На правах рукописи

Jehob

ЗЫКОВ Алексей Андреевич

РАЗВИТИЕ МЕТОДОВ ЭЛАСТОГРАФИЧЕСКОЙ И АНГИОГРАФИЧЕСКОЙ ВИЗУАЛИЗАЦИИ В ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ НА ОСНОВЕ РЕАЛИСТИЧНОГО ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ОКТ-СКАНОВ

1.3.4 – радиофизика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Нижний Новгород – 2025

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук» (ИПФ РАН), г. Нижний Новгород.

Научный руководитель:	Зайцев Владимир Юрьевич, доктор физико-математических наук, член-корреспондент РАН
Официальные оппоненты:	Кистенев Юрий Владимирович, доктор физико-математических наук, профессор, ФГБОУ ВО «Томский государственный универси- тет», зав. лабораторией лазерного молекулярного имиджинга и машинного обучения (г. Томск)
	Потлов Антон Юрьевич, кандидат технических наук, уч. звание доцент, ФГБОУ ВО «Тамбовский государственный технический университет», доцент кафедры биомедицинской техники (г. Тамбов)
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» (г. Саратов)

Защита состоится 12 ноября 2025 года в 15:00 часов на заседании диссертационного совета 24.2.340.03 при Нижегородском государственном университете им. Н.И. Лобачевского по адресу: 603022, Нижний Новгород, пр. Гагарина, 23, корп. 1, ауд. 420.

С диссертацией можно ознакомиться в фундаментальной библиотеке Нижегородского государственного университета им. Н.И. Лобачевского и на сайте https://diss.unn.ru/1555.

Автореферат разослан _____ 2025 г.

Учёный секретарь диссертационного совета д.ф.-м.н., доцент

Aly

Клюев А.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования

Диссертационная работа посвящена развитию методов эластографического и ангиографического анализа сканов в оптической когерентной томографии (ОКТ), являющейся одной из наиболее динамично развивающихся технологий медицинской визуализации.

ОКТ можно считать высокоразрешающим оптическим аналогом ультразвуковых медицинских сканеров, история которых началась в середине 20 века, тогда как идея и само название «ОКТ» были введены в 1991 г. в работе [1], где было продемонстрировано получение структурных оптических изображений глазного дна на основе принципов низкокогерентной интерферометрии [2]. Глубина ОКТ-визуализации сильно рассеивающих биотканей ограничивается ослаблением зондирующей оптической волны и обычно не превышает 2 мм. Разрешение по глубине определяется длиной когерентности зондирующего оптического пучка, а по латеральной координате – его диаметром. Как правило, разрешение по обоим направлениям для «типичных» ОКТ систем составляет порядка 5-10 мкм (но по глубине оно может быть дополнительно повышено за счет использования более широкополосного излучения с меньшей длиной когерентности, а по латеральной координате – за счет более высокой степени фокусировки пучка). Размеры области ОКТвизуализации сопоставимы с размерами гистологических изображений и потому с самого начала развития ОКТ большое внимание привлекали перспективы создания на ее основе своего рода оптической биопсии, в том числе, используя возможности высокоразрешающей эластографии на основе ОКТ. К настоящему времени уже можно констатировать, что ОКТ произвела революцию в офтальмологической диагностике, где она стала «золотым стандартом». По мнению авторов опубликованного в конце 2021 года фундаментального обзора [3], вышедшего к 30-летию создания ОКТ, на ближайшее десятилетие одним из основных направлений в ОКТ станет развитие ее функциональных расширений, прежде всего, ангиографической и эластографической модальностей, которые значительно повышают диагностическую ценность ОКТ-обследований и открывают широкие перспективы дальнейшего расширения применений ОКТ за пределы офтальмологии (например, для диагностики состояния сосудов методом внутрисосудистой ОКТ, решения задач дифференцирования доброкачественных тканей от злокачественных, оценки ответа опухолей на терапию и т.д.).

Важным достоинством таких подходов является то, что они не требуют введения в биоткани различных контрастных агентов, поскольку принципы ОКТ-эластографии и ангиографии основаны на анализе движений имеющихся в ткани рассеивателей в регистрируемых последовательностях ОКТсканов. Реализация таких модальностей, основанных на анализе движений рассеивателей, требует применения методов обработки сигналов для выделения «полезных», то есть несущих нужную информацию движениях рассеивателей, а также для фильтрации различных видов искажений, связанных с маскирующими эффектами, вызываемыми как собственными движениями живой биоткани, так и специально создаваемыми в ткани движениями, которые, например, требуется искусственно создавать при реализации эластографической модальности. В частности, при ОКТ-ангиографии необходимо отделить движения "твердой" ткани (вызванные дыханием, сердцебиением и т. д.) от детектируемого движения рассеивающих частиц в кровотоке, что не является тривиальной проблемой в живых тканях [4]. В задачах ОКТ-реконструкции деформаций сами реконструируемые деформации создают так называемый «декорреляционный шум», который довольно часто превышает все другие измерительные шумы.

Для реальных биологических тканей проведение экспериментальных исследований в полностью контролируемых и воспроизводимых условиях часто оказывается достаточно сложным или даже невозможным. По этой причине работоспособности совершенствования ОКТлля тестирования И методов/алгоритмов распознавания и количественной оценки движений рассеивателей часто проводятся эксперименты с физическими фантомами биотканей, имеющими более контролируемые параметры. Однако даже в фантомных экспериментах сложно обеспечить требуемые свойства рассеивателей и контролируемые параметры их движений. Возможности варьирования параметров и режимов сканирования самой ОКТ-установки также весьма ограничены в физических экспериментах. В связи с этим большой интерес исследователей вызывает создание достаточно реалистичных и гибких (с точки зрения свойств рассеивателей и параметров ОКТ-системы) моделей формирования ОКТ-сканов, на основе которых можно создавать «цифровые фантомы» тканей интересующего типа и имитировать работу самой ОКТ-установки.

Известные подходы, например, различные реализации метода Монте-Карло, в котором используется псевдослучайная генерация траекторий больших ансамблей фотонов в сильно рассеивающих биотканях [5], являются весьма вычислительно затратными и непосредственно не приспособленными для повторных вычислений, описывающих рассеяние на одних и тех же рассеивателях, положение которых изменяется от скана к скану. В другой важной группе методов, называемых волновыми (например, [6]), последовательно описываются распространение оптических волн, рассеяние, обратное распространение и их прием. Волновые подходы естественным образом открывают возможность учитывать произвольные движения рассеивателей от скана к скану, что очень важно для моделирования сигналов для развития эластографической и ангиографической ОКТ-модальностей. В последнем случае требуются особенно большие объемы ОКТ-данных, а потому очень важна вычислительная эффективность, которая часто является недостаточной в вычислительно сложных вариантах волновых моделей, порой требующих многочасовых вычислений [6]. На практике такие высокие временные затраты уже мало приемлемы даже для моделирования одиночных ОКТ-сканов, а тем более для симулирования больших серий ОКТ-сканов деформируемой ткани или ткани с кровотоком. Ко времени начала работы над диссертацией весьма остро стояла проблема развития методов многократно более вычислительно эффективного и в то же время достаточно реалистичного численного моделирования ОКТ-сигналов, позволяющего корректно учитывать влияние произвольных движений рассеивателей от скана к скану.

Целями диссертации, таким образом, являлись формулирование реалистичного и в то же время вычислительно эффективного подхода к численному моделированию ОКТ-сканов и его использование для развития улучшенных и создания новых методов анализа ОКТ-сканов при реализации ангиографической и эластографической модальностей в оптической когерентной томографии.

Достижение поставленных целей потребовало решения следующих задач:

1. Построение вычислительно эффективного метода численного моделирования ОКТ-сигналов на основе волнового подхода, позволяющего достаточно реалистично описывать ОКТ-сканы для наиболее широко используемых ОКТ-установок со слабофокусированным зондирующим пучком, дающим приблизительно неизменное поперечное разрешение по визуализируемой глубине.

2. Исследование закономерностей декорреляции ОКТ-сигналов, связанных с различными типами движений рассеивателей в кровотоке в высоко контролируемых условиях численного эксперимента на основе предложенной модели формирования ОКТ-сканов.

3. Развитие улучшенного метода компенсации пространственно неоднородных, сверхволновых по амплитуде маскирующих движений «твердой» живой ткани, окружающей визуализируемые сосуды, на основе применения теоремы Фурье о сдвиге в пределах скользящего окна.

4. Разработка нового метода ОКТ-визуализации кровеносных сосудов, в котором, вместо обычно используемого выделения повышенной временной изменчивости сигнала от движущихся частиц крови, используется аналогия с эластографией и движущиеся рассеиватели в сечениях сосудов на ОКТ-сканах выделяются как области повышенных случайных локальных «деформаций» на фоне окружающей ткани, маскирующие движения которой являются существенно более крупномасштабными.

5. Разработка методов, повышающих качество оценивания пространственно неоднородных деформаций в ОКТ-эластографии с использованием автоматического адаптивного выбора основных параметров обработки ОКТсканов – величины масштаба оценивания градиента межкадровых вариаций фазы и размеров области предварительного усреднения, обеспечивающих

5

подавление измерительных шумов практически без ухудшения разрешения реконструируемого поля деформаций.

При решении задач (2)-(4) ключевую роль играло использование предложенного в рамках решения задачи (1) метода численного моделирования, позволившего детально исследовать влияние различных параметров как визуализируемой среды, так и моделируемой ОКТ-установки на эффективность предлагаемых алгоритмов

Научная новизна

Результаты, представленные в настоящей диссертационной работе, оригинальны и имеют следующие существенные аспекты новизны:

- Предложена новая модель формирования ОКТ-сканов, сочетающая реалистичность и высокую вычислительную эффективность, что открыло возможность численно генерировать большие объемы ОКТ-сигналов, имитирующих данные наиболее распространенного типа ОКТ-приборов со слабо-фокусированным зондирующим пучком, что позволило тестировать и развивать новые варианты ангиографического и эластографического анализа ОКТ-сигналов в строго контролируемых и гибко варьируемых условиях, что очень сложно или даже невозможно обеспечить в физических экспериментах.
- 2. Предложены новые методы эффективной компенсации декорреляционных искажений, вызываемых маскирующими движениями среды, включая неоднородные по глубине деформационные смещения рассеивателей в ткани, окружающей сосуды, что критически важно для реализации ОКТангиографии. Впервые для тестирования таких методов были реализованы трехмерные «цифровые фантомы» биоткани с имитацией микрокровотока.
- 3. Предложен новый подход к визуализации сосудов с движущимися рассеивателями в кровотоке. Сечения сосудов в этом подходе выделяются как области локально повышенной «деформации» на основе аналогии с методом визуализации деформаций ткани в фазочувствительной ОКТэластографии в отличие от ранее известных методов, использующих анализ временной изменчивости сигналов от движущихся частиц крови.
- 4. Впервые выявлена тесная взаимосвязь используемых масштабов области усреднения фазочувствительных ОКТ-сканов и масштаба оценивания градиента межкадровых вариаций фазы (оптимальная область усреднения в 2 раза меньше оптимального масштаба дифференцирования), а также впервые предложены методы адаптивного автоматического выбора отмеченных выше параметров обработки ОКТ-сканов для повышения качества эластографической визуализации практически без ухудшения разрешения реконструируемого поля деформаций.

Методология и методы исследования

Для развития методов мультимодальной оптической когерентной томографии в первую очередь использовалось численное моделирование ОКТсигналов с заданными параметрами имитируемой среды и самой ОКТустановки, и далее на синтезированных ОКТ-данных выполнялась апробация новых методов их обработки и ангиографического и эластографического анализа.

Апробация разработанных методов также проводилась и на реальных данных, получаемых с помощью разработанных и изготовленных в ИПФ РАН и используемых в Приволжском исследовательском медицинском университете (ПИМУ) спектральных ОКТ-систем с частотой получения А-сканов 20 кГц и 80кГц, имеющих осевое разрешение ≈ 10 мкм, поперечное разрешение ≈ 15 мкм и позволяющих визуализировать глубину 2 мм в воздухе. ОКТ-сканы имели размер 256-512 пикселей в глубину и 256-1024 пикселей в ширину, обычно покрывающие 4 мм в боковом направлении. Постобработка ОКТ-данных также проводилась с использованием развитых оригинальных алгоритмов.

Основные положения, выносимые на защиту

1. Учет амплитудного профиля зондирующего ОКТ-пучка в пренебрежении влиянием фазовой неоднородности позволяет сформулировать модель формирования ОКТ-сканов, сочетающую высокую вычислительную эффективность и реалистичность для имитации наиболее распространенного случая ОКТ-приборов со слабо-фокусированным зондирующим пучком, что дает возможность эффективно генерировать большие объемы ОКТ-данных (например, за десятки секунд получать 5-10 областей визуализируемой ткани объемом порядка кубического миллиметра, что типично для ОКТобследований).

2. Использование теоремы о фурье-сдвиге, применяемой в пределах скользящего окна, позволяет эффективно компенсировать декорреляционные искажения сравниваемых ОКТ-сканов даже в условиях пространственно неоднородных межкадровых сверхволновых по величине смещений рассеивателей, что значительно улучшает качество ангиографической визуализации в присутствии таких искажений.

3. Использование принципов аналогичных применяемым в фазочувствительной ОКТ-эластографии позволяет реализовать новый метод ангиографической визуализации, в котором области сосудов с движущимися рассеивателями выделяются на ОКТ-сканах как области локально повышенной случайной «деформации» ткани. В отсутствие полных замираний кровотока это открывает возможность значительно сократить время получения ангиографических изображений за счет попарной обработки сканов вместо анализа 6-8 перекрывающихся сканов в известных методах, основанных на анализе временной изменчивости ОКТ-сигналов.

4. Использование предложенного метода адаптивного выбора параметров обработки сравниваемых ОКТ-сканов, т. е. масштаба оценивания градиента межкадровых вариаций фазы и размера области усреднения комплексных амплитуд пикселей перед оцениванием этого градиента, позволяет значительно (на 5-15 дБ) снизить уровень шума в получаемых эластографических сканах практически без потери разрешения реконструируемых пространственно неоднородных распределений деформаций.

Теоретическая и практическая значимость

Полученные в диссертации результаты важны для уточнения и получения новых знаний о свойствах биотканей и биоподобных материалов и повышения качества диагностических заключений на основе ОКТ-данных, для которых предложенные в диссертации методы и подходы позволяют значительно улучшить качество эластографического и ангиогарического анализа.

С точки зрения практической значимости результаты диссертационной работы являются существенным вкладом в развитие новой модальности ОКТ для диагностики биотканей и иных биоподобных сред – визуализации деформаций произвольной природы (механического, теплового, осмотического происхождения и т.п.), а также, на этой основе, для реализации компрессионной оптической когерентной эластографии, для которой ключевую роль играет первоначальное построение полей деформации в исследуемой области. В этом контексте использование развитых в диссертации методов автоматического адаптивного выбора параметров эластографического анализа ОКТсканов позволяет существо повысить качество оценивания и визуализации деформаций и на этой основе повысить точность и качество характеризования упругих свойств биотканей методом компрессионной оптической когерентной эластографии.

Развитые алгоритмы адаптивной эластографической обработки ОКТ-сканов особенно важны в ситуациях, когда исследуемые деформации демонстрируют существенную пространственную неоднородность и изменчивость во времени от кадра к кадру. Такой характер деформаций является скорее правилом, нежели исключением, и, в частности, характерен для деформаций, индуцированных осмотическими напряжениями. Использование развитых диссертантом адаптивных процедур продемонстрировало высокую полезность при реализации нового применения ОКТ для исследования процессов диффузионного проникновения различных веществ в биоткани. Этот новый метод основан на наблюдения осмотически-индуцированных деформаций и открывает уникальные перспективы для исследования диффузионного проникновения в биоткани различных оптических просветляющих агентов, и фармакологических и косметических препаратов, многие из которых обладают осмотической активностью. В частности, такие методы открывают новые возможности для углубления понимания физических механизмов оптического просветления, поскольку ОКТ-картирование осмотических деформаций позволяет селективно прослеживать диффузионный поток нанесенного агента внутрь ткани и часто одновременно идущий отток свободной воды из объема ткани. При этом по той же ОКТ-записи можно параллельно выполнять пространственно-разрешенное оценивание изменений рассеивающих свойств ткани.

Предложенные в диссертации новые методы компенсации маскирующих движений живой ткани и новый вариант выполнения ангиографической визуализации с использованием аналогии с эластографией могут быть использованы для повышения качества ОКТ-ангиографии и в перспективе также сокращать время, требуемое для ангиографической визуализации.

Результаты, полученные в диссертации, использовались при выполнении проектов в рамках грантов Российского фонда фундаментальных исследований и Российского научного фонда (гранты РФФИ № 19-02-00645 и № 18-42-520018; гранты РНФ № 22-22-00952 и № 22-12-00295) и в рамках программы Министерства науки и высшего образования (соглашение № 075-15-2020-906 - НЦМУ «Фотоника»).

Апробация и степень достоверности результатов и публикации

Основные результаты диссертации докладывались на проводимых ННГУ конференциях по радиофизике (2019, 2020), Всероссийском молодежном Самарском конкурсе – конференции научных работ по оптике и лазерной физике (2020, 2022, 2023), конференции Экспериментальная и компьютерная биомедицина (Екатеринбург, 2021), XXV Saratov fall meeting (2021), Нижегородской сессии молодых ученых (2022), международной конференции International Conference Laser Optics ICLO-2022 (St. Peterburg, 2022), конференции Current Trends in Biophotonics (Nizhny Novgorod, 2023), международной конференции SPIE/COS Photonics Asia (Beijing, 2023), международной конференции Advanced Laser Technologies (ALT-2024, Vladivostok, 2024).

Достоверность полученных результатов также подтверждается их согласованием с известными в предельных случаях и успешным прохождением рецензирования публикаций по теме диссертации в ведущих профильных международных журналах, индексируемых в WoS/Scopus (Laser Physics Letters, Photonics, Journal of Biomedical Photonics & Engineering), трудах ведущих международных конференций (таких как SPIE Conference Proceedings и IEEE eXplore) и трудах ряда российских конференций. По теме диссертации опубликовано 7 журнальных статей и 9 докладов в трудах конференций, индексируемых в WoS и Scopus, 7 докладов в трудах российских конференций, а также одна глава в книге по ОКТ. Эти работы приведены в отдельном списке литературы в конце диссертации.

Личный вклад автора

Все результаты диссертации получены при непосредственном участии автора, как в части создания улучшенных методов и алгоритмов анализа ОКТсканов, так и в части апробирования развитых методов применительно к экспериментальным данным, полученным соавторами для различных реальных биотканей.

В ходе развития методов ОКТ-ангиографии автор диссертации играл ведущую роль при формулировке алгоритмов компенсации маскирующих движений живой ткани, выполнял численное моделирование ОКТ-сигналов для получения синтетических данных 3D-сканирования областей ткани с модельными сосудами, а также проводил сравнение работоспособности различных алгоритмов с использованием как синтезированных, так и реальных ОКТданных, полученных соавторами. Автор также лично участвовал в ряде экспериментов по получению ангиографических ОКТ-данных на добровольцах и на животных.

В ходе развития алгоритмов картирования деформаций на основе векторного подхода автор диссертации играл ведущую роль при формулировке методов адаптивного выбора параметров обработки сравниваемых ОКТ-сканов, т. е. масштаба оценивания градиента межкадровых вариаций фазы и размера области усреднения комплексных амплитуд пикселей на ОКТ-скане.

Все публикации по теме диссертации подготовлены при активном участии диссертанта.

Структура и объем работы

Работа состоит из введения, трёх глав, заключения, списка цитированной литературы и списка опубликованных работ по теме диссертации. Общий объем диссертации – 114 страниц, включая 52 рисунка, 1 таблицу, список цитированной литературы, состоящий из 124 работ и список работ по теме диссертации.

Благодарности

Автор выражает свою искреннюю признательность и глубокую благодарность научному руководителю, доктору физ.-мат. наук Зайцеву Владимиру Юрьевичу за руководство и поддержку, оказанные при выполнении данной работы. Кроме того, автор благодарит Матвеева Александра Львовича, Матвеева Льва Александровича и Советского Александра Александровича за ценные консультации и плодотворное обсуждение результатов, а также Валентина Михайловича Геликонова за полезные замечания по тексу диссертации. Автор также признателен всем соавторам за их вклад в исследования.

СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Во **Введении** обосновывается актуальность работы, формулируются её цели, кратко излагается содержание диссертации, приводятся положения, выносимые на защиту, описана методология исследований.

В Главе 1 описана вычислительно эффективная и достаточно реалистичная модель формирования ОКТ-сканов в спектральной оптической когерентной томографии. Модель основана на представлении среды в виде совокупности дискретных рассеивателей, широко используемом в литературе, а также использует предположение об однократном обратном рассеянии (часто называемом баллистическим) оптической волны. Это приближение лежит в основе самого принципа формирования ОКТ-сигналов, и его справедливость для большинства биотканей хорошо подтверждается экспериментом. Важно подчеркнуть, что в большинстве ОКТ-установок зондирующие пучки намеренно слабо сфокусированы, что позволяет получить пучок с приблизительно плоским фазовым фронтом и почти неизменным диаметром, обеспечивающим почти равномерное поперечное разрешение по всей глубине визуализации. Следовательно, зондирующий пучок в таких установках остается близким к цилиндрическому с постоянным диаметром.

В ОКТ фаза принимаемого сигнала почти полностью определяется прямым и обратным распространением в осевом направлении. Напротив, поперечные координаты рассеивателей в поперечном сечении зондирующего пучка могут изменяться гораздо сильнее, при этом незначительно влияя на фазу принимаемого сигнала. Поэтому разумной моделью зондирующего пучка, позволяющей сохранить реалистичность за счёт учета ключевых эффектов и в то же время позволяющей добиться вычислительной эффективности за счёт пренебрежения вторичными факторами, является пучок цилиндрической формы постоянного радиуса с гауссовым поперечным распределением амплитуды и плоским фазовым фронтом. Рисунок 1 схематически показывает соответствие используемой модели пучка с другими (как более простыми, так и более строгими вариантами, используемыми в работах [7, 8, 9])

Рис. 1. Сравнение моделей зондирующих пучков: (а) цилиндрический пучок с неизменной шириной и равномерным распределением фазы и амплитуды; (b) сильно сфокусированный гауссов пучок; (c) слабо сфокусированный гауссов пучок с учетом расходимости поля рассеяния и высокой направленности приема сигнала; (d) форма пучка, которая является промежуточной между случаями (а) и (с), так что амплитуда пучка аппроксимируется независимым от глубины гауссовым профилем, а фаза однородна в поперечном сечении. Это приближение используется в диссертации.

С использованием предложенной модели был проведён численный эксперимент по изучению декорреляции спеклов внутри кровеносного сосуда для различных типов движений рассеивателей, имитирующих эритроциты (основной тип рассеивающих частиц в крови). Эритроциты моделировались как гантели с двумя точечными рассеивателями на краях длиной равной среднему диаметру эритроцита. Использование численной модели позволило изучить эволюцию коэффициента корреляции C(t) во времени и селективно проанализировать вклады от трёх различных базовых движений частиц крови в сосуде – регулярное поступательное движение, поступательное броуновское движение и вращательное броуновское движение. Результаты представлены на рис. 2.

В конце главы 1 подробно описан векторный метод оценки деформаций [10], используемый и развиваемый в диссертации, и приведён пример применения предложенной модели для тестирования различных вариантов эластографического анализа ОКТ-сканов при произвольно задаваемом смещении рассеивателей между сканами.

Рис. 2. Результат численного моделирования законов декорреляции спеклов в ОКТизображении трёх основных видов движений эритроцитов в крови: поступательного регулярного смещения (а), поступательного броуновского движения (b) и вращательного броуновского движения (панель (c) показывает линейную аппроксимацию для соответствующей начальной декорреляции для малых времен $|C(t) = \exp(-at)|$ и (d) линеаризованный закон для средних времен $|C(t) = \exp(-at^{1/2})|$) Точки – результаты моделирования, сплошные линии – линейная аппроксимация.

В Главе 2 рассматриваются методы улучшения ангиографической визуализации. Визуализация микрокровотока в оптической когерентной ангиографии (OKA) основана на выделении движения клеток крови относительно окружающей их «твёрдой» биоткани. Большинство методов OKA оценивают временну́ю изменчивость спеклов на OKT-сканах, на которых высокая изменчивость соответствует области кровеносных сосудов. В действительности окружающая биоткань не является статичной из-за естественных движений живых организмов (таких как сердцебиение и дыхание), и её движение необходимо компенсировать до ангиографической обработки, что является одной из важнейших задач в ангиографии.

В главе 2 представлен новый метод компенсации маскирующих движений в ОКА в условиях сверхволновых по величине и латерально неоднородных смещений рассеивателей, вызванных деформацией, которые могут возникать при ангиографических исследованиях в контактном режиме. Хотя фаза пикселей гораздо более чувствительна к небольшим смещениям рассеивателей, чем амплитуда, при высоком уровне деформации смещения могут стать настолько большими, что рассеиватели испытывают смещения сравнимые с размером пикселей, существенно меняя и амплитуды сигнала в этих пикселях. Это изменение амплитудно-фазовых профилей А-сканов приводит к высокому уровню декорреляционного шума, содержащему как фазовый, так и амплитудный вклады. Как следствие, ОКА-изображения становятся сильно зашумлёнными.

Представленный метод основан на теореме о фурье-сдвиге (применяемой в пределах скользящего окна), и он позволяет вернуть изображение на его исходное место до деформации. Это приводит к снижению межкадровой декорреляции, и, следовательно, к меньшей изменчивости сигнала вне кровеносных сосудов при сохранении высокой изменчивости внутри них. На рис. 3 представлено сравнение предложенной фурье-компенсации с чисто фазовой компенсацией. Разработанный метод показывает значительно более высокое качество ОКА-изображения и более высокий контраст между кровеносным сосудом и фоном. Таким образом, новый метод компенсации маскирующего движения выглядит многообещающим для применения на пациентах, для которых использование различных иммобилизирующих устройств неприемлемо, а контактный режим ОКТ является реалистичной приемлемой альтернативой.

Рис. 3. Сравнение ОКА-изображений, полученных с помощью высокочастотной фурье-фильтрации с использованием фазовой компенсации (левая часть) и амплитудно-фазовой компенсации на основе фурье-сдвига (правая часть). На панелях (а) и (b) показаны примеры ОКА-изображений в глубину; (c) и (d) – *en face* проекции ангиографического сигнала на горизонтальную плоскость. Предложенная компенсация с помощью фурье-сдвига демонстрирует значительно лучшие результаты: в области «твёрдой» биоткани наблюдается гораздо меньше артефактов, связанных с объёмным движением ткани.

Также в главе 2 был предложен подход к ангиографической визуализации на основе эластографии, использующий новый вариант выделения движения кровяных частиц на фоне окружающей их ткани, который значительно отличается от ранее предложенных вариантов ОКА. Механические деформации, вызванные контактом с ОКТ-зондом, являются достаточно гладкими, в то время как сигнал внутри сосудов является случайным и представляет собой локальные области «разрывных случайных деформаций». Сравнение «деформационной» ОКА с методом высокочастотной фурье-фильтрации показано на рис. 4. Важным преимуществом разработанного метода, является простота и эффективность компенсации маскирующих движений ткани с произвольной конфигурацией, пространственной которые проявляются на ОКАизображении как артефактные линии. Эта способность особенно важна для контактного режима получения ОКТ-изображений, который является минимально инвазивным и в многих случаях применим к пациентам без необходимости использования дополнительных устройств для иммобилизации ткани.

Следует подчеркнуть, что предложенный метод «деформационной» ОКА использует вычислительно эффективный векторный метод для оценки локальных деформаций, который реализуется в реальном времени. Поэтому визуализация в режиме «на лету» также возможна. Таким образом, новый метод ОКТ выглядит многообещающим для более широкого использования в клинических применениях на пациентах.

Рис. 4. Сравнение методов высокочастотной фильтрации (а) и разработанной «деформационной» ОКА (b) для экспериментальных данных. Результаты представлены в виде *en face* изображений с использованием логарифмической шкалы. Изображение «деформационной» ОКА имеет меньше артефактов, связанных с маскирующими пространственно неоднородными движениями ткани, выделенных пунктирными эллипсами. Межкадровая разница фаз, соответствующая верхнему эллипсу, показана на панели (c).

Глава 3 посвящена адаптивному автоматическому выбору параметров обработки сигнала для векторного метода оценки деформаций в оптической когерентной эластографии (ОКЭ). На практике обычно применяют минимальные фиксированные параметры эластографического анализа (т. е. размер области усреднения и масштаб оценивания фазовых градиентов), чтобы обес-

печить приемлемое разрешение в самой «сложной» области с наиболее мелкомасштабными межкадровыми вариациями фазы. Однако в областях малых деформаций и плавных распределений межкадровых вариаций фазы использование слишком малых размеров областей усреднения и масштабов оценивания фазовых градиентов может приводить к неприемлемо высокой зашумленности результатов. На практике очень часто распределение деформаций является сильно неоднородным как в пространстве, так и во времени, поэтому автоматический адаптивный выбор параметров значительно улучшает качество оценки деформаций по сравнению с оценками при фиксированных параметрах анализа.

Рисунок 5 демонстрирует влияние на качество оценки деформации двух ключевых параметров векторного метода: размеров окна предварительного усреднения $W_x \times W_z$ и шага дифференцирования межкадровой разности фаз *g*, и подчёркивает важность оптимального выбора обоих параметров.

Рис. 5. Демонстрация влияния выбора шага дифференцирования g и окна предварительного усреднения $W_x \times W_z$ на качество оценки деформации. На рисунке показаны оценённые аксиальные деформации с использованием различных значений шага дифференцирования g=1, 2 и 4 пикселя и окна предварительного усреднения $W_x \times W_z = 1 \times 1$ и 4×4 пикселя. Верхний ряд показывает влияние выбранного масштаба оценки градиента g без дополнительного использования предварительного векторного усреднения $(W_x \times W_z = 1 \times 1)$. Нижний ряд соответствует тем же масштабам оценки градиента g=1, 2 и 4 пикселя, но с предварительным векторным усреднением по окну 4×4 пикселя. Таким образом, рисунок наглядно демонстрирует, что выбор и шага дифференцирования g и окна предварительного усреднения $W_x \times W_z$ оказывает значительное влияние на качество оценки деформаций и их автоматический адаптивный выбор позволяет значительно улучшить качество оценки деформаций и является важной эластографической задачей.

В главе 3 предложен метод автоматического адаптивного выбора шага дифференцирования g. Его ключевой идеей является выбор максимального g, при котором не происходит выхода за пределы однозначности фазы $\pm \pi$ для фазового градиента. Это достигается путём расчёта деформаций для различных g, например, в диапазоне 2–16 пикселей и отслеживании знака деформаций в каждом пикселе при увеличении g. Смена знака соответствует выходу за пределы однозначности фазы, а оптимальным считается максимальное g, при котором знак сохранился. Проводя такую процедуру для каждого пикселя, составляется маска оптимальных g (рис. 6а) на основе которой производится «сшивание» деформаций, рассчитанных с различными g.

Рис. 6. Демонстрация работы адаптивного выбора шага дифференцирования g в сравнении с деформациями, рассчитанными с малым фиксированным шагом g=1. (а) – адаптивно выбранная маска g(m,j) для набора возможных значений g = [2, 3, 4, 6, 8, 12, 16]; (b) – распределение деформаций, рассчитанное с использованием маски g(m,j); (c) – деформации, рассчитанные с фиксированным шагом g = 1 и с использованием того же финального усреднения 16×16 пикселей, что и для панели (b). Использование адаптивного шага g(m,j) позволяет значительно улучшить качество оценки деформаций.

Разработанный метод адаптивного выбора второго ключевого параметра в векторном методе – окна предварительного усреднения $W_x \times W_z$ основан на выявленной в этой работе взаимосвязи между оптимальными размерами окна усреднения и шага дифференцирования g. Аналитически было показано, что оптимальный размер окна предварительного усреднения в два раза меньше оптимального шага g для данного пикселя, т. е. маска для предварительного усреднения может быть найдена как $W_{z,x}(m, j) = \lfloor g_{z,x}(m, j)/2 \rfloor$ (где скобки обозначают округление до ближайшего целого снизу). Результаты анализа были подтверждены в ходе численного эксперимента.

Также было предложено объяснение, почему при использовании слишком большого размера вертикального окна усреднения по сравнению с масштабом дифференцирования оценка деформаций становится заниженной. Это объясняется тем, что в таком случае пиксели, используемые для расчёта фазового градиента, становятся частично коррелированными, что приводит к ошибке в оценке величины деформаций. Отсюда следует важный вывод: нельзя использовать адаптивное предварительное усреднение без адаптивного выбора шага g. Поэтому на рис. 7 приведено сравнение трёх методов: использующий фиксированные маленькие параметры, фиксированное малое окно усреднения и адаптивный g, и все параметры W_z , W_x и g, выбранные адаптивно.

Рис. 7. Сравнение деформаций, рассчитанных с использованием различных методов выбора используемых параметров. Левый столбец соответствует фиксированному размеру окна предварительного усреднения $W_z=W_x=2$ и фиксированному масштабу оценки градиента g=3; центральный столбец – фиксированному окну $W_z=W_x=2$ и адаптивно выбранному шагу g; правый столбец – адаптивному выбору всех трёх параметров W_z , W_x и g. В верхнем ряду показаны деформации без финального векторного усреднения, а нижнем ряду – с его использованием по окну 16×16 пикселей. Разница особенно хорошо заметна для неусреднённых деформаций и в нижней части рисунка для усреднённых деформаций, где их уровень является низким.

Метод вычисления маски для g является вычислительно ёмким, так как требует многократного повторения процедур перебора значений g с проверкой корректности знака оцененной деформации. Т.к. оценка W_z , W_x также основана на получении маски для g, то такую процедуру необходимо повторять 3 раза. Ввиду этого был разработан упрощённый вариант адаптивного выбора параметров W_z , W_x и g, не требующий процедур многочисленного перебора. Он показывает значительное улучшение качества оценки деформаций по сравнению с использованием малых фиксированных параметров и лишь незначительное ухудшение по сравнению с полным методом.

В Заключении сформулированы основные результаты, полученные в диссертации.

используемых ОКТ-приборов 1. Для наиболее часто co слабо фокусированным зондирующим пучком, обеспечивающим приблизительно одинаковое пространственное разрешение по глубине, предложена модель формирования ОКТ-сканов на основе волнового подхода, сочетающая хорошую реалистичность, возможность учета движения рассеивателей от скана к скану при высокой вычислительную эффективности, позволяющей генерировать большие объемы ОКТ-данных. Это дало возможность детально исследовать методы ОКТ-эластографии и ОКТ-ангиографии, гибко меняя параметры в строго контролируемых условиях численного эксперимента, что в физических экспериментах обеспечить сложно или даже невозможно.

2. Для методов ангиографической визуализации, основанных на сравнении последовательно получаемых ОКТ-сканов с сильным самоперекрытием, предложен улучшенный метод компенсации декорреляционных искажений с использованием теоремы о фурье-сдвиге, что позволяет снизить роль межкадровой как амплитудной, так и фазовой декорреляции из-за паразитных движений окружающей сосуды «твердой» ткани и повысить контраст получаемых ангиографических изображений.

3. Предложен новый подход к реализации ОКТ-ангиографии, использующий аналогию с фазочувствительной ОКТ-эластографией и выделяющий сечения сосудов как области локально повышенной случайной деформации. Этот подход обеспечивает качество визуализации сосудов, сравнимое с известным методом высокочастотной фильтрации, открывая перспективу, пожертвовав частью самых мелких капилляров, сократить время получения ангиографического изображения на 30–50%, что важно для практических применений метода ОКТ-ангиографии.

4. Для реализации фазочувствительной ОКТ-эластографии предложен подход к адаптивному автоматическому выбору основных параметров обработки сравниваемых ОКТ-сканов (размера области усреднения и масштаба оценивания градиентов межкадровых вариаций фазы), что позволило существенно улучшить качество реконструкции пространственных распределений деформаций, особенно в практически важных условиях их существенной пространственной неоднородности и в присутствии значительных измерительных шумов.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

[1] Huang D., et al., Optical Coherence Tomography // Science. 1991. Vol. 254, № 5035. P. 1178.

[2] Bouma B.E. et al. Optical coherence tomography // Nat Rev Methods Primers. 2022. Vol. 2, № 1. P. 79.

[3] Leitgeb R., et al., Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography // J. Biomed. Opt. 2021. Vol. 26, № 10. P. 100601.

[4] Chen C.-L., Wang R.K. Optical coherence tomography based angiography [Invited] // Biomed. Opt. Express. 2017. Vol. 8, № 2. P. 1056.

[5] Yao G., Wang L.V. Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media // Phys. Med. Biol. 1999. Vol. 44, N_{2} 9. P. 2307.

[6] Macdonald C.M., Munro P.R.T. Approximate image synthesis in optical coherence tomography // Biomed. Opt. Express. 2021. Vol. 12, № 6. P. 3323.

[7] Zaitsev V.Y. et al. A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT // Laser Phys. Lett. 2014. Vol. 11, N 10. P. 105601.

[8] Matveyev A.L. et al. Semi-analytical full-wave model for simulations of scans in optical coherence tomography with accounting for beam focusing and the motion of scatterers // Laser Phys. Lett. 2019. Vol. 16, $N \ge 8$. P. 085601.

[9] Matveyev A.L. et al, Simulating scan formation in multimodal optical coherence tomography: angular-spectrum formulation based on ballistic scattering of arbitrary-form beams // *Biomed. Opt. Express.* 2021. vol. 12(12), P. 7599(1–17).

[10] Matveyev A.L. et al, Vector method for strain estimation in phasesensitive optical coherence elastography // Laser Phys. Lett. 2018. vol. 15(6), P. 065603(1-6)

СПИСОК РАБОТ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых журналах

[1A] Flexible Computationally Efficient Platform for Simulating Scan Formation in Optical Coherence Tomography with Accounting for Arbitrary Motions of Scatterers / **A.A. Zykov**, A.L. Matveyev, L.A. Matveev [et al.] // J-BPE – 2021 – Vol. 7 – P. 010304. DOI: 10.18287/JBPE21.07.010304. (Scopus)

[2A] Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method / V.Y. Zaitsev, S.Y. Ksenofontov, A.A. Sovetsky, A.L. Matveyev, L.A. Matveev, **A.A. Zykov**, G.V Gelikonov // Photonics – 2021 – Vol. 8 – P. 527. DOI: 10.3390/photonics8120527. (WOS, Scopus)

[3A] Novel Elastography-Inspired Approach to Angiographic Visualization in Optical Coherence Tomography / **A.A. Zykov**, A.L. Matveyev, L.A. Matveev [et al.] // Photonics – 2022 – Vol. 9 – P. 401. DOI: 10.3390/photonics9060401. (WOS, Scopus)

[4A] Numerical Study of Supra-Wavelength Axial Motion Compensation in Contact-Mode Optical Coherence Angiography Using Fourier-Shift Procedures / **A.A. Zykov**, A.L. Matveyev, L.A. Matveev [et al.] // J-BPE – 2022 – Vol. 8 – P. 040303. DOI: 10.18287/JBPE22.08.040303. (Scopus)

[5A] Vector Method of Strain Estimation in OCT-Elastography with Adaptive Choice of Scale for Estimating Interframe Phase-Variation Gradients / A.A. Zykov, A.L. Matveyev, A.A. Sovetsky [et al.] // Laser Phys. Lett. – 2023 – Vol. 20 – P. 095601. DOI: 10.1088/1612-202X/ace253. (WOS, Scopus)

[6A] Optimization of Preliminary Vector Averaging for Improving Strain-Estimation Accuracy in Phase-Sensitive Optical Coherence Elastography / **A.A. Zykov**, A.L. Matveyev, A.A. Sovetsky [et al.] // J-BPE – 2023 – Vol. 9 – P. 040311. DOI: 10.18287/JBPE23.09.040311. (Scopus)

[7A] Computationally Efficient Adaptive Optimization of Vector-Method Parameters for Phase-Sensitive Strain Estimation in Optical Coherence Elastography / **A.A. Zykov**, A.L. Matveyev, L.A. Matveev [et al.] // Laser Phys. Lett. – 2024 – Vol. 21 – P. 085601. DOI: 10.1088/1612-202X/ad552c. (WOS, Scopus)

Публикации в трудах конференций, индексируемых в WoS и Scopus

[8A] Semi-Analytical Full-Wave Model of OCT-Scan Formation for Various Degrees of OCT-Beam Focusing with Implication of Motion of Scatterers / A.L. Matveyev, **A.A. Zykov**, L.A. Matveev [et al.] // Proceedings of SPIE – 2020 – Vol. 11359 – P. 113591H (1-5).

[9A] Multi-Factor Modeling of OCT-Scan Formation in the Presence of Scatterer Motions / A.L. Matveyev, L.A. Matveev, A.A. Sovetsky, **A.A. Zykov** [et al.] // Proceedings of the 2020 International Conference Laser Optics (ICLO) – 2020 – P. 1–1.

[10A] Numerical Simulation in Optical Coherence Tomography as a Tool for Development of Emerging OCT-Modalities / L.A. Matveev, A.L. Matveyev, A.A. Moiseev, A.A. Sovetsky, **A.A. Zykov**, G.V. Gelikonov, V.Y. Zaitsev // Proceedings of SPIE – 2021 – Vol. 11846 – P. 118460P (1-5).

[11A] Computationally Efficient Spectral Model of OCT-Scan Formation with Easily Accounted Scatterer Motions for Simulating Multimodal OCT / A.L. Matveyev, L.A. Matveev, **A.A. Zykov** [et al.] // Proceedings of SPIE – 2021 – Vol. 11924 – P. 119241A (1-3).

[12A] Numerical Simulations of Phase-Amplitude Compensation of Masking Strain-Induced Motions of Scatterers in Contact-Mode Optical Coherence Angiography / **A.A. Zykov**, A.L. Matveyev, L.A. Matveev [et al.] // Proceedings of the 2022 International Conference Laser Optics (ICLO) – 2022 – P. 1 1.

[13A] Strain-Estimation-Based OCT Angiography / A.A. Zykov, A.L. Matveyev, L.A. Matveev [et al.] // Proceedings of the 2022 International Conference Laser Optics (ICLO) – 2022 – P. 1–1.

[14A] OCT-Specific Signal Features for Semi-Automatic Semantic Scans Annotation and Segmentations / A.A. Sovetsky, A.L. Matveyev, A.A. Zykov [et al.] // Proceedings of SPIE – 2023 – Vol. 12770 – P. 1277000 (1-7).

[15A] Adaptive Selection of Spatial Scale to Estimate Axial Gradients of Inter-Frame Phase Variations for Mapping Strains in Optical Coherence Elastography / **A.A. Zykov**, A.A. Sovetsky, L.A. Matveev [et al.] // Proceedings of SPIE – 2023 – Vol. 12770 – P. 127700Q (1-7). [16A] Optical Coherence Elastography for Quantitative Visualization of Diffusion Processes in Biotissues / V.Y. Zaitsev, A.A. Sovetsky, E.M. Kasianenko, A.L. Matveyev, **A.A. Zykov**, Y.M Alexandrovskaya // Proceedings of The 31st International Conference on Advanced Laser Technologies – 2024 – P. 107.

Публикации в трудах российских конференций

[17А] Численное моделирование динамики спекл-структуры ОКТ-сканов при регулярных и случайных движениях рассеивателей в контексте развития ОКТ-ангиографии / А.А. Зыков, А.Л. Матвеев, Л.А. Матвеев [и др.] // Труды Двадцать четвёртой научной конференции по радиофизике, Нижний Новгород, 2020 – С. 366–369.

[18А] Оценивание деформаций в компрессионной оптической когерентной эластографии с отслеживанием межпиксельных смещений рассеивателей / А.А. Советский, А.Л. Матвеев, Л.А. Матвеев, Г.В. Геликонов, **А.А. Зыков**, В.Ю. Зайцев // Труды XVIII Всероссийского молодежного Самарского конкурса-конференции научных работ по оптике и лазерной физике, Самара, 2020 – С. 185–190.

[19А] Численное моделирование влияния регулярных и случайных движений рассеивателей на эволюцию спекл структуры ОКТ-сканов в контексте развития ОКТ ангиографии / **А.А. Зыков**, А.Л. Матвеев, Л.А. Матвеев [и др.] // Труды XVIII Всероссийского молодежного Самарского конкурсаконференции научных работ по оптике и лазерной физике, Самара, 2020 – С. 263–269.

[20А] Численное моделирование компенсации маскирующих движений биоткани в контактной оптической когерентной ангиографии с использованием процедуры Фурье сдвига / А.А. Зыков, А.Л. Матвеев, Л.А. Матвеев [и др.] // Труды XX Всероссийского молодежного Самарского конкурсаконференции научных работ по оптике и лазерной физике, Самара, 2022 – С. 79–86.

[21А] Новый подход к реализации оптической когерентной ангиографии на основе высокоразрешающего картирования деформаций биоткани / А.А. Зыков, А.Л. Матвеев, Л.А. Матвеев [и др.] // Труды XXVII Нижегородской сессии молодых ученых (технические, естественные, математические науки), Нижний Новгород, 2022 – С. 343–348.

[22А] Векторный метод оценки деформаций в ОКТ-эластографии с адаптивным выбором масштаба оценки градиентов межкадровых вариаций фазы / **А.А. Зыков**, А.Л. Матвеев, А.А. Советский [и др.] // Труды конференции Current Trends in Biophotonics, Нижний Новгород, 2023 – С. 48.

[23А] Автоматический адаптивный выбор масштаба дифференцирования межкадровых вариаций фазы при оценке деформаций в оптической когерентной эластографии / А.А. Зыков, А.Л. Матвеев, А.А. Советский [и др.] // Тру-

ды XXI Всероссийского молодежного Самарского конкурса-конференции научных работ по оптике и лазерной физике, Самара, 2023 – С. 66–67.

Глава в книге:

[24А] Компрессионная оптическая когерентная эластография. Количественная оценка параметров жесткости: распределение значений жесткости и нелинейность / В.Ю. Зайцев, А.Л. Матвеев, Л.А. Матвеев, А.А. Зыков, А.А. Советский // Мультимодальная оптическая когерентная томография в клинической медицине. М.: ФИЗМАТЛИТ, 2022. – 336 с. – ISBN 978-5-9221- 1926-9

ОГЛАВЛЕНИЕ ДИССЕРТАЦИИ

Введение	4
Глава 1. Основные подходы к моделированию ОКТ-сканов и описание	
используемой волновой модели	19
1.1 Описание применяемой реалистичной модели формирования ОКТ	
изображений, с учётом произвольно задаваемого движения рассеивателей	19
1.2 Моделирование для задач ангиографии	25
1.3 Моделирование для задач эластографии и принципы оценивания	
аксиальных деформаций векторным методом на основе анализа	
фазочувствительных ОКТ-сигналов	36
1.4 Заключение	42
Глава 2. Развитие методов ОКТ-визуализации кровеносных сосудов	47
2.1 Используемые в ОКТ принципы визуализации кровотока	47
2.2 Компенсация маскирующих сверхволновых смещений с	
использованием теоремы о фурье-сдвиге	51
2.3 Нетрадиционный подход к ангиографии, основанный на оценке	
локальных деформаций	64
2.4 Заключение	69
Глава 3. Повышение качества оценивания и визуализации деформаций	á
с использованием адаптивного выбора параметров обработки ОКТ	
сканов	71
3.1 Адаптивный выбор масштаба оценивания фазового градиента	73
3.2 Адаптивный выбор размеров окна предварительного усреднения	89
3.3. Упрощённый вариант адаптивного совместного выбора масштаба	
оценивания фазового градиента и размеров окна предварительного	
усреднения 1	102
3.4. Заключение 1	108
Заключение 1	109
Список сокращений и условных обозначений 1	110
Список литературы 1	111

ЗЫКОВ Алексей Андреевич

РАЗВИТИЕ МЕТОДОВ ЭЛАСТОГРАФИЧЕСКОЙ И АНГИОГРАФИЧЕСКОЙ ВИЗУАЛИЗАЦИИ В ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ НА ОСНОВЕ РЕАЛИСТИЧНОГО ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ОКТ-СКАНОВ

Автореферат

Подписано к печати г.

Формат 60 × 90 ¹/₁₆. Усл. печ. л. 1,5. Тираж 100 экз. Заказ № 11(2025).

Отпечатано в типографии Института прикладной физики РАН, 603950, г. Н. Новгород, ул. Ульянова, 46