На правах рукописи

ГУЩИН СЕРГЕЙ ВЯЧЕСЛАВОВИЧ

ХАРАКТЕРИСТИКИ АП-КОНВЕРСИОННОЙ ЛЮМИНЕСЦЕНЦИИ ТВЕРДЫХ РАСТВОРОВ MF_2 - RF_3 $(M^{2+} - Ca^{2+}, Sr^{2+}; R^{3+} - Er^{3+}, Ho^{3+})$

1.3.8 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в ФГБОУ ВО «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва».

Научный руководитель:	доктор физико-математических наук, профессор, заведующий кафедрой фотоники института наукоёмких технологий и новых материалов ФГБОУ ВО «МГУ им. Н. П. Огарёва» Рабонсина Полица Анатон евиа			
Официальные оппоненты:	доктор физико-математических наук, доцент, ведущий науч- ный сотрудник НЦЛМТ им. В.В. Осико ФГБУН ФИЦ «Ин- ститут общей физики им. А.М. Прохорова Российской акаде- мии наук» Зверев Петр Георгиевич			
	кандидат физико-математических наук, старший научный со- трудник лаборатории спектроскопии перспективных матери- алов ФГБУН «Институт спектроскопии Российской академии наук» Болдырев Кирилл Николаевич			
Ведущая организация:	Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет»			

Защита состоится **«29» января 2025 г. в 14 час. 00 мин.** на заседании диссертационного совета 24.2.340.01, созданного на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ) по адресу: 603022, г. Нижний Новгород, пр. Гагарина, д. 23, корп. 3.

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного университета им. Н.И. Лобачевского и на сайте организации по адресу: https://diss.unn.ru/1499.

Автореферат разослан

«__» декабря 2024 г.

Ученый секретарь диссертационного совета, канд. физ.-мат. наук

/ Марычев Михаил Олегович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Процесс ап-конверсионной люминесценции заключается в излучении фотона в ультрафиолетовом (УФ) или видимом диапазоне спектра в результате преобразования двух или более низко-энергетических фотонов, как правило, соответствующих инфракрасному (ИК) спектральному диапазону.

В настоящее время имеется значительное количество оригинальных научных работ и обзоров, посвященных исследованию ап-конверсионной люминесценции в различных материалах [1, 2]. Особый интерес проявляется к исследованию процессов ап-конверсионной люминесценции фторидных материалов со структурой флюорита MF_2 - RF_3 (M^{2+} - Ca^{2+} , Sr^{2+} , Ba^{2+} , Cd^{2+} , Pb^{2+} , R^{3+} - редкоземельные (P3) ионы). Это обусловлено следующими факторами. Во-первых, меньшие значения энергии фононов по сравнению с оксидными материалами обеспечивают в них слабую внутрицентровую многофононную релаксацию, что увеличивает эффективность безызлучательного переноса энергии между P3 ионами в данных материалах. Во-вторых, они обладают высокой прозрачностью в широком спектральном диапазоне. Это позволяет эффективно возбуждать и наблюдать апконверсионную люминесценцию, минимизируя потери оптического излучения в материале. Также для них характерны высокая химическая стабильность и инертность. Это делает их устойчивыми к воздействию внешней среды, что особенно важно для их долгосрочного практического применения.

В настоящее время в научной литературе имеется значительное количество работ, посвященных исследованию процессов ап-конверсионной люминесценции ионов Er^{3^+} и Ho³⁺ во фторидных твердых растворах MF₂-RF₃ и MF₂-RF₃-YbF₃ (M²⁺ - Ca²⁺, Ba²⁺, Cd²⁺, Pb²⁺, R³⁺ - Er³⁺, Ho³⁺) при возбуждении уровней ⁴I_{11/2} [3-6], ⁴I_{13/2} [7-10] ионов Er^{3^+} , уровня ⁵I₇ ионов Ho³⁺ [11-14] и уровня ²F_{5/2} ионов Yb³⁺ [15-18]. Большинство исследователей, изучающих процессы ап-конверсионной люминесценции монокристаллов твердых растворов MF₂-RF₃ (M²⁺ - Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺, R³⁺ - Er³⁺, Ho³⁺) выявляли влияние концентрации легирующих P3 ионов и условий роста кристаллов на эффективность ап-конверсионного преобразования. Общая тенденция исследований ап-конверсионной люминесценции керамик твердых растворов MF₂-RF₃ (M²⁺ - Ca²⁺, Sr²⁺, Ba²⁺) направлена на оптимизацию концентрации легирующих примесей и температуры спекания для достижения высоких показателей характеристик ап-конверсионной люминесценции.

Многие исследования процессов ап-конверсионной люминесценции наночастиц твердых растворах MF₂-RF₃ (M²⁺ - Ca²⁺, Sr²⁺, Ba²⁺) были направлены на оптимизацию размеров наночастиц, их морфологии, условий синтеза и концентрации легирующих P3 ионов для обеспечения высоких характеристик люминесценции. Для повышения эффективности ап-конверсионной люминесценции наночастиц с целью их практического применения, особое внимание уделялось контролю дефектов их поверхности, кристалличности и коллоидной стабильности. Несмотря на значительное количество работ, посвященных исследованию процессов ап-конверсионной люминесценции твердых растворов фторидных материалов со структурой флюорита, легированных РЗ ионами, на момент начала выполнения настоящей работы не были обнаружены результаты исследований процессов, приводящих к возникновению ап-конверсионной люминесценции и её характеристик в твердых растворах SrF₂-ErF₃ при возбуждении уровней ⁴I_{11/2}, ⁴I_{13/2} ионов Er³⁺ и твердых растворах SrF₂-HoF₃ при возбуждении уровня ⁵I₇ ионов Ho³⁺.

Интерес к твердым растворам SrF₂-ErF₃ и SrF₂-HoF₃ обусловлен тем, что фториды стронция характеризуются меньшими значениями энергии фонона по сравнению с фторидом кальция, что может влиять на характеристики апконверсионной люминесценцией в этих материалах.

Оптические переходы между энергетическими уровнями ионов Er^{3+} и Ho^{3+} могут приводить к ап-конверсионной люминесценции в видимой области спектра при возбуждении ИК излучением энергетических уровней этих ионов в спектральных диапазонах около 1.5 и 2.0 мкм, что является актуальным для практических применений. Полосы поглощения ионов Er^{3+} и Ho^{3+} в области 1.0 мкм являются малоинтенсивными, поэтому для расширения области визуализации ИК излучения представлялось интересным исследовать характеристики апконверсионной люминесценции при солегировании нанопорошков SrF_2 -ErF₃ и SrF_2 -HoF₃ ионами Yb³⁺, которые характеризуются интенсивной полосой поглощения в области 1.0 мкм.

В качестве модельных объектов, в которых отсутствуют процессы взаимодействия P3 ионов с поверхностными дефектами, были выбраны монокристаллы SrF_2 -ErF₃. Сравнительный анализ характеристик ап-конверсионной люминесценции в твердых растворах монокристаллов и нанопорошков SrF_2 -ErF₃ имел и самостоятельный интерес, так как особенности методов получения твердых растворов фторидов могут влиять на особенности формирования в них оптических центров и, соответственно, характеристики ап-конверсионной люминесценции.

На основании вышесказанного **целью** настоящей диссертационной работы являлось исследование характеристик ап-конверсионной люминесценции концентрационных рядов монокристаллов и нанопорошков MF_2-RF_3 ($M^{2+} - Ca^{2+}, Sr^{2+}; R^{3+} - Er^{3+}, Ho^{3+}$) и выявление влияния солегирования ионами Yb³⁺ на характеристики апконверсионной люминесценции нанопорошков SrF_2-RF_3 ($R^{3+} - Er^{3+}, Ho^{3+}$).

Для достижения данной цели были поставлены следующие задачи:

1. исследование и сравнительный анализ характеристик апконверсионной люминесценции концентрационных рядов монокристаллов и нанопорошков SrF_2 - ErF_3 при возбуждении лазерным излучением уровней ${}^4I_{11/2}$, ${}^4I_{13/2}$ ионов Er^{3+} ;

2. исследование характеристик ап-конверсионной люминесценции концентрационного ряда нанопорошков CaF_2 -ErF₃ и их сравнительный анализ с аналогичными характеристиками концентрационного ряда нанопорошков SrF_2 -ErF₃; 3. исследование характеристик ап-конверсионной люминесценции концентрационного ряда нанопорошков SrF_2 -HoF₃ при возбуждении лазерным излучением уровня ⁵I₇ ионов Ho³⁺;

4. выявление влияния солегирования ионами Yb^{3+} на характеристики алконверсионной люминесценции концентрационных рядов нанопорошков SrF_2 - ErF_3 - YbF_3 и SrF_2 -HoF_3- YbF_3 .

Научная новизна

1. Впервые для монокристаллов и нанопорошков (1-x)SrF₂-xErF₃ (x = 1.5-15.0 мол.%) предложены процессы заселения и разгрузки энергетических уровней ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺, приводящие к возникновению ап-конверсионной люминесценции в видимой области спектра при возбуждении уровней ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ ионов Er³⁺.

2. Впервые определены количественные характеристики (энергетический выход, координаты цветности) ап-конверсионной люминесценции в видимой области спектра при возбуждении уровней ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ ионов Er^{3+} в нанопорошках (1-х)SrF₂-хErF₃ (х = 1.5-15.0 мол.%) и выполнен их сравнительный анализ с аналогичными характеристиками монокристаллов тех же составов.

3. Впервые определены количественные характеристики (энергетический выход, координаты цветности) ап-конверсионной люминесценции в видимой области спектра при возбуждении уровня ${}^{5}I_{7}$ ионов Ho³⁺ в нанопорошках (1-х)SrF₂хHoF₃ (х = 1.0-11.0 мол.%).

4. Впервые исследовано влияние солегирования ионами Yb^{3+} нанопорошков (1-x-y)SrF₂-xRF₃-yYbF₃ (R³⁺ - Er³⁺, Ho³⁺) на эффективность алконверсионной люминесценции при их возбуждении ИК излучением с длинами волн 1.5 мкм и 2.0 мкм.

Практическое значение

Результаты, представленные в диссертационной работе, могут быть использованы при создании визуализаторов лазерного излучения в ИК области спектра, для повышения эффективности солнечных элементов, разработки методов защиты ценных бумаг от подделок, а также в биомедицинских приложениях.

Методология и методы исследования

Диссертационная работа выполнена с использованием традиционных экспериментальных методов, показавших свою эффективность в исследованиях монокристаллов и нанопорошков твердых растворов MF_2 - RF_3 (M^{2+} - Ca^{2+} , Sr^{2+} ; R^{3+} - Er^{3+} , Ho^{3+} , Yb^{3+}).

Фазовый состав монокристаллов и нанопорошков исследовался с помощью рентгеновской дифрактометрии. Морфология и размеры частиц нанопорошков исследовались с помощью просвечивающей электронной микроскопии.

Оптическая спектроскопия и радиометрия использовались для исследования спектрально-люминесцентных характеристик монокристаллов и нанопорошков.

Основные положения диссертации, выносимые на защиту:

1. Ап-конверсионная люминесценция в видимой области спектра твердых растворов (1-х)SrF₂-хErF₃ (х = 1.0-15.0 мол.%) при возбуждении уровня ${}^{4}I_{11/2}$ ионов Er³⁺ излучением с $\lambda_{B036} = 972$ нм обусловлена процессом поглощения с возбужденного состояния ${}^{4}I_{11/2}$ на уровень ${}^{4}F_{7/2} \rightarrow$ тих ионов и процессами межионного взаимодействия (${}^{4}F_{7/2} \rightarrow {}^{4}G_{11/2}, {}^{4}F_{7/2} \rightarrow {}^{4}F_{9/2}; {}^{4}F_{9/2} \rightarrow {}^{2}H_{9/2}, {}^{4}F_{9/2} \rightarrow {}^{4}I_{13/2}$). На эффективность этой люминесценции при увеличении концентрации ионов Er³⁺ влияют процессы кросс-релаксации (${}^{4}F_{7/2} \rightarrow {}^{4}F_{9/2}, {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2}; {}^{4}F_{7/2} \rightarrow {}^{4}I_{11/2}, {}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}; {}^{4}G_{9/2} \rightarrow {}^{4}F_{7/2}, {}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$).

2. Значения энергетического выхода ап-конверсионной люминесценции в видимой области спектра твердых растворов (1-х)SrF₂-хErF₃ (х = 1.0-15.0 мол.%) увеличиваются с ростом плотности мощности излучения возбуждения уровня ⁴I_{11/2} ионов Er³⁺. Меньшие значения энергетического выхода ап-конверсионной люминесценции нанопорошков твердых растворов (1-х)SrF₂-хErF₃ (х = 1.0-15.0 мол.%) при возбуждении уровней ⁴I_{11/2}, ⁴I_{13/2} ионов Er³⁺ по сравнению с монокристаллами аналогичного состава обусловлены взаимодействием ионов Er³⁺ с OH-группами.

3. Координаты цветности ап-конверсионной люминесценции нанопорошков SrF₂-ErF₃ и CaF₂-ErF₃ в видимой области спектра при их возбуждении ИК излучением с длиной волны 1532 нм зависят от соотношения интенсивности полос люминесценции оптических переходов ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺.

4. Солегирование ионами Yb³⁺ нанопорошков твердых растворов SrF₂-ErF₃-YbF₃ и SrF₂-HoF₃-YbF₃ не приводит к уменьшению энергетического выхода ап-конверсионной люминесценции в видимой области спектра при их возбуждении ИК-излучением уровней ⁴I_{13/2} ионов Er³⁺ и ⁵I₇ ионов Ho³⁺.

Достоверность и обоснованность результатов, представленных в настоящей диссертационной работе, обеспечивается использованием современного научного оборудования, надежных экспериментальных и расчетных методов, а также проведением статистического анализа собранных данных.

Основные результаты исследования опубликованы в ведущих российских и зарубежных изданиях и многократно обсуждались на научных семинарах и профильных конференциях различного уровня.

Личный вклад

Основные результаты, представленные в настоящей диссертационной работе, получены автором самостоятельно или при его непосредственном участии.

Автором проведен анализ литературных источников по теме исследования, выполнены эксперименты по изучению характеристик ап-конверсионной люминесценции методами оптической спектроскопии и радиометрии, а также проведена обработка всех экспериментальных данных. Постановка цели и задач диссертационного исследования, интерпретация полученных результатов и формулировка выводов выполнены совместно с научным руководителем.

Монокристаллы твёрдых растворов SrF_2 - ErF_3 и нанопорошки твердых растворов SrF_2 - RF_3 , SrF_2 - RF_3 - YbF_3 ($R^{3+} - Er^{3+}$, Ho^{3+}) были получены в ИОФ РАН. Рентгенограммы монокристаллов и нанопорошков твердых растворов SrF_2 - RF_3 , SrF_2 - RF_3 - YbF_3 ($R^{3+} - Er^{3+}$, Ho^{3+}), а также нанопорошков твердых растворов SrF_2 - RF_3 , SrF_2 - RF_3 - YbF_3 ($R^{3+} - Er^{3+}$, Ho^{3+}) были получены к.ф.-м.н. В.В. Вороновым (ИОФ РАН).

Нанопорошки твердых растворов CaF_2 -ErF₃ были синтезированы М.Н. Жарковым (НИ МГУ им. Н.П. Огарева). Рентгенограммы нанопорошков твердых растворов CaF_2 -ErF₃ были получены к.ф.-м.н. В.М. Кяшкиным (НИ МГУ им. Н.П. Огарева).

ПЭМ изображения нанопорошков твердых растворов CaF_2 -ErF₃, SrF₂-RF₃, SrF₂-RF₃-YbF₃ (R³⁺ - Er³⁺, Ho³⁺) получены к.ф.-м.н. Н.Ю. Табачковой (НИТУ МИ-СИС).

Апробация работы

Основные научные мероприятия (конференции, форумы, семинары), на которых представлены и обсуждались результаты исследований, включенных в настоящую диссертационную работу: XVII International Feofilov Symposium on spectroscopy of crystals doped with rare earth and transition metal ions (2018 г. Екатеринбург); 6th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures (2019 г. Санкт-Петербург); 17-я, 19-я и 20-я Международная научная конференция-школа: «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение» (2018, 2022, 2024 гг. Саранск); IX, XII Международная конференция по фотонике и информационной оптике (2020, 2023 гг. Москва); XII международный симпозиум по фотонному эхо и когерентной спектроскопии (ФЭКС-2021) памяти профессора Виталия Владимировича Самарцева (2021 г. Казань); XVIII International Feofilov Symposium on Spectroscopy of Crystals Doped with Rare Earth and Transition Metal Ions (2022 r. Москва); 20st International Conference Laser Optics (2022 г. Санкт-Петербург); Международный молодёжный научный форум «Ломоносов-2022, -2023» (2022-2023 гг. Москва); XXII, XXIV, XXV, XXVI научно-практическая конференция молодых учёных, аспирантов и студентов Национального исследовательского Мордовского государственного университета им. Н.П. Огарёва (2018, 2022, 2023 гг. Саранск); Научная конференция «XLVIII, LI Огарёвские чтения» (2019, 2022 гг. Саранск); XXIII Международная молодежная научная школа «Когерентная оптика и оптическая спектроскопия» (2019 г. Казань).

По итогам выступления на международном молодёжном научном форуме «Ломоносов-2023» и 20-ой Международной научной конференции-школы: «Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства

и применение» автор диссертационной работы был награжден дипломом за лучший доклад.

Основные результаты диссертационной работы отражены в **19 научных публикациях**, в том числе **6 статьях [A1–A6]**, индексируемыми международными (Web of Science, Scopus) и отечественными базами данных научных журналах, рекомендованных ВАК при Минобрнауки России, в **1 патенте на изобретение [B1]** и **12 тезисах конференций [C1–C12]**.

Структура и объём диссертации

Диссертационная работа состоит из введения, шести глав, заключения, списка литературы. Общий объём диссертации составляет 156 страниц машинописного текста, включая 86 рисунков, 15 таблиц и библиографию, содержащую 118 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении представлено обоснование актуальности и степени разработанности выбранной темы диссертационного исследования, приведены цели и задачи диссертационной работы, формулируются основные положения, выносимые на защиту. Также раскрывается практическая значимость и новизна полученных результатов. Кроме того, дается информация о методах исследования, о достоверности полученных результатов и о личном вкладе автора.

Первая глава посвящена обзору литературных данных.

<u>В параграфе 1.1</u> рассмотрена кристаллическая структура твердых растворов MF_2 - RF_3 (M^{2+} - Ca^{2+} , Sr^{2+} , Ba^{2+} , Cd^{2+} , Pb^{2+} , R^{3+} - P3 ионы), в которых ионы M^{2+} гетеровалентно замещаются РЗ ионами R^{3+} . Рассматриваются возникающие при этом структурные дефекты, кластеризация и типы оптических центров, формирующихся в результате замещения, а также влияние концентрации РЗ ионов на структуру и свойства этих твердых растворов.

<u>В параграфе 1.2</u> описываются процессы, ответственные за возникновение ап-конверсионной люминесценции в кристаллах, легированных РЗ ионами. Рассматриваются процессы преобразования длинноволнового (ИК) излучения в коротковолновое (видимое) излучение, происходящие за счёт процессов поглощения с возбужденного состояния (ESA) и межионной передачи энергии (ETU). Подробно анализируются условия возникновения этих процессов, их эффективность, а также выделяются процессы с участием фононов матрицы, характерные при безызлучательном переносе энергии между РЗ ионами при энергетическом несоответствии между их энергетическими уровнями.

<u>В параграфе 1.3</u> рассматриваются характеристики ап-конверсионной люминесценции фторидных твердых растворов со структурой флюорита, легированных ионами Er³⁺ и Yb³⁺, при их возбуждении излучением на длинах волн 1.0 и 1.5 мкм. Отмечаются особенности возникновения ап-конверсионной люминесценции ионов Er³⁺ в видимой области спектра, обусловленной процессами межионной передачи энергии между ионами Er^{3+} и Yb³⁺. Подробно описаны факторы, влияющие на эффективность ап-конверсионной люминесценции твердых растворов MF₂-ErF₃, MF₂-ErF₃-YbF₃ (M²⁺ - Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺), к которым относятся вид катиона M²⁺ и способ получения твердого раствора.

<u>Параграф 1.4</u> посвящен результатам исследования ап-конверсионной люминесценции фторидных твердых растворов со структурой флюорита, легированных ионами Ho³⁺ и Yb³⁺ при возбуждении излучением в области длин волн 1.0 и 2.0 мкм. Уделено внимание описанию процессов межионной передачи энергии между ионами Ho³⁺ и Yb³⁺, приводящим к возникновению ап-конверсионной люминесценции ионов Ho³⁺ в видимой области спектра. Особый акцент сделан на условиях, влияющих на эффективность ап-конверсионной люминесценции, таких как концентрация ионов Ho³⁺ и Yb³⁺, вид катиона (Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺) матрицы, и способ получения твердых растворов MF₂-HoF₃, MF₂-HoF₃-YbF₃ (M²⁺ - Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺).

Во второй главе дана характеристика объектам исследования - монокристаллам твердых растворов SrF_2 - ErF_3 и нанопорошкам твердых растворов CaF_2 - ErF_3 , SrF_2 - RF_3 , SrF_2 - RF_3 - YbF_3 (R^{3+} - Er^{3+} , Ho^{3+}), а также описаны методы их получения. Для краткого обозначения химического состава монокристаллов и нанопорошков в работе используются условные обозначения MF_2 - xRF_3 (M^{2+} - Ca^{2+} , Sr^{2+} , R^{3+} - Er^{3+} , Ho^{3+} , х - концентрация РЗ ионов в мол.%).

Также в данной главе дано описание экспериментальных методов исследования фазового состава и спектрально-люминесцентных характеристик монокристаллов и нанопорошков. Описан метод просвечивающей электронной микроскопии (ПЭМ), используемый для изучения морфологии и оценки среднего размера частиц нанопорошков.

Третья глава посвящена результатам исследования спектральнолюминесцентных характеристик концентрационных рядов монокристаллов и нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ при возбуждении уровней ⁴I_{11/2}, ⁴I_{13/2} ионов Er³⁺ излучением с длинами волн 972 и 1532 нм.

<u>В параграфе 3.1</u> описана структура монокристаллов и нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 . Показано, что монокристаллы и нанопорошки твердых растворов SrF_2 -(1.5-15.0) ErF_3 являются однофазными и их структура соответствует гранецентрированной кубической решетке флюорита (пространственная группа Fm3m). Приведена зависимость параметра решетки монокристаллов и нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 от концентрации ErF_3 . Выявлено, что параметр решетки данных твердых растворов линейно уменьшается с ростом концентрации ErF_3 .

<u>В параграфе 3.2</u> представлены результаты исследования характеристик апконверсионной люминесценции монокристаллов и нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ при возбуждении уровня ⁴I_{11/2} ионов Er³⁺ методами оптической спектроскопии и радиометрии. Приведены концентрационные зависимости спектральной плотности мощности ап-конверсионной люминесценции ионов Er³⁺ в диапазоне длин волн 380-780 нм для монокристаллов и нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃, полученные при возбуждении уровня ⁴I_{11/2} ионов Er³⁺ (рисунок 1 а, б). Из рисунка 1 а), б) следует, что значения спектральной плотности мощности ап-конверсионной люминесценции, соответствующей оптическим переходам ²H_{11/2}→⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2}, ⁴F_{9/2}→⁴I_{15/2} ионов Er³⁺ для монокристаллов на порядок выше по сравнению с аналогичными значениями для нанопорошков. Данный факт, обусловлен тушением люминесценции ионов Er³⁺ при их взаимодействии с OH-группами. О наличии OH-групп в нанопорошках твердых растворов SrF₂-(1.5-15.0)ErF₃ свидетельствуют ИК спектры пропускания, приведенные на рисунке 1 в).

Рисунок 1 – Зависимости спектральной плотности мощности ап-конверсионной люминесценции от концентрации ErF₃ в монокристаллах (а); нанопорошках (б) твердых растворов SrF₂-(1.5-15.0)ErF₃, λ_{возб} = 972 нм, J_{возб} = 63 Bt/cm², T = 300 K; ИК спектры пропускания нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ (в).

Для монокристаллов и нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ выполнена оценка энергетического выхода ап-конверсионного преобразования по формуле:

$$B_{_{\mathcal{H}}} = \frac{P_{_{\mathcal{H}} \bowtie}}{P_{_{\Pi} \circ r_{\mathcal{H}}}} \cdot 100\%, \qquad (1) [19]$$

где P_{nom} – интегральная мощность ап-конверсионной люминесценции в определенном спектральном диапазоне; P_{nozn} – поглощенная образцом мощность возбуждающего лазерного излучения.

Значения энергетического выхода $B_{_{3H}}$ ап-конверсионной люминесценции для видимого спектрального диапазона (380-780 нм) монокристаллов и нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ при возбуждении лазерным излучением с длиной волны 972 нм при значениях плотности мощности возбуждения, равных 25 Bt/cm² и 63 Bt/cm² представлены на рисунке 2.

Из рисунка 2 видно, что увеличение плотности мощности возбуждения уровня ${}^{4}I_{11/2}$ ионов Er^{3+} приводит к увеличению величины энергетического выхода ап-конверсионной люминесценции $B_{_{3H}}$.

Также из рисунка 2 следует, что значения энергетического выхода апконверсионной люминесценции монокристаллов твердых растворов SrF₂-ErF₃ выше аналогичных значений для нанопорошков. Как отмечалось ранее, это обусловлено тушением люминесценции с уровней ${}^{2}\text{H}_{9/2}$, ${}^{2}\text{H}_{11/2}$, ${}^{4}\text{S}_{3/2}$, ${}^{4}\text{F}_{9/2}$ ионов Er^{3+} в нанопорошках твердых растворов SrF_2 -ErF₃ в результате взаимодействия ионов Er^{3+} с ОН-группами (рисунок 1 в).

Рисунок 2 – Зависимости энергетического выхода $B_{_{3H}}$ ап-конверсионной люминесценции для видимого спектрального диапазона (380-780 нм) от концентрации ErF_3 в монокристаллах и нанопорошках твердых растворов SrF_2 -(1.5-15.0) ErF_3 при плотности мощности возбуждения: $J_{_{BO36}} = 25 \text{ BT/cm}^2$ (a); $J_{_{BO36}} = 63 \text{ BT/cm}^2$ (б), $\lambda_{_{BO36}} = 972 \text{ нм}$.

Для выявления процессов, ответственных за возникновение апконверсионной люминесценции ионов Er^{3^+} в видимой области спектра для монокристаллов и нанопорошков твердых растворов SrF_2 -(5.0-15.0) ErF_3 , исследовались кинетики разгорания и затухания люминесценции при возбуждении уровня ${}^4\mathrm{I}_{11/2}$ ионов Er^{3^+} (рисунок 3 а-и). На вставках к этим рисункам показаны участки разгорания люминесценции ионов Er^{3^+} для монокристаллов и нанопорошков.

На основании анализа кривых разгорания и затухания люминесценции с уровней ${}^{2}H_{9/2}$, ${}^{4}F_{7/2}$, ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$ при возбуждении уровня ${}^{4}I_{11/2}$ ионов Er^{3+} предложена следующая схема их заселения и разгрузки (рисунок 3 к). При возбуждении лазерным излучением с длиной волны 972 нм ионы Er^{3+} переходят с основного уровня ${}^{4}I_{15/2}$ на возбужденный уровень ${}^{4}I_{11/2}$. Далее осуществляется процесс поглощения с возбужденного состояния ${}^{4}I_{11/2}$ (ESA) на уровень ${}^{4}F_{7/2}$, с которого осуществляются процессы безызлучательной релаксации на уровни ${}^{2}H_{11/2}$ и ${}^{4}S_{3/2}$. О наличии таких процессов свидетельствуют отсутствие участка разгорания на кривой затухания люминесценции с уровня ${}^{4}F_{7/2}$ (рисунок 3 д) и малые значения времени разгорания, определенные из кривых разгорания люминесценции с уровней ${}^{2}H_{11/2}$ ($\tau_{pa3r} = 2.0-1.2$ мкс для монокристаллов; $\tau_{pa3r} = 1.1-1.0$ мкс для нанопорошков) и ${}^{4}S_{3/2}$ ($\tau_{pa3r} = 2.2-1.6$ мкс для монокристаллов; $\tau_{pa3r} = 1.0-0.9$ мкс для нанопорошков). Значительно большее по величине значение времени разгорания уровня ${}^{4}F_{9/2}$ ионов Er^{3+} ($\tau_{pa3r} = 420-200$ мкс для монокристаллов; $\tau_{pa3r} = 21-13$ мкс для нанопорошков), свидетельствует о том, что данный уровень заселяется не только в ре-

зультате безызлучательной релаксации с вышележащих энергетических уровней ионов Er^{3+} , но и процессов взаимодействия между этими ионами. К таким процессам относятся кросс-релаксация (${}^{4}\mathrm{F}_{7/2} \rightarrow {}^{4}\mathrm{F}_{9/2}$, ${}^{4}\mathrm{I}_{11/2} \rightarrow {}^{4}\mathrm{F}_{9/2}$) (CR1) и межионная передача энергии (${}^{4}\mathrm{F}_{7/2} \rightarrow {}^{4}\mathrm{F}_{9/2}$) (ETU1).

Рисунок 3 – Кинетики разгорания и затухания люминесценции монокристаллов (а-д); нанопорошков (е-и) твердых растворов SrF₂-(5.0-15.0)ErF₃, $\lambda_{B036} = 972$ нм, T= 300 K; Схема энергетических уровней ионов Er³⁺ с указанием процесса поглощения с возбужденного уровня ⁴I_{11/2} и процессов взаимодействия ионов Er³⁺, обеспечивающих возникновение ап-конверсионной люминесценции монокристаллов и нанопорошков SrF₂-ErF₃ (к).

При увеличении концентрации ErF_3 включаются дополнительные процессы межионного взаимодействия, приводящие к разгрузке уровня ${}^4F_{9/2}$ ионов Er^{3^+} . К ним относится процесс межионного взаимодействия: (${}^4F_{9/2} \rightarrow {}^2H_{9/2}$, ${}^4F_{9/2} \rightarrow {}^4I_{13/2}$) (ETU2). Об этом свидетельствует более быстрое затухание люминесценции с уровня ${}^4F_{9/2}$ ионов Er^{3^+} и сокращение времени разгорания этого уровня при увеличении концентрации ErF_3 . О возрастании вероятности процессов кросс-релаксации (${}^4F_{7/2} \rightarrow {}^4I_{11/2}$, ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$) (CR2) и (${}^4G_{11/2} \rightarrow {}^4F_{7/2}$, ${}^4I_{15/2} \rightarrow {}^4I_{13/2}$) (CR3) свидетельствуют изменения относительных интенсивностей линий в спектрах возбуждения нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 , приведенных на рисунке 4.

Из спектров возбуждения нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 видно, что с увеличением концентрации ErF_3 для нанопорошков состава SrF_2 -15.0 ErF_3 уменьшается относительная интенсивность линий для оптического перехода ${}^4I_{15/2} \rightarrow {}^4G_{11/2}$ и в спектре отсутствуют линии для оптического перехода ${}^4I_{15/2} \rightarrow {}^4F_{7/2}$ ионов Er^{3+} .

<u>В параграфе 3.3</u> приведены результаты исследования характеристик ап-конверсионной люминесценции монокристаллов и нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 при возбуждении уровня ${}^4I_{13/2}$ ионов

 ${\rm Er}^{3^+}$. Представлены зависимости спектральной плотности мощности ап-конверсионной люминесценции ионов ${\rm Er}^{3^+}$ в диапазоне длин волн 380-780 нм для монокристаллов и нанопорошков твердых растворов ${\rm SrF}_2$ -(1.5-15.0) ${\rm ErF}_3$, полученные при возбуждении уровня ${}^4I_{13/2}$ ионов ${\rm Er}^{3^+}$ (рисунок 5). Из рисунка 5 следует, что значения спектральной плотности мощности ап-конверсионной люминесценции оптических переходов ${}^2H_{11/2} \rightarrow {}^4I_{15/2}$, ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$, ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ ионов ${\rm Er}^{3^+}$ для монокристаллов более чем на порядок выше аналогичных значений для нанопорошков.

Рисунок 5 – Зависимости спектральной плотности мощности ап-конверсионной люминесценции от концентрации ErF₃ в монокристаллах (а); нанопорошках (б) твердых растворов SrF₂-(1.5-15.0)ErF₃, $\lambda_{B036} = 1532$ нм, $J_{B036} = 0.51$ кBT/см², T = 300 K.

Значения энергетического выхода ап-конверсионной люминесценции для видимого спектрального диапазона (380-780 нм) монокристаллов и нанопорошков твердых растворов SrF_2 -(1.5-15.0) ErF_3 при возбуждении лазерным излучением с длиной волны 1532 нм представлены на рисунке 6.

Рисунок 6 – Зависимости энергетического выхода В_{эн} ап-конверсионной люминесценции для видимого спектрального диапазона (380-780 нм) от концентрации ErF_3 в монокристаллах (а); нанопорошках (б) твердых растворов SrF_2 -(1.5-15.0) ErF_3 , $\lambda_{возб} = 1532$ нм, $J_{возб} = 0.51$ кBT/см².

Известно, что зависимость интенсивности ап-конверсионной люминесценции от плотности мощности возбуждения выражается формулой:

$$I_{\text{люм}} = P^n_{\text{возб}}, \qquad (2) [20]$$

где I_{nom} – пиковое значение интенсивности ап-конверсионной люминесценции соответствующего оптического перехода РЗ иона; P_{6036} – значение плотности мощности возбуждающего лазерного излучения; n – число фотонов, участвующих в процессах ап-конверсионного преобразования, которое находится из тангенса угла наклона зависимости (1), построенной в логарифмических координатах:

$$lg(I_{n \mapsto M}) = n \cdot lg(P_{ooso}) + const$$
(3) [20]

На рисунке 7 приведены зависимости интенсивности ап-конверсионной люминесценции от плотности мощности возбуждения уровня ${}^{4}I_{13/2}$ ионов Er^{3+} монокристаллов и нанопорошков твердых растворов SrF_2 - ErF_3 .

Более низкие значения тангенса угла наклона *n* для монокристаллов твердых растворов SrF₂-ErF₃ по сравнению с аналогичными значениями для нанопорошков, по-видимому, обусловлены влиянием эффекта реабсорбции. На основании анализа значений тангенса угла наклона зависимостей, показанных на рисунке 7 а-е), была предложена следующая схема заселения энергетических уровней ${}^{2}H_{9/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$ при возбуждении уровня ${}^{4}I_{13/2}$ ионов Er³⁺ (рисунок 7 ж).

При возбуждении лазерным излучением с длиной волны 1532 нм ионы Er^{3+} переходят с основного уровня ${}^{4}I_{15/2}$ на возбужденный уровень ${}^{4}I_{13/2}$. Далее в результате процесса межионной передачи энергии (${}^{4}I_{13/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$) (ETU1) заселяется уровень ${}^{4}I_{9/2}$. Уровень ${}^{4}S_{3/2}$ также заселяется в результате процесса межионной передачи энергии (${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$) (ETU2). Далее с уровня ${}^{4}S_{3/2}$ в результате процесса безызлучательной релаксации заселяется уровень ${}^{4}F_{9/2}$ ионов Er^{3+} . О наличии данных процессов межионного взаимодействия свидетельствуют

полученные значения тангенса угла наклона зависимости $lg(I_{льом})$ от $lg(P_{возб})$ для оптических переходов ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (n = 3.0) и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (n = 2.4) ионов Er^{3+} в нанопорошках состава SrF_{2} -1.5 ErF_{3} . Заселение уровня ${}^{2}H_{9/2}$ осуществляется за счет процесса межионной передачи энергии (${}^{4}S_{3/2} \rightarrow {}^{2}H_{9/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2}$) (ETU3), что соответствует значению тангенса угла наклона зависимости $lg(I_{льом})$ от $lg(P_{возб})$ для оптического перехода ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$ нанопорошков состава SrF_{2} -1.5 ErF_{3} , равное 4.2.

Рисунок 7 – Зависимость интенсивности ап-конверсионной люминесценции оптических переходов ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов $\mathrm{Er}^{3^{+}}$ от плотности мощности излучения в монокристаллах (а-в); нанопорошках (г-е) твердых растворов SrF_{2} - ErF_{3} ($\lambda_{\mathrm{воз6}} = 1532$ нм) в двойном логарифмическом масштабе; Схема энергетических уровней ионов $\mathrm{Er}^{3^{+}}$ с указанием процессов взаимодействия ионов $\mathrm{Er}^{3^{+}}$, обеспечивающих возникновение ап-конверсионной люминесценции в монокристаллах и нанопорошках твердых растворов SrF_{2} - ErF_{3} (ж).

Уменьшение значения тангенса угла наклона зависимостей $lg(I_{\text{люм}})$ от $lg(P_{\text{возб}})$ оптических переходов ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} , по-

лученных для нанопорошков составов SrF₂-3.0ErF₃, SrF₂-7.0ErF₃ связано с возрастанием вероятности следующих процессов межионного взаимодействия, приводящих к разгрузке уровней ${}^{2}H_{9/2}$, ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$ ионов Er^{3+} . Процесс межионной передачи энергии (${}^{2}H_{9/2} \rightarrow {}^{2}G_{7/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}F_{7/2}$) (ETU4) приводит к разгрузке уровня ${}^{2}H_{9/2}$ ионов Er^{3+} . Процесс безызлучательного переноса энергии (${}^{4}S_{3/2} \rightarrow {}^{4}G_{11/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{11/2}$) (ETU5) приводит к разгрузке уровня ${}^{4}S_{3/2}$ ионов Er^{3+} . Межионные процессы передачи энергии (${}^{4}F_{9/2} \rightarrow {}^{4}S_{3/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$) (ETU6) и (${}^{4}F_{9/2} \rightarrow {}^{4}F_{7/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$) (ETU7) приводят к разгрузке уровня ${}^{4}F_{9/2}$ ионов Er^{3+} .

Четвертая глава посвящена результатам сравнительного анализа характеристик ап-конверсионной люминесценции концентрационных рядов нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃ при возбуждении уровня ${}^{4}I_{13/2}$ ионов Er³⁺ излучением с длиной волны 1532 нм.

<u>В параграфе 4.1</u> представлены результаты анализа фазового состава, морфологии и дисперсности нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃. Показано, что нанопорошки твердых растворов CaF₂-(2.0-15.0)ErF₃ являются однофазными и их структура соответствует гранецентрированной кубической решетке флюорита. На рисунке 8 приведены зависимости параметра решетки нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃ от концентрации ErF₃. Из рисунка 8 видно, что параметр решетки *а* для нанопорошков твердых рас-

 CaF_2 -(2.0-15.0) ErF_3 творов линейно увеличивается с увеличением концентрации ErF₃, а для нанопорошков твер-SrF₂-(1.5-15.0)ErF₃ растворов дых наблюдается обратная зависимость. Различный характер зависимостей параметра решетки твердых растворов CaF_2 -ErF₃ и SrF₂-ErF₃ от содержания ErF₃ обусловлен следующими факторами. Для данных твердых растворов характерно гетеровалентное замещение двухвалентных ионов Ca²⁺ и Sr²⁺ на трехвалентные ионы Er³⁺. Компенсация заряда как в случае замещения ионов Sr^{2+} ионами Er^{3+} в твердых растворах SrF₂-ErF₃, так и при замещении ионов

 Ca^{2+} ионами Er^{3+} в твердых растворах CaF_2 - ErF_3 осуществляется в результате вхождения в междоузельные позиции кристаллической решетки ионов F⁻. Данный факт должен приводить к увеличению параметра решетки. В то же время на величину параметра решетки будет влиять отношение ионных радиусов Ca^{2+} , Sr^{2+} и Er^{3+} . Для восьмикоординированного окружения по фтору, значения ионных радиусов Ca^{2+} , Sr^{2+} и Er^{3+} равны 1.26 Å, 1.4 Å и 1.144 Å, соответственно. Таким образом, совокупное действие двух факторов: наличие междоузельных ионов фтора и соотношение ионных радиусов Ca²⁺ и Er³⁺, Sr²⁺ и Er³⁺ приводит к различному характеру зависимости параметра решетки от концентрации ErF_3 в твердых растворах CaF₂-ErF₃ и SrF₂-ErF₃.

<u>В параграфе 4.2</u> представлены результаты исследования характеристик апконверсионной люминесценции нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃ при возбуждении уровня ⁴I_{13/2} ионов Er³⁺. Показано, что нанопорошки твердых растворов CaF₂-(2.0-15.0)ErF₃ характеризуются наиболее интенсивной ап-конверсионной люминесценцией ионов Er³⁺ в видимой области спектра при возбуждении уровня ⁴I_{13/2} этих ионов по сравнению с нанопорошками твердых растворов SrF₂-(1.5-15.0)ErF₃ (рисунок 9).

Рисунок 9 – Зависимости спектральной плотности мощности ап-конверсионной люминесценции от концентрации ErF₃ в нанопорошках твердых растворов CaF₂-(2.0-15.0)ErF₃ (a); SrF₂-(1.5-15.0)ErF₃ (б), $\lambda_{B036} = 1532$ нм, J_{B036} = 0.51 кBT/см², T = 300 K.

В соответствии с распределениями частиц по размерам, полученными из ПЭМ изображений, средние размеры частиц нанопорошков составов CaF_2 -2.0ErF₃ и CaF_2 -15.0ErF₃ равны 85±21 нм и 71±18 нм, что меньше размеров частиц нанопорошков составов SrF_2 -1.5ErF₃ и SrF_2 -15.0ErF₃, равных 131±33 нм и 111±28 нм. Меньшие размеры частиц нанопорошков приводят к их более развитой поверхности, что в свою очередь может приводить к бо́льшему содержанию на ней OH-групп.

Для выявления наличия OH-групп выполнен анализ ИК спектров пропускания нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃. В качестве примера на рисунке 10 а) показаны ИК спектры пропускания нанопорошков составов CaF₂-6.0ErF₃ и SrF₂-7.0ErF₃, из которых видно, что интенсивность полосы поглощения, относящаяся к OH-группам для них одинакова.

На основе анализа ИК спектров пропускания нанопорошков твердых растворов CaF_2 - ErF_3 и SrF_2 - ErF_3 и ПЭМ изображений этих нанопорошков (рисунок 10 б, в), сделано предположение о том, что ОН-группы для нанопорошков твердых растворов SrF_2 - ErF_3 могут находится не только на поверхности частиц, но и внутри агломератов. Наличие ОН-групп внутри агломератов может быть связано с их образованием из более мелких частиц с развитой поверхностью, содержащих OH- группы. Взаимодействие ионов Er^{3+} с OH-группами внутри агломератов нанопорошков твердых растворов SrF_2 - ErF_3 приводит к меньшим значениям спектральной плотности мощности их ап-конверсионной люминесценции.

Рисунок 10 – ИК спектры пропускания нанопорошков твердых растворов CaF₂-ErF₃ и SrF₂-ErF₃ (а); ПЭМ изображения нанопорошков составов CaF₂-6.0ErF₃ (б); SrF₂-7.0ErF₃ (в) и соответствующие им распределения частиц по размерам.

Различные отношения интенсивностей полос люминесценции оптических переходов ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} нанопорошков твердых растворов CaF_{2} -(2.0-15.0) ErF_{3} и SrF_{2} -(1.5-15.0) ErF_{3} проявляются в различии цвета свечения их люминесценции. Координаты цветности (*x*, *y*) ап-конверсионной люминесценции нанопорошков твердых растворов CaF_{2} - ErF_{3} и SrF_{2} - ErF_{3} представлены в таблице 1.

Таблица 1 – Значения координат цветности ап-конверсионной люминесценции (380-780 нм) нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃, $\lambda_{воз6} = 1532$ нм, $J_{воз6} = 0.51$ кBT/см².

Концентрация	CaF ₂ -ErF ₃		SrF ₂ -ErF ₃		Концентрация
ErF3 (мол.%) в	Х	у	Х	у	ErF3 (мол.%) в
CaF ₂ -ErF ₃					SrF ₂ -ErF ₃
2.0	0.535 ± 0.005	0.448 ± 0.005	0.456 ± 0.005	0.475 ± 0.005	1.5
4.0	0.581 ± 0.005	0.403 ± 0.005	0.440 ± 0.005	0.500 ± 0.005	3.0
6.0	0.577 ± 0.005	0.405 ± 0.005	0.432 ± 0.005	$0.519{\pm}0.005$	5.0
8.0	0.570 ± 0.005	0.411 ± 0.005	0.407 ± 0.005	$0.553{\pm}0.005$	7.0
11.0	0.570 ± 0.005	0.408 ± 0.005	0.400 ± 0.005	0.542 ± 0.005	11.0
13.0	0.568 ± 0.005	0.407 ± 0.005	0.411 ± 0.005	$0.532{\pm}0.005$	13.0
15.0	0.572 ± 0.005	0.400 ± 0.005	0.414 ± 0.005	0.519 ± 0.005	15.0

Изменение координат цветности ап-конверсионной люминесценции нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ и SrF₂-(1.5-15.0)ErF₃, отражено на рисунке 11.

Рисунок 11 – Диаграммы цветности ап-конверсионной люминесценции нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃ (a); SrF₂-(1.5-15.0)ErF₃ (б), $\lambda_{B036} = 1532$ нм, $J_{B036} = 0.51$ кBT/см².

Из рисунка 11 а) видно, что для всего концентрационного ряда нанопорошков твердых растворов CaF₂-(2.0-15.0)ErF₃, свечение люминесценции сосредоточено в оранжевой области диаграммы цветности. При увеличении концентрации ErF₃ от 1.5 мол.% до 15.0 мол.%, свечение люминесценции нанопорошков твердых растворов SrF₂-(1.5-15.0)ErF₃ изменяется из желто-оранжевой в желто-зеленую область диаграммы цветности (рисунок 11 б).

Пятая глава посвящена результатам исследования спектральнолюминесцентных характеристик концентрационных рядов нанопорошков твердых растворов SrF₂-(1.0-11.0)HoF₃ при возбуждении уровня ${}^{5}I_{7}$ ионов Ho³⁺ излучением с длиной волны 1940 нм.

<u>В параграфе 5.1</u> представлены результаты анализа фазового состава, морфологии и дисперсности нанопорошков твердых растворов SrF_2 -(1.0-11.0)HoF₃. Показано, что нанопорошки твердых растворов SrF_2 -(1.0-11.0)HoF₃ характеризуются однофазной структурой, соответствующей гранецентрированной кубической решетке флюорита (пространственная группа Fm3m). Приводится зависимость параметра решетки нанопорошков твердых растворов SrF_2 -(1.0-11.0)HoF₃ от концентрации HoF₃. Параметр решетки нанопорошков твердых растворов SrF_2 -(1.0-11.0)HoF₃ линейно уменьшается с увеличением концентрации HoF₃, что обусловлено внедрением междоузельных ионов F^- при компенсации заряда при гетеровалентном замещении ионов Sr^{2+} ионами Ho³⁺ и соотношением ионных радиусов Sr^{2+} (1.4 Å) и Ho³⁺ (1.155 Å).

<u>В параграфе 5.2</u> представлены результаты исследования характеристик апконверсионной люминесценции нанопорошков твердых растворов SrF_2 -(1.0-11.0)HoF₃ при возбуждении уровня ⁵I₇ ионов Ho³⁺. Представлены концентрационные зависимости спектральной плотности мощности ап-конверсионной люминесценции ионов Ho³⁺ в диапазоне длин волн 380-780 нм для нанопорошков твердых растворов SrF_2 -(1.0-11.0)HoF₃, полученные при возбуждении уровня ⁵I₇ ионов Ho³⁺ (рисунок 12). Из рисунка 12 следует, что пиковые значения спектральной плотности мощности ап-конверсионной люминесценции увеличиваются в интервале значений концентраций HoF₃ от 1.0 мол.% до 3.0 мол.%. При дальнейшем увеличении концентрации HoF₃ от 3.0 мол.% до 11.0 мол.% пиковые значения спектральной плотности мощности ап-конверсионной люминесценции уменьшаются.

Для нанопорошков твердых SrF₂-(1.0-11.0)НоF₃ вырастворов полнена оценка энергетического выхода В_{эн} ап-конверсионной люминесценции. Значения В_{эн} для апконверсионной люминесценции в видимом спектральном диапазоне концентрационного ряда нанопорошков твердых растворов SrF₂-(1.0-11.0)НоF₃ при возбуждении лазерным излучением с длиной волны 1940 нм и плотностью мощности 28 BT/cm^2 не превышают 0.03 \pm 0.01 %.

Шестая глава посвящена результатам исследования влияния солегирования ионами Yb³⁺ на характеристики ап-конверсионной люминесценции концентрационных рядов

Рисунок 12 – Зависимости спектральной плотности мощности ап-конверсионной люминесценции от концентрации HoF₃ в нанопорошках твердых растворов SrF₂-(1.0-11.0)HoF₃, $\lambda_{B036} = 1940$ нм, $J_{B036} = 28$ Bt/cm², T = 300 K.

нанопорошков твердых растворов SrF_2 - ErF_3 и SrF_2 -HoF₃ при возбуждении уровней ${}^4I_{13/2}$ и 5I_7 ионов Er^{3+} и Ho³⁺, соответственно.

<u>В параграфе 6.1</u> представлены результаты исследования фазового состава, морфологии и дисперсности нанопорошков твердых растворов SrF_2 - ErF_3 -YbF_3 и SrF_2 -HoF_3-YbF_3. Показано, что нанопорошки твердых растворов SrF_2 - ErF_3 -YbF_3 и SrF_2 -HoF_3-YbF_3 характеризуются однофазной структурой, соответствующей гранецентрированной кубической решетке флюорита (пространственная группа Fm3m). Также приводятся данные об изменении параметра решетки нанопорошков твердых растворов SrF_2 - ErF_3 -YbF_3 и SrF_2 -HoF_3-YbF_3 в зависимости от концентрации YbF_3. Значение параметра решетки для нанопорошков твердых растворов SrF_2 - ErF_3 -YbF_3 и SrF_2 - ErF_3 - VF_3 - $VF_$

<u>В параграфах 6.2 и 6.3</u> приведены результаты исследования влияния солегирования ионами Yb³⁺ на характеристики ап-конверсионной люминесценции концентрационных рядов нанопорошков твердых растворов SrF₂-ErF₃ и SrF₂-HoF₃ при возбуждении уровней ⁴I_{13/2} и ⁵I₇ ионов Er³⁺ и Ho³⁺. Поскольку одним из потенциальных применений нанопорошков твердых растворов SrF₂-RF₃-YbF₃ (R³⁺ - Er³⁺, Ho³⁺) является создание визуализаторов ИК лазерного излучения, то использование солегированных ионами Yb³⁺ нанопорошков твердых растворов SrF₂-RF₃ (R³⁺ - Er³⁺, Er³⁺, Ho³⁺) позволяет расширить спектральный диапазон работы визуализаторов. В

результате солегирования появляется возможность визуализировать лазерное излучение как в спектральных диапазонах около 1.5 мкм (оптический переход ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ ионов Er³⁺) и около 2.0 мкм (оптический переход ${}^{5}I_{8} \rightarrow {}^{5}I_{7}$ ионов Ho³⁺), так и в области 1.0 мкм (оптический переход ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ ионов Yb³⁺). В литературе значительное количество работ, посвященных исследованию апимеется конверсионной люминесценции фторидных твердых растворов MF₂-RF₃-YbF₃ (M²⁺ - Ca^{2+} , Sr^{2+} ; R^{3+} - Er^{3+} , Ho^{3+}) при их возбуждении излучением в области 1.0 мкм. Однако нами не были обнаружены работы, в которых исследовалась бы апконверсионная люминесценция фторидных твердых растворов SrF₂-RF₃-YbF₃ (R³⁺ - Er³⁺, Ho³⁺) при возбуждении излучением в спектральных диапазонах 1.5 и 2.0 мкм. При этом, как отмечалось выше, с одной стороны солегирование ионами Yb^{3+} нанопорошков твердых растворов SrF_2 -RF₃-YbF₃ (R³⁺ - Er³⁺, Ho³⁺) позволяет расширить спектральный диапазон преобразования ИК лазерного излучения, с другой стороны оптический переход ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ ионов Yb³⁺ может являться каналом потерь при возбуждении лазерным излучением в области 1.5 и 2.0 мкм (рисунок 13). Канал потерь может быть обусловлен безызлучательным переносом энергии от ионов Er³⁺ к ионам Yb³⁺ в нанопорошках твердых растворов SrF₂-ErF₃-YbF₃ и от ионов Ho³⁺ к ионам Yb³⁺ в нанопорошках твердых растворов SrF₂-HoF₃-YbF₃.

указанием возможных процессов передачи энергии.

В результате исследований, выполненных в работе, выявлено, что значения спектральной плотности мощности ап-конверсионной люминесценции для нано-порошков твердых растворов SrF_2 -7.0 ErF_3 -(1.0-3.0)YbF₃ и SrF_2 -7.0 ErF_3 имеют один и тот же порядок величины при возбуждении лазерным излучением с длиной волны 1532 нм (рисунок 14 а). Аналогичная ситуация характерна и для нанопорошков твердых растворов SrF_2 -3.0HoF₃-(0.5-1.5)YbF₃ и SrF_2 -3.0HoF₃ при возбуждении лазерным излучением с длиной волны 1940 нм (рисунок 14 б).

Рисунок 14 – Зависимости спектральной плотности мощности ап-конверсионной люминесценции от концентрации YbF₃ в нанопорошках SrF₂-7.0ErF₃-(1.0-3.0)YbF₃, SrF₂-7.0ErF₃, $\lambda_{B036} = 1532$ нм, $J_{B036} = 0.51$ кBT/см² (a); SrF₂-3.0HoF₃-(0.5-1.5)YbF₃, SrF₂-3.0HoF₃, $\lambda_{B036} = 1940$ нм, $J_{B036} = 28$ BT/см², T = 300 K.

Значения энергетического выхода $B_{_{3H}}$ ап-конверсионной люминесценции для видимого спектрального диапазона (380-780 нм) нанопорошков твердых растворов SrF₂-7.0ErF₃-(1.0-3.0)YbF₃, SrF₂-7.0ErF₃ и SrF₂-3.0HoF₃-(0.5-1.5)YbF₃, SrF₂-3.0HoF₃ приведены в таблице 2.

Таблица 2 – Значения энергетического выхода ап-конверсионной люминесценции (380-780 нм) нанопорошков твердых растворов SrF_2 -7.0 ErF_3 -(1.0-3.0)YbF₃, SrF_2 -7.0 ErF_3 ($\lambda_{B036} = 1532$ нм, $J_{B036} = 0.51$ кВт/см²) и SrF_2 -3.0HoF₃-(0.5-1.5)YbF₃, SrF_2 -3.0HoF₃ ($\lambda_{B036} = 1940$ нм, $J_{B036} = 28$ Вт/см²).

1						
Концентрация ErF ₃ , YbF ₃	Энергетический выход		Концентрация НоF ₃ , YbF ₃			
(мол.%)	В _{эн} (%)		В _{эн} (%)		(мол.%)	
	SrF ₂ ErF ₃ -YbF ₃	SrF ₂ HoF ₃ -YbF ₃				
SrF ₂ -7.0ErF ₃ -1.0YbF ₃	$0.17{\pm}0.01$	$0.05 {\pm} 0.01$	SrF_2 -3.0Ho F_3 -0.5Yb F_3			
SrF ₂ -7.0ErF ₃ -2.0YbF ₃	$0.17{\pm}0.01$	$0.02{\pm}0.01$	SrF_2 -3.0HoF ₃ -1.0YbF ₃			
SrF ₂ -7.0ErF ₃ -3.0YbF ₃	0.18±0.01	$0.02{\pm}0.01$	SrF_2 -3.0Ho F_3 -1.5Yb F_3			
SrF ₂ -7.0ErF ₃	0.19±0.01	$0.03{\pm}0.01$	SrF ₂ -3.0HoF ₃			

Из таблицы 2 видно, что солегирование ионами Yb³⁺ нанопорошков твердых растворов SrF₂-ErF₃ и SrF₂-HoF₃ не приводит к уменьшению энергетического выхода ап-конверсионной люминесценции в видимой области спектра при возбуждении уровня ⁴I_{13/2} ионов Er³⁺ и уровня ⁵I₇ ионов Ho³⁺.

В заключении приводятся основные результаты исследований, выполненных в настоящей работе, позволившие выявить особенности ап-конверсионной люминесценции в видимой области спектра монокристаллов и нанопорошков твердых растворов SrF_2 - ErF_3 и SrF_2 -HoF₃ при возбуждении излучением в ИК спектральном диапазоне. Полученные результаты обладают фундаментальной научной значимостью и представляют практический интерес для разработки элементов и

методик, в которых необходима визуализация излучения ИК спектрального диапазона.

Основные результаты работы

1. Предложена модель возникновения ап-конверсионной люминесценции в видимой области спектра в монокристаллах и нанопорошках твердых растворов (1-х)SrF₂-хErF₃ (х = 1.5-15.0 мол.%) при возбуждении уровня ⁴I_{11/2} ионов Er³⁺ излучением с длиной волны 972 нм. Ап-конверсионная люминесценция в видимой области спектра, соответствующая оптическим переходам ⁴G_{11/2}→⁴I_{15/2}, ²H_{9/2}→⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2}, ⁴F_{9/2}→⁴I_{15/2} и процессами межионного взаимодействия (⁴F_{7/2}→⁴G_{11/2}, ⁴F_{7/2}→F_{9/2}; ⁴F_{9/2}→²H_{9/2}, ⁴F_{9/2}→⁴I_{13/2}). Выявлено, что при увеличении концентрации ионов Er³⁺ в монокристаллах и нанопорошках твердых растворов (1-х)SrF₂-хErF₃ (х = 1.5-15.0 мол.%) возрастает вероятность процессов кросс-релаксации (⁴F_{7/2}→⁴F_{9/2}, ⁴I_{11/2}→⁴F_{9/2}, ⁴F_{9/2}→⁴I_{11/2}, ⁴I_{15/2}→⁴I_{11/2}; ⁴G_{11/2}→⁴F_{9/2}, ⁴F_{9/2}, ⁴F_{9/2}→⁴I_{11/2}, ⁴I_{15/2}→⁴I_{11/2}; ⁴G_{11/2}→⁴F_{9/2}, ⁴F_{9/2}, ⁴F_{9/2}→⁴I_{11/2}, ⁴I_{15/2}→⁴I_{11/2}, ⁴I_{15/2}→⁴I_{11/2}).

2. Предложена модель возникновения ап-конверсионной люминесценции в видимой области спектра монокристаллов и нанопорошков твердых растворов (1-х)SrF₂-хErF₃ (x = 1.5-15.0 мол.%) при возбуждении уровня ${}^{4}I_{13/2}$ ионов Er³⁺ излучением с длиной волны 1532 нм. Ап-конверсионная люминесценция в видимой области спектра, соответствующая оптическим переходам ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$; ${}^{4}I_{9/2} \rightarrow {}^{4}S_{3/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$; ${}^{4}I_{9/2} \rightarrow {}^{4}S_{3/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$; ${}^{4}I_{9/2} \rightarrow {}^{4}S_{3/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$; ${}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2}$). Выявлено, что при увеличении концентрации ионов Er³⁺ в монокристаллах и нанопорошках твердых растворов (1-х)SrF₂-хErF₃ (x = 1.5-15.0 мол.%) возрастает вероятность процессов межионного взаимодействия (${}^{2}H_{9/2} \rightarrow {}^{4}I_{11/2}$; ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$; ${}^{4}F_{9/2} \rightarrow {}^{4}F_{7/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$; ${}^{4}F_{9/2} \rightarrow {}^{4}S_{3/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}F_{7/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$; ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$; ${}^{4}F_{9/2} \rightarrow {}^{4}F_{7/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$, и процессов кросс-релаксации (${}^{4}F_{7/2} \rightarrow {}^{4}F_{9/2}$, ${}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{11/2}$).

3. Выявлено, что значения энергетического выхода ап-конверсионной люминесценции в видимой области спектра, обусловленной оптическими переходами ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} в монокристаллах и нанопорошках твердых растворов (1-х)SrF₂-хErF₃ (x = 1.5-15.0 мол.%), увеличиваются с ростом плотности мощности излучения возбуждения уровня ${}^{4}I_{11/2}$ ионов Er^{3+} . Меньшие значения энергетического выхода ап-конверсионной люминесценции в видимой области спектра нанопорошков твердых растворов (1-х)SrF₂-хErF₃ (x = 1.5-15.0 мол.%) при возбуждении уровней ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ ионов Er^{3+} по сравнению с монокристаллами аналогичного состава обусловлены взаимодействием ионов Er^{3+} с OH-группами.

4. Определены значения энергетического выхода ап-конверсионной люминесценции в видимой области спектра, обусловленной оптическими переходами ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} в нанопорошках концентрационного ряда твердых растворов (1-х)CaF₂-хErF₃ (x = 2.0-15.0 мол.%). Максимальное значение энергетического выхода ап-конверсионной люминесценции в видимой области спектра получено для состава (1-х)CaF₂-хErF₃ (x = 6.0 мол.%). Определены координаты цветности ап-конверсионной люминесценции в видимой области спектра при возбуждении уровня ${}^{4}I_{13/2}$ ионов Er³⁺ в нанопорошках твердых растворов (1-х)CaF₂-хErF₃ (x = 2.0-15.0 мол.%). Выявлено, что координаты цветности ап-конверсионной люминесценции в видимой области спектра присти спектра (x = 2.0-15.0 мол.%). Выявлено, что координаты цветности ап-конверсионной люминесценции в видимой области спектра нанопорошков твердых растворов (1-х)CaF₂-хErF₃ (x = 2.0-15.0 мол.%) зависят от соотношения интенсивностей полос люминесценции оптических переходов ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er³⁺.

5. Значения энергетического выхода ап-конверсионной люминесценции в видимой области спектра, обусловленной оптическими переходами ${}^{5}F_{3} \rightarrow {}^{5}I_{8}$, ${}^{5}S_{2}({}^{5}F_{4}) \rightarrow {}^{5}I_{8}$, ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ ионов Ho³⁺ для нанопорошков твердых растворов (1-x)SrF₂xHoF₃ (x = 1.0-11.0 мол.%) при возбуждении уровня ${}^{5}I_{7}$ ионов Ho³⁺ лазерным излучением с длиной волны 1940 нм и плотностью мощности 28 Bt/cm² соответствуют интервалу 0.01-0.03%. Определены координаты цветности спектров апконверсионной люминесценции в видимой области спектра при возбуждении уровня ${}^{5}I_{7}$ ионов Ho³⁺ в нанопорошках твердых растворов (1-x)SrF₂-xHoF₃ (x = 1.0-11.0 мол.%).

энергетического 6. Выполнена оценка значений выхода апконверсионной люминесценции в видимой области спектра, обусловленной оптическими переходами ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}, {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ при возбуждении уровня ${}^{4}I_{13/2}$ ионов Er^{3+} в нанопорошках твердых растворов (1х)SrF₂-хErF₃-уYbF₃ (x = 7.0 мол.%; y = 1.0-3.0 мол.%). Также выполнена оценка энергетического выхода ап-конверсионной люминесценции в видимой области спектра, обусловленная оптическими переходами ${}^{5}F_{3} \rightarrow {}^{5}I_{8}$, ${}^{5}S_{2}({}^{5}F_{4}) \rightarrow {}^{5}I_{8}$, ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ при возбуждении уровня ⁵I₇ ионов Но³⁺ в нанопорошках твердых растворов (1x)SrF₂-хHoF₃-уYbF₃ (x = 3.0 мол.%; y = 0.5-1.5 мол.%). Выявлено, что солегирование ионами Yb³⁺ нанопорошков твердых растворов SrF₂-ErF₃-YbF₃ и SrF₂-HoF₃-YbF₃ не приводит к снижению значений энергетического выхода апконверсионной люминесценции в видимой области спектра. Это свидетельствует о том, что оптический переход ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ ионов Yb³⁺ в данных твердых растворах не является каналом потерь при их возбуждении ИК излучением в области 1.5 и 2.0 мкм.

Публикации по теме диссертационного исследования

[A1] Lyapin, A.A. Infrared-to-visible upconversion luminescence in SrF₂:Er powders upon excitation of the ${}^{4}I_{13/2}$ level / A.A. Lyapin, S.V. Gushchin, S.V. Kuznetsov, P.A. Ryabochkina, A.S. Ermakov, V.Yu. Proydakova, V.V. Voronov, P.P. Fedorov, S.A. Artemov, A.D. Yapryntsev, V.K. Ivanov // Optical Materials Express. – 2018. – V. 8, No. 7. – P. 1863-1869.

[A2] Lyapin, A.A. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / A.A. Lyapin, S.V. Gushchin, A.S. Ermakov, S.V. Kuznetsov, P.A. Ryabochkina, V.Yu. Proydakova, V.V. Voronov, P.P. Fedorov, M.V. Chernov // Chinese Optics Letters. – 2018. – V. 16, No. 9. – P. 091901.

[A3] Ляпин, А.А. Ап-конверсионная люминесценция фторидных люминофоров SrF₂:Er,Yb при возбуждении лазерным излучением с длиной волны 1.5 мкм / А.А. Ляпин, П.А. Рябочкина, С.В. Гущин, С.В. Кузнецов, М.В. Чернов, В.Ю. Пройдакова, В.В. Воронов, П.П. Федоров // Оптика и спектроскопия. – 2018. – Т. 125, № 4 – С. 516-521.

[A4] Ляпин, А.А. Характеристики апконверсионной люминесценции порошков CaF₂:Ег при возбуждении лазерным излучением с длиной волны 1.5 мкм / А.А. Ляпин, П.А. Рябочкина, С.В. Гущин, М.Н. Жарков, А.С. Ермаков, В.М. Кяшкин, С.В. Прытков, А.В. Атанова // Оптика и спектроскопия. – 2020. – Т. 128, № 2 – С. 204-210.

[A5] Chernov, M.V. Infrared to visible up-conversion luminescence of SrF_2 :Ho particles upon excitation of the ${}^{5}I_{7}$ level of Ho³⁺ ions / M.V. Chernov, S.V. Gushchin, A.M. Kuzmin, S.V. Kuznetsov, A.A. Lyapin, V.Yu. Proydakova, P.A. Ryabochkina, V.V. Voronov, P.P. Fedorov // Journal of Luminescence. – 2023. – V. 261. – P. 119942.

[A6] Гущин, С.В. Особенности ап-конверсионной люминесценции концентрационных рядов монокристаллов и наночастиц SrF₂-ErF₃ при возбуждении на уровень ⁴I_{11/2} ионов Er³⁺ / С.В. Гущин, П.А. Рябочкина, А.А. Ляпин, С.В. Кузнецов, В.А. Конюшкин, А.Н. Накладов, В.Ю. Пройдакова // Известия высших учебных заведений. Материалы электронной техники. – 2024. – Т. 127, № 4.

[**B1**] Ляпин, А.А. Антистоксовый люминофор для визуализации инфракрасного лазерного излучения / А.А. Ляпин, П.А. Рябочкина, С.В. Кузнецов, С.В. Гущин, М.В. Чернов, А.С. Ермаков, В.Ю. Пройдакова, П.П. Федоров // Патент на изобретение. – 2019. – № 2700069.

[C1] Gushchin, S.V. Upconversion luminescence in SrF_2 : Er phosphors upon excitation of ${}^{4}I_{11/2}$ and ${}^{4}I_{13/2}$ levels / S.V. Gushchin, A.A. Lyapin, A.S. Ermakov, S.V. Kuznetsov, P.A. Ryabochkina, V.Yu. Proydakova, P.P. Fedorov // Book of abstracts of the XVIIth International Feofilov Symposium on Spectroscopy of Crystals Doped with Rare Earth and Transition Metal Ions (IFS2018). Ekaterinburg, Russia. – 2018. – 136-137 p.

[C2] Гущин, С.В. Апконверсионное преобразование инфракрасного лазерного излучения во фторидных порошках, легированных ионами Er³⁺ и Yb³⁺ / C.B. Гущин, А.А. Ляпин, С.В. Кузнецов, П.А. Рябочкина, В.Ю. Пройдакова, А.С. Ермаков, П.П. Федоров // Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение : прогр. и материалы 17-й Междунар. науч. конф.-шк. – Саранск: Изд-во Мордов. ун-та, 2018. – С. 146.

[C3] Gushchin, S.V. Upconversion luminescence of CaF₂:Er and SrF₂:Er,Tm phosphors upon excitation of the ${}^{4}I_{13/2}$ level of Er³⁺ ions / S.V. Gushchin, A.A. Lyapin, S.V. Kuznetsov, M.N. Zharkov, A.S. Ermakov, P.A. Ryabochkina, V.Yu. Proydakova, V.M. Kyashkin, P.P. Fedorov // Book of abstracts of the 6th International School and

Conference on Optoelectronics, Photonics, Engineering and Nanostructures. Saint Petersburg, Russia. – 2019. – 351-352 p.

[C4] Гущин, С.В. Фторидные люминофоры SrF₂:RE (RE = Er, Tm, Ho, Yb) для преобразования инфракрасного лазерного излучения / С.В. Гущин, А.А. Ляпин, М.В. Чернов, А.С. Ермаков, С.В. Кузнецов, П.А. Рябочкина, В.Ю. Пройдакова, П.П. Федоров // IX Международная конференция по фотонике и информационной оптике : сборник научных трудов. – М.: НИЯУ МИФИ, 2020. – С. 354-355.

[C5] Гущин, С.В. Исследование характеристик ап-конверсионной люминесценции порошков SrF₂:Ho и SrF₂:Ho,Yb при возбуждении на уровень ⁵I₇ ионов Ho³⁺ / С.В. Гущин, С.В. Кузнецов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров, М.В. Чернов // XII международный симпозиум по фотонному эхо и когерентной спектроскопии (ФЭКС-2021) памяти профессора Виталия Владимировича Самарцева: сборник тезисов. – М.: Тровант, 2021. – С. 320-322.

[C6] Gushchin, S.V. Upconversion luminescence in SrF_2 :Er phosphors upon excitation of ${}^{4}I_{11/2}$ and ${}^{4}I_{13/2}$ levels / S.V. Gushchin, S.V. Kuznetsov, V.Yu. Proydakova, A.A. Lyapin, P.A. Ryabochkina, P.P. Fedorov, M.V. Chernov // Book of abstracts of the XVIIIth International Feofilov Symposium on Spectroscopy of Crystals Doped with Rare Earth and Transition Metal Ions (IFS2022). Moscow, Russia. – 2022. – 131-132 p.

[C7] Gushchin, S.V. Infrared laser imaging based on up-conversion luminescence of SrF_2 :RE (RE = Er, Tm, Yb, Ho) / S.V. Gushchin, S.V. Kuznetsov, A.A. Lyapin, V.Yu. Proydakova, P.A. Ryabochkina, P.P. Fedorov, M.V. Chernov // 2022 International Conference Laser Optics (ICLO). Saint Petersburg, Russia. – 2022. – 189 p.

[C8] Гущин, С.В. Исследование влияния процесса солегирования ионами Yb³⁺ на ап-конверсионную люминесценцию люминофоров SrF₂:Но при возбуждении лазерным излучением с длиной волны 1.94 мкм / С.В. Гущин, С.В. Кузнецов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров, М.В. Чернов // XXIX Международная конференция студентов, аспирантов и молодых ученых по фундаментальным наукам «Ломоносов-2022». Секция «Физика» : сборник тезисов. – М.: Физический факультет МГУ, 2022. – С. 293-294.

[C9] Гущин, С.В. Характеристики ап-конверсионной люминесценции фторидных люминофоров SrF₂:Но и SrF₂:Но, Yb при возбуждении лазерным излучением уровня ⁵I₇ ионов Ho³⁺ / С.В. Гущин, С.В. Кузнецов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров // Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение : прогр. и материалы 19й Междунар. науч. конф.-шк. – Саранск: Изд-во Мордов. ун-та, 2022. – С. 60.

[С10] Гущин, С.В. Увеличение интенсивности ап-конверсионной люминесценции люминофоров SrF₂:Но за счёт солегирования ионами Yb³⁺ при возбуждении двухмикронным лазерным излучением / С.В. Гущин, С.В. Кузнецов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров // XII Международная конференция по фотонике и информационной оптике : сборник научных трудов. – М.: НИЯУ МИФИ, 2023. – С. 262-263. [C11] Гущин, С.В. Исследование влияния процесса солегирования ионами Yb³⁺ на ап-конверсионную люминесценцию люминофоров SrF₂:Er при возбуждении лазерным излучением 1.5 мкм области спектра / С.В. Гущин, С.В. Кузнецов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров // XXX Международная конференция студентов, аспирантов и молодых ученых по фундаментальным наукам «Ломоносов-2023». Секция «Физика»: сборник тезисов. – М.: Физический факультет МГУ, 2023. – С. 455-456.

[C12] Гущин, С.В. Характеристики ап-конверсионной люминесценции фторидных люминофоров MF₂ (M = Ca, Sr) легированных редкоземельными ионами Er³⁺ и Ho³⁺ / С.В. Гущин, С.В. Кузнецов, В.А. Конюшкин, А.Н. Накладов, А.А. Ляпин, В.Ю. Пройдакова, П.А. Рябочкина, П.П. Федоров // Материалы нано-, микро-, оптоэлектроники и волоконной оптики: физические свойства и применение : прогр. и материалы 20-й Междунар. науч. конф.-шк. – Саранск: Изд-во Мордов. ун-та, 2024. – С. 33.

Список цитируемой литературы

- Jiang, W. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications / W. Jiang, J. Yi, X. Li, F. He, N. Niu, L. Chen // Biosensors – 2022. – V. 12. – P. 1036.
- Cheng, X. A Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence / X. Cheng, J. Zhou, J. Yue, Y. Wei, C. Gao, X. Xie, L. Huang // Chem. Rev. 2022. V. 122. P. 15998-16050.
- Yang, Y. Synthesis and enhanced upconversion luminescence upon twowavelength excitation of Er³⁺:CaF₂ transparent ceramics / Y. Yang, W. Lia, B. Mei, J. Song, G. Yia, Z. Zhou, J. Liu // J. Lumin. – 2019. – V. 213. – P. 504-509.
- Liu, Z. Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic / Z. Liu, B. Mei, J. Song, W. Li // J. Am. Ceram. Soc. – 2014. – V. 97. – № 8. – P. 2506-2510.
- Liu, Z. Fabrication and microstructure characterizations of transparent Er:CaF₂ composite ceramic / Z. Liu, M. Jia, G. Yi, B. Me, Q. Jing, P. Liu // J. Am. Ceram. Soc. 2019. V. 102. № 1. P. 285-293.
- Kumar, G. A. Optical spectroscopy and confocal fluorescence imaging of upconverting Er³⁺-doped CaF₂ nanocrystals / G. A. Kumar, C. W. Chen, R. E. Riman // Appl. Phys. Lett. 2007. V. 90. № 9. P. 093123.
- Brown, M. R. Infrared quantum counter action in Er-Doped fluoride lattices / M. R. Brown, W. A. Shand // Phys. Rev. Lett. – 1964. – V.12. – № 13. – P. 367-369.
- 8. Esterowitz, L. Two step excitation in erbium doped cadmium fluoride / L. Esterowitz, J. Noonan // Appl. Phys. Lett. 1965. V. 7. № 10. P. 281-283.
- Овсянкин, В.В. Тройной оптический резонанс в кристаллах BaF₂-Er³⁺ / B.B. Овсянкин, П.П. Феофилов. // Оптика и спектроскопия. – 1966. – Т. 20. – С. 526-528.

- 10. Feofilov, P. P. Cooperative Luminescence of Solids / P. P. Feofilov, V. V. Ovsyankin // Appl. Opt. 1967. V. 6. № 11. P. 1828-1833.
- Brown, M.R. Infra-red quantum counter action in Ho doped fluoride lattices / M. R. Brown, W. A. Shand // Phys. Lett. – 1964. – V. 11. – № 3. – P. 219-220.
- Lyapin, A.A. Investigation of the mechanisms of upconversion luminescence in Ho³⁺ doped CaF₂ crystals and ceramics upon excitation of ⁵I₇ level / A.A. Lyapin, P.A. Ryabochkina, A.N. Chabushkin, S.N. Ushakov, P.P. Fedorov // J. Lumin. 2015. V. 167. P. 120-125.
- Fedorov, P.P. Preparation and properties of methylcellulose/ nanocellulose/ CaF₂:Ho polymer-inorganic composite films for two-micron radiation visualizers / P.P. Fedorova, A.A. Lugininab, S.V. Kuznetsov, V.V. Voronov, A.A. Lyapin, P.A. Ryabochkina, M.V. Chernov, M.N. Mayakova, D.V. Pominova, O.V. Uvarov, A.E. Baranchikov, V.K. Ivanov, A.A. Pynenkov, K.N. Nishchev // J. Fluor. Chem. – 2017. – V. 202. – P. 9-18.
- Fedorov, P.P. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer / P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Voronov, A.D. Yapryntsev, A.A. Lyapin, A.A. Pynenkov, K.N. Nishchev, E.V. Chernova, D.I. Petukhov, V.N. Kuryakov, R.V. Gainutdinov, V.K. Ivanov // Carbohydr. Polym. – 2020. – V. 250. – P. 116866.
- Madirov, E.I. An up-conversion luminophore with high quantum yield and brightness based on BaF₂:Yb³⁺,Er³⁺ single crystals / E.I. Madirov, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, T. Bergfeldt, D. Busko, I.A. Howard, B.S. Richards, S.V. Kuznetsov, A. Turshatov // J. Mater. Chem. C. – 2021. – V. 9. – № 10. – P. 3493-3503.
- Madirov, E.I. Absolute quantum yield for understanding upconversion and downshift luminescence in PbF₂:Er³⁺,Yb³⁺ crystals / E.I. Madirov, D. Busko, I.A. Howard, B.S. Richards, A. Turshatov // Phys. Chem. Chem. Phys. 2023. V. 25. № 17. P. 11986-11997.
- Bordj, S. Spectroscopic characterization by up conversion of Ho³⁺/Yb³⁺ codoped CdF₂ single crystal / S. Bordj, H. Satha, A. Barros, D. Zambon, J.P. Jouart, M. Diaf, R. Mahiou // Opt. Mater. – 2021. – V. 118. – P. 11249.
- Rakov, N. A study of energy transfer phenomenon leading to photon upconversion in Ho³⁺:Yb³⁺:CaF₂ crystalline powders and its temperature sensing properties / N. Rakov, G.S. Maciel // Curr. Appl. Phys. – 2017. – V. 17. – № 10. – P. 1223-1231.
- Левшин, Л.В. Оптические методы исследования молекулярных систем. Ч. І. Молекулярная спектроскопия / Л.В. Левшин, А.М. Салецкий. – М.: Изд-во МГУ, 1994. – 320 с.
- Pollnau, M. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems / M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen // Phys. Rev. B. 2000. V. 61. № 5. P. 3337-3346.