилкарбосилановые дендримеры: синтез, стеклование // Высокомолек. соед. Сер. А. — 1997. — Т. 39. — № 8. — С. 1302— 1310.
- 87. Дисс. д-ра химических наук Маркина А.В. Нижний Новгород, 2013, 512 с.
- 88.Smirnova N. N., Stepanova O. V., Bykova T. A., Markin A. V., Muzafarov A. M., Tatarinova E. A., Myakushev V. D. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from $T \rightarrow 0$ to 600 K / // Thermochim. Acta. — 2006. — V. 440. — P. 188—194.
- 89.Татаринова Е. А., Ребров Е. А., Мякушев В. Д., Мешков И. Б., Демченко Н. В., Быстрова А. В., Лебедева О. В., Музафаров А. М. Синтез и изучение свойств гомологического ряда полиаллилкарбосилановых дендримеров и их нефункциональных аналогов // Изв. Акад. наук. Сер. хим. — 2004. — № 11. — С. 2484—2493.
- 90.Markin A. V., Sologubov S. S., Smirnova N. N. Knyazev A. V., Mączka M., Ptak M., Novozhilova N. A., Tatarinova E. A., Muzafarov A. M. Calorimetric and infrared studies of carbosilane dendrimers of the third generation with ethyleneoxide terminal groups / // Thermochim. Acta. — 2015. — V. 617. — P. 144—151.

- 91.Смирнова Н. Н., Маркин А. В., Летянина И. А., Сологубов С. С., Новожилова Н. А., Татаринова Е. А., Музафаров А. М. Термодинамические свойства карбосилановых дендримеров третьей и шестой генераций с концевыми этиленоксидными группами // Журн. физ. химии. 2014. Т. 88. № 5. С. 747—753.
- 92.Новожилова Н. А., Малахова Ю. Н., Бузин М. И., Бузин А. И., Татаринова Е. А., Василенко Н. Г., Музафаров А. М. Синтез и исследование свойств карбосилановых дендримеров третьей и шестой генераций с этиленоксидным поверхностным слоем в блоке и в монослоях на границе раздела фаз вода—воздух // Изв. Акад. наук. Сер. хим. — 2013. — № 11. — С. 2514—2526.
- 93.Smirnova N. N., Samosudova Ya. S., Markin A. V., Shibaev V. P., Boiko N. I. Thermodynamic properties of liquid-crystalline carbosilane dendrimers of the second and the fourth generation with methoxyphenylbenzoate terminal groups // Thermochim. Acta. 2015. V. 614. P. 226—231
- 94.Ponomarenko S., Boiko N., Rebrov E., Muzafarov A., Whitehouse I., Richardson R., Shibaev V. Synthesis, phase behaviour and structure of liquid crystalline carbosilane dendrimers with methoxyphenyl benzoate terminal mesogenic groups // Mol. Cryst. Liq. Cryst. — 1999. — V. 332. — № 1. — P. 43—50.
- 95.Сологубов С. С., Маркин А. В., Смирнова Н. Н., Новожилова Н. А., Татаринова Е. А., Музафаров А. М. Термодинамические свойства карбосиланового дендримера первой генерации с концевыми фенилэтильными группами // Журн. физ. химии. 2018. Т. 92. № 2. С. 219—227.
- 96.Sologubov S. S., Markin A. V., Smirnova N. N., Rybakova Yu. A., Novozhilova N. A., Tatarinova E. A., Muzafarov A. M. Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups // J. Therm. Anal. Calorim. 2016. V. 125. № 2. P. 595—606.
- 97.Novozhilova N. A., Serenko O. A., Roldughin V. I., Askadskii A. A., Muzafarov A. M. Synthesis of carbosilane dendrimers with 2-phenylethyl end groups and influence

of generation number on glass transition temperature of PS-based composites // Silicon. - 2015. - V. 7. - N_{2} 2. - P. 155-164.

- 98.Смирнова Н. Н., Маркин А. В., Самосудова Я. С., Игнатьева Г. М., Катаржнова Е. Ю., Музафаров А. М. Термодинамика карбосиланциклосилоксановых дендримеров G-3(D4) и G-6(D4) // Журн. физ. химии. 2013. Т. 87. № 4. С. 570—578.
- 99.Музафаров А. М., Игнатьева Г. М., Катаржнова Е. Ю., Татаринова Е. А., Музафаров, А. М. Карбосилан-силоксановые дендримеры // Патент РФ № 2 422 473. — 2011.
- 100. Смирнова Н. Н., Маркин А. В., Захарова Ю. А., Кучкина Н. В., Русанов А. Л., Шифрина З. Б. Термодинамические свойства пиридинсодержащего полифениленового дендримера второй генерации //Журнал физической химии. 2010. Т. 84. №. 4. С. 628-633.
- 101. Shifrina Z. B., Rajadurai M. S., Firsova N. V., Bronstein L. M., Huang X., Rusanov A. L., Muellen, K. Poly (phenylene-pyridyl) dendrimers: Synthesis and templating of metal nanoparticles //Macromolecules. 2005. V. 38. No. 24. P. 9920-9932.
- 102. Smirnova N. N., Markin A. V., Zakharova Y. A., Kuchkina N. V., Rusanov A. L., Shifrina, Z. B. Thermodynamic properties of pyridine-containing polyphenylene dendrimers of the first-fourth generations //Russian Chemical Bulletin. 2011. V. 60. №. 1. P. 132-138.
- 103. Shifrina Z. B., Averina M. S., Firsova N. V., Rusanov A. L., Muellen K.
 Polyphenylene with pyridine dendrimers fragments //Doklady Chemistry. —
 Consultants Bureau, 2005. V. 400. P. 34-38.
- 104. Smirnova N. N., Zakharova Y. A., Markin A. V., Kuchkina N. V., Yuzik-Klimova E. Y., Shifrina, Z. B. Thermodynamics of hard poly (phenylenepyridyl) dendrimers //Russian Chemical Bulletin. — 2013. — V. 62. — №. 10. — P. 2258-2262.

- 105. Sologubov, S. S., Markin, A. V., Smirnova, N. N., Chamkina, E. S., Krasnova, I. Y., Milenin, S. A., Muzafarov, A. M. Thermodynamic Properties of the First-Generation Hybrid Dendrimer with "Carbosilane Core/Phenylene Shell" Structure //Entropy. 2021. V. 23. №. 12. P. 1557.
- 106. Serkova E. S., Krasnova I. Y., Milenin S. A., Selezneva E. V., Tatarinova E. A., Boldyrev K. L., Muzafarov A. M.. Core/shell hybrid dendrimers: Controllable rigidity determines molecular behaviour //Polymer. – 2018. – V. 138. – P. 83-91.
- 107. Смирнова Н. Н., Маркин А. В., Сологубов С. С., Миленин С.А., Татаринова Е. А.Музафаров А. М. Термодинамические свойства карбосиланового дендримера четвертой генерации с концевыми триметилсилилсилоксановыми группами// Журн. физ. химии. 2022. Т. 96. № 4. С. 1118—1127.
- 108. Milenin S. A., Selezneva E. V., Tikhonov P. A., Vasil'ev V. G., Buzin A. I., Balabaev. N. K., Kurbatov A. O., Petoukhov M. V., Shtykova E. V., Feigin L. A., Tatarinova E. A., Kramarenko E. Yu., Chvalun S. N., Muzafarov A. M. Hybrid polycarbosilane-siloxane dendrimers: synthesis and properties / // Polymers. 2021. V. 13. №. 4. P. 606.
- 109. Migulin D., Tatarinova E., Meshkov I., Cherkaev G., Vasilenko N., Buzin M., Muzafarov A. Synthesis of the first hyperbranched polyorganoethoxysilsesquioxanes and their chemical transformations to functional core—shell nanogel systems / // Polym. Int. — 2016. — V. 65. — № 1. — P. 72—83
- 110. Малышев В. М., Мильнер Г. А., Соркин Е. Л., В. Ф. Шибакин Автоматический низкотемпературный калориметр // Приб. техн. экспер. — 1985. — № 6. — С. 195—197.
- 111. Varushchenko R. M., Druzhinina A. I., Sorkin E. L. Low-temperature heat capacity of 1-bromoperfluorooctane // The Journal of Chemical Thermodynamics 1997. V. 29. № 6. P. 623—637.

- 112. Höhne G.W.H., Hemminger W.F., Flammersheim H.J., Differential Scanning Calorimetry // Berlin: Springer-Verlag Berlin and Heidelberg GmbH. 2003. P. 310.
- 113. Drebushchak V.A. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure, // Journal of Thermal Analysis and Calorimetry. 2005. V.79. P. 213—218.
- 114. ASTM E1131-08(2014). Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International, West Conshohocken, PA, United States — 2014.
- 115. Alford S., Dole M. Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride // Journal of the American Chemical Society. 1955.
 V. 77. № 18. P. 4774—4777.
- 116. Adam G. On the temperature dependence of cooperative relaxation properties in glass-forming liquids / G. Adam, J. H. Gibbs // J. Chem. Phys. 1965. V. 43. P. 139—146.
- 117. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures // Chemical Reviews 1948. V. 43. № 2. P. 219—256.
- 118. Bestul A. B., Chang S. S. Excess entropy at glass transformation // Journal of Chemical Physics — 1964. — V. 40. — P. 3731—3733.
- 119. Debye P. Zur theorie der spezifischen wärmen // Annals of Physics 1912. V.
 344. № 14. P. 789—839.
- 120. Lebedev B. V. Application of precise calorimetry in study of polymers and polymerization processes // Thermochimica Acta. 1997. V. 297. № 1—2. P. 143—149.
- 121. Cox J. D., Wagman D. D., Medvedev V. A. CODATA Key Values for Thermodynamics // New York: Hemisphere Publishing Corp., 1989. 272 p.
- 122. Chase M. W., Jr. NIST-JANAF Thermochemical Tables // J. Phys. Chem. Ref. Data, Monograph. No. 9. — 1998. — V. 1—2. — P. 1—1951.

- 123. Новожилова Н.А. Синтез и свойства дендримеров с различной химической природой внешнего слоя: дис. ... канд. хим. наук. — Москва: Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН. — 2013. — 119 с.
- 124. Meija J., Coplen T. B., Berglund M., Brand W. A., Bièvre De P., Gröning M., Holden N. E., Irrgeher J., Loss R. D., Walczyk T., Prohask T. Atomic weights of the elements 2013 (IUPAC Technical Report) // Pure Appl Chem. 2016. V. 88. No. 3. P. 265—291
- 125. Migulin D., Tatarinova E., Meshkov I., Cherkaev G., Vasilenko N., Buzin M., Muzafarov A. Synthesis of the first hyperbranched polyorganoethoxysilsesquioxanes and their chemical transformations to functional core—shell nanogel systems // Polym. Int. — 2016. — V. 65. — P. 72—83.
- 126. Boldyreva K., Tatarinova E., Meshkov I., Vasilenko N., Buzin M., Novikov R., Vasil'ev V., Shtykova E., Feigin L., Bystrova A., Chvalun S., Muzafarov A. New approach to the synthesis of polymethylsilsesquioxane dendrimers // Polymer. — 2019. — V. 174. — P. 159.
- 127. Смирнова Н. Н., Сологубов С. С., Сармини Ю. А., Маркин А. В., Новожилова Н. А., Татаринова Е. А., Музафаров А. М. Термодинамические свойства карбосилановых дендримеров первой и третьей генераций с концевыми фенилдиоксолановыми группами // Жур. Физ.Хим. —2017. Т.91. №12. С. 2313-2321.
- 128. Westrum E. F., McCullough J. P. Jr. Thermodynamics of crystals // In Physics and Chemistry of the Organic Solid State. — 1963. — V. 1. — P. 1—178.
- 129. Westrum, E. F., Jr. Calorimetry of phase, Schottky and other transitions // In Thermochemistry and Its Applications to Chemical and Biochemical Systems. — 1984. — V. 119. — P. 695—718.
- 130. Sologubov S. S., Sarmini Y. A., Samosudova Y. S., Smirnova N. N., Markin A V., Boldyrev K. L., Meshkov I. B., Tatarinova E A., Muzafarov A. M. Thermodynamic

properties of polymethylsilsesquioxane nanogels with blocking trimethylsilyl groups // J. Chem. Thermodynamics — 2019 V.131. — P. 572—582.

- 131. Маркин А. В., Сармини Ю. А., Сологубов С. С., Смирнова Н. Н., Болдырев К. Л., Татаринова Е. А., Музафаров А. М. Термодинамические свойства силоксанового дендримера первой генерации с концевыми триметилсилильными группами //Журнал физической химии. 2020. Т. 94. №. 2. С. 171-181.
- 132. Sologubov S. S., Markin A. V., Sarmini Y. A., Samosudova Y. S., Smirnova N. N., Boldyrev K. L., Muzafarov, A. M. Calorimetric study of siloxane dendrimer of the third generation with trimethylsilyl terminal groups //Journal of Thermal Analysis and Calorimetry. – 2019. – V. 138. – №. 5. – P. 3301-3310.
- 133. Sologubov, S. S., Markin, A. V., Sarmini, Y. A., Smirnova, N. N., Boldyrev, K. L., Tatarinova, E. A., Muzafarov, A. M. Thermodynamic investigation of G2 and G4 siloxane dendrimers with trimethylsilyl terminal groups //The Journal of Chemical Thermodynamics. – 2021. – V. 153. – P. 106318.

приложение

Экспериментальные значения теплоёмкости [кДж/(К·моль)]

дендримера с карбосилановым ядром G1[(C_6H_4) $C_3H_5O_2$]₈, (M = 2363.90 г/моль)

<i>Т</i> , К	Cp	<i>Т</i> , К	Cp	<i>Т</i> , К	Cp
C	Серия 1	(Серия 2	78.85	1.222
6.01	0.0189	5.95	0.0189	83.96	1.265
6.97	0.0384	6.48	0.0334	86.80	1.303
7.99	0.0364	7.47	0.0376	89.06	1.324
8.93	0.0416	8.48	0.0376	С	ерия 3
9.66	0.0515	9.33	0.0465	86.80	1.303
10.26	0.0626	9.99	0.0574	89.97	1.334
10.86	0.0699	10.57	0.0668	93.20	1.370
11.33	0.0756	11.11	0.0734	97.21	1.423
11.63	0.0783	11.59	0.0774	100.83	1.475
12.13	0.0863	11.88	0.0818	104.46	1.530
17.91	0.2080	13.04	0.1040	108.08	1.581
21.45	0.2827	14.66	0.1430	111.70	1.633
25.55	0.3522	16.27	0.1812	115.31	1.685
29.83	0.4326	19.61	0.2431	118.76	1.733
34.34	0.5279	23.48	0.3174	122.53	1.787
39.03	0.6123	27.67	0.3877	124.80	1.820
43.80	0.6924	32.07	0.4822	129.73	1.875
48.69	0.7801	36.65	0.5744	133.32	1.922
51.16	0.8274	46.24	0.6501	136.90	1.964
56.15	0.9640	41.42	0.7352	140.80	2.016
61.31	1.182	51.16	0.8274	143.20	2.045
66.17	1.204	53.65	0.8647	147.57	2.106
70.62	1.232	59.02	1.194	151.13	2.152
76.31	1.194	63.80	1.189	158.24	2.248
81.39	1.248	68.65	1.251	162.19	2.310
86.51	1.298	73.77	1.184	165.32	2.348

Таблица 1 – продолжение

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
168.84	2.399	275.04	4.618	122.89	1.793
172.37	2.444	278.22	4.638	126.44	1.846
179.42	2.541	280.85	4.647	130.04	1.884
186.45	2.639	284.06	4.669	134.70	1.934
193.30	2.737	287.72	4.695	137.23	1.967
196.81	2.776	290.87	4.707	139.60	2.000
200.19	2.825	294.00	4.728	145.10	2.071
203.62	2.870	297.12	4.744	147.94	2.109
207.03	2.915	300.24	4.766	151.51	2.154
210.48	2.986	303.16	4.782	154.70	2.203
213.90	3.026	306.22	4.796	155.07	2.210
220.67	3.168	309.26	4.817	158.64	2.258
224.09	3.313	312.29	4.839	161.78	2.301
227.50	3.501	315.28	4.846	165.74	2.354
230.88	3.858	318.25	4.870	169.29	2.399
235.08	4.309	321.18	4.893	172.83	2.451
238.40	4.425	С	Серия 4	175.50	2.485
240.73	4.480	83.96	1.265	176.35	2.496
243.83	4.499	86.51	1.298	179.88	2.541
247.10	4.503	89.06	1.324	182.94	2.586
250.29	4.525	90.37	1.339	183.38	2.588
253.22	4.532	94.60	1.390	186.89	2.640
256.35	4.541	97.62	1.430	189.89	2.683
259.43	4.558	101.26	1.483	190.40	2.692
261.40	4.562	104.91	1.537	193.89	2.737
262.56	4.574	108.45	1.586	197.31	2.782
265.66	4.574	112.08	1.636	200.79	2.825
268.81	4.595	115.67	1.691	204.27	2.879
271.95	4.610	119.23	1.742	211.20	2.990

Таблица 1 – продолжение

Т, К	$C_{ m p}$	<i>Т</i> , К	Cp	<i>Т</i> , К	C_{p}
214.65	3.031	317.82	4.870	393.2	5.23
218.10	3.085	320.84	4.889	396.2	5.24
220.00	3.120	323.86	4.903	399.2	5.26
221.54	3.172	С	Серия 5	402.2	5.28
224.96	3.357	318.2	4.89	405.2	5.29
228.38	3.572	321.2	4.90	408.2	5.31
231.76	4.019	324.2	4.91	411.2	5.32
237.48	4.442	327.2	4.91	414.2	5.34
241.71	4.491	330.2	4.93	417.2	5.36
248.33	4.520	333.2	4.94	420.2	5.38
254.85	4.541	336.2	4.95	423.2	5.39
261.40	4.562	339.2	4.97	426.2	5.41
264.67	4.579	342.2	4.98	429.2	5.43
267.92	4.595	345.2	4.99	432.2	5.44
271.19	4.605	348.2	5.00	435.2	5.46
274.39	4.626	351.2	5.02	438.2	5.47
277.64	4.631	354.2	5.04	441.2	5.49
281.40	4.652	357.2	5.05	444.2	5.50
284.56	4.669	360.2	5.07	447.2	5.52
287.18	4.690	363.2	5.08	450.2	5.53
290.37	4.707	366.2	5.09	453.2	5.55
293.54	4.723	369.2	5.10	456.2	5.56
296.67	4.740	372.2	5.12	459.2	5.58
299.81	4.759	375.2	5.14	462.2	5.59
302.55	4.770	378.2	5.16	465.2	5.61
305.64	4.796	381.2	5.17	468.2	5.63
308.71	4.818	384.2	5.18	471.2	5.65
311.75	4.829	387.2	5.20	474.2	5.67
314.80	4.851	390.2	5.21	477.2	5.68

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
480.2	5.69	495.2	5.76	510.2	5.83
483.2	5.71	498.2	5.78	513.2	5.85
486.2	5.72	501.2	5.80	516.2	5.86
489.2	5.74	504.2	5.81	518.2	5.87
492.2	5.75	507.2	5.82	521.2	5.89

Таблица 1 – окончание

Экспериментальные значения теплоемкости [кДж/(К·моль)]

дендримера с карбосилановым ядром	$G3[(C_6H_4)C_3H_5O_2]_{32},$	$(M = 10394.45 \ г/моль)$
-----------------------------------	-------------------------------	---------------------------

<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
C	серия 1	66.50	5.451	48.98	3.517
5.85	0.089	70.35	5.449	51.74	3.763
6.66	0.123	71.85	5.303	56.05	4.541
7.36	0.158	74.36	5.074	56.97	4.933
8.22	0.201	77.32	5.246	58.26	5.327
9.11	0.244	80.74	5.506	61.88	5.301
10.02	0.296	87.58	5.904	65.35	5.405
10.99	0.361	(Серия 2	68.66	5.552
12.08	0.442	6.25	0.103	70.88	5.409
13.55	0.573	7.01	0.142	73.87	5.092
15.11	0.7012	7.86	0.181	76.82	5.211
16.67	0.8239	8.67	0.220	79.29	5.409
18.26	0.9644	9.56	0.269	84.16	5.699
19.93	1.111	10.49	0.323	С	ерия 3
24.30	1.485	11.52	0.396	90.96	6.168
29.14	1.941	12.84	0.508	94.32	6.330
34.07	2.336	14.36	0.637	97.69	6.559
38.97	2.762	15.78	0.7554	101.06	6.756
43.86	3.100	17.42	0.8880	104.43	7.027
48.76	3.503	19.10	1.036	107.79	7.232
51.22	3.715	21.83	1.260	111.16	7.407
54.92	4.145	26.72	1.742	114.52	7.561
56.83	4.861	31.60	2.139	117.88	7.691
58.00	5.254	36.53	2.557	121.24	7.829
59.72	5.319	41.41	2.945	124.59	7.956
63.81	5.335	46.52	3.287	127.94	8.071

Таблица 2 – продолжение

Т, К	Cp	<i>Т</i> , К	Cp	<i>Т</i> , К	Cp
131.29	8.186	226.83	12.84	321.85	19.74
134.63	8.315	230.12	13.07	325.11	19.84
137.98	8.448	233.41	13.67	328.37	19.93
141.32	8.594	236.68	14.59	331.64	20.02
144.65	8.754	239.95	16.51	334.93	20.12
147.98	8.907	243.21	17.65	338.24	20.20
151.30	9.067	246.49	17.84	341.56	20.30
154.62	9.229	249.78	17.85	344.91	20.39
157.93	9.427	253.08	17.90	C	Серия 4
161.25	9.593	256.38	17.98	90.87	6.171
164.56	9.749	259.69	18.08	91.63	6.205
167.86	9.901	263.00	18.17	94.24	6.356
171.17	10.08	266.30	18.23	94.99	6.397
174.47	10.21	269.61	18.32	98.71	6.611
177.76	10.37	272.91	18.42	102.55	6.893
181.06	10.54	276.22	18.50	106.54	7.142
184.34	10.70	279.52	18.58	109.90	7.329
187.62	10.85	282.81	18.66	113.26	7.503
190.89	11.00	286.09	18.73	116.62	7.625
194.16	11.12	289.37	18.80	119.97	7.765
197.43	11.28	292.63	18.89	123.32	7.907
200.69	11.44	295.88	19.00	126.67	8.022
203.95	11.63	299.13	19.10	130.02	8.125
207.21	11.78	302.38	19.19	133.37	8.252
210.48	11.92	305.62	19.27	136.71	8.399
213.74	12.05	308.85	19.37	142.76	8.649
217.01	12.25	312.10	19.46	146.73	8.844
220.28	12.46	315.35	19.55	150.05	9.005
223.56	12.65	318.60	19.65	153.37	9.177

Таблица 2 – продолжение

<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	C_{p}	<i>Т</i> , К	C_{p}
156.68	9.321	251.57	17.87	406.2	21.7
159.99	9.532	254.85	17.93	409.2	21.8
163.29	9.688	258.13	18.03	412.2	21.9
166.60	9.829	261.42	18.12	415.2	22.0
169.89	10.01	264.71	18.20	418.2	22.1
173.19	10.16	267.99	18.29	421.2	22.1
176.48	10.28	C	Серия 5	424.2	22.2
179.76	10.46	340.2	20.3	427.2	22.3
183.05	10.61	343.2	20.3	430.2	22.4
186.33	10.78	346.2	20.4	433.2	22.4
189.61	10.92	349.2	20.5	436.2	22.5
192.87	11.07	352.2	20.6	439.2	22.6
196.12	11.21	355.2	20.6	442.2	22.6
199.38	11.37	358.2	20.7	445.2	22.7
202.64	11.55	361.2	20.7	448.2	22.8
205.89	11.72	364.2	20.8	451.2	22.8
209.15	11.87	367.2	20.9	454.2	22.9
212.42	11.99	370.2	21.0	457.2	23.0
215.68	12.17	373.2	21.0	460.2	23.0
218.94	12.38	376.2	21.1	463.2	23.1
222.20	12.57	379.2	21.2	466.2	23.2
225.46	12.76	382.2	21.2	469.2	23.2
228.73	12.95	385.2	21.3	472.2	23.3
231.99	13.39	388.2	21.4	475.2	23.3
235.26	14.10	391.2	21.4	478.2	23.4
238.52	15.65	394.2	21.5	481.2	23.4
241.76	17.27	397.2	21.5	484.2	23.5
245.01	17.81	400.2	21.6	487.2	23.6
248.28	17.85	403.2	21.7	490.2	23.6

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
493.2	23.7	505.2	23.9	517.2	24.2
496.2	23.7	508.2	24.0	521.2	24.3
499.2	23.8	511.2	24.1		
502.2	23.9	514.2	24.1		

Таблица 2 – окончание

<i>Т</i> , К	Cp	<i>Т</i> , К	Cp	Т, К	Cp
C	ерия 1	61.54	32.02	62.18	32.47
6.06	1.02	63.35	33.26	63.10	33.10
6.51	1.16	65.29	34.25	64.27	33.80
7.01	1.35	67.11	34.56	65.09	34.24
8.33	1.83	68.90	34.62	66.26	34.43
8.85	2.06	70.71	35.39	67.64	34.54
9.46	2.33	72.53	36.51	69.27	34.90
10.10	2.64	74.34	37.70	70.08	35.26
10.46	2.85	76.18	38.73	72.27	36.57
11.06	3.15	78.00	39.71	74.16	37.57
11.74	3.49	79.85	40.67	76.04	38.63
12.09	3.66	81.66	41.51	78.34	39.82
12.89	4.06	83.49	42.29	80.12	40.69
14.16	4.71	85.31	43.10	82.16	41.81
15.44	5.443	87.14	43.91	84.20	42.70
16.75	6.182	(Серия 2	86.00	43.44
18.09	6.978	36.16	16.73	87.82	44.25
19.55	7.843	38.33	17.84	C	ерия 3
22.14	9.278	40.06	18.75	86.61	43.50
25.65	11.34	42.30	19.99	91.61	46.08
29.21	13.24	44.19	21.05	96.34	48.16
32.81	15.01	46.18	22.16	101.06	50.31
36.41	16.88	47.55	23.01	105.78	52.28
40.01	18.76	49.29	24.11	110.50	54.27
41.83	19.74	51.33	25.41	115.23	56.11
43.60	20.68	52.19	25.94	119.95	57.95
45.42	21.81	53.31	26.74	124.67	59.83
47.20	22.77	54.28	27.35	129.38	61.52
49.02	23.84	55.3	28.00	134.10	63.21
50.81	25.07	56.12	28.56	138.80	64.79
52.62	26.22	57.24	29.25	143.50	66.48
54.57	27.48	58.10	29.77	148.19	68.19
56.38	28.72	59.23	30.40	152.87	69.77
58.01	29.62	60.24	31.14	157.55	71.32
59.82	30.83	61.31	31.88	162.23	72.96

Экспериментальные значения теплоемкости (Дж/(К·моль)) полиметилсилсесквиоксаного наногеля (*М*_{звена} = 72.140г/моль)

<i>Т</i> , К	Cp	Т, К	$C_{ m p}$	Т, К	C_{p}
166.90	74.53	342.10	114.7	365.3	118.6
171.57	76.15	346.93	115.6	368.3	119.0
176.23	77.83	Серия 4		371.3	119.8
180.89	79.72	150.26	69.01	374.3	120.4
185.53	81.87	152.60	69.69	377.3	120.7
190.15	86.47	154.93	70.47	380.3	121.1
194.72	93.97	157.26	71.22	383.3	121.4
199.29	97.44	159.59	72.04	386.3	121.9
204.20	98.20	161.92	72.87	389.3	122.6
208.54	98.59	164.25	73.59	392.3	122.8
213.19	99.07	166.57	74.58	395.3	123.4
217.83	99.65	168.89	75.21	398.3	123.9
222.47	100.0	171.21	76.12	401.3	124.4
227.30	100.7	173.52	76.88	404.3	124.9
231.76	101.2	175.83	77.71	407.3	125.3
236.40	101.7	178.13	78.51	410.3	126.0
241.06	102.1	180.43	79.57	413.3	126.5
245.70	102.7	182.73	80.34	416.3	126.8
250.35	103.3	185.03	81.44	419.3	127.2
254.50	103.8	187.32	83.18	422.3	127.7
259.67	104.3	189.60	85.53	425.3	128.1
264.32	104.8	191.95	89.09	428.3	128.5
268.98	105.4	194.42	93.74	431.3	128.9
273.63	105.8	196.56	95.77	434.3	129.5
278.28	106.4	198.83	97.05	437.3	129.7
282.92	107.0	201.10	97.82	440.3	130.1
287.55	107.5	203.36	98.11	443.3	130.5
292.17	108.0	205.63	98.30	446.3	131.0
296.77	108.6	Серия 5		449.3	131.7
301.35	109.1	338.3	114.1	452.3	132.2
305.91	109.8	341.3	114.8	455.3	132.8
310.42	110.4	344.3	115.3	458.3	133.1
314.98	111.1	347.3	115.7	461.3	133.8
319.53	111.7	350.3	115.9	464.3	134.2
324.08	112.2	353.3	116.8	467.3	134.7
328.20	112.8	356.3	117.4	470.3	135.4
333.19	113.6	359.3	117.6	473.3	135.7
337.76	114.3	362.3	118.0	476.3	136.4

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
479.3	136.6	488.3	138.0	497.3	139.3
482.3	136.8	491.3	138.5	500.3	139.4
485.3	137.4	494.3	139.0		

Таблица 3 – окончание
Т, К	Cp	<i>Т</i> , К	$C_{ m p}$	Т, К	Cp
C	ерия 1	72.63	34.31	90.99	43.21
5.87	0.859	76.29	36.12	94.10	44.63
6.04	0.909	79.95	37.89	97.21	45.99
6.43	1.05	83.59	39.67	100.32	47.26
6.78	1.15	87.23	41.44	103.42	48.69
7.16	1.28	(Серия 2	106.52	49.86
7.82	1.54	36.24	16.05	109.61	51.06
8.12	1.66	39.83	17.83	112.71	52.21
8.71	1.89	43.42	19.65	115.80	53.43
9.31	2.14	45.22	20.64	118.89	54.50
9.92	2.40	47.03	21.53	121.97	55.62
10.55	2.73	48.83	22.46	125.05	56.72
10.88	2.88	50.63	23.41	128.12	57.77
11.56	3.23	52.32	24.69	131.19	58.84
11.91	3.40	54.23	26.25	134.26	59.93
12.25	3.54	56.11	27.79	137.32	60.98
13.05	3.95	57.81	29.22	140.38	62.12
14.33	4.53	59.61	30.80	143.44	63.01
15.62	5.221	61.41	32.42	146.49	63.95
16.93	5.931	63.32	33.80	149.53	64.98
18.27	6.672	64.84	34.63	152.57	65.95
19.74	7.465	66.41	34.23	155.61	66.84
22.33	8.887	68.69	32.73	158.64	67.74
25.83	10.79	70.39	33.17	161.68	68.73
29.37	12.68	72.34	34.21	164.70	69.57
32.94	14.44	74.14	35.09	167.73	70.42
36.54	16.20	75.99	36.02	170.74	71.32
40.13	17.97	77.79	36.98	173.75	72.02
43.71	19.82	79.65	37.80	176.76	72.77
47.31	21.75	81.45	38.73	179.77	73.66
50.91	23.62	83.29	39.61	182.73	74.37
54.50	26.47	85.19	40.43	185.73	75.12
58.09	29.46	86.94	41.29	188.72	75.90
61.70	32.66	0	Серия 3	191.71	76.78
65.34	34.63	84.56	40.22	194.69	77.69
68.98	32.75	85.90	40.81	197.67	78.55

Экспериментальные значения теплоемкости (Дж/(К·моль)) полиметилсилсесквиоксаного наногеля II ($M_{3вена} = 70.818$ г/моль)

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
203.20	79.91	337.82	107.4	374.7	112.9
206.86	80.84	341.27	107.8	377.7	113.3
210.30	81.68	344.72	108.1	380.7	113.6
213.74	82.77	C	Серия 4	383.7	114.0
217.20	84.27	188.00	75.71	386.7	114.4
220.58	86.33	191.68	76.83	389.7	114.9
224.00	88.10	195.11	77.86	392.7	115.3
227.45	90.08	198.53	78.75	395.7	115.7
230.89	92.25	201.94	79.65	398.7	116.1
234.30	95.75	205.34	80.48	401.7	116.4
237.74	97.20	208.76	81.29	404.7	116.8
241.19	97.50	212.17	82.18	407.7	117.1
244.66	97.79	215.58	83.53	410.7	117.6
248.13	98.27	218.99	85.34	413.7	118.0
251.60	98.47	221.53	87.16	416.7	118.3
255.07	98.95	225.76	88.95	419.7	119.0
258.53	99.24	229.36	91.21	422.7	119.4
262.01	99.63	232.75	94.82	425.7	120.0
265.48	99.92	236.13	96.53	428.7	120.5
268.96	100.2	239.53	97.20	431.7	121.1
272.43	100.5	242.93	97.69	434.7	121.7
275.91	100.9	246.34	98.08	437.7	122.2
279.38	101.1	249.74	98.47	440.7	122.7
282.84	101.4	253.15	98.66	443.7	123.2
286.31	101.8	256.55	99.05	446.7	124.0
289.76	102.1	259.94	99.44	449.7	124.5
293.21	102.6	C	Серия 5	452.7	125.0
296.65	102.9	338.7	107.3	455.7	125.6
300.09	103.5	341.7	107.8	458.7	126.1
303.52	103.6	344.7	108.3	461.7	126.6
306.94	104.0	347.7	108.6	464.7	127.1
310.36	104.2	350.7	108.8	467.7	127.5
313.75	104.7	353.7	109.5	470.7	128.0
317.18	105.0	356.7	110.1	473.7	128.6
320.61	105.4	359.7	110.2	476.7	129.1
324.05	105.7	362.7	110.6	479.7	129.6
327.49	105.9	365.7	111.3	482.7	130.0
330.93	106.4	368.7	111.7	485.7	130.6
334.37	106.8	371.7	112.2	488.7	131.3

Таблица 4 – окончание

Т, К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
491.7	131.8	497.7	132.9	500.7	133.3
494.7	132.5				

<i>Т</i> , К	$C_{ m p}$	<i>T</i> , K	$C_{ m p}$	Т, К	$C_{ m p}$
С	ерия 1	12.14	46.9	73.63	457.8
5.64	11.6	12.95	51.1	75.50	470.6
5.81	14.6	14.22	62.2	77.36	482.6
5.95	13.3	15.56	74.67	79.23	490.7
6.11	13.7	16.86	86.78	81.39	504.5
6.25	14.2	18.19	98.93	83.86	517.8
6.38	14.8	19.54	110.3	86.32	529.8
6.52	15.0	21.63	124.8	С	ерия 2
6.64	16.1	24.11	141.4	28.39	171.2
6.77	16.5	26.58	158.7	30.34	184.1
6.89	17.0	29.06	175.4	33.01	200.0
7.01	18.4	31.54	191.9	35.29	211.0
7.14	18.5	34.04	204.3	37.8	227.1
7.26	18.8	36.53	217.7	40.56	242.6
7.48	17.7	39.01	233.6	42.93	257.6
7.78	19.4	41.49	249.5	45.48	277.8
8.05	20.8	43.97	265.4	47.8	293.8
8.34	22.4	46.45	285.0	49.87	308.3
8.65	23.8	48.93	301.8	52.29	327.7
8.96	24.8	51.11	318.4	53.96	342.7
9.27	26.2	52.98	334.3	56.07	360.8
9.57	28.0	54.85	349.4	58.02	397.6
9.88	29.4	56.72	369.6	59.11	409.5
10.18	31.4	58.62	407.5	61.22	407.4
10.49	33.5	60.49	405.7	63.15	421.9
10.80	36.0	62.38	416.2	65.22	434.9
11.13	38.4	64.25	428.3	67.10	448.8
11.46	40.6	66.12	441.4	68.77	453.0
11.79	43.6	67.98	453.1	70.88	447.9

Экспериментальные значения теплоемкости [Дж/(К·моль)] дендримера с силоксановым ядром G1[OSi(CH3)3]6 (М = 755.56 г/моль)

Таблица 5 –	продолжение
-------------	-------------

Т, К	Cp	<i>Т</i> , К	Cp	<i>Т</i> , К	$C_{ m p}$
72.73	450.0	162.74	1078	266.49	1200
74.58	463.4	166.24	1081	269.92	1205
76.46	476.9	169.73	1085	273.36	1209
78.42	487.2	173.22	1089	276.79	1214
80.16	496.6	176.71	1092	280.21	1220
82.49	510.5	180.20	1095	283.64	1226
84.72	521.9	183.68	1099	287.06	1231
С	ерия 3	187.15	1102	290.48	1236
84.67	519.7	190.62	1105	293.89	1241
88.46	539.2	194.08	1109	297.69	1247
92.02	557.6	197.53	1112	300.68	1252
95.58	576.5	200.98	1116	304.60	1259
102.93	611.9	204.42	1121	307.44	1265
106.69	631.7	207.87	1123	310.82	1269
110.22	648.3	211.33	1127	314.20	1275
113.75	665.2	214.76	1130	317.58	1281
117.28	680.3	218.21	1135	320.95	1286
120.81	696.3	221.67	1141	323.92	1291
124.34	708.8	225.11	1146	327.52	1298
127.86	726.8	228.55	1152	330.66	1303
131.38	744.7	232.01	1157	334.03	1310
134.91	759.9	235.46	1162	337.23	1317
138.42	781.1	238.91	1166	340.37	1323
141.94	801.7	242.36	1170	343.73	1330
145.43	847.1	245.81	1175	347.08	1335
148.82	1047	249.25	1179	С	ерия 4
152.22	1068	252.70	1184	116.15	674.0
155.73	1072	256.15	1188	119.94	691.1
159.23	1074	259.60	1192	123.48	706.9

<i>T</i> , K	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
127.01	722.1	200.33	1114	357.5	1354
130.54	738.5	203.77	1118	360.5	1359
134.07	755.1	207.22	1122	363.5	1364
137.60	772.9	210.67	1124	366.5	1369
141.13	794.3	214.11	1129	369.5	1375
144.63	831.8	217.55	1133	372.5	1380
148.05	1012	220.99	1139	375.5	1385
151.46	1065	224.42	1145	378.5	1390
154.96	1070	227.81	1151	381.5	1396
158.48	1072	231.24	1156	384.5	1402
162.00	1075	234.68	1160	387.5	1407
165.51	1078	C	Серия 5	390.5	1412
169.01	1083	330.5	1303	393.5	1417
172.50	1087	333.5	1308	396.5	1423
176.00	1090	336.5	1316	399.5	1429
179.50	1094	339.5	1322	402.5	1434
182.98	1097	342.5	1329	405.5	1440
186.46	1100	345.5	1334	408.5	1445
189.94	1104	348.5	1338	410.5	1449
193.41	1107	351.5	1344		
196.88	1111	354.5	1349		

Таблица 5 – продолжение

Экспериментальные значения теплоемкости [Дж/(К·моль)]

карбосиланового дендримера G2 OSi(CH ₃)3 12	(M =	= 1645.35 г/м	юль)
---	-------	------	---------------	------

<i>Т</i> , К	$C_{ m p}$	<i>T</i> , K	C_{p}	<i>Т</i> , К	$C_{ m p}$
	Серия 1	10.19	69.5	41.66	537.5
5.74	21.4	10.89	80.0	43.99	572.1
5.94	22.8	11.44	88.4	46.35	613.5
6.12	24.0	12.01	97.4	48.72	653.5
6.31	25.6	12.46	105	51.10	702.3
6.44	26.7	13.05	115	53.50	751.4
6.61	28.1	13.67	126	55.91	811.7
6.73	29.0	14.29	137	58.16	911.9
6.85	30.1	14.92	149	60.65	912.5
7.01	31.4	15.56	159.5	63.11	931.6
7.17	32.8	16.29	173.3	65.62	961.2
7.28	33.6	16.89	184.7	68.04	993.0
7.43	35.3	17.61	197.4	71.12	973.7
7.57	36.5	18.43	210.6	73.47	968.3
7.73	38.0	19.21	222.2	76.71	1005
7.90	39.8	19.51	227.2		Серия 2
8.06	41.4	19.67	230.0	37.49	479.4
8.19	43.0	20.87	249.1	40.34	515.4
8.34	44.7	22.69	275.2	42.95	553.9
8.50	46.4	22.91	278.2	45.99	606.3
8.65	48.4	25.03	307.1	47.62	631.4
8.82	50.5	27.18	336.4	50.65	691.7
9.00	53.0	29.37	367.4	52.51	731.2
9.20	55.5	31.59	399.6	55.30	792.2
9.38	57.7	36.50	466.4	57.82	899.6
9.53	60.0	38.61	495.1	58.87	926.7
9.69	62.3	39.34	504.8	61.00	914.2
9.82	64.3	40.95	527.5	62.69	925.5

Таблица	6 - n	родолжение
---------	-------	------------

<i>Т</i> , К	Cp	Т, К	Cp	Т, К	C_{p}
67.44	986.9	124.16	1513	171.24	2314
70.17	975.9	125.89	1527	173.00	2317
72.68	966.6	127.61	1542	174.76	2320
74.29	974.9	129.33	1557	176.58	2324
78.06	1025	131.06	1575	178.34	2329
79.28	1038	132.79	1594	180.11	2332
81.51	1066	134.52	1612	181.88	2337
83.47	1090	136.25	1624	183.65	2340
	Серия 3	137.98	1644	185.42	2342
83.01	1084	139.72	1659	187.19	2346
87.63	1147	141.46	1679	189.00	2349
90.99	1189	143.19	1695	190.74	2352
94.37	1230	144.94	1711	192.51	2355
97.74	1268	146.68	1731	194.24	2357
101.13	1299	148.46	1748	196.06	2360
103.67	1326	150.21	1766	197.83	2362
105.36	1340	151.96	1785	199.61	2365
107.06	1354	153.71	1806	201.70	2370
108.75	1371	155.46	1834	203.16	2372
110.45	1386	157.21	1876	205.01	2375
112.15	1401	158.96	1931	206.80	2377
113.85	1419	160.71	2030	208.59	2381
115.56	1434	162.45	2277	210.38	2384
117.27	1448	164.10	2299	212.18	2388
118.98	1464	165.95	2303	214.04	2392
120.73	1479	167.71	2307	215.79	2396
122.44	1498	169.47	2311	217.60	2399

Таблица 6 –продолжение

<i>Т</i> , К	Cp	Т, К	$C_{ m p}$	<i>Т</i> , К	Cp
219.42	2404	272.49	2592	331.50	2830
221.24	2408	274.44	2598	333.53	2838
222.85	2413	276.40	2604	335.54	2845
224.89	2420	278.35	2612	337.35	2853
226.72	2426	280.31	2618	339.27	2861
229.20	2434	282.27	2624	342.00	2873
230.75	2438	284.23	2633	343.80	2878
232.48	2443	286.19	2640	344.77	2882
234.02	2447	288.14	2646	346.54	2890
236.07	2454	290.09	2652	348.26	2897
237.94	2461	292.04	2660		Серия 4
239.83	2467	293.98	2668	129.31	1557
241.68	2474	296.07	2677	131.71	1582
243.55	2480	297.99	2683	133.43	1599
245.43	2485	299.90	2691	135.14	1617
247.01	2491	302.19	2700	136.85	1631
249.22	2500	304.59	2708	138.57	1648
251.12	2507	306.97	2717	140.28	1665
253.02	2516	309.33	2730	142.00	1685
255.00	2523	311.67	2741	143.71	1699
256.84	2532	313.99	2750	145.43	1715
258.91	2540	316.28	2759	147.15	1734
260.68	2548	318.55	2773	148.86	1750
262.81	2557	320.78	2783	150.58	1770
264.78	2564	322.99	2794	152.63	1793
266.81	2571	325.17	2804	154.01	1811
268.90	2579	327.31	2813	155.73	1832
270.53	2584	329.42	2821	157.46	1864

Таблица 6-продолжение

<i>Т</i> , К	Cp	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	Cp
159.17	1932	206.51	2377	329.4	2822
160.88	2064	208.17	2379	332.5	2830
162.57	2286	209.84	2383	335.5	2845
164.15	2299	211.47	2386	338.5	2855
165.92	2304	213.13	2389	341.5	2869
167.69	2307	214.79	2392	344.6	2879
169.40	2311	216.50	2396	347.5	2892
171.11	2314	218.11	2399	350.5	2900
172.82	2317	219.76	2403	353.5	2917
174.52	2320	221.41	2407	357.3	2927
176.23	2324	223.07	2412	360.7	2947
177.93	2328	224.72	2417	364.5	2956
179.63	2331	226.36	2423	367.1	2971
181.33	2335	228.01	2429	370.5	2980
183.02	2338	229.66	2436	373.5	2996
184.72	2341	231.30	2441	377.1	3007
186.36	2344	232.95	2445	379.5	3024
188.11	2347	234.59	2450	382.8	3031
189.79	2350	236.24	2456	386.0	3043
191.54	2353	237.85	2462	388.5	3058
193.16	2356	239.49	2468	391.5	3069
194.84	2358	241.12	2473	394.5	3075
196.52	2360	242.75	2477	397.5	3086
198.19	2363	244.38	2482	400.5	3103
199.85	2365	(Серия 5	403.9	3121
201.52	2368	320.5	2783	406.5	3127
203.19	2371	323.5	2800	409.5	3141
204.85	2374	326.3	2807	412.5	3154

<i>Т</i> , К	Cp	Т, К	Cp	<i>Т</i> , К	Cp
415.5	3161	452.2	3307	487.5	3455
418.5	3180	454.5	3324	490.5	3461
421.5	3187	457.5	3329	493.5	3478
424.5	3204	460.5	3344	496.5	3482
427.9	3211	463.5	3353	499.5	3499
430.5	3227	466.5	3370	502.5	3515
433.5	3232	469.5	3378	505.5	3521
436.5	3249	472.5	3393	508.5	3537
439.5	3264	475.5	3399	511.5	3545
442.5	3276	478.5	3415	514.5	3565
445.5	3279	481.5	3430	517.5	3568
448.5	3300	484.5	3435	520.5	3583

Экспериментальные значения теплоемкости [Дж/(К·моль)]

кароосиланового дендримера $O_{3}(Cn_{3})_{3}SIO_{24}$ (M – 5424.95 17моль
--

<i>Т</i> , К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
C	ерия 1	10.94	162	63.75 1820	
5.67	37.6	11.53	181	66.25	1869
5.84	41.3	12.13	199	68.76	1934
6.01	45.5	12.73	218	71.26	1990
6.18	48.7	13.36	240	73.75	2051
6.31	51.8	13.99	260	76.25	2106
6.45	52.2	14.64	285	78.75	2162
6.59	55.5	15.29	307.5	81.26	2224
6.73	57.5	15.96	329.5	83.78	2271
6.87	60.5	16.63	354.6	86.30	2328
7.01	63.6	17.30	378.4	88.83	2378
7.16	67.0	17.99	401.6	91.37	2433
7.31	69.2	21.42	531.5	93.91	2477
7.46	72.7	23.37	605.2	96.45	2531
7.62	75.1	25.53	679.4	С	ерия 2
7.78	79.1	27.77	751.8	15.63	320.2
7.94	82.7	30.03	829.2	16.28	344.2
8.08	85.2	32.31	899.9	16.95	369.9
8.25	89.7	34.63	967.5	17.56	390.1
8.41	92.8	36.97	1045	18.26	414.8
8.58	97.0	39.34	1113	18.91	438.4
8.75	100	41.72	1180	19.65	466.4
8.92	104	44.12	1252	20.26	489.1
9.10	109	46.53	1326	21.65	539.7
9.27	115	48.96	1403	23.77	616.5
9.45	120	51.39	1491	25.96	693.2
9.63	124	53.84	1580	28.18	762.7
9.81	129	56.29	1689	30.43	839.8
9.99	136	58.74	1736	32.66	906.2
10.37	145	61.25	1798	35.02	977.7

Таблица 7 – продолжение

Т, К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
37.35	1053	109.09	2763	192.21	4634
39.71	1120	111.65	2804	194.84	4643
42.09	1188	114.21	2848	197.47	4651
44.49	1259	116.77	2885	200.10	4662
46.89	1341	119.34	2937	202.73	4672
49.32	1415	121.91	2991	205.36	4680
51.75	1504	124.48	3029	208.00	4688
54.20	1595	127.08	3079	210.69	4696
56.65	1707	129.67	3114	213.34	4706
59.12	1755	132.25	3158	215.99	4718
61.61	1801	134.84	3205	218.93	4731
64.11	1816	137.43	3246	221.31	4742
66.61	1874	140.02	3294	223.98	4752
69.12	1940	142.61	3337	226.65	4766
71.62	2002	145.21	3380	229.32	4780
74.11	2062	147.81	3423	232.00	4793
76.60	2118	150.41	3471	234.69	4804
79.11	2174	153.01	3517	237.39	4818
81.62	2229	155.62	3557	240.09	4833
84.13	2284	158.23	3604	242.79	4846
86.66	2334	160.84	3661	245.50	4856
89.19	2383	163.45	3720	245.76	4856
С	ерия 3	166.06	3807	248.34	4865
85.51	2314	168.70	3960	248.54	4865
88.77	2378	171.28	4376	250.94	4874
91.30	2433	173.86	4579	251.58	4876
93.83	2484	176.46	4594	253.76	4884
96.36	2533	179.08	4598	254.12	4885
98.90	2580	181.71	4604	256.50	4897
101.44	2620	184.33	4611	256.93	4899
103.99	2666	186.96	4618	259.23	4911
106.54	2717	189.58	4626	259.74	4913

Таблица 7 – продолжение

Т, К	Cp	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
261.98	4927	(Серия 4	166.85	3839
264.73	4942	86.88	2339	169.25	4012
265.58	4947	89.69	2401	170.83	4332
267.49	4958	92.13	2451	174.09	4589
268.42	4962	94.72	2498	177.40	4594
270.63	4973	97.11	2543	179.80	4600
271.26	4976	99.88	2588	182.61	4604
273.02	4984	102.37	2635	185.22	4613
274.12	4991	104.67	2687	187.83	4618
276.04	4997	107.26	2728	190.43	4628
276.86	5004	110.16	2780	192.76	4636
279.84	5017	112.69	2819	195.70	4643
282.72	5029	115.32	2865	197.94	4654
285.60	5040	117.81	2910	200.81	4662
288.45	5054	120.48	2955	203.52	4672
291.31	5062	122.78	3000	206.48	4681
294.15	5079	125.40	3048	208.94	4692
296.99	5092	128.18	3090	211.54	4702
299.81	5106	130.58	3135	214.45	4711
303.18	5118	133.17	3181	216.36	4718
306.77	5136	136.11	3220	218.86	4731
310.33	5159	138.65	3263	222.47	4746
314.50	5177	140.94	3313	224.48	4752
318.41	5193	143.53	3348	227.09	4767
322.79	5211	146.12	3401	228.59	4777
327.17	5229	148.71	3433	231.20	4789
331.56	5247	151.31	3481	234.21	4802
335.94	5265	153.90	3523	236.80	4813
340.32	5283	156.49	3568	239.39	4829
344.71	5301	159.08	3616	241.98	4841
349.09	5319	161.67	3677	244.57	4854
350.47	5337	164.26	3746	247.17	4860

<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$	Т, К	$C_{ m p}$
249.76	4868	375.5	5464	471.5	5856
252.35	4878	378.5	5463	474.5	5867
254.94	4890	381.5	5476	476.8	5878
257.53	4900	384.5	5489	480.5	5895
260.12	4915	387.5	5485	483.5	5924
262.71	4927	390.4	5516	486.5	5920
265.30	4941	393.5	5533	489.5	5937
267.89	4960	396.5	5544	492.5	5935
270.48	4966	399.5	5554	495.5	5970
273.07	4982	402.5	5584	498.5	5971
С	ерия 5	405.5	5578	501.5	5984
312.5	5166	408.5	5591	504.5	5986
315.5	5176	411.5	5602	507.5	6010
318.5	5193	414.5	5596	510.5	6023
321.5	5209	417.5	5628	513.5	6053
324.5	5221	420.5	5634	516.5	6051
327.5	5231	423.5	5646	518.9	6059
330.5	5252	426.5	5679	521.5	6068
333.5	5266	429.5	5669	523.5	6078
336.5	5279	432.5	5688	526.5	6106
339.5	5293	435.5	5688	529.5	6092
342.5	5328	438.5	5717	532.5	6118
345.5	5323	441.5	5739	535.5	6143
348.5	5316	444.5	5739	538.5	6132
351.5	5348	447.5	5754	541.8	6166
354.5	5364	450.5	5753	544.5	6157
357.5	5386	453.5	5776	547.5	6192
360.5	5381	456.5	5792	550.5	6182
363.5	5397	459.5	5824	553.5	6210
366.5	5395	462.5	5814	556.5	6206
369.5	5421	465.5	5827	559.5	6236
372.2	5437	468.5	5868	562.5	6236

<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
565.5	6254	568.5	6268	571.5	6275

Экспериментальные значения теплоемкости [Дж/(К·моль)]

карбосиланового дендримера G4[(CH₃)₃SiO]₄₈ (M = 6984.1 г/моль)

<i>Т</i> , К	$C_{ m p}$	Т, К	$C_{ m p}$	Т, К	$C_{ m p}$
Ce	ерия 1	10.87	340	50.50	3241
5.89	94.4	11.44	375	52.92	3451
6.06	98.2	12.02	412	55.35	3691
6.23	106	12.61	457	57.79	3896
6.36	109	13.20	499	60.26	3910
6.50	116	13.82	542	62.75	3878
6.64	120	14.44	588	65.25	3950
6.79	126	15.07	642.0	67.74	4074
6.93	131	15.71	691.4	70.24	4194
7.07	135	16.36	743.2	72.73	4314
7.21	144	17.01	790.8	75.21	4415
7.36	150	17.67	848.1	77.70	4519
7.51	153	18.34	894.1	80.20	4622
7.66	160	19.01	955.2	82.70	4714
7.82	165	19.69	1013	85.21	4806
7.97	172	21.02	1120	87.73	4893
8.13	179	23.06	1256	90.40	4995
8.27	185	25.18	1406	92.78	5071
8.43	193	27.33	1573	95.32	5167
8.59	203	29.52	1742	C	ерия 2
8.76	212	31.74	1914	34.41	2078
8.92	220	34.00	2052	36.55	2233
9.09	233	36.55	2228	38.48	2355
9.26	238	38.61	2359	40.44	2478
9.43	251	40.96	2520	43.46	2706
9.61	255	43.32	2689	45.45	2856
9.78	266	42.80	2642	47.56	3018
9.96	279	45.70	2863	49.97	3209
10.32	305	48.09	3043	52.39	3422

Таблица 8 – продолжение

<i>Т</i> , К	Cp	<i>Т</i> , К	$C_{ m p}$	Т, К	$C_{ m p}$
54.82	3645	112.56	5671	192.70	9078
57.27	3880	115.11	5740	195.31	9088
59.74	3899	117.66	5829	197.92	9100
62.23	3886	120.22	5905	200.53	9112
64.72	3934	122.77	5975	203.14	9128
67.22	4051	125.34	6067	205.76	9130
69.72	4173	127.90	6140	208.39	9142
72.21	4279	130.47	6233	211.01	9149
74.69	4397	133.04	6293	213.64	9178
77.18	4502	135.63	6373	216.28	9181
79.68	4606	138.21	6449	218.97	9209
82.19	4701	140.79	6527	221.62	9212
84.70	4790	143.37	6591	224.27	9237
87.22	4878	145.95	6684	226.93	9245
89.74	4965	148.53	6776	230.13	9265
92.27	5064	151.12	6851	232.26	9288
95.00	5149	153.71	6921	234.93	9305
97.34	5214	156.29	7004	237.62	9326
C	ерия 3	158.88	7090	240.31	9354
82.68	4706	161.48	7178	243.08	9377
86.09	4824	164.07	7265	246.28	9406
88.60	4929	166.67	7369	248.40	9429
91.12	5009	169.27	7500	251.11	9453
93.64	5101	171.87	7696	253.83	9483
93.85	5102	174.46	8001	256.55	9518
97.34	5216	177.08	8668	259.28	9549
99.87	5285	179.67	9017	262.13	9579
102.40	5351	182.27	9040	264.88	9604
104.93	5425	184.88	9039	267.63	9636
107.47	5510	187.48	9065	270.39	9668
110.01	5592	190.09	9066	273.15	9708

Таблица 8 – продолжение

<i>Т</i> , К	Cp	<i>Т</i> , К	$C_{ m p}$	<i>Т</i> , К	$C_{ m p}$
275.93	9733	165.35	7313	С	ерия 5
278.70	9773	167.92	7454	319.5	10343
281.48	9810	170.49	7580	322.5	10378
284.27	9840	173.05	7807	325.5	10436
287.05	9874	175.60	8206	328.9	10467
289.84	9917	178.15	8886	331.5	10541
292.62	9946	180.70	9014	334.5	10576
295.41	9984	183.26	9044	337.5	10600
298.18	10025	185.82	9050	340.5	10645
301.49	10058	188.37	9070	343.5	10690
305.05	10105	190.93	9075	346.5	10760
308.58	10164	193.48	9078	349.3	10780
312.09	10225	196.03	9096	352.5	10843
316.40	10291	198.58	9100	355.5	10870
319.04	10346	201.12	9108	358.9	10915
322.47	10427	203.66	9121	361.5	10978
326.50	10513	206.21	9130	364.5	11005
329.22	10580	208.75	9150	367.5	11055
332.54	10660	211.30	9160	370.7	11091
335.84	10747	213.84	9172	373.5	11150
339.11	10830	216.39	9190	376.9	11185
343.40	10923	218.93	9207	379.5	11232
345.56	10987	221.48	9219	382.5	11262
С	ерия 4	224.02	9225	385.5	11333
146.37	6686	226.56	9251	388.5	11344
149.95	6807	229.09	9268	391.7	11400
152.51	6871	231.63	9288	394.5	11463
155.08	6947	234.18	9297	397.5	11495
157.65	7047	236.73	9319	400.5	11544
160.22	7124	239.27	9343	403.5	11610
162.79	7211	241.82	9363	406.5	11628

				Табл	ица 8 – окончание
<i>Т</i> , К	Cp	<i>Т</i> , К	$C_{ m p}$	<i>T</i> , K	C_{p}
409.5	11669	427.5	11950	445.9	12237
412.5	11702	430.6	11995	448.5	12265
415.5	11770	433.5	12063	451.5	12330
418.5	11823	436.5	12085	454.5	12355
421.7	11860	439.5	12150	457.5	12418
424.5	11915	443.0	12175		